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S U M M A R Y
We analyse the consistency of the delay time data in the most recent version of the ISC-EHB
bulletin published by the International Seismological Centre covering the years 1964–2018.
Considering that the delays are influenced by the lateral heterogeneity in the Earth’s mantle,
we construct a tomographic matrix. We use singular value decomposition of the tomographic
matrix for 19 707 dense clusters of earthquakes to compute objective estimates of the standard
error from data that project into the null space and should be zero if there were no errors.
Using a robust initial estimate of the standard deviation of the clustered delay times, we remove
a small fraction of outliers before calculating the ultimate errors. We found that the errors
depend on the type of body wave, depth of the earthquake (crust or mantle) and the number
of decimals with which the arrival time was reported. Using these parameters, we distinguish
45 different classes of delay times for 11 different types of body waves. The errors of each
class so divided generally follow a distribution that is approximately normal with a mean that
ranges from 0.32 s for PKPbc waves from mantle earthquakes, to 2.82 s for S waves from
shallow earthquakes bottoming in the upper mantle. The widths of the distributions of the
errors themselves are small enough to serve in formal statistical quantification of the quality
of fit in tomographic experiments.
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1 I N T RO D U C T I O N

Since 1964, the International Seismological Centre (ISC) has re-
analysed worldwide seismic wave arrival time data to produce what
is considered the most complete catalogue of earthquake parameter
data—a task it inherited from the International Seismological Sum-
mary (ISS), a global catalogue started in 1918 by Milne (Adams
et al. 1982).

As a spinoff of the epicentral determinations, ISC also publishes
the residuals of the traveltimes (the misfits to the optimal hypocentre
solution). Dziewonski et al. (1977) realized the unprecedented pos-
sibilities these data offered for seismic tomography and undertook
the laborious task of retrieving residuals from the 7-track magnetic
tapes (often decayed) used to store them at the time in a first attempt
to produce a global 3-D image of the Earth’s laterally heteroge-
neous internal structure. This was soon followed by many regional
and global studies using the ISC residuals.

In an effort to improve the depth determination of the hypocentre
locations, Engdahl et al. (1998) included teleseismic depth phases as
well as core phases in the algorithm, to produce what is now known
as the ISC-EHB Bulletin (hereafter simply referred to as ‘the EHB’).
The EHB constitutes a subset of the full ISC data set and includes
only events that have been recorded in a minimum number of well-
distributed stations. The EHB procedures have evolved somewhat
over time (Storchak et al. 2015; Weston et al. 2018; Engdahl et al.
2020), and the full set of residuals since 1964, recently revised, is
accessible from the ISC.

The residuals are with respect to the spherically symmetric
isotropic Earth model AK135 (Kennett et al. 1995) and contain
information on the deviations of AK135 with respect to the real lat-
erally heterogeneous and anisotropic Earth. Like all experimental
data the residuals contain errors, which fall into two classes: the
observational errors, some of which, such as clock errors, may be
systematic for some finite length of time (Röhm et al. 1999, 2000),
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and theoretical errors due to imperfections of the hypocentre and
origin time estimates. If used for seismic tomography there are ad-
ditional theoretical errors associated with the inadequacy of a finite
parametrization and the neglect of anisotropy to model the arrival
times perfectly.

Formal statistical evaluations of tomographic images are difficult,
if not impossible if the data sets and number of structural model
parameters are very large. Even the simplest test, comparing the
square of the misfit χ 2 for different tomographic solutions, is easy to
compute but useless unless one has estimates for the data errors that
are sufficiently accurate. This paper presents our objective estimates
of standard errors for all mantle and core phases reported in the
EHB, with their uncertainty.

Morelli & Dziewonski (1987) were the first to estimate errors in
the P, PcP and PKP delays as reported in the original ISC Bulletins,
assuming that the ray paths between closely spaced sources on one
end, and closely spaced stations on the other (‘summary rays’),
would experience the same delays caused by the Earth’s hetero-
geneity so that any differences represent the data errors. However,
data sparsity forced them to spread their net widely (cells of 5◦ ×
5◦) to ensure sufficient coverage. Velocity heterogeneity within the
volume of the ray bundle did influence the scatter of the delay times,
which leads to an overestimate of the errors (they found 1.4 s for P).
In fact, when Gudmundsson et al. (1990) included the width of the
summary ray as a factor in their estimation procedure, they found
smaller errors, depending on the epicentral distance.

These early estimates did not take into account the improved
depth localizations obtained with the EHB algorithm. In addition,
the number of data have increased dramatically in the 30 yr since
then, allowing for more phases to be analysed and allowing for a
more detailed look at how errors depend on multiple factors such
as hypocentres, number of decimals in the reported arrival times,
depth of the earthquake and slowness of the ray paths.

We have accepted all reported arrival times for this study with
the exception of those from 1808 seismic events marked as having a
poor solution type (EHB variable isol set to XEQ). This data set con-
stitutes by far the largest set available for global seismic (traveltime)
tomography, and is growing at an ever more rapid pace owing to na-
tional station densifications and array installations on a global scale.
The bulk of the arrival time data have been reported after the year
2000—less than 28 per cent of the P-wave data have been reported
in the 36 yr before that epoch. Currently, some 1.5 million times are
reported for teleseismic P waves every year, along with some 0.5
million regional phases (Pn), as well as a similar number of core
phases. (Fig. 1). Note that Pn is not necessarily a headwave: EHB
denotes with Pn any wave that bottoms in the uppermost mantle
or an upgoing P wave from a source in the uppermost mantle. Ex-
cluding the 1808 events with ‘poorly’ constrained hypocentres, the
total number of traveltimes for 11 types of mantle phases included
over the 54 yr since 1964 is 427 17 476. In Table 1, we separate the
counts over two epochs and the three assigned precisions of 0–2
decimals. Though shear waves are under-represented, the total of
readings for S and Sn still sum up to 26 45 698 arrival times.

2 E R RO R E S T I M AT I O N

Errors in delay time data can be estimated objectively using the
method developed by Voronin et al. (2014), which is based on
singular value decomposition of the tomographic matrix A for the
data that constitute a summary ray. This orthogonalizes a subset
of transformed data to the range of A—in other words it renders

them insensitive to the heterogeneity along the ray paths, and the
distribution of these transformed data gives an unbiased estimate
for the probability density function (PDF) of the data errors.

Voronin et al. (2014) considered subsets of closely parallel rows
from the large linear tomographic systems with model parameters
in an M-dimensional vector m and an N-dimensional data vector d,
where N � M:

Am = d . (1)

The model m contains the velocity anomalies in the Earth’s interior,
and may also contain corrections to the origin time and hypocentre
location. The data vector d contains the residuals, or delays, defined
as the difference between the observed traveltime and the time
predicted by a 1-D reference model.

We transform this system using an N × N orthonormal matrix U T .
The columns of U are the eigenvectors of AAT with eigenvalues
λ2

N ≥ λ2
N−1 ≥ ... ≥ λ2

1:

U T Am = U T d = τ , (2)

where the N transformed data τ i are distributed with a variance:

σ 2
τi

= σ 2
mλ2

i + σ 2
e . (3)

From eq. (3), we see that σ 2
τi

→σ 2
e as λ2

i →0. In other words, zero
(or negligible) eigenvalues are associated with transformed data τ i

that have a PDF with variance σ 2
e .

Nolet et al. (2019) realized that it is not necessary to cluster the
rays into a narrow bundle, as long as there is sufficient overlap
among the rays to yield a large number of negligibly small singular
values λ2

i . Nolet et al. (2019) and Voronin et al. (2014) combined
ray paths only at the source ends, using several closely spaced
hypocentres.

We isolate a subset of the τ i, associated with N0 eigenvalues
below λ0, to estimate σ e from their observed distribution. For the
estimation of σ e we face the question what level of eigenvalue λ0

to consider as ‘negligible’. We assume here that the system (1) has
been scaled such that the model variance σ 2

m and the data error
variance σ 2

e are of order 1, in our case using prior uncertainties
of 1 per cent for P, 2 per cent for S-anomalies in m and 1 s for
the delays in d. Thus, the threshold λ0 must be significantly below
1. But if we choose a value that is too low, we may end up with a
population N0 of eigenvalues that is too small for a well-constrained
estimate of the standard deviation.

An example of the distribution of the transformed data, in order
of decreasing eigenvalue, is shown in Fig. 2. As predicted by eq. (3),
we see that the scatter decreases with decreasing λi and stabilizes
towards the right of the plot where λi → 0.

Fig. 3 shows how the estimated σ e varies as a function of the
threshold λ0 for a number of randomly selected large event clusters
from two epochs and precision classes. The estimates generally
converge when λ0 is less than about 0.03 (λ2

0 < 0.009). This is the
threshold that we have adopted in this study.

3 DATA C H A R A C T E R I S T I C S

The total data set covers 185 296 hypocentres. An initial exploration
of standard errors in P waves showed little geographical correlations
between them, except that the regions with deep earthquakes gen-
erally seemed to have smaller errors.

Among the parameters that we expect to correlate with the stan-
dard error in the ISC data is the precision with which the data are
reported to ISC, given by the variable iprec. The reported precision
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EHB error estimates 1741

Figure 1. Number of traveltime readings per year included in the ISC-EHB bulletin, as a function of time, for the nine most abundant phases.

Table 1. Number of reported arrivals for two epochs 1964–1999 and 2000–2018, and three reported decimal precisions, 0
(1 s), 1 (0.1 s) and 2 (0.01 s).

1964–1999 2000–2018
Phase 1 s 0.1 s 0.01 s 1 s 0.1 s 0.01 s Total

P 26 67 996 43 14 820 745 966 904 969 61 84 269 129 75 134 277 93 154
Pn 453 132 883 734 118 447 224 402 14 30 916 20 63 762 51 74 393
PKPab 56 946 84 372 8673 15 748 110 242 156 572 432 553
PKPbc 106 326 221 081 21 781 37 140 271 856 390 229 10 48 413
PKPdf 462 037 702 556 91 423 131 564 874 193 15 81 061 38 42 834
pP 195 479 177 559 39 211 26 220 160 691 216 131 815 291
pwP 82 738 71 920 11 855 8058 46 662 46 874 268 107
PP 106 923 43 518 5410 27 973 124 660 94 680 403 164
S 456 260 173 893 11 586 92 989 342 806 288 876 13 66 410
Sn 196 205 232 736 22 367 59 007 336 072 432 901 12 79 288
sP 91 877 70 052 11 668 13 938 70 804 35 530 293 869

in the arrival times is mostly one to two decimals, but a precision
of 0 s—the lowest precision encountered—does occur, especially in
the earlier years and for the later arriving phases. The reported iprec
cannot always be trusted. ISC reports the deduced origin time with
two decimals in the seconds. We noted, however, that about a quar-
ter of the P arrivals that are reported with iprec=−1 (1 decimal),
have an observed traveltime (obstt) with two decimals that are equal
to 1.00 minus the two decimals in the origin time, indicating the
arrival time was reported with an integer number for the seconds.
The probability that this should occur by chance is of course only
1 per cent. We decided to correct iprec in these cases and set it to
0, thus assuming zero decimals in the reported precision. We have
alerted ISC, which has contacted agencies where these anomalies

appear to be generated and considers applying the same corrections
for past data as we did.

Table 1 shows the reported precision for various phases consid-
ered in this study. From Fig. 4, one can clearly see that for all phases
considered, the reported precision has increased substantially since
the start of the catalogue. We suspect that the increase in reported
precision is a consequence of the advent of array processing applied
to a network’s phase arrivals and of a decrease in clock errors after
the widespread introduction of GPS timing in the 1990s, when clock
errors were still a case of concern (Röhm et al. 1999, 2000).

Fig. 4 strongly suggests a major change around the year 2000: the
number of readings with reported precision of 0.01 s rapidly climbs,
indicating that stations with digital and array processing tools begin
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Figure 2. The set of 1947 transformed data τ i for a cluster of mantle
earthquakes in the Aleutians. There are 820 τ i for which λi < 0.03, and
their distribution allows us to estimate the error distribution of the delay
times for this cluster. The dashed lines indicate the σ e estimate of 0.58 s
from the distribution of this subset of τ i.

Figure 3. The estimated value of σ e as a function of the cut-off λ0 for 22
event clusters of P-wave delays. The top frame shows the estimates for data
reported with 2 decimal precision after 2000, the bottom one for 0 decimal
precision reported between 1964 and 1999.

to dominate. For this reason we initially analysed the P data further
into the two epochs: 1964–1999 and 2000–2018.

Most events in the catalogue have been determined with a large
azimuth coverage of stations, which reduces the timing error due
to mislocation of the events. For the reported P phases, the largest
secondary azimuth gap (an azimuth range with no more than one
station) is 296.9◦, only 771 129 data (2.8 per cent) have a secondary
azimuth >140◦, 211 643 have >160◦ (0.8 per cent) and only 7620
or 0.03 per cent have a secondary azimuth that exceeds 180◦. Some
data may exceed the azimuth gap of 180◦ since the selection criteria
were only applied early on in the analysis for each event (Engdahl,
2022, personal communication).

Given that azimuth coverage is generally satisfactory, we decided
that it would not be productive to make yet another subdivision of
the data, if only because it would be hard to get sufficiently large
clusters with deficient azimuth coverage.

To organize the data into event clusters, we divide the Earth’s
surface into 10406 ‘patches’ (Fig. S1, Supporting Information). The
patches are 2 × 2◦ at the equator and every 2◦ latitude is divided in
an integer number of patches such that the surface area is roughly
the same (about 49 000 km2) for every patch.

Not surprisingly, most patches are empty. Only 733 (or 7 per cent)
of the patches host at least one earthquake deeper than 40 km.
There are 2981 (29 per cent) patches with at least one shallow
earthquake. Fig. S2 (Supporting Information) shows the distribution
of the patches with sources that generate at least 3000 data. Fig. S3
(Supporting Information) does the same for Pn.

4 DATA P RO C E S S I N G A N D
M O D E L L I N G

To model the the delays reported by EHB, we allow for corrections
to the hypocentre and the origin time in the model m (with prior
uncertainties of 10 km and 1 s, respectively) and assume that the
velocity anomalies are isotropic. To compute the matrix A, the
Earth’s mantle was divided into six chunks of 128 × 128 voxels
horizontally and 37 layers vertically, resulting in a ‘cubic’ Earth
with 36 37 248 voxels as described by Charlety et al. (2013). This
significant overparametrization is desirable so as to minimize the
theoretical error introduced by limitations imposed by the finite size
of voxels to model the ‘true’ delays. Our software did not allow to
model effects of anisotropy, nor delays acquired by heterogeneity in
the core. The bias introduced by this may lead to an overestimate of
standard errors for Pn, Sn and the PKP phases. However, any mantle
tomography that ignores mantle anisotropy for Pn or the (largely
hemispheric) heterogeneity and anisotropy in the inner core will
suffer the same theoretical errors and can therefore use the standard
errors for Pn, Sn and PKP estimated in this study.

If there is more than one arrival within ±3 s of the observed time,
it rejects those with an amplitude less than 2 per cent of the highest
amplitude, before selecting the closest. Otherwise it selects the ray
with the closest arrival time.

We then compute the matrix row for this ray, including columns
associated with hypocentre and origin time corrections. Predicted
arrival times are corrected for ellipticity, station elevation and crustal
structure using CRUST2.0 (Bassin et al. 2000). Note that this differs
from EHB, who apply a local ‘patch correction’ during the computa-
tion of the optimal source parameters, but who advise tomographers
to undo that correction before inverting the data. We decided to ap-
ply the CRUST2.0 correction in a effort to at least partly remove
scatter in the data caused by deviations from the crustal structure in
AK135 from the crust beneath the stations within each event cluster.

We retain only patches generating clusters with sufficient ray path
overlap such that σ e can be estimated from at least 100 negligible
eigenvalues. Large clusters are split into files with about 2000 rows
(some exploratory studies were initially done using larger matrices
with up to 5000 rows, but this proved not really necessary and is
very time-consuming since the CPU time increases as N3). We start
with P and Pn, which are far more abundant than the other phases.

4.1 Outliers

Statistical assessments of tomographic studies usually assume a
Gaussian distribution, if only implicitly by solving the linear sys-
tem using least-square algorithms such as LSQR. However, arrival
time errors have large outliers, which are moreover biased towards
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Figure 4. The percentage of accepted traveltimes reported with a precision of 0.01 s (solid). 0.1 s (dotted) and 1 s (dashed) as a function of time.

positive times, a fact already observed by Jeffreys (1936). Outliers
can have a devastating effect on the least-squares solution.

Yang et al. (2019) discuss the removal of outliers in the context
of machine learning and test a number of algorithms found in the
literature. The best-performing algorithm in a large variety of cases,
some with a large fraction of outliers, is a two-step procedure called
2T. It computes first an initial estimate σ init of the standard deviation
using the full data set including outliers. It then discards any data
outside of the interval [ − γ σ init < di < γσ init] using a threshold
γ , and recalculates σ from the remaining data. Yang et al. deal
directly with the raw data whereas in our case we deal with misfits
to a linear system that changes after the removal of outliers and
the corresponding rows in the matrix A. But our algorithm is a
straightforward adaptation of 2T. Schematically:

Cleaning step for data d ∈ RN :

(i)Diagonalize the N × N matrix AAT = U�U T .
(ii)Compute τ = U T d for the full data set d, with τ ∈ RN .
(iii)Compute the standard deviation of τ i belonging to the N0 small-
est eigenvalues. This is our initial estimate of the data error σ init.
(iv)Regularize by keeping only the transformed data belonging to
the k largest eigenvalues: U → U k , and τ → τ k ∈ Rk .
(v)Calculate residuals r = d − U kτ k , with r ∈ RN .

Thresholding step:

(i)Reject any data di for which |ri| > γσ init.
(ii)Recalculate A, U and τ for the thresholded data set.

(iii)Recalculate the standard deviation of the observed distribution
of the τ i for the N0 smallest eigenvalues of the cleaned system. This
is interpreted as a final estimate for the data error σ e.

For the regularization in the cleaning step we truncate the matrix
U at k such that all λi ≥ λk ≥ 1. If our prior estimates of model and
data variance are correct this means that we regularize by rejecting
any (transformed) data with a signal-to-noise ratio smaller than 1
(Voronin et al., 2014). For the set of ‘smallest’ eigenvalues from
which σ init is determined, we choose the N0 eigenvalues λi < 0.03
(see Fig. 3).

Note that t2 ≡ r 2/σ 2
init follows a Chi-squared distribution that is

close to lognormal and, for large N0 approaches a normal distribu-
tion. We have only accepted clusters that yield N0 ≥ 100, which
allows us to use classical estimates for statistical parameters that
are based on a normal distribution. For a normal distribution, only
2.7 out of 1000 data exceed γ = 3 and would be falsely rejected as
outliers.

We investigated the influence of the choice of γ for a set of
80 686 P-wave delays in 57 clusters, each with at least 200 small
eigenvalues, reported with zero precision (so as to maximize the
expectation of larger errors). Rejecting data with |ri| > γσ init, we
find a mean σ e of 0.87 ± 0.24 if we use γ = 3.0, which is reduced
to 0.81 ± 0.22 if we reject more outliers using a lower threshold γ

= 2.5. Note that the two estimates are well within each uncertainty
of one standard deviation, indicating that the choice of γ is not very
critical to our analysis. The number of outliers was 1379 and 1959,
respectively, or 1.7 per cent versus 2.4 per cent outliers: a difference
of 580 data that were accepted in the more permissive threshold of
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Figure 5. Three different distribution functions fitted to a randomly selected
subset of 5053 transformed P delays of slowness class A from mantle
earthquakes, belonging to the smallest eigenvalues. Solid: a Gaussian curve
with the standard error (eq. 4) as the standard deviation (0.37 s), dashed:
idem but with the RSDR as standard deviation (0.33 s) and dotted–dashed:
a Cauchy distribution with the same half-width as the histogram.

3 and may be in the grey zone of outlier/not outlier. We adopted γ

= 3.0 as the threshold in this study.
We can fit a normal distribution to the τ i with an estimated

standard deviation σ init equal to the standard error s of the τ i:

s = 1

N0

N0∑

i=1

(τi − τ̄ )2 , (4)

where τ̄ denotes the average.
Motulsky & Brown (2006) consider that the initial estimate (4)

is very vulnerable to influence by the outliers. They use instead
the robust standard deviation of the residuals (RSDR), which is
the half-width of the central part of the distribution that contains
68.27 per cent of the τ i. In Fig. 5, we compare the Gaussians
resulting from the two different estimates for σ init. We also attempted
to fit a Cauchy distribution, known for having more data in its tail
than a Gaussian. Its PDF is:

P(τ ) = 1

hπ [1 + (τ − τ̄ )2/h2]
, (5)

where h is the half-width, which we chose equal to the half-width
of the observed distribution.

From the three curves in Fig. 5 we see that the Cauchy curve
strongly overestimates the number of data present in the tail of
the actual distribution, and in fact would suggest that there are no
outliers. The dashed curve, based on RSDR fits best for the bulk of
the data. The crossover where the theoretical curve is significantly
below the observed distribution at the tails is at roughly twice the
RSDR σ init. The solid curve, with the standard deviation σ init equal
to the standard error s, has a worse fit near the maximum, and
instead attempts a better fit to the tails. We decided to use the RSDR
to compute the outlier thresholds.

4.2 Evolution of σ e since 1964

In a first exploratory analysis, we ignored iprec (number of reported
decimals) but tested the hypothesis that the data errors for the later
years was significantly better than those for the epoch 1964–1999.

A clear indication that the quality of P arrival times is actually
fairly constant with time is given in Fig. 6, which summarizes the
results of estimating σ e from 7317 matrices for event clusters. From
these, 1957 event clusters had arrival times that were reported before
the year 2000. Their distribution is plotted on the left. The remaining
clusters represent arrival times associated with earthquakes in the
21st century and the histogram of their estimates for σ e is plotted
on the right.

The mean σ e is 0.652 ± 0.16 s for 1968–1999, and 0.617 ± 0.14
for 2000–2018 (the uncertainty indicates one standard deviation in
the distribution), which indicates a slight improvement over time.
The medians are 0.633 and 0.612, respectively. After sorting the
observations, we found that the 1σ (or 68 per cent) confidence
intervals overlap largely: σ e is between 0.46 and 0.78 for the early
data and 0.44–0.74 for the later data.

Although the difference between the two means is statistically
significant (Student’s t-test shows a probability of the order of 10−19

that this occurred by chance), the difference is so much smaller than
the confidence intervals that we decided to ignore the epoch of the
reported delays and focus instead on the influence of the iprec (after
applying the correction mentioned earlier).

4.3 Dependence of σ e on reported precision (iprec)

The next question is how the error in P arrival times depends on
the reported precision, as indicated by the variable iprec (corrected,
as explained earlier) for the same set of 7317 submatrices. Fig. 7
shows the distribution for a precision of 1 s (left), 0.1 s (centre) and
0.01 s (right), and here we see a larger difference than in the previous
section. Table 2 lists the mean as well as the 1σ confidence interval
inferred from the actual distribution. The difference between the
means is significant according to Student’s t-test. For example σ e

= 0.8 s for 0 and σ e = 0.56 s for 2 decimals gives t = 47.8.
The mean σ e and 1σ confidence intervals are listed in Table 2.

When averaged over all three reported precisions, the average stan-
dard error in the P phases is 0.63 ± 0.12 s.

We decided to subdivide the P and Pn data sets into those with
zero decimal precision and those with one or two decimals.

4.4 Dependence on earthquake depth

We made a broad division into shallow quakes (<40 km) and deeper
earthquakes. These populations have different errors for P delays,
as is shown in the histograms of Fig. 8 and the estimates listed in
Table 3, where Nc denotes the number of clusters. The mean error
in P for deep earthquakes reported with iprec=−2 is the lowest at
0.50 s. When iprec=−1 the error rises to 0.58 s, almost the same
as the 0.61 s for shallow earthquakes reported with one decimal
precision. The table also lists the 68 per cent confidence interval
as determined directly from the observed distribution, which dif-
fers somewhat from the 1σ interval because the distribution is not
exactly normal.

4.5 Slowness correlation

Gudmundsson et al. (1990) observed a large scatter near an epi-
central distance � ≈ 20◦ that is caused by triplications for rays
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EHB error estimates 1745

Figure 6. Left: histogram of σ e estimations for P data reported before the year 2000, plotted in intervals of 0.02 s. Right: for those reported in or after 2000.
In both plots, the dashed curve is the best-fitting lognormal distribution for the 1968–1999 data (left-hand histogram), the solid curve for the 2000–2018 data
(right-hand histogram).

Figure 7. Histogram of σ e for the reported precision, from left to right: 0, 1 and 2 decimals. The smooth curve is the best-fitting lognormal distribution
function.

Table 2. Confidence intervals for σ e for P delays as a function of reported
precision

iprec N Mean (s)
68 per cent

confidence (s)

0 760 0.80 ± 0.12 0.66–0.90
−1 3500 0.65 ± 0.12 0.51–0.76
−2 3057 0.56 ± 0.13 0.40–0.66

bottoming near 400 km depth, resulting in a standard error of
1.4 s, which decreased substantially at teleseismic distances be-
fore increasing again as the ray approaches the core–mantle bound-
ary. However, because of the variations in earthquake depth, the

epicentral distance � does not uniquely predict where the ray
bottoms and whether it will be triplicated or not. We therefore
prefer to examine how the errors change as a function of ray
slowness.

Using AK135 for ray tracing, we consider five slowness classes
shown in Fig. 9. A sixth slowness class F was added to account for
P waves that depart upward from a mantle source (Table 4).

We select slowness ranges such that the rays in each class en-
counter at most one significant discontinuity (410, 660 and D′′).

In a small number of cases, our ray tracing failed to converge
within the imposed number of iterations, notably for rays involved
in upper mantle triplications (range C and D). We have made no
effort to retrieve these rays.
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Figure 8. Histograms of σ e for mantle earthquakes (more than 40 km
deep, top) and shallow quakes (bottom). Data with iprec=−1 are shown
on the left, those with iprec=−2 on the right. The solid curve shows the
best-fitting normal distribution function, to be compared to the lognormal
function (dashed).

Table 3. Confidence intervals for σ e for P delays as a function of depth

h iprec Nc Mean (s)
68 per cent conf.

(s)

<40 km −1 2256 0.69 ± 0.13 0.52–0.80
<40 km −2 1450 0.61 ± 0.12 0.46–0.72
Mantle −1 1244 0.58 ± 0.08 0.46–0.64
Mantle −2 1607 0.50 ± 0.11 0.36–0.58

Table 4. Slowness ranges and turning point depths in AK135.

Depth range P slowness S slowness
(km) (s rad−1) (s rad−1)

A 2591–2891 255–280 478–526
B 1106–2591 280–453 526–816
C 635–1106 453–567 816–1032
D 385–635 567–670 1032–1240
E 35–385 670–788 1240–1414
F Upward 0–788 0–1414

4.6 Later phases

As is clear from Table 1, the other phases present in EHB are far less
abundant. To obtain a sufficient number of clusters Nc with N0 ≥
100 small eigenvalues, we ignore the subdivision for the number of
reported decimals. We still are able to separate shallow and mantle
quakes, but for the slowness, we divide the rays into those that may
be influenced by the 20◦ discontinuity near 400 km depth (classes
D and E in Table 4) and deeper rays.

For each phase, we extracted about 5000 transformed data τ i from
a few large clusters and plotted their histograms (shown in Figs S4–
S7, Supporting Information). Most of the τ i have a distribution of
which the central part is well modelled by a Gaussian, using the
RSDR as its width. For some later phases with few data, we noted
an excess of zero τ i. We traced these back to duplicate entries in
the EHB (their zero difference is a transformed datum from the null

space of A). We assume that these are identical readings from two
different instruments in the same station, and suspect that stations
with multiple sensors are also more likely to report later phases
such as PP, which explains that their relative contribution is larger
than for a phase such as P (an alternative explanation is that a
same reading reached the ISC through different communication
paths). We assumed that both readings are valid—in other words we
accepted them as supporting a high precision of the arrival time in
that station.

4.7 Procedure

The preliminary analyses described in this section motivated us
to distinguish between 45 different classes of data divided over all
mantle phases present in EHB. For each of these, we isolate as many
clusters as we can (Nc) that have N0 ≥ 100 negligible eigenvalues.
We remove outliers using the 2T algorithm with γ = 3.0. For each
class of data, this give Nc estimates of σ e. These we plot in a
histogram.

Each estimate σ e is drawn from a population that follows a Chi-
square distribution with N0 − 1 degrees of freedom. But since
N0 differs for each estimate, there is not one unique Chi-square
distribution that predicts our observed histogram. Fortunately, since
all N0 are large, we may assume that the observed histograms are
approximately normally distributed and we expect then the same
for their joint PDF. Nc is large, so that we can estimate σ e using the
usual estimate for standard errors, as we did for s in eq. (4).

5 F I NA L R E S U LT S A N D D I S C U S S I O N

The results of our analysis are summarized in Table 5. Individual
histograms are shown in Figs S8–S11 (Supporting Information),
where the codes identify the classes listed in the table.

The difference between the mean and the median is rarely more
than 0.1 s. But for the smaller populations (Nc in Table 5) we see
that the PDF of the σ e’s may be far from normal, so for these the
uncertainty in σ e should be viewed with caution.

The fraction of outliers hovers around 2 per cent for most cases,
with a notable exception of 8.1 per cent PKPbc from mantle quakes,
which could be due to frequent misidentification of PKPab as
PKPbc. This may not be the only cause, however: the PKPbc from
mantle quakes have a low RSDR which leads to a more restrictive
outlier threshold and, once the outliers are removed, PKPbc has
the smallest standard error of all phases. The error in PKPdf may
be influenced by frequent misidentification of PKPbc, which has a
large amplitude, as PKPdf.

Traveltimes from mantle earthquakes stand out by having signifi-
cantly smaller errors than those from shallow ones, often only half of
the error of shallow earthquakes in the same slowness and precision
class. This is most likely due to the sharper onset of deep earth-
quakes. Indeed, the difference is far less pronounced in the errors
for PP, a wave that never has a sharp onset because its waveform is
the Hilbert transform of the P wave.

The error estimates in Table 5 are for the EHB data set, and
cannot be uncritically adopted for the full ISC data set since EHB
contains only a carefully selected subset of delay for re-analysed
high-quality event locations. Tomographers using the σ e estimates
from Table 5 should follow the same protocol as described in the
previous section, notably estimating RSDR from a first regularized
inversion and using a threshold of 3σ e for the rejection of outliers.
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Table 5. Standard error estimate σ e for phases reported in the EHB catalogue

Phase Deci- Ray depth h Label in Nc Outliers σ e Median

mals km

Figs S4–11
(Supporting
Information) per cent s s

P 1,2 2591–2891 Mantle Ad 521 2.2 0.45 ± 0.14 0.43
P 0 2591–2891 Mantle Ad0 88 2.0 0.85 ± 0.24 0.82
P 1,2 2591–2891 <40 As 453 2.9 0.85 ± 0.40 0.77
P 0 2591–2891 <40 As0 95 2.4 1.65 ± 0.44 1.59
P 1,2 1106–2591 Mantle Bd 2540 2.6 0.43 ± 0.12 0.41
P 0 1106–2591 Mantle Bd0 372 2.1 0.79 ± 0.18 0.78
P 1,2 1106–2591 <40 Bs 3667 2.6 0.69 ± 0.25 0.64
P 0 1106–2591 <40 Bs0 667 2.6 1.31 ± 0.35 1.25
P 1,2 635–1106 Mantle Cd 1215 2.2 0.56 ± 0.13 0.56
P 0 635–1106 Mantle Cd0 195 1.8 0.87 ± 0.14 0.87
P 1,2 635–1106 <40 Cs 1898 2.3 0.76 ± 0.19 0.75
P 0 635–1106 <40 Cs0 344 2.1 1.28 ± 0.27 1.25
P 1,2 385–635 Mantle Dd 393 1.6 0.70 ± 0.16 0.69
P 0 385–635 Mantle Dd0 26 1.3 0.87 ± 0.21 0.80
P 1,2 385–635 <40 Ds 532 1.4 0.81 ± 0.16 0.80
P 0 385–635 <40 Ds0 42 1.2 1.05 ± 0.16 1.04
Pn 1,2 35–385 Mantle Ed 772 2.5 0.82 ± 0.25 0.79
Pn 0 35–385 Mantle Ed0 111 1.7 1.40 ± 0.49 1.28
Pn 1,2 35–385 <40 Es 1433 2.9 0.94 ± 0.26 0.92
Pn 0 35–385 <40 Es0 211 2.3 1.53 ± 0.44 1.51
Pup 1,2 0–h Mantle Fd 65 2.0 0.55 ± 0.15 0.52
Pup 0 0–h Mantle Fd0 5 1.6 0.68 ± 0.08 0.63
PKPab 0–2 OC Mantle Kad 107 3.0 0.59 ± 0.33 0.46
PKPab 0–2 OC <40 Kas 75 3.0 1.14 ± 0.49 0.95
PKPbc 0–2 OC Mantle Kbd 273 8.1 0.32 ± 0.10 0.29
PKPbc 0–2 OC <40 Kbs 239 3.9 0.53 ± 0.20 0.49
PKPdf 0–2 IC Mantle Kdd 892 3.1 0.88 ± 0.35 0.83
PKPdf 0–2 IC <40 Kds 995 2.8 1.15 ± 0.44 1.09
pP 0–2 >635 Mantle Ldd 217 3.0 1.18 ± 0.52 1.05
pP 0–2 <635 Mantle Ldu 68 2.8 1.51 ± 0.56 1.50
pP 0–2 >635 <40 Lsd 47 3.0 1.33 ± 0.58 1.17
pP 0–2 <635 <40 Lsu 15 2.2 1.68 ± 0.78 1.23
pwP 0–2 >635 Mantle Wd 36 3.7 1.43 ± 0.67 1.20
PP 0–2 >635 Mantle PPdd 21 1.7 2.22 ± 0.42 2.07
PP 0–2 <635 Mantle PPdu 11 1.6 2.28 ± 0.59 2.08
PP 0–2 >635 <40 PPsd 27 1.4 2.69 ± 0.43 2.79
PP 0–2 <635 <40 PPsu 20 1.6 2.54 ± 0.72 2.41
S 0–2 >635 Mantle Sdd 52 1.0 1.88 ± 0.77 2.04
S 0–2 <635 Mantle Sdu 145 1.1 1.74 ± 0.65 1.64
S 0–2 >635 <40 Ssd 70 0.7 2.60 ± 0.67 2.70
S 0–2 <635 <40 Ssu 78 0.4 2.82 ± 0.59 2.87
Sup 0–2 0-h Mantle FSd 58 1.5 1.16 ± 0.48 1.02
Sn 0–2 <635 Mantle Sndu 274 2.0 1.55 ± 0.68 1.41
Sn 0–2 <635 <40 Snsu 346 2.1 1.77 ± 0.67 1.65
sP 0–2 >635 Mantle sPd 54 3.1 1.85 ± 0.54 1.86

The error estimates we report here now allow us for the first time
to assess the reliability of a tomographic solution with an accurate
and formal statistical measure of the fit. Assuming the data in the
tomographic inversion are scaled with σ e, the statistical quantity
that describes the fit is χ 2, or the reducedχ 2, which is scaled by the
number of data:

χ 2
red ≡ χ 2

N
. (6)

Strictly speaking one should divide by N − K instead of N,
where K is the rank of the tomographic matrix. Unfortunately, for
large tomographic inversions it is computationally too expensive,
or downright unrealistic, to compute K. But such large-scale tomo-
graphic problems generally have N � M. We know that K ≤ M, and

usually K � M. Therefore K � N and thus one can usually accept
(6) as approximate but sufficiently accurate for our purpose.

Statistical theory tells us that χ 2
red has a distribution around a

mean of 1 with a variance of 2/N (Nolet 2008, chapter 14). Since
the variance is extremely small for large N, this seems to suggest
that we must aim for a data fit with χ 2

red exactly equal to 1. This,
however, ignores the ‘uncertainty in the uncertainty’, that is, the
uncertainty in σ e.

The standard deviations for σ e listed in Table 5 give important
new insight into the range of possible standard errors in EHB that
permit us to reject or accept solutions depending on the fit to the
data. The absolute uncertainties in σ e range between 0.08 and 0.78 s,
but for the purpose of χ 2

red we must consider the relative uncertainty
in σ e.
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Figure 9. Slowness as a function of turning point depth in model AK135
for P and S waves (solid curves). The five slowness classes A–E (Table 4)
are indicated by dashed lines for P and dotted–dashed lines for S.

Table 5 lists 22 error estimates for P and Pn (from 15 645 dif-
ferent clusters). The average relative uncertainty in these estimates,
weighted with the number of clusters Nc as a proxy for their fre-
quency, is 23 per cent. But χ 2

red is a quadratic function of the errors,
and if we consider a solution acceptable if it is within a 1σ interval
of possible values, we should aim for solutions within (1 ± 0.23)2

or 0.59 < χ 2
red < 1.52.

If the tomography is done with all phases, the average relative
errors are somewhat larger. Averaged over all 45 classes (from
19 707 different clusters), the relative error is 31 per cent and
we shall wish that 0.48 < χ 2

red < 1.72. If χ 2
red > 1.72 the damp-

ing or smoothing of the solution must be reduced. Conversely,
if χ 2

red < 0.48, regularization must be strengthened to avoid over-
fitting. If a satisfactory χ 2

red is not within reach even with little
damping, it indicates a shortcoming of the model parametriza-
tion, and one needs to decrease voxel size, introduce anisotropy, or
both (assuming source corrections were already part of the model
parameters).
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Figure S1. The division of the Earth’s surface into 10 406 patches
of about 2◦ × 2◦ size.
Figure S2. The location of patches generating at least 3000 matrix
rows for P. The colour scale runs from 3000 (violet) to 30 000 (red).
Of the 2011 patches shown here, 48 have more than 30 000 rows.
Figure S3. The location of 341 patches generating at least 3000
matrix rows for Pn. The colour scale runs from 3000 (violet) to
30 000 (red). Only one patch has more than 30 000 (located at 21◦E,
37◦N).
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Figure S4. The distribution of a subset of about 5000 τ i in the null
space of A for P waves in slowness classes A, B and C. The codes
in the top right corner correspond to the codes in Table 5. The solid
curve denotes a Gaussian distribution with the RSDR computed
from the observed histogram.
Figure S5. As Fig. S4, but for slowness classes D, E and F.
Figure S6. As Fig. S4, but for core phases and pP, pwP and sP.
Figure S7. As Fig. S4, but for PP, S and Sn.
Figure S8. The distribution of σ e estimates from patches that gen-
erate at least 100 negligible eigenvalues (λi < 0.03), for P waves in

slowness classes A, B and C. The solid curve denotes a Gaussian
distribution with the RSDR taken from the observed distribution.
Figure S9. As Fig. S8, but for slowness classes D, E and F.
Figure S10. As Fig. S8, but for core phases and pP.
Figure S11. As Fig. S8 but for PP, S and Sn.

Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the paper.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/231/3/1739/6649297 by C

N
R

S user on 16 M
arch 2023


