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S U M M A R Y
With the deployment of high quality and dense permanent seismic networks over the last
15 yr comes a dramatic increase of data to process. In order to lower the threshold value of
magnitudes in a catalogue as much as possible, the issue of discrimination between natural
and anthropogenic events is becoming increasingly important. To achieve this discrimination,
we propose the use of a convolutional neural network (CNN) trained from spectrograms. We
built a database of labelled events detected in metropolitan France between 2020 and 2021
and trained a CNN with three-component 60 s spectrograms ranging frequencies from 1 to
50 Hz. By applying our trained model on independent French data, we reach an accuracy
of 98.2 per cent. In order to show the versatility of the approach, this trained model is also
applied on different geographical areas, a post-seismic campaign from NW France and data
from Utah, and reaches an accuracy of 100.0 and 96.7 per cent, respectively. These tests
tend to hypothesize that some features due to explosions compared to earthquakes are widely
shared in different geographical places. In a first approach, we propose that it can be due to a
contrast in the energy balance between natural and anthopogenic events. Earthquake seismic
energies seem to be more continuous as a function of frequency (vertical bands features in a
spectrogram) and conversely for explosions (horizontal strips).

Key words: Neural networks, fuzzy logic; Time-series analysis; Seismicity and tectonics.

1 I N T RO D U C T I O N

Studying low magnitude earthquakes allows us to better under-
stand natural seismic activity, especially in stable continental re-
gions where it is challenging to explain the occurrence of earth-
quakes under slow strain-rate conditions. Before 2000s, most of
seismic stations operated in triggered mode, recording only events
that exceeded an operator-defined detection threshold, while most
of present-day stations continuously record the ground motion. This
evolution comes at the cost of an increase in the processing capabili-
ties but interestingly offers the possibility to reprocess ‘old’ data set
with new methods to detect events with lower signal-to-noise ratio
(SNR), and consequently lower magnitudes seismic events. Denser
seismic station networks and high sensitivity modern instruments
improve our understanding of global and local seismicity over the
last decade (e.g. Levandowski et al. 2018; Beucler et al. 2021). As
an illustration of the evolution of the seismic data volume, the size
of the IRIS DMC (Incorporated Research Institutions for Seismol-
ogy Data Management Center) archive has grown from 25 terabytes
(TB) in 2005 January to 800 TB in 2022 January. In metropolitan
France, the number of stations from the FR network (RESIF 1995)
has increased from 56 in 2005 January to 157 in 2020. This mas-
sive flow of global seismic data implies an important human and

temporal cost for the data processing and creation of a catalogue
of seismic events (e.g. detection, picking of seismic phases and
discrimination of events).

One of the major challenges in developing an event catalogue,
is the discrimination between natural (tectonic events) and anthro-
pogenic events (caused by human activity, as quarry blasts or mil-
itary explosions). In metropolitan France, instrumental seismicity
is mostly characterized by low magnitude earthquakes (Cara et al.
2015). The deployment of new permanent stations since mid-2018
(Beucler et al. 2021; Doubre et al. 2021; Larroque et al. 2021;
Sylvander et al. 2021) has conducted to an increase in the num-
ber of detected natural and anthropogenic seismic events. However,
metropolitan seismicity is now dominated by the detection of an-
thropogenic events (for instance, see fig. 7 in Beucler et al. 2021),
originating from quarry blasting, military training operations or
underwater mine explosions along the French coast (e.g. Favretto-
Cristini et al. 2020). It is therefore necessary to find an efficient
solution to help the discimination of all these low magnitude seis-
mic events.

Several semi-automatic or automatic approaches have already
been developed using, for example, the amplitude ratio between
seismic phases (Baumgardt & Young 1990; Dysart & Pulli 1990;
McLaughlin et al. 2004; Tibi et al. 2018; Pyle & Walter 2019; Wang
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2120 C. Hourcade, M. Bonnin and É. Beucler

Figure 1. Examples of five natural events (A, B, D, F and G) and three anthropogenic events (C, E and H), recorded by the FR network stations, with the
associated spectrograms. The seismic signals correspond to the normalized raw data of the vertical component. The spectrograms are normalized by their
maximum. All technical details of the events are in Table S1 (Supporting Information).
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Figure 2. The CNN architecture. The input of the array corresponds to the three-component spectrograms of size 237 × 50 (time × frequency). The L1–L4
layers extract the characteristics thanks to the application of a series of filters allowing the downsampling of the matrix. This feature extraction leads to
the C matrix which is flatten to be injected in the fully connected layers. The CNN output corresponds to the two probabilities for the classes: natural and
anthropogenic. See Table 1 for more technical details on the CNN.

et al. 2020), using spectral content (Gitterman et al. 1998; Allmann
et al. 2008), or studying the coda (Su et al. 1991; Koper et al. 2016).
These types of methods are highly dependent of the SNR and of
the epicentral distance (some seismic phases may not be visible at
very short distances). However, extracting these information from
large data sets can be quite time consuming and the choice of these
parameters can be seen as relatively subjective.

To overcome these problems, such as finding relevant features
to classify the data, machine learning tools can be implemented.
In the last few years, these approaches were widely used for the
detection of events (Yoon et al. 2015; Ross et al. 2018; Mousavi
et al. 2020), automatic picking of seismic phase on raw data (Pardo
et al. 2019; Woollam et al. 2019; Zhu & Beroza 2019), but also for
signal classification using features extracted directly from the data

(Del Pezzo et al. 2003; Meier et al. 2019; Renouard et al. 2021), or
relying on deep neural networks (Li et al. 2018; Linville et al. 2019).
In the latter, training algorithms with a sufficiently large database
allow thoses programs to recognize, like humans, natural objects
and to make expert-level decisions.

Among those algorithms, convolutional neural networks (CNNs,
a nonlinear classifiers which is a subcategory of neural networks)
can achieve high-performance recognition and outperform simple
linear classifiers. Linville et al. (2019) show that using spectro-
grams with a frequency content between 1 and 20 Hz as input for
a CNN allows to achieve high predictive capability in distinguish-
ing natural from anthropogenic events. If the frequency range used
by Linville et al. (2019) is well suited for local to regional mod-
erate magnitude events, in cases of low magnitudes events (Ml <

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/232/3/2119/6819951 by C

N
R

S user on 31 M
arch 2023



CNN based seismic events discrimination tool 2121

Figure 3. Geographical distribution of the stations used for the training of the CNN and the end-2021 French data application (136 permanent stations of the
FR network). The Metropolitan France has been divided into three subsections. These geographical zones A, B and C are discussed in Section 4. The number
of stations per zone is shown in Table 2. The seven named stations are used as examples for Fig. 1.
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Figure 4. Geographic distribution of training, validation, and test databases composed of 9804 events detected between 2020-01-01 and 2021-06-01 and
labelled by the BSCF-ReNaSS. (a) 5016 natural events are represented by the red stars. The main French geological regions are contoured by the grey lines:
PB: Paris Basin, URG: Upper Rhine Grabben, AM: Armorican Massif, CM: Central Massif, AB: Aquitaine Basin, Alp: Alps and Py: Pyrenees. (b) 4788
anthropogenic events (quarry blasts and explosions) are represented by the blue circles.

2) occuring in low attenuation medium (such as Armorican Mas-
sif, Mayor et al. 2018) a significant part of the recorded signal
reaches frequencies up to 50 Hz. We thus propose to extend the
spectrogram to frequencies larger than 20 Hz in order to take into
account as much as possible the high-frequency spectral content.
An additionnal constraint of the algorithm chosen in Linville et al.
(2019) is the requirement of P-wave picking before the discrimina-
tion. By randomly selecting the beginning of the windows studied,
we want to overcome this problem and apply the method directly
after the detection step. CNNs can moreover automatically extract

discriminative features from training data. One of the objectives of
this study would be to verify whether these features deduced during
training, on a specific geographical region, can be generalized to
other regions.

In Section 2, we describe the CNN and the data set used to train
it. Three different applications are presented in Section 3 which
illustrates the versatility of the proposed approach. To this end, we
used 3 datasets not used for training. These are composed of events
located in different geographical areas: Metropolitan France, the
United States and a local study in NW France. Finally, in Section 4,
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2122 C. Hourcade, M. Bonnin and É. Beucler

Figure 5. Example of a confusion matrix. Each cell of a confusion matrix
contains a performance estimate of the CNN. In our case ‘Positive’ means
Natural and conversely ‘Negative’ for Anthropogenic. The term ‘Reality’
means what the National agency BCSF-RéNaSS tagged as Natural and
Anthropogenic. If the CNN gives exactly the same results as the Reality,
only the main diagonal has non-zero percentage values.

we discuss the performance of our discimination tool and the im-
plications for decision support for discrimination between natural
and anthropogenic events.

2 M E T H O D

2.1 Targets

The main objective of this paper is to describe an alternative dis-
crimination of natural and anthropogenic seismic events, which
inherently means low-to-intermediate magnitudes. At the present
time, this classification is generally done by experienced analysts.
Among criteria used to discriminate seismic events, the most widely
used are the source parameters of the events (location, time of origin
and magnitude) and the characteristics of the waveforms. Quarry
blasts and explosions are generally observed between 9 a.m. and
6 p.m. during working days, whereas natural events can occur at
any time of the day and night.

However, some configurations can make discrimination more
challenging. For instance, a natural event occurring near the surface
and/or near a quarry, can induce signals with characteristics similar
to quarry blasts and will very likely be tagged as ‘anthropogenic
event’ by an analyst. Low magnitude events produce signals with a
low SNR, so differentiation can be complicated. In addition, with
the increase in the amount of detections, due to the densification of
station networks, we are dealing with a larger diversity of waveforms
and the distinction between natural and anthropogenic events is
becoming increasingly complex and time consuming.

To illustrate this diversity, Fig. 1 presents eight examples of natu-
ral and anthropogenic events (traces and spectrograms) labelled by
the French National agency BCSF-RéNaSS (Bureau Central Sis-
mologique Français—Réseau national de surveillance sismique),
after visual inspection. Among them, five are natural events and
three are anthropogenic events. The most striking difference be-
tween the two categories is the amplitude ratio between P and S
waves. For natural events (Figs 1a, b, d, f and g) this ratio is gen-
erally lower than 1.0 while it almost equals to 1.0 for explosions
(Figs 1c, e and h). On the spectrograms (right-hand panels of Fig. 1)
of the natural events, we can clearly see two arrivals with a strong
energy packet associated to the S-wave arrival that forms a vertical
band that affects the whole frequency range. For the anthropogenic
events, energy is generally confined to lowest frequencies and forms
horizontal strips. Spectrograms thus seem to bear sufficient ‘visual’
information to help us to discriminate natural from anthropogenic
events. Examples for marine explosions and shallow earthquakes
are shown in Fig. S1 (Supporting Information).

To achieve high classification performances, and given the fact
that spectrograms are images, we have chosen to implement an
automatic classifier with a CNN which are ‘machine learning’ ap-
proaches that were proven to be particularly efficient for image
recognition.

2.2 Convolutional neural network

The discrimination of the two families of signals is achieved through
a supervised learning algorithm based on a CNN. A CNN allows to
extract discriminating features through the successive application
of hierarchical filters of defined size. The choice of implemented
CNN architecture is guided by those presented in the literature (e.g.
Linville et al. 2019; Meier et al. 2019) and by standard choices made
in deep learning (e.g. Géron 2019). The first layers correspond to
the convolution layers which, thanks to filters of a defined size,
allow the extraction of features from the input. Then, these features
are implemented in fully connected layers where the number of
neurons per layer varies. We tested about 10 different architectures
by varying the number of convolution layers (from 3 to 4 layers),
the number of filters (16 to 128) and the number of neurons in the
fully connected layers (80, 128 and 256). The training accuracy
(see definition in Section 2.4) of these different architectures ranges
from 92.83 to 95.63 per cent.

The CNN with the best performances is composed of four con-
volution layers with respectively 18, 36, 68 and 68 filters for each
layer and three fully connected layers (Table 1). We apply a 2 ×
2 ‘max-polling’, between each convolution layer, to allow a sub-
sampling by keeping only the maximum values. The final layer of
the neural network is the output layer that indicates the probabil-
ities obtained with the ‘softmax’ activation function (Fig. 2). The
coefficients of the filters and the weights of the fully connected
network are jointly optimized during the training process to maxi-
mize the discrimination performance. As input to this CNN, we use
normalized spectrograms of size 237 × 50 × 3, corresponding to
time (T) × frequency (F) × channels. The process to obtain these
spectrograms is explained in the next section.

2.3 Training data set

The CNN is trained on a data set composed of elements tagged with
two classes: natural and anthropogenic (quarry blast and explosion).
To generate this database, we use the BSCF-RéNaSS bulletin be-
tween 2020 January 01 and 2021 June 01, for events with Ml ≤ 3.
This bulletin is restricted to metropolitan France extended outside
its exclusive economic zone of 20 km. For each selected event, the
three-component seismic waveforms are collected at stations from
FR network for which at least a P-wave pick is documented in the
bulletin.

The data set is composed of 30 054 natural events records (corre-
sponding to 5172 natural events) and 25 549 anthropogenic events
records (4877 anthropogenic events) at 136 permanent stations. To
have a balanced database between the two classes, we have randomly
selected, using a uniform distribution, 25 000 records in each class.
This provides a set of 50 000 records that correspond to 5016 and
4788 natural and anthropogenic events, respectively. The conse-
quences of different choices for the training dataset are discussed
in Section 4.2.

Fig. 3 shows the geographical distribution of the stations used
to train the CNN. The majority of the stations are grouped in the
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(a) (b)

(c)

(d) (e)

Figure 6. Application on the official French dataset detected between 2021 June 1 and November 1 from the BCSF-RéNaSS bulletin. (a) Geographic
distribution of all seismic events used for this application (1450 natural and 2062 anthropogenic events). (b) Geographic distribution of events misclassified
by the model. The blue stars correspond to events labelled as ‘natural’ and classified as ‘anthropogenic’ by the model. The red circles correspond to events
labelled ‘anthropogenic’ and classified as ‘natural’ by the model. The darker colours correspond to a prediction of more than 75 per cent by the CNN and the
lighter colours correspond to a prediction of less than 75 per cent by the CNN. (c) Confusion matrix, for the differentiation between natural and anthropogenic
events, obtained from the French data set. The reference is the discrimination made by BCSF-ReNaSS. The classification is done at the network level. P is the
probability of an event. The symbols correspond to the events located on (b). (d) Normalized histogram of the output probability of being a natural earthquake
for natural and anthropogenic earthquake detected between 2021 June 1 and November 1, at a station level and (e) at a network level.

mountainous areas (Alps in zone B and Pyrenees in zone C). In the
rest of France, the stations are more evenly distributed.

Fig. 4 shows the geographic distribution of natural and anthro-
pogenic events in the database. We observe areas with a high con-
centration of natural events, such as the Pyrenees (zone C), the
Alps and the Upper Rhine Grabben (zone B, Table 2). In compar-
ison, in the Armorican Massif and the Massif Central (zone A),
known as stable continental areas, fewer scattered natural events
are observed. As expected, we have a few or no earthquakes in
the Aquitaine Basin and the Paris Basin, which coincides with the
general seismicity of these regions (Cara et al. 2015). For anthro-
pogenic events, the distribution of quarries is very heterogeneous
and also related to the geology and tectonic history of the regions.

In zone A, 84.4 per cent of the events correspond to anthropogenic
events, whereas for zones B and C, the ratios are 48 per cent and 31
per cent, respectively (Table 2).

Waveforms are sampled at 100 sps (samples per second) and
are sliced into 60 s windows. This window size limits the source-
station distance used for discrimination to about 400 km which is
consistent with our choice to focus on Ml ≤ 3 event. To mitigate
the use of a priori information on the P-wave arrival and to make
the CNN less sensitive to picking errors or phase mislabelling, we
impose that the window starts randomly between 5 and 20 s before
the P-wave pick. Indeed, depending on the focal mechanisms, the
SNR or the method used [(for instance STA/LTA, e.g. Allen 1982)
or template matching (e.g. Gibbons & Ringdal 2006)], detection
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(a) (b)

(c)

Figure 7. Application on events detected by UUSS between 2016 January 1 and March 1. (a) Geographic distribution of all the seismic events used for the
application (288 natural and 108 anthropogenic events). (b) Geographic distribution of the events misclassified by the model. Blue stars correspond to the
events labelled as ‘natural’ and classified as ‘anthropogenic’ by the model. Red circles correspond to the events labelled ‘anthropogenic’ and classified as
‘natural’ by the model. The darker colours correspond to a prediction of more than 75 per cent by the CNN and the lighter colours correspond to a prediction
of less than 75 per cent by the CNN. (c) Confusion matrix, for the differentiation between natural and anthropogenic events. The classification is done at the
network level. P is the probability of an event. The symbols correspond to the events located on (b).

Table 1. Technical details of the CNN. conv: convolution, fc: fully connected and ReLU: rectified linear unit.
Convolution layers from L1 to L4 and fully connected layers from L5 to L7.

L1 L2 L3 L4 L5 L6 L7

Layer Type conv conv conv conv fc fc fc
Number of filter/neuron 18 36 68 68 80 80 2
Filter size (5,5) (3,3) (3,3) (2,2)
Activation ReLU ReLU ReLU ReLU ReLU ReLU softmax

Table 2. Partition of the data set.

Zone A Zone B Zone C Total

Natural events 255 2612 2149 5016
Anthropogenic events 1407 2415 966 4788
Records 11 126 22 818 16 056 50 000
Stations 40 62 34 136

time can indeed correspond to P or S-wave onset. This method does
not require an exact and reliable choice of the P-wave onset time.

To standardize the data given to the CNN, waveforms are de-
trended, tapered (Hann window, 5 per cent of the total window) and
filtered with a 2 Hz high-pass Butterworth filter (four-corner, two
passes). Spectrograms are computed for 1 s sliding windows with
75 per cent overlap. We end with 237 time windows for which we
compute their discrete Fourier transform between 1 and 50 Hz for
the three components of the seismogram. For each seismogram,
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that is, each source-station couple, we thus obtain 237 × 50 × 3
elements matrices (time × frequency × channels).

2.4 Training results

Generally, in machine learning algorithms (e.g. James et al. 2013),
the whole database is split into three different data sets, one for each
stage of the model creation: training (80 per cent of the database),
validation (10 per cent of the database) and test sets (10 per cent
of the database). The model is trained with a data set composed of
examples used to adjust the parameters results of the model (i.e. filter
coefficients, weights of the connections between neurons in the fully
connected network). At the same time, the trained model is used to
predict the observations in a second data set called the ‘validation’
data set. The ‘validation’ data set is used to evaluate the fit to the
data during training. The training stops when the accuracy on the
‘validation’ set remains stable over three iterations (epochs). We
choose the oldest epoch with the highest validation accuracy as the
final model. The ‘test’ dataset is finally used to provide an impartial
evaluation of a final model and the results of the classification are
presented in the form of a confusion matrix (Fig. 5). An element
is categorized as natural or anthropogenic by looking at the highest
probability of prediction. We repeated the entire process 10 times
(tenfold cross validation) by randomly mixing the database to create
the ‘training’, ‘validation’ and ‘test’ data sets. The final model,
presented in this study, corresponds to the model with the best
performance among the 10 trainings. Classically, to evaluate the
performance of a classification (e.g. Tharwat 2020), we define the
accuracy (Acc), precision (Pr), recall (Re) and F1-score (F1) as

Acc = T P + T N

T P + F P + T N + F N
, (1)

Pr = T P

T P + F P
, (2)

Re = T P

T P + F N
, and (3)

F1 = 2
RePr

Re + Pr
. (4)

True Positive (TP) is the number of natural events correctly clas-
sified by the CNN and False Negative (FN) represents the number of
natural events classified as anthropogenic. False Positive (FP) is the
number of anthropogenic events classified as natural and True Neg-
ative (TN) represents the number of anthropogenic events correctly
classified by the CNN.

Since the accuracy (1) is the ratio of the sum of all the true
predictions over the amount of all possible predictions, it indicates
whether the discrimination is correct. The precision (2) indicates
how the algorithm is relevant for the discrimination of what is named
‘Positive’ (in our case, Natural). When the precision is high, it means
that the majority of the positive predictions of the model are correct.
The recall (3) quantifies the ratio of positive class predictions over
all the actual positive classes. When the recall is large, it means that
the majority of positive only elements are well classified. The F1-
score (4) is a weighted average of precision and recall. This score
thus accounts for both false positives and negatives.

The classifier achieved high scores with a training accuracy of
95.63 per cent. The score is computed using all elements inde-
pendently of the event they are associated with, which is called a
station-level prediction. It is possible to obtain an event prediction
by combining all the elements at the station-level that correspond
to the same event, it is called a network-level prediction. As a first

approach, for a given event, a linear average of all station-level
probabilities defines the probability at network level that leads to
the event-based classification.

On the ‘validation’ data set (10 per cent of the database, i.e. 5000
records), the final model reaches an accuracy of 94.76 per cent at the
station-level and of 95.11 per cent at the network level. The recall
of natural and anthropogenic events is 93.58 and 96.58 per cent,
respectively. The model incorrectly identifies 6.42 per cent of the
natural events and 3.42 per cent of the anthropogenic events, thus, it
is more likely to correctly predict the class of anthropogenic events.
Finally, on the ‘test’ data set (10 per cent of the database, i.e. 5000
records), the model reaches an accuracy of 94.68 per cent at the
station level and of 95.3 per cent at the network level.

3 VA R I O U S D I S C R I M I NAT I O N S U S I N G
A U N I Q U E T R A I N E D M O D E L

To illustrate the relevance of the scheme chosen for the CNN and the
versatility of our trained model, we apply it on three different case
studies, none of them were used to train it: (i) a data set composed
of events detected in metropolitan France for 5 months, (ii) a revisit
of the events detected in the United States, mainly in Utah, and
recorded by the University of Utah Seismograph Stations (UUSS)
in 2016 (Linville et al. 2019) and (iii) a data set composed of events
recorded during a post-seismic campaign deployment (Haugmard
2016). In this section, we discuss the events misclassified by the
model and, in order to identify them, we have taken as reference the
tags established by the national agencies or established manually
in the case of the post-seismic campaign. Some useful information
on the data set (magnitude range and epicentral distances) can be
found in Table S3 of the Supporting Information.

3.1 Events in metropolitan France in late 2021

The data set considered is composed of events detected by the
French national agency BCSF-RéNaSS between 2021 June 1 and
November 1 in metropolitan France. The same pre-processing steps
as described in Section 2.3 are followed. The dataset consists of
9011 records of natural events (associated to 1467 natural events)
and 11 049 records of anthropogenic events (2045 anthropogenic
events).

The geographical distribution of all the events is represented in
Fig. 6(a). The natural events are principally concentrated in the Pyre-
nees and the Alps while anthropogenic events are mainly located in
the Massif Central and the Massif Armoricain. No earthquake are
recorded in the Paris Basin and the Aquitaine Basin. This distribu-
tion is close to the one observed in Fig. 4.

Assuming that the discrimination made by national agency is
reliable and can be used as reference, Figs 6(d) and (e) show proba-
bilities obtained from the prediction for natural and anthropogenic
events. Fig. 6(d) corresponds to the probabilities obtained at a sta-
tion level, by taking into account each seismic trace independently.
We observe that 95.2 per cent of the anthropogenic signals and 89.9
per cent of the natural signals are concentrated on the two edges of
the probability range (between 0–0.25 and 0.75–1.0). At the network
level (Fig. 6e), and taking into account all the stations for a given
event, we observe that 94.8 per cent of the anthropogenic events
and 89.5 per cent of the natural events are concentrated on the two
edges of the probability range. This shows that the majority of the
data are correctly classified with a high probability and confidence
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levels. In view of these results, we can establish a confidence level
at 75 per cent probability to produce the confusion matrix.

Fig. 6(c) shows the results of the classification, at a network level,
as a confusion matrix. The CNN model obtains high scores (accu-
racy of 98.18 per cent) with, in particular, recall for natural and
anthropogenic events of 96.86 and 99.12 per cent, respectively. This
indicates that, out of the entire database, approximately 3 per cent
of the natural events and less than 1 per cent of the anthropogenic
events are misclassified. Among the 1467 natural seismic events
classified, 76 are located at less than 1 km depth. Our method thus
correctly classified 70 of them (92.10 per cent). The precision indi-
cates that 98.74 per cent of the predictions of natural events made by
the model are correct. The F1 scores for natural and anthropogenic
events are 97.79 and 98.46 per cent, respectively. This shows that the
model is efficient in classifying natural and anthropogenic events on
independent data. We can also observe that the majority of the pre-
dictions are made with a high level of probability: 3382 events (out
of the 3512 in total) are classified by the model with a probability
larger than 75 per cent.

Fig. 6(b) represents the location of the events misclassified by the
CNN model. Among 3512 events, only 64 are not correctly classified
by the model, which represents 1.82 per cent of the events. They
seem to be located mostly on the eastern border of metropolitan
France (zone B, Fig. 3).

3.2 University of Utah Seismograph Stations

The second application corresponds to events detected in the United
States, Utah, in 2016. This data set offers the possibility to test the
efficiency of our model in a drastically different context compared
to the data used for its construction. The main idea is to check
whether the CNN is able to discriminate anthropogenic events with
characteristics (e.g. source function and power) that can differ from
those in France.

Utah is seismically active due to its abundance of faults and
fracture zones with, among the most active in Utah, the Wasatch
Fault along the Wasatch Front (e.g. Arabasz et al. 1980). We use
the event solutions including source location of events, labelled as
natural or anthropogenic events, detected between 2016 January
01 and 2016 March 01 by University of Utah Seismographic Sta-
tions (UUSS). For each event, we recover seismic-waveform data
only from three-component broad-band permanent seismometers
located within 150 km of the earthquake location. P-wave times ar-
rival were manually identified to extract the signals. This represents
1248 records of natural events (288 natural events) and 398 records
of anthropogenic events (108 anthropogenic events). We use 49
permanent stations from UU (University of Utah 1962), WY (Uni-
versity of Utah 1983), NN (University of Nevada, Reno 1971) and
AE (Arizona Geological Survey 2007) networks. The geographical
distribution of all the events used for this application is represented
in Fig. 7(a). The natural events are mainly located along active faults
in the north–south direction with a clustering at Yellowstone in the
north. The anthropogenic events are quarry blasts located on seven
different quarries.

Assuming that the discrimination made by UUSS is reliable and
can be used as reference, Fig. 7(c) shows the results of the classi-
fication at the network level. The CNN model again obtains high
results with an accuracy of 96.72 per cent. The percentage is compa-
rable to the results presented for the training phase. The natural and
anthropogenic events obtain a recall of 98.61 and 91.67 per cent,
respectively. This indicates that less than 2 per cent of the natural

events and around 8 per cent of the anthropogenic events are mis-
classified. The F1 scores for the natural and anthropogenic events
are 97.76 and 93.83 per cent, respectively. This scores is close to
the end-2021 French data application. These very similar results
indicate that the CNN seems to discriminate effectively between
seismic events in two a priori different contexts.

Fig. 7(b) represents the geographic distribution of the events mis-
classified by the model. On the 396 seismic events, only 13 are not
correctly classified. This represents 3.28 per cent of all the events.
Moreover, we observe that 5 of the 9 misclassified anthropogenic
events are located in areas where the nearest station is about 100 km
away, which can explain this slightly higher percentage of misclassi-
fied anthropogenic events compared to the application on the French
data.

3.3 Local post-seismic campaign

An earthquake of magnitude MW = 3.5 (Sira & Schlupp 2014)
occurred near Vannes (NW France, see Fig. 8(a) for location) on
2013-11-21T09:53:00 (UTC). Six temporary stations were installed
in a region of about 20 km around the main shock to document the
aftershocks. Stations (three-component short-period velocimeters
with a corner frequency of 1 Hz) were deployed for 26 d (between
2013 November 22 and December 17) and recorded ground dis-
placement velocity with a sampling frequency of 100 sps. During
this period, 48 events were detected, thanks to the STA/LTA ap-
proach (Haugmard 2016), close to the temporary station, including
36 natural events and 12 quarry blasts. This represents 173 records
of naturals events and 66 records of anthropogenic events. The ref-
erence labels of these events were identified manually by observing
the waveform, the location of the source, the origin time and the
depth. Fig. 8(a) shows the location of the events detected during
the post-seismic campaign. Although the data set is greatly reduced
compared to the two other applications, we observe that the 12
quarry blasts originate from the same quarry and that 25 of the 36
natural events form a cluster that corresponds to the location of the
main shock.

Fig. 8(b) shows the results of the classification at a network level.
The model obtained a remarkable score of 100 per cent meaning
that all events detected during this post-seismic campaign, have
been correctly classified by the model. The high performance of
the classifier can be partly explained by the small epicentral dis-
tances where the source effect is more important than that of the
propagation in the waveform.

4 D I S C U S S I O N

4.1 Comparison with other methods

4.1.1 Features or not features?

The use of features extracted from the seismic signal is a widely
used technique in machine learning. Renouard et al. (2021), for
instance, use an hybrid approach including both human expertise
and machine learning algorithms to achieve this objective. They
trained a Random Forest algorithm by extracting selected features
from the seismic signals and by implementing them in a decision
tree. Their algorithm is trained with data recorded by permanent and
temporary stations from the AlpArray Seismic Network (Hetényi
et al. 2018) between 2016 and 2019 in the Upper Rhine graben
area, in northwestern Europe. Their model achieve an accuracy of
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(a) (b)

Figure 8. Application on temporary deployed seismic campaign installed near Vannes, in 2013, NW France. (a) Location of the natural (red stars) and
anthropogenic events (blue circles) detected between 2013 November 22 and December 17. The triangles represent the temporary stations installed during the
post-seismic campaign. (b) Confusion matrix, for the differentiation between the natural and anthropogenic events. The classification is done at the network
level. The darker colours correspond to a prediction of more than 75 per cent by the CNN and the lighter colours correspond to a prediction of less than 75
per cent by the CNN.

about 96 per cent. By applying our model only to the Upper Rhine
graben area we obtain an accuracy of 97.8 per cent. Renouard et al.
(2021) claim that their approach uses human expertise to compute
features and thus avoids the ‘black box’ aspect of a classical neural
network. However, the number of characteristics itself can be con-
sidered subjective and it is also possible that characteristics relevant
for discrimination are omitted. Moreover, the use of algorithms such
as Random Forest can lead to the use of many features that can be
quite region specific and can thus limit the application of the algo-
rithm to these specific areas. As a consequence, the workflow for
such method can be quite complex. It is, for instance, required to
first, pick the arrival times of the direct and refracted P and S phases,
then, to locate the event and, finally, to extract from the signal the 22
features used by the algorithm to perform its prediction. The CNN,
presented in this study, is only based on three component spec-
trograms that include a seismic event while achieving equivalent
accuracy on a similar data set.

4.1.2 What does the spectrogram-based CNN bring?

The use of spectrograms to discriminate natural from anthropogenic
events seems to give high classification performances. From Fig. 1,
we can see that these spectrograms allow to highlight certain charac-
teristic patterns of each of the two classes: (i) an energy that mainly
impacts the low frequencies for the anthropogenic events (horizon-
tal strips) and (ii) an energy that mainly impacts the whole frequency
range for the natural events (vertical strips). The use of square filters
(Table 1) makes it possible to analyse the image without preferential
direction and to highlight these vertical and horizontal bands.

We can wonder whether the use of seismograms allows better
performance than with spectrograms. We tried to train a CNN with
seismograms using the same CNN architecture but with a 1-D ver-
sion of the convolution layers. The input to the model corresponds
to a matrix composed of three-components 60 s seismic traces. Af-
ter ten training tests of this model the accuracy does not exceed
91.63 per cent. It would appear that the use of simple seismic traces
does not capture spectral patterns and that the use of spectrograms
allows for better performance. This statement seems to by con-
firmed by Liu et al. (2021) which also used a CNN to distinguish

tectonic from non-tectonic earthquakes. By training their neural net-
work with 100 s three-component waveforms provided by the China
Earthquake Network Center (CENC), they achieve 92 per cent of
accuracy.

4.1.3 Frequency range and time window width

Linville et al. (2019) also used a CNN to differentiate between
natural and anthropogenic events. The architecture of their CNN is
close to the one used in our study (Table 1) with four convolution
layers with different number of filters and one fully connected layer.
Their neural network is trained with UUSS data recorded between
2012 October and 2017 July. They use spectrograms computed on
90 s traces, between 1 and 20 Hz, producing matrices of size 40 ×
48 × 3.

By training their CNN with a database of events detected in Utah,
they achieve a recall of 99.1 per cent for natural events and of 99.3
per cent for anthropogenic events. These results are comparable but
appear to be significantly better than those obtained with our ap-
proach. This may be due to the fact that to generate our model,
we randomly select waveforms for the training, validation and test
stages and not sets of traces associated with a given event. This sub-
tlety necessarily leads to having traces of the same event in at least
two of the three data sets used and then to apparently decreasing
performances. When we apply our trained model to the UUSS data
recorded from 2016 January to March, we obtain an accuracy of
96.72 per cent at the network level with a recall of 98.61 and 91.67
per cent for the natural and anthropogenic events, respectively. Tak-
ing into account only the events recorded by stations located at less
than 100 km away, this accuracy rises to 97.95 per cent with a re-
call of 98.61 and 96.11 per cent for the natural and anthropogenic
events, respectively. The difference in accuracy may be explained by
several parameters like the size of the tested database, the training
of the CNN on different geographical areas, the number of stations
or the frequency range used for the classification. However, the use
of spectrograms with a frequency content between 1 and 20 Hz lim-
its the information usable by the CNN to extract features (such as
vertical and horizontal stripes visible in Fig. 1), but also limits the
seismic noise associated to human activities (traffic and industry).

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/232/3/2119/6819951 by C

N
R

S user on 31 M
arch 2023



2128 C. Hourcade, M. Bonnin and É. Beucler

Figure 9. Performance of the CNN, at a station level, using different training/validation-test ratios. N corresponds to the total number of elements in the
database. The accuracy obtained during the training, validation and test phases are represented in blue, orange and green, respectively.

Moreover, the window used to compute the spectrograms was se-
lected using the P-wave time arrival. Thanks to these elements, the
training can be simplified and the performance can be higher. The
use of spectrograms with a frequency content greater than 20 Hz
may be important for the differentiation of low magnitude earth-
quakes. Moreover, thanks to the data pre-processing, our model
can recognize the nature of the event independently of its position
in the spectrogram. Different tests were performed by positioning
the arrival of the P-wave between 5 and 30 s after the beginning
of the signal and the prediction results remain unchanged. Our
approach can therefore be applied independently of the chosen de-
tection method (STA/LTA, template matching, etc.) by randomly
selecting the beginning of the windows studied.

4.2 Impact of the training database on predictions

4.2.1 Effect of variability in the training database

The approach described in this study discriminates with a large
efficiency natural from anthropogenic seismic events. For this pur-
pose, we trained a CNN with about 50 000 seismic signals recorded
in metropolitan France. Our neural network is thus trained on a
relatively small data set (compared to what can be found in the
literature) though achieving high classification performances. To
estimate the impact of the size of the database on the performance
of the algorithm, we tested to train our CNN only with data coming
from one of three distinct geographical areas in France (Fig. 3 and
Table 2).

Data from Eastern France (zone B, Fig. 3) are balanced in terms
of ratios between natural and anthropogenic events (namely 2612
natural events and 2415 anthropogenic events, Table 2) and represent
half of the total database (22 818 records out of 50 000 total records).
Training only with data from the zone B and applying this trained
model on the events detected in Metropolitan France between 2021
June 1 and November 1, we obtain an accuracy of 98.14 per cent.
The recall for the natural and anthropogenic events are 96.86 and
99.07 per cent, respectively. These results are very similar to those
obtained when we train our CNN with the full database (with a recall
for natural and anthropogenic events of 98.86 and 99.12 per cent,

Fig. 6c), indicating that, even with a substantially reduced database,
performance remains good.

In contrast, the zones A (nortwestern France) and C (Pyrenees)
are unbalanced in terms of the proportion between natural and an-
thropogenic events (Table 2). Zone C contains more natural than
anthropogenic events (namely 966 anthropogenic events and 2149
natural events). If we train the CNN with this database and apply it
on the French data set, we obtain an accuracy of 97.5 per cent with
a recall for the natural and anthropogenic events of 96.38 and 98.28
per cent. These results show that even with a lower proportion of an-
thropogenic events, performance remains high. We explain this by
the fact that there is a sufficient variety (in terms of spectrogram pat-
terns) of natural and anthropogenic events in the zone C to allow the
CNN to be properly trained. On the other hand, the zone A presents
significantly more anthropogenic than natural events (namely 255
natural events and 1407 anthropogenic events). By performing the
same procedure as for the other zones, we obtain an accuracy of
89.83 per cent with a recall for the natural and anthropogenic events
of 76.2 and 99.6 per cent, respectively. For this case, the classifi-
cation performance collapses for the natural events. This can be
explained by the fact that we probably do not have enough variety
of natural event waveforms (Table 2) to achieve a robust classifica-
tion. We performed a test to create a unbalanced database including
events from the three zones. For this, 90 per cent of the events in the
database are anthropogenic and 10 per cent are natural. By training
our CNN with this database and applying the trained model on the
French application data, we obtain similar results as when using
only the zone A for training. It is therefore essential to have a large
enough variety of natural events to obtain a good discrimination.
However, the recall for the anthropogenic events remains excellent.
This is likely due to the fact that, contrary to natural events, anthro-
pogenic events have generally quite similar source functions and a
limited range of magnitude (namely between 1.5 and 2.5). A more
detailed interpretation would require a specific study and is beyond
the scope of this work.

4.2.2 Effect of the training/validation-test ratio

An other drawback of the CNN training process is the selection
of the proportion of the ‘training’ database (50,000 records in this
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(a)

(b)

(c)

Figure 10. Discrimination performance as a function of magnitude, SNR and epicentral distance for events detected in metropolitan France between 2021
June 01 and November 01. (a) Relationship between CNN performance and event magnitude with accuracy marked at the top of the columns. The colour
corresponds to the proportion of events for each magnitude range. (b) Relationship between the CNN performance and the average SNR of the events. The
colour corresponds to the proportion of events for each SNR range. (C) Relationship between CNN performance and epicentral distance with accuracy marked
at the top of the columns. The colour corresponds to the proportion of records for each distance range.

study) that is used for the training, validation and testing phases. The
results presented in Section 3 were obtained with a proportion of 80
per cent of the database for training and 20 per cent of the database
for validation and testing. We present in Fig. 9 the performance of
the algorithm using different training/validation-test ratios: 80/20
(original ratio), 60/40, 50/50, 40/60 and 20/80.

Fig. 9 shows that our CNN reaches training accuracy of 95.6,
95.3, 95.3, 94.9 and 94.3 per cent for 80/20, 60/40, 50/50, 40/60 and

20/80 ratios, respectively. We thus observe a slight drop in accuracy
with the decreasing in the amount of the initial database used for the
trainig phase but, the performance remains high even when using
only 20 per cent of the database (10 000 records). We also observe
that the CNN achieves better performances (for validation and test)
for a ratio of 50/50 compared to the 60/40 ratio. The origin of this
observation is not clear and would require more investigation. It is
clear from Fig. 9 that our initial choice of a 80/20 ratio seems to be
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(a) (b)

Figure 11. (a) Spectrogram of an earthquake, detected on 2019 August 2 at 22:09, local time, recorded by the VIEF station, at a distance of 25.16 km from
the source, labelled ‘anthropogenic’ and classified by the CNN at 99.4 per cent as ‘natural’. (b) Spectrogram of an earthquake, detected on 2021 August 3 at
11:50 a.m., local time, recorded by the LOUF station, at a distance of 65.52 km from the source, labelled ‘natural’ and classified by the CNN at 99.9 per cent
as ‘anthropogenic’.

optimal for training, validation and testing. We can conclude that the
size of the training data set does not appear to be the primary factor
that controls the discrimination performance whereas the diversity
of signals in the database seems to be a key factor.

4.3 Impact of catalogue quality on predictions

4.3.1 Effect of seismic network geometry

The results presented in this study demonstrate the efficiency of
the CNN for the classification of natural and anthropogenic events
but also highlight that some events are misclassified by the neural
network. Among other parameters, SNR of the data can be a factor
impacting the performance of the model. A proxy to address this
issue is the magnitude of the events, as the lower the energy the
lower the SNR (for a given distance). Fig. 10(a) shows that, for
Ml < 1 in the metropolitan France catalogue, about 3 per cent of
the events are misclassified. Most of the events have 1 ≤ Ml ≤ 2
(68.00 per cent of the whole database) and, for these magnitudes, the
accuracy reaches 98.45 per cent. Finally, for Ml > 2, the classes of all
the 106 earthquakes are correctly predicted. Fig. 10(b), that shows
the average SNR for each event, confirms that the discrimination
is better in the highest SNR range. For SNR < 3, the accuracy
collapses to 93.23 per cent while if the SNR is higher than 15, the
accuracy reaches 99.01 per cent. Another parameter that impacts
the performance of the model is the epicentral distance. Fig. 10(c)
shows that the further the station is from the event, the lower the
accuracy. For distances of more than 150 km, the accuracy drops to
92.63 per cent while for distances of less than 50 km, the accuracy
reaches 97.02 per cent. This observation is also confirmed by the
application on the data of the post-seismic campaign in NW France
(Fig. 8). The average distance between the stations and the events is
16.89 km (Table S3, Supporting Information) and all these events
were correctly classified by our method (Fig. 8b). We therefore
believe that all of these parameters are in competition to obtain a
classification.

The lack of stations around an event also has an impact on the
efficiency of the method. Fig. 7(b) that presents the geographical
distribution of the misclassified events for the UUSS catalogue,
shows that 5 of the 9 misclassified anthropogenic events are located
at more than 100 km from the nearest station. Taking into account
the events only recorded by at least one station within 100 km, the
accuracy increases from 96.72 to 97.95 per cent. It can be noted,
in Fig. 6(b) that most of the misclassified events are located at the
borders of metropolitan France, and mainly in the zone C. Since

we have only taken into account the stations of the FR network, for
which distribution is limited to the French territory (Fig. 3), there
is a lack of stations to the east of the French border. We performed
a test on five natural events, located in the zone B, that were not
correctly classified by the CNN. The stations network CH (Swiss
Seismological Service (SED) 1983, located in Switzerland) and GU
(University of Genoa 1967, located in Italy) were used to refine the
prediction. These new stations are located within 50 km from the
events, whereas the stations used in the FR network are more than
60 km away. The addition of these stations for the classification
allows to correctly classify these five events. This indicates that
the epicentral distance is an important parameter affecting discrim-
ination as shown in Fig. 10(c). In addition, increasing the number
of stations aroung event can improve the variability of waveforms
induced by their radiation pattern.

4.3.2 Effect of the mislabebled events in the database

Finally, a misclassified event can also be simply due to mislabelled
events in the database. During the manual inspection of the data
for the generation of the confusion matrices we were indeed able to
identify some mislabelled events in the database. In Fig. 11(a), we
present the trace and spectrogram of an event detected on 2019-
08-02T20:09:00 UTC labelled as a ‘quarry blast’ and that was
classified as a ‘natural event’ at 99.4 per cent by the CNN. This
event is undoubtedly a natural event because no quarry blast occurs
at such a late hour (10 p.m. local time). In addition, the spectral
characteristics of natural event presented in Section 2.1 are clearly
observe here (Fig. 11a) two seismic wave arrivals that form a verti-
cal band in the spectrogram. In contrast, Fig. 11(b) shows a signal
from a seismic event that occurred on 2021-08-03T09:50:00 UTC.
This event is tagged as ‘natural’ in the database but classified at
99.9 per cent as ‘anthropogenic’ by our trained model. The spectro-
gram of this event is characterized by the impulsive arrival of the P
wave and by two horizontal strips along the time axis at frequency
between 1 and 30 Hz. Thanks to the time of origin of the event
(11:50 a.m., local time) and to the characteristics of the seismic
signal, we can reasonnably consider that this event is correcly clas-
sified as ‘anthropogenic’ by the CNN. Those examples illustrate the
importance of having trusted database for training but shows that a
well-trained CNN can help to detect, a posteriori, inconsistencies
in the databases and would allow the reassessment of the associated
labels.
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5 C O N C LU S I O N

The objective of this study is to develop a method for automatic
discrimination of natural and anthropogenic events in order to re-
duce the data processing time. Based on recent existing methods,
we have developed a CNN to perform this discrimination using
spectrograms. We have constituted a training database composed of
BCSF-RéNaSS events detected in metropolitan France. By adapt-
ing the pre-processing of the data, our CNN is able to recognize
the nature of the event independently of the position of the earth-
quake in the signal and thus to discriminate the events directly after
the detection phase. This trained model achieves high classification
performance with, for example, an accuracy of 98.18 per cent when
applied to independent French data. By applying the model on data
from different geographical areas and geological contexts, we show
the versatility of our approach. For the UUSS application, the model
achieved an accuracy of 96.72 per cent. These applications to other
geographical areas have shown the robustness of the model in rec-
ognizing characteristic patterns in different databases. We observed
a certain redundancy of features present in the spectrograms involv-
ing a continuous energy in time and discontinuous in frequency for
anthropogenic events, represented by a horizontal linearity on the
spectrograms. Inversely, for natural events, we observe a discontin-
uous energy in time and continuous in frequency, represented by a
vertical linearity on the spectrograms. These features highlight the
relevance of using square filters (Table 1) in the CNN, to not focus
on one direction in the spectrogram.

This approach can be used as an aid to discriminate, in real time,
the detected seismic signals. We can propose an application with
human interaction, where the analyst can check only the events with
lower probabilities, for example, less than 75 per cent. Moreover,
we could highlight mislabelled events present, for example, in the
BCSF-RéNaSS bulletin. These mislabelled events can be reclassi-
fied by the CNN and thus allow to constitute a catalogue as reliable
as possible.
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from the French National Observing Service (BCSF-RéNaSS) and
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The discrimination code is available on Git
(doi:10.5281/zenodo.7064191). The algorithms are written
with Python and data processing is based on Python libraries Obspy
(Krischer et al. 2015), Scipy (Virtanen et al. 2020) and Numpy

(Harris et al. 2020). We use Tensorflow (Abadi et al. 2015) for
implementations and iterate model parameters using Keras (Chollet
2015). Our figures were generated using Matplotlib (Hunter 2007)
and The Generic Mapping Tools (GMT, Wessel et al. 2019).
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sif armoricaine, PhD thesis, Nantes.
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S U P P O RT I N G I N F O R M AT I O N

Supplementary data are available at GJI online.

Figure S1: Examples of four natural events (A, B, D and F) and
four anthropogenic events (C, E, G and H), recorded by the FR net-
work stations, with the associated spectrograms. The seismic signals
correspond to the normalized raw data of the vertical component.
The spectrograms are normalized by their maximum. All technical
details of the events are in Table S2.
Table S1: Useful information about the records shown in Fig. 1,
where: d is the source-station distance, z is the depth of the event,
SNR the signal to noise radio and MLv the local magnitude on the
vertical component. The acronyms eq and qb stand for natural event
(earthquake) and quarry blast respectively.
Table S2: Useful information about the records shown in Fig. S1,
where: d is the source-station distance, z is the depth of the event,
SNR the signal to noise radio and MLv the local magnitude on the
vertical component. The acronyms eq, qb and exp stand for natural
event (earthquake), quarry blast and explosion respectively.
Table S3: Statistical informations of the three databases used in
the application (Section 3). Standard deviations are denoted σ . No
magnitude is available for Vannes dataset.
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