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S U M M A R Y
The computation of the Love numbers (LNs) for a spherically symmetric self-gravitating
viscoelastic Earth is a classical problem in global geodynamics. Here we revisit the problem
of the numerical evaluation of loading and tidal LNs in the static limit for an incompressible
planetary body, adopting a Laplace inversion scheme based upon the Post-Widder formula
as an alternative to the traditional viscoelastic normal modes method. We also consider,
within the same framework, complex-valued, frequency-dependent LNs that describe the
response to a periodic forcing, which are paramount in the study of the tidal deformation of
planets. Furthermore, we numerically obtain the time-derivatives of LNs, suitable for modelling
geodetic signals in response to surface loads variations. A number of examples are shown, in
which time and frequency-dependent LNs are evaluated for the Earth and planets adopting
realistic rheological profiles. The numerical solution scheme is implemented in ALMA3 (the
plAnetary Love nuMbers cAlculator, version 3), an upgraded open-source Fortran 90 program
that computes the LNs for radially layered planetary bodies with a wide range of rheologies,
including transient laws like Andrade or Burgers.

Key words: Loading of the Earth; Tides and planetary waves; Transient deformation; Plan-
etary interiors.

1 I N T RO D U C T I O N

Love numbers (LNs), first introduced by A.E.H. Love in 1911, pro-
vide a complete description of the response of a planetary body
to external, surface or internal perturbations. In his seminal work,
Love (1911) defined the LNs in the context of computing the ra-
dial deformation and the perturbation of gravity potential for an
elastic, self-gravitating, homogeneous sphere that is subject to the
gravitational pull of a tide-raising body. This definition has been
subsequently extended by Shida (1912) to include also horizon-
tal displacements. In order to describe the response to surface
loads, an additional set of LNs, dubbed loading Love numbers,
has been introduced in order to describe the Earth’s response to
surface loads (see e.g. Munk & MacDonald 1960; Farrell 1972) and
today they are routinely used in the context of the Post Glacial
Rebound problem (Spada et al. 2011). In a similar way, shear
Love numbers represent the response to a shear stress acting on
the surface (Saito 1978) while dislocation Love numbers describe
deformations induced by internal point dislocations (see e.g. Sun &
Okubo 1993).

The LN formalism has been originally defined in the realm of
purely elastic deformations, for spherically symmetric Earth mod-
els consistent with global seismological observations. However,

invoking the Correspondence Principle in linear viscoelasticity (see
e.g. Christensen 1982), the LNs can be generalized to anelastic
models in a straightforward way. Currently, viscoelastic LNs are
a key ingredient of several geophysical applications involving the
time-dependent response of a spherically symmetric Earth model to
surface loads or endogenous perturbations. For example, they are
essential to the solution of the sea level equation (Farrell & Clark
1976) and are exploited in current numerical implementations of
the Glacial Isostatic Adjustment (GIA) problem, either on millen-
nial (see e.g. Spada & Melini 2019) or on decadal time scale (see
e.g. Melini et al. 2015).

Since LNs depend on the internal structure of a planet and on its
constitution, they can provide a means of establishing constraints
on some physical parameters of the planet interior on the basis of
geodetic measurements or astronomic observations (see e.g. Zhang
1992; Kellermann et al. 2018). For tidal periodic perturbations,
complex LNs can be defined in the frequency domain, accounting
for both the amplitude and phase lag of the response to a given tidal
frequency (Williams & Boggs 2015). Frequency-domain LNs are
widely used to constrain the interior structure of planetary bodies
on the basis of observations of tidal amplitude and phase lag (see
e.g. Sohl et al. 2003; Dumoulin et al. 2017; Tobie et al. 2019), to
study the state of stress of satellites induced by tidal forcings (see
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e.g. Wahr et al. 2009) or to investigate the tidal response of the giant
planets (see e.g. Gavrilov & Zharkov 1977).

Viscoelastic LNs for a spherically symmetric, radially lay-
ered, self-gravitating planet are traditionally computed within the
framework of the ‘viscoelastic normal modes’ method introduced
by Peltier (1974), which relies upon the solution of Laplace-
transformed equilibrium equations using the formalism of elastic
propagators. As discussed for example by Spada & Boschi (2006)
and Melini et al. (2008), this approach becomes progressively less
feasible as the detail of the rheological model is increased or if
complex constitutive laws are considered. Several workarounds
have been proposed in the literature to avoid these shortcomings
(see, e.g. Rundle 1982; Friederich & Dalkolmo 1995; Riva & Ver-
meersen 2002; Tanaka et al. 2006). Among these, the Post-Widder
Laplace inversion formula (Post 1930; Widder 1934), first applied
by Spada & Boschi (2006) to the evaluation of viscoelastic LNs for
the Earth, has the advantage of maintaining unaltered the formal
structure of the viscoelastic normal modes and of allowing for a
straightforward implementation of complex rheological laws. For
periodic loads, alternative numerical integration schemes similar to
those developed by Takeuchi & Saito (1972) for the elastic problem
(Na & Baek 2011; Wang et al. 2012) have been applied to the vis-
coelastic case by integrating Fourier-transformed solutions (Tobie
et al. 2005, 2019).

In this work, we revisit the Post-Widder approach to the evalua-
tion of LNs with the aim of extending it to more general planetary
models, relaxing some of the assumptions originally made by Spada
& Boschi (2006). In particular, we introduce a layered core in the
Post-Widder formalism and obtain analytical expressions for the
time derivatives of LNs, needed to model geodetic velocities in re-
sponse to the variation of surface loads. In this respect, our approach
is complementary to that of Padovan et al. (2018), who derived a
semi-analytical solution for the fluid LNs using the propagator for-
malism. We implement our results in ALMA3 (the plAnetary Love
nuMbers cAlculator, version 3), an open-source code which extends
and generalizes the program originally released by Spada (2008).
ALMA3 introduces a range of new capabilities, including the evalua-
tion of frequency-domain LNs describing the response to periodic
forcings, suitable for studying tidal dissipation in the Earth and
planets.

This paper is organized as follows. In Section 2, we give a brief
outline of the theory underlying the computation of viscoelastic
LNs and of the application of the Post-Widder Laplace inversion
formula. In Section 3 we discuss some general aspects of ALMA3,
leaving the technical details to a User Manual. In Section 4, we
validate ALMA3 through some benchmarks between our numeri-
cal results and available reference solutions In Section 5, we dis-
cuss some numerical examples before drawing our conclusions in
Section 6.

2 M AT H E M AT I C A L B A C KG RO U N D

The details of the Post-Widder approach to numerical Laplace
inversion have been extensively discussed in previous works
(see Spada & Boschi 2006; Melini et al. 2008; Spada 2008).
In what follows, we only give a brief account of the Post-
Widder Laplace inversion method for the sake of illustrating how
the new features of ALMA3 have been implemented within its
context.

2.1 Viscoelastic normal modes

Closed-form analytical expressions for the LNs exist only for a
few extremely simplified planetary models. The first is the homo-
geneous, self-gravitating sphere, often referred to as the ‘Kelvin
sphere’ (Thomson 1863). The second is the two-layer, incompress-
ible, non self-gravitating model that has been solved analytically
by Wu & Ni (1996). For more complex models, LNs shall be com-
puted either through fully numerical integration of the equilibrium
equations, or by invoking semi-analytical schemes. Among the lat-
ter, the viscoelastic normal modes method, introduced by Peltier
(1974), relies upon the solution of the equilibrium equations in the
Laplace-transformed domain. Invoking the Correspondence Princi-
ple (e.g. Christensen 1982) the equilibrium equations can be cast
in a formally elastic form by defining a complex rigidity μ(s) that
depends on the rheology adopted and is a function of the Laplace
variable s.

Following Spada & Boschi (2006), at a given harmonic degree
n, the Laplace-transformed equations can be solved with standard
propagator methods, and their solution at the planet surface (r = a)
can be written in vector form as

x̃(s) = f̃ (s)
(

P1�(s)J
)(

P2�(s)J
)−1

b , (1)

where the tilde denotes Laplace-transformed quantities, vector
x̃(s) = (ũ, ṽ, ϕ̃)T contains the nth degree harmonic coefficients of
the vertical (ũ) and horizontal (ṽ) components of the displace-
ment field and the incremental potential (ϕ̃), f̃ (s) is the Laplace-
transformed time-history of the forcing term, P1 and P2 are appro-
priate 3 × 6 projection operators, J is a 6 × 3 array that accounts
for the boundary conditions at the core interface, and b is a three-
component vector expressing the surface boundary conditions (ei-
ther of loading or of tidal type). In eq. (1), �(s) is a 6 × 6 array that
propagates the solution from the core radius (r = c) to the planet
surface (r = a), which has the form:

�(s) =
1∏

k=N

Yk(rk+1, s)Y −1
k (rk, s) , (2)

where N is the number of homogeneous layers outside the planet
core, rk is the radius of the interface between the (k − 1)th and kth
layer, with r1 ≤... ≤ rN, r1 = c and rN + 1 = a. In eq. (2), Yk(r, s)
is the fundamental matrix that contains the six linearly independent
solutions of the equilibrium equations valid in the kth layer, whose
expressions are given analytically in Sabadini et al. (1982). When
incompressibility is assumed, the matrix Yk(r, s) depends upon the
rheological constitutive law through the functional form of the com-
plex rigidity μ(s), which replaces the elastic rigidity μ of the elastic
propagator (Wu & Peltier 1982). Table 1 lists expressions of μ(s)
for some rheological laws. For a fluid inviscid (i.e. zero viscosity)
core, the array J in eq. (1) is a 6 × 3 interface matrix whose compo-
nents are explicitly given by Sabadini et al. (1982); conversely, for
a solid core, J corresponds to the 6 × 3 portion of the fundamental
matrix for the core Yc(c, s) that contains the three solutions behaving
regularly for r �→ 0.

From the solution x̃(s) obtained in eq. (1), the Laplace-
transformed LNs are defined as:

h̃n(s) = m

a
ũn(s) (3)

l̃n(s) = m

a
ṽn(s) (4)

k̃n(s) = −1 − m

ag
ϕ̃n(s) , (5)
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Table 1. Complex rigidities μ(s) for the linear viscoelastic rhe-
ologies implemented in ALMA3. Here, μ is the elastic rigidity, η

is the Newtonian viscosity, μ2 and η2 are the rigidity and viscos-
ity of the transient element in the bi-viscous Burgers rheology,
respectively. In the Andrade rheological law, α is the creep pa-
rameter while �(x) is the Gamma function.

Rheological law Complex rigidity μ(s)

Hooke μ

Maxwell μs
s + μ/η

Newton η s

Kelvin μ + ηs

Burgers
μs

(
s + μ2

η2

)

s2 + s

(
μ

η
+ μ + μ2

η2

)
+ μ μ2

η η2

Andrade

[
1
μ + 1

ηs + �(α + 1) 1
μ

(
ηs
μ

)−α
]−1

where we have made the n-dependence explicit, m is the mass of the
planet and g is the unperturbed surface gravitational acceleration
(Farrell 1972; Wu & Peltier 1982). Using Cauchy’s residue theorem,
for Maxwell or generalized Maxwell rheologies eqs (3)–(5) can be
cast in the standard normal modes form, which for an impulsive
load ( f̃ (s) = 1) reads

L̃n(s) = Le
n +

NM∑
k=1

Lk
n

s − sk
n

, (6)

where L̃n(s) denotes any of the three LNs, Le
n is the elastic com-

ponent of the LN (i.e. the limit for s�→∞), Lk
n are the viscoelastic

components (residues), sk
n are the (real and negative) roots of the

secular equation Det(P2�(s)J) = 0, and where NM is the number of
viscoelastic normal modes, each corresponding to one root of the
secular equation (Spada & Boschi 2006). However, such standard
form is not always available, since for some particular rheologies the
complex rigidity μ(s) cannot be cast in the form of a rational frac-
tion (this occurs, for example, for the Andrade’s rheology, see Ta-
ble 1). This is one of the motivations for adopting non-conventional
Laplace inversion formulas like the one discussed in next section.

2.2 LNs in the time domain

To obtain the time-domain LNs hn(t), ln(t) and kn(t), it is necessary
to perform the inverse Laplace transform of eqs (3)–(5). Within the
viscoelastic normal-mode approach, this is usually accomplished
through an integration over a (modified) Bromwich path in the
complex plane, by invoking the residue theorem. In this case, the
inversion of eq. (6) yields the time-domain LN in the form:

Ln(t) = Le
nδ(t) + H (t)

NM∑
k=1

Lk
nesk

n t , (7)

where δ(t) is the Dirac delta and H(t) is the Heaviside step function
defined by eq. (14) below, and an impulsive time history is assumed
( f̃ (s) = 1). As discussed by Spada & Boschi (2006), the traditional
scheme of the viscoelastic normal modes suffers from a few but
significant shortcomings that, with models of increasing complex-
ity, effectively hinders a reliable numerical inverse transformation.
Indeed, the application of the residue theorem demands the identifi-
cation of the poles of the Laplace-transformed solutions (see eqs 3–
5), which are the roots of the secular polynomial equation whose
algebraic degree increases with the number of rheologically distinct

layers. In addition, its algebraic complexity may be unpractical to
handle, particularly for constitutive laws characterized by many
material parameters.

As shown by Spada & Boschi (2006) and Spada (2008), a pos-
sible way to circumvent these difficulties is to compute the inverse
Laplace transform through the Post-Widder (PW) formula (Post
1930; Widder 1934). We note, however, that other viable possibil-
ities exist, as the one recently discussed by Michel & Boy (2021),
who have used Fourier techniques to avoid some of the problems
inherent in the Laplace transform method. While Fourier techniques
may be more appropriate to take complex rheologies into account,
and are clearly more relevant to address LNs at tidal frequencies,
the motivation of our approach is to address in a unified frame-
work the computation of LNs describing both tidal and surface
loads. If F̃(s) = L(F(t)) is the Laplace transform of F(t), the PW
formula gives an asymptotic approximation of the inverse Laplace
transform L−1(F̃(s)) as a function of the nth derivatives of F̃(s)
evaluated along the real positive axis:

F(t) = lim
n→∞

(−1)n

n!

(n

t

)n+1
[

dn

dsn
F̃(s)

]
s= n

t

. (8)

In general, an analytical expression for the nth derivative of F̃(s)
required in eq. (8) is not available. By using a recursive discrete
approximation of the derivative and rearranging the corresponding
terms, Gaver (1966) has shown that an equivalent expression is

F(t) = lim
n→∞

n ln 2

t

(
2n

n

) n∑
j=0

(−1) j

(
n

j

)
F̃

(
(n + j) ln 2

t

)
, (9)

where the inverse transform F(t) is expressed in terms of samples
of the Laplace transform F̃(s) on the real positive axis of the com-
plex plane. Since for a stably stratified incompressible planet all
the singularities of x̃(s) (eq. 1) are expected to be located along the
real negative axis that ensures the long-term gravitational stabil-
ity (Vermeersen & Mitrovica 2000), eq. (9) provides a strategy for
evaluating the time-dependent LNs without the numerical complex-
ities associated with the traditional contour integration. However,
as discussed by Valkó & Abate (2004), the numerical convergence
of (9) is logarithmically slow, and the oscillating terms can lead to
catastrophic loss of numerical precision. Stehfest (1970) has shown
that, for practical applications, the convergence of eq. (9) can be
accelerated by rewriting it in the form

F(t) = lim
M→∞

ln 2

t

2M∑
j=1

ζ j,M F̃

(
j ln 2

t

)
, (10)

where M is the order of the Gaver sequence and where the ζ con-
stants are

ζk,M = (−1)M+k
min(M,k)∑

j=floor( k+1
2 )

j M+1

M!

(
M

j

)(
2 j

j

)(
j

k − j

)
, (11)

with floor(x) being the greatest integer less or equal to x. Eq. (10)
can be applied to (1) to obtain an Mth order approximation of the
time-domain solution vector:

x(M)(t) = ln 2

t

2M∑
j=1

ζ j,M x̃

(
j ln 2

t

)
, (12)

from which the time-domain LNs can be readily obtained according
to eqs (3)–(5).
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Recalling that the Laplace transform of F(t) and that of its time
derivative Ḟ(t) are related by L(Ḟ(t)) = sL(F(t)) − F(0−) and be-
ing x(t) = 0 for t < 0, it is also possible to write an asymptotic
approximation for the time derivative of the solution:

ẋ(M)(t) =
(

ln 2

t

)2 2M∑
j=1

j ζ j,M x̃

(
j ln 2

t

)
, (13)

from which the time derivative of the LNs ḣn(t), l̇n(t) and k̇n(t) can
be obtained according to eqs (3)–(5). The numerical computation
of the time-derivatives of the LNs according to eq. (13) is one of
the new features introduced in ALMA3.

The time dependence of the solution vector obtained through
eqs (12)–(13) is also determined by the time history of the forcing
term (either of loading or tidal type), whose Laplace transform f̃ (s)
appears in eq. (1). If the loading is instantaneously switched on at t =
0, its time history is represented by the Heaviside (left-continuous)
step function

H (t) =
{

0, t ≤ 0
1, t > 0 ,

(14)

whose Laplace transform is

H̃ (s) = L(H (t)) = 1

s
. (15)

Since any piecewise constant function can be expressed as a linear
combination of shifted Heaviside step functions (see, e.g. Spada &
Melini 2019), LNs obtained assuming the loading time history in
eq. (14) can be used to compute the response to arbitrary piecewise
constant loads. However, for some applications, it may be more
convenient to represent the load time history as a piecewise linear
function. It is easy to show that any such function can be written as
a linear combination of shifted elementary ramp functions of length
tr, of the type

R(t) =

⎧⎪⎪⎨
⎪⎪⎩

0, t ≤ 0
t

tr
, 0 < t ≤ tr

1, t > tr ,

(16)

whose Laplace transform is

R̃(s) = L(R(t)) = 1

s
· 1 − e−str

s tr
. (17)

Laplace-transformed LNs corresponding to a stepwise or ramp-
wise forcing time history can be obtained by setting f̃ (s) = H̃ (s)
or f̃ (s) = R̃(s) in eq. (1). The rampwise forcing function defined
by eq. (16) is one of the new features introduced in ALMA3.

2.3 Frequency dependent LNs

In the context of planetary tidal deformation, it is important to de-
termine the response to an external periodic tidal potential. The pre-
vious version of ALMA was limited to the case of an instantaneously
applied forcing. For periodic potentials, the time dependence of the
forcing term has the oscillating form eiωt, where

ω = 2π

T
(18)

is the angular frequency of the forcing term, T is the period of the
oscillation and i = √−1 is the imaginary unit. In the time domain,
the solution vector can be cast in the form

xω(t) = xδ(t) ∗ eiωt , (19)

where xδ(t) is the time-domain response to an impulsive (δ-like) load
and the asterisk indicates the time convolution. Since the impulsive
load is a causal function, xδ(t) = 0 for t < 0 and eq. (19) can be
expressed as

xω(t) = eiωt

∫ ∞

0
xδ(t ′)e−iωt ′ dt ′ = x0(ω)eiωt , (20)

where x0(ω) is the Laplace transform of xδ(t) evaluated at s = iω.
By setting f̃ (s) = L(δ(t)) = 1 and s = iω in eq. (1), we obtain

x0(ω) =
(

P1�(iω)J
)(

P2�(iω)J
)−1

b . (21)

Hence, in analogy with eqs (3)–(5), the frequency-domain LNs
hn(ω), ln(ω) and kn(ω) are defined as

hn(ω) = m

a
un(ω) (22)

ln(ω) = m

a
vn(ω) (23)

kn(ω) = −1 − m

ag
ϕn(ω) , (24)

where un(ω), vn(ω) and ϕn(ω) are the three components of vector
x0(ω) = (un, vn, ϕn)T .

Since the frequency-domain LNs are complex numbers, in gen-
eral a phase difference exists between the variation of the exter-
nal periodic potential and the planet response, due to the energy
dissipation within the planetary mantle. If Ln(ω) is any of the
three frequency-dependent LNs, the corresponding time-domain
LNs are:

Ln(t) = Ln(ω)eiωt = |Ln(ω)|ei(ωt−φ) , (25)

where the phase lag φ is

tan φ = − Im(Ln (ω))

Re(Ln (ω))
, (26)

and Re(z) and Im(z) denote the real and the imaginary parts of z,
respectively. A vanishing phase lag (φ = 0) is only expected for
elastic planetary models (i.e. for Im(Ln(ω)) = 0), for which no
dissipation occurs. We remark that the evaluation of the frequency-
dependent LNs (eqs 22–24) does not require the application of the
Post-Widder method outlined in Section 2.2, since in this case no
inverse transform is to be evaluated.

Tidal dissipation is phenomenologically expressed in term of the
quality factor, Q (Kaula 1964; Goldreich & Soter 1966), which
according to for example Efroimsky & Lainey (2007) and Clausen
& Tilgner (2015) is related to the phase lag φ through

Q(ω) = 1

sin φ
= − |L2(ω)|

Im (L2(ω))
, (27)

thus implying Q = ∞ in the case of no dissipation. Tidal dissipation
is often measured in terms of the ratio

|k2|
Q

= |k2| sin φ = −Im k2 . (28)

For terrestrial bodies, the quality factor Q usually lies in a range
between 10 and 500 (Goldreich & Soter 1966; Murray & Dermott
2000). We remark that the quality factor Q is a phenomenological
parameter used when the internal rheology is unknown; if LNs
are computed by means of a viscoelastic model, it may be more
convenient to consider the imaginary part of k2, which is directly
proportional to dissipation (Segatz et al. 1988).
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3 A N OV E RV I E W O F ALMA3

Here we briefly outline how the solution scheme described in pre-
vious section is implemented in ALMA3, leaving the technical details
and practical considerations to the accompanying User Manual.
ALMA3 evaluates, for any given harmonic degree n, the time-domain
LNs (hn(t), ln(t), kn(t)), their time derivatives (ḣn(t), l̇n(t), k̇n(t)) and
the frequency-domain LNs (hn(ω), ln(ω), kn(ω)), either correspond-
ing to surface loading or to tidal boundary conditions. While the
original version of the code was limited to time-domain LNs, the
other two outputs represent new capabilities introduced by ALMA3.
The planetary model can include, in principle, any number of layers
in addition to a central core. Each of the layers can be characterized
by any of the rheological laws listed in Table 1, while the core can
also have a fluid inviscid rheology. As we show in Section 5, nu-
merical solutions obtained with ALMA3 are stable even with models
including a large number of layers, providing a way to approximate
rheologies whose parameters are varying continuously with radius.

Time-domain LNs are computed by evaluating numerically
eqs (12) and (13), assuming a time history of the forcing that can
be either a step function (eq. 14) or an elementary ramp function
(eq. 16). In the latter case, the duration tr of the loading phase can
be configured by the user. Since eqs (12) and (13) are singular for
t = 0, ALMA3 can compute time-domain LNs only for t > 0. In the
“elastic limit”, the LNs can be obtained either by sampling them at
a time t that is much smaller than the characteristic relaxation times
of the model, or by configuring the Hooke’s elastic rheology for
all the layers in the model. In the second case, the LNs will follow
the same time history of the forcing. As discussed in Section 2,
the sums in eqs (12) and (13) contain oscillating terms that can
lead to loss of precision due to catastrophic cancellation (Spada &
Boschi 2006). To avoid the consequent numerical degeneration of
the LNs, ALMA3 performs all computations in arbitrary-precision
floating point arithmetic, using the Fortran FMLIB library (Smith
1991, 2003).

When running ALMA3, the user shall configure both the number
D of significant digits used by the FMLIB library and the order
M of the Gaver sequence in eqs (12) and (13). As discussed by
Spada & Boschi (2006) and Spada (2008), higher values of D and
M ensure a better numerical stability and accuracy of the results,
but come at the cost of rapidly increasing computation time. All
the examples discussed in the next section have been obtained with
parameters D = 128 and M = 8. While these values ensure a good
stability in relatively simple models, a special care shall be devoted
to numerical convergence in case of models with a large number
of layers and/or when computing LNs to high harmonic degrees; in
that case, higher values of D and M may be needed to attain stable
results.

Complex-valued LNs are obtained by ALMA3 by directly sampling
eq. (21) at the requested frequencies ω, and therefore no numerical
Laplace antitransform is performed. While for frequency-domain
LNs the numerical instabilities associated with the Post-Widder
formula are avoided, the use of high-precision arithmetic may still be
appropriate, especially in case of models including a large number
of layers. ALMA3 does not directly compute the tidal phase lag φ, the
quality factor Q nor the k2/Q ratio, which can be readily obtained
from tabulated output values of the real and imaginary parts of LNs
through eqs (26)–(28).

Although ALMA3 is still limited to spherically symmetric and elas-
tically incompressible models, with respect to the version originally
released by Spada (2008) now the program includes some new sig-
nificant features aimed at increasing its versatility. These are: (i)

the evaluation of frequency-dependent loading and tidal LNs in re-
sponse to periodic forcings, (ii) the possibility of dealing with a
layered core that includes fluid and solid portions, (iii) the introduc-
tion of a ramp-shaped forcing function to facilitate the implementa-
tion of loading histories varying in a linear piecewise manner, (iv)
the implementation of the Andrade transient viscoelastic rheology
often used in the study of planetary deformations, (v) the explicit
evaluation of the derivatives of the LNs in the time domain to facili-
tate the computation of geodetic variations in deglaciated areas, (vi)
a short but exhaustive User Guide and (vii) a facilitated computa-
tion of frequency-dependent loading and tidal planetary LNs, with
pre-defined and easily customizable rheological profiles for some
terrestrial planets and moons.

4 B E N C H M A R K I N G ALMA3

In the following we discuss a suite of numerical benchmarks for
LNs computed by ALMA3. First, we consider a uniform, incompress-
ible, self-gravitating sphere with Maxwell rheology (the so-called
‘Kelvin sphere’) and compare tidal LNs computed numerically by
ALMA3 with well known analytical results. Then, we test numeri-
cal results from ALMA3 by reproducing the viscoelastic LNs for an
incompressible Earth model computed within the benchmark exer-
cise by Spada et al. (2011). Finally, we discuss the impact of the
incompressibility approximation assumed in ALMA3 by comparing
elastic and viscoeastic LNs for a realistic Earth model with recent
numerical results by Michel & Boy (2021), who use a compressible
model.

4.1 The viscoelastic Kelvin sphere

Simplified planetary models for which closed-form expressions for
the LNs are available are of particular relevance here, since they
allow an analytical benchmarking of the numerical solutions dis-
cussed in Section 2 and provided by ALMA3.

In what follows, we consider a spherical, homogeneous, self-
gravitating model, often referred to as the ‘Kelvin sphere’ (Thom-
son 1863), which can be extended to a viscoelastic rheology in a
straightforward manner. For example, adopting the complex mod-
ulus μ(s) appropriate for the Maxwell rheology (see Table 1), for
a Kelvin sphere of radius a, density ρ and surface gravity g, in the
Laplace domain the harmonic degree n = 2 LNs take the form

L̃2(s) = L f

1 + γ 2 s

s + 1/τ

, (29)

where L2 stands for any of (h2, l2, k2), Lf is the ‘fluid limit’ of L̃2(s)
(i.e. the value attained for s → 0), the Maxwell relaxation time is

τ = η

μ
(30)

and

γ 2 = 19

2

μ

ρga
(31)

is a positive non-dimensional constant. Note that g is a function of
a and ρ, since for the homogeneous sphere g = 4

3 πGρa, where G
is the universal gravitational constant.

After some algebra, (29) can be cast in the form

L̃2(s) = L f

1 + γ 2

(
1 + 1/τ − 1/τ ′

s + 1/τ ′

)
, (32)
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Figure 1. (a) Comparison between numerical (dotted) and analytical solu-
tions (solid) for the h2 and k2 tidal LNs of a Kelvin sphere with Maxwell
rheology having radius a = 6371 km, density ρ = 5.514 × 103 kg·m−3,
rigidity μ = 1.46 × 1011 Pa and viscosity η = 1021 Pa·s. (b) The same, for
the time derivatives of the LNs. Note that the time axis is logarithmic.

where for a tidal forcing, the fluid limits for degree n = 2 are
h f = 5

2 , l f = 3
4 and k f = 3

2 (see e.g. Lambeck 1988) and where we
have defined

τ ′ = (1 + γ 2)τ . (33)

From eq. (32), the LNs in the time domain can be immediately
computed analytically through an inverse Laplace transformation:

L2(t) = L f

1 + γ 2

[
δ(t) + H (t)

(
1

τ
− 1

τ ′

)
e−t/τ ′

]
, (34)

while for an external forcing characterized by a step-wise time-
history, the LNs L (H )

2 (t) are obtained by a time convolution with the
Heaviside function:

L (H )
2 (t) = L2(t) ∗ H (t) , (35)

that yields

L (H )
2 (t) = L f

1 + γ 2

[
1 + γ 2

(
1 − e−t/τ ′)]

, t ≥ 0 , (36)

from which the time derivative of L (H )
2 (t) is readily obtained:

L̇ (H )
2 (t) = L f

1 + γ 2

(
1

τ
− 1

τ ′

)
e−t/τ ′

, t > 0 . (37)

In Fig. 1(a), the dotted curves show the h2 (blue) and the k2 (red)
tidal LN of harmonic degree n = 2 obtained by a configuration of
ALMA3 that reproduces the Kelvin sphere (the parameters are given
in the Figure caption). The LNs, shown as a function of time, are
characterized by two asymptotes corresponding to the elastic and

fluid limits, respectively, and by a smooth transition in between. The
solid curves, obtained by the analytical expression given by eq. (36),
show an excellent agreement with the ALMA3 numerical solutions.
The same holds for the time-derivatives of these LNs, considered
in Fig. 1(b), where the analytical LNs (solid lines) are computed
according to eq. (37).

The frequency response of the Kelvin sphere for a periodic tidal
potential can be obtained by setting s = iω in eq. (29), which after
rearranging gives:

L2(ω) = L f

1 + γ 2

[
1 + γ 2

1 + (ωτ ′)2
− iγ 2 ωτ ′

1 + (ωτ ′)2

]
, (38)

which remarkably depends upon ω and τ only through the ωτ

product. Therefore, a change in the relaxation time τ shall result in
a shift of the frequency response of the Kelvin sphere, leaving its
shape unaltered.

Using eq. (38) in (26), the phase lag turns out to be:

tan φ = γ 2ωτ

1 + ω2ττ ′ , (39)

where it is easy to show that for frequency

ω0 = 1√
ττ ′ (40)

the maximum phase lag φ = φmax is attained, with

tan φmax = γ 2

2
√

1 + γ 2
. (41)

By using eq. (38) into (27), for the Kelvin sphere the quality factor
is

QK (ω) =
√

1 + 1

γ 4

(
ωτ ′ + 1

ωτ

)2

, (42)

which at ω = ω0 attains its minimum value

Qmin = 1 + 2

γ 2
. (43)

In Fig. 2(a), the dotted curve shows the phase lag φ as a function
of the tidal period T = 2π /ω, obtained by the same configuration
of ALMA3 described in the caption of Fig. 1. The solid line corre-
sponds to the analytical expression of φ(T) which can be obtained
from eq. (39), showing once again an excellent agreement with the
numerical results (dotted). Fig. 2(b) compares numerical results ob-
tained from ALMA3 for Q with the analytical expression for QK(T)
obtained from (42). By using in eq. (40) the numerical values of ρ,
a and μ assumed in Figs 1 and 2, the period T0 = 2π /ω0 is found
to scale with viscosity η as

T0 = (3.06 kyr)
( η

1021 Pa · s

)
, (44)

so that for η = 1021 Pa · s, representative of the Earth’s mantle bulk
viscosity (see e.g. Mitrovica 1996; Turcotte & Schubert 2014), the
maximum phase lag φmax � 41.9◦ and the minimum quality factor
Qmin � 1.5 are attained for T0 � 3 kyr, consistent with the results
shown in Fig. 2.

4.2 Community-agreed LNs for an incompressible Earth
model

Due to the relevance of viscoelastic LNs in a wide range of ap-
plications in Earth science, several numerical approaches for their
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Figure 2. Comparison between numerical (dotted) and analytical solutions
(solid) for the tidal phase lag φ (a) and quality factor Q (b) for the n = 2 tidal
LNs of a Kelvin sphere with Maxwell rheology, using the same parameters
detailed in the caption of Fig. 1.

evaluation have been independently developed and proposed in lit-
erature. This ignited the interest on benchmark exercises, in which
a set of agreed numerical results can be obtained and different ap-
proaches and methods can be cross-validated. Here we consider
a benchmark effort that has taken place in the framework of the
Glacial-Isostatic Adjustment community (Spada et al. 2011), in
which a set of reference viscoelastic LNs for an incompressible,
spherically symmetric Earth model has been derived through dif-
ferent numerical approaches, including viscoelastic normal modes,
spectral-finite elements and finite elements. This allows us to vali-
date our numerical results by implementing in ALMA3 the M3-L70-
V01 Earth model described in table 3 of Spada et al. (2011), which
includes a fluid inviscid core, three mantle layers with Maxwell
viscoelastic rheology and an elastic lithosphere, and comparing the
set of LNs from ALMA3 with reference results from the benchmark
exercise.

Fig. 3 shows elastic (h(e)
n , l (e)

n , k(e)
n ) and fluid LNs (h( f )

n , l ( f )
n , k( f )

n ),
both for the loading and tidal cases, computed by ALMA3 for the
M3-L70-V01 Earth model in the range of harmonic degrees 2 ≤ n
≤ 250. The elastic and fluid limits have been simulated in ALMA3

by sampling the time-dependent LNs at te = 10−5 kyr and tf =
1010 kyr, respectively. Reference results from Spada et al. (2011),
represented by solid lines in Fig. 3, are practically indistinguishable
from results obtained with ALMA3 over the whole range of harmonic
degrees, demonstrating the reliability of the numerical approach
used in ALMA3.

Fig. 4 shows time-dependent LNs hn(t), ln(t) and kn(t), for both the
loading and tidal cases, computed by ALMA3 for harmonic degrees
2 ≤ n ≤ 5 and for t between 10−3 and 105 kyr, a time range that

encompasses the complete transition between the elastic and fluid
limits. Also in this case, numerical results obtained by ALMA3 (shown
by symbols) are coincident with the reference LNs from Spada et al.
(2011), represented by solid lines.

4.3 Viscoleastic LNs for a PREM-layered Earth model

In this last benchmark, we compare numerical results from
ALMA3 with reference viscoelastic LNs for a realistic Earth model
which accounts for an elastically compressible rheology, in order to
assess its importance when modelling the tidal and loading response
of a large planetary body. In the context of Earth rotation, the role
of compressibility has been addressed by Vermeersen et al. (1996);
the reader is also referred to Sabadini et al. (2016) for a broader
presentation of the problem and to Renaud & Henning (2018) for a
discussion of the effects of compressibility in the realm of planetary
modelling.

Here we focus on numerical results recently obtained by Michel
& Boy (2021), who used Fourier techniques to compute frequency-
dependent viscoelastic LNs for periodic forcings both of loading
and tidal types. They have adopted an Earth model with the elastic
structure of PREM (Preliminary Reference Earth Model, Dziewon-
ski & Anderson 1981) and a fully liquid core, and replaced the
outer oceanic layer with a solid crust layer, adjusting crustal density
in such a way to keep the total Earth mass unchanged. Following
Michel & Boy (2021), we have built a discretized realization of
PREM suitable for ALMA3 with a fluid core and 28 homogeneous
mantle layers, which has been used to obtain the numerical results
discussed later.

Fig. 5 compares elastic LNs obtained by Michel & Boy (2021)
in the range of harmonic degrees between n = 2 and n = 10,000
with those computed with ALMA3 . The largest difference between
the two sets of LNs can be seen for hn in the loading case (Fig. 5a),
where the assumption of incompressibility leads to a significant
underestimation of deformation across the whole range of harmonic
degrees. Incompressible elasticity leads to an underestimation also
of the kn loading LN (Fig. 5b), although the differences are much
smaller and limited to the lowest harmonic degrees. Conversely,
for the tidal response (Figs 5c and d) the two sets of LNs turn
out to be almost overlapping, suggesting a minor impact of elastic
compressibility on tidal deformations.

In Fig. 6 we consider a periodic load and compare viscoelastic
tidal LNs h2 and k2 computed withALMA3 with corresponding results
from Michel & Boy (2021). Consistently with the elastic case, we
see that the incompressibility approximation used in ALMA3 gen-
erally results in smaller modelled deformations across the whole
range of forcing periods. The largest differences are found on |h2|
(Fig. 6a) and reach the ∼20 per cent level in the range of periods
between 105 and 106 d, while on |k2| (6b) the differences are much
smaller, reaching the ∼10 per cent level in the same range of pe-
riods. Similarly, for the phase lags (Figs 6c and d) we find a larger
difference for h2 than for k2, with the phase lag being remarkably
insensitive to compressibility up to forcing periods of the order of
104–105 d.

5 E X A M P L E S O F ALMA3 A P P L I C AT I O N S

In this Section we consider four applications showing the potential
of ALMA3 in different contexts. First, we will discuss the k2 tidal Love
number of Venus, based upon a realistic layering for the interior of
this planet. Second, we shall evaluate the tidal LNs for a simple
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Figure 3. Elastic (red) and fluid (blue) Love numbers as a function of the harmonic degree for the Earth model M3-L70-V01 defined in Spada et al. (2011).
Top (a–c) and bottom frames (d–f) show Love numbers for loading and tidal forcing, respectively. Symbols show numerical results obtained with ALMA3 while
solid lines represent reference results from the benchmark exercise by Spada et al. (2011).

model of the Saturn’s moon Enceladus, in order to show how an
internal fluid layer can be simulated as a low-viscosity Newtonian
fluid rheology and how a depth-dependent viscosity in a conductive
shell may be approximated using a sequence of thin homogeneous
layers. Third, we will evaluate a set of loading LNs suitable for
describing the transient response of the Earth to the melting of large
continental ice sheets. As a last example, we will demonstrate how
ALMA3 can simulate the tidal dissipation on the Moon using two
recent interior models based on seismological data. While these
numerical experiments are put in the context of state-of-the-art
planetary interior modelling, we remark that they are aimed only at
illustrating the modelling capabilities of ALMA3 .

5.1 Tidal deformation of Venus

The planet Venus is often referred to as ‘Earth’s twin planet’, since
its size and density differ only by ∼5 per cent from those of the
Earth. These similarities lead to the expectation that the chemical
composition of the Earth and Venus may be similar, with an iron-
rich core, a magnesium silicate mantle and a silicate crust (Kovach
& Anderson 1965; Lewis 1972; Anderson 1980). Despite these sim-
ilarities, there is a lack of constraints on the internal structure of
Venus. Therefore, its density and rigidity profiles are often assumed
to be a rescaled version of the Preliminary Reference Earth Model
(PREM) of Dziewonski & Anderson (1981), accounting for the dif-
ference in the planet’s radius and mass, as in Aitta (2012). One of
the main observational constraints on the planet’s interior, along its

mass and moment of inertia, is its k2 tidal LN. The current obser-
vational estimate of k2 for Venus is 0.295 ± 0.066 (2 × formal σ ),
and it has been inferred from Magellan and Pioneer Venus orbiter
spacecraft data (Konopliv & Yoder 1996). However, due to uncer-
tainties on k2, it is not possible to discriminate between a liquid and
a solid core (Dumoulin et al. 2017).

Here we use ALMA3 to reproduce results obtained by means of the
Venus model referred to as T hot

5 by Dumoulin et al. (2017), based on
the ‘hot temperature profile’ from Armann & Tackley (2012), hav-
ing a composition and hydrostatic pressure from the PREM model
of Dziewonski & Anderson (1981). The viscosity η of the mantle of
Venus is fixed and homogeneous; the crust is elastic (η → ∞), the
core is assumed to be inviscid (η = 0) and the rheology of the man-
tle follows Andrade’s law (see Table 1). The parameters of the T hot

5

model have been volume-averaged into the core, the lower mantle,
the upper mantle and the crust. The calculation of k2 is performed
at the tidal period of 58.4 d (Cottereau et al. 2011). In the work
of Dumoulin et al. (2017), k2 is computed by integrating the radial
functions associated with the gravitational potential, as defined by
Takeuchi & Saito (1972), hence the simplified formulation of Saito
(1974) relying on the radial function is used. The method is derived
from the classical theory of elastic body deformation and the energy
density integrals commonly used in the seismological community.
One of the main differences between their computation and the re-
sults presented here is the assumption about compressibility, since
Dumoulin et al. (2017) use a compressible planetary model, while
in ALMA3 an incompressible rheology is always assumed. In Fig. 7,
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Figure 4. Time-dependent viscoelastic Love numbers for the M3-L70-V01 Earth model at long spatial wavelengths (harmonic degrees 2 ≤ n ≤ 5). Top panels
(frames a–c) and bottom ones (d–f) show Love numbers for a loading and tidal forcing, respectively. The time history of the load is an Heaviside unit step
function. Symbols show numerical results obtained with ALMA3 while solid lines represent reference results from the benchmark exercise by Spada et al. (2011).

the two curves show the k2 tidal LN corresponding to Andrade creep
parameters α = 0.2 and α = 0.3 as a function of mantle viscosity
for the tidal period of 58.4 d. Each of the vertical red segments
corresponds to the interval of k2 values obtained by Dumoulin et al.
(2017) for discrete mantle viscosity values η = 1019, 1020, 1021 and
1022 Pa·s, respectively, and for a range of the Andrade creep pa-
rameter α in the interval between 0.2 and 0.3. The grey shaded area
illustrates the most recent observed value of k2 according to Kono-
pliv & Yoder (1996) to an uncertainty of 2 × formal σ . Fig. 7 shows
that the k2 values obtained with ALMA3 for the T hot

5 Venus model fit
well with the lower boundary of the compared study for each of the
discrete mantle viscosity values if an Andrade creep parameter α =
0.3 is assumed, while for α = 0.2 the modelled k2 slightly exceeds
the upper boundary of Dumoulin et al. (2017).

5.2 The tidal response of Enceladus

The scientific interest on Enceladus has gained considerable mo-
mentum after the 2005 Cassini flybys, which confirmed the icy na-
ture of its surface and evidenced the existence of water-rich plumes
emerging from the southern polar regions (Porco et al. 2006; Ivins
et al. 2020). These hint to the existence of a subsurface ocean,
heated by tidal dissipation in the core, where physical conditions
allowing life could be possible, in principle (for a review, see Hem-
ingway et al. 2018). The interior structure of Enceladus has been
thoroughly investigated in literature on the basis of observations

of its gravity field (Iess et al. 2014), tidal deformation and phys-
ical librations (see, e.g. Čadek et al. 2016), setting constraints on
the possible structure of the ice shell and of the underlying liquid
ocean (Roberts & Nimmo 2008), and on the composition of its core
(Roberts 2015). Lateral variations in the crustal thickness of Ence-
ladus have been inferred in studies about the isostatic response of
the satellite using gravity and topography data as constraints (see
Beuthe et al. 2016; Čadek et al. 2016, 2019) and in works dealing
with the computation of deformation and dissipation (see Souček
et al. 2016, 2019; Beuthe 2018, 2019). Indeed, from all the above
studies, it clearly emerges that a full insight into the tidal dynam-
ics of Enceladus could be only gained adopting 3-D models of its
internal structure.

While a thorough investigation of the signature of the interior
structure of Enceladus on its tidal response is far beyond the scope
of this work, here we set up a simple spherically symmetric model
with the purpose of illustrating how the LNs for a planetary body
including a fluid internal layer like Enceladus can be computed
with ALMA3, and how a radially-dependent viscosity structure can
be approximated with homogeneous layers. We define a spherically
symmetric model including an homogeneous inner solid core of
radius c = 192 km (Hemingway et al. 2018), surrounded by a liquid
water layer and an outer icy shell, and investigate the sensitivity of
the tidal LNs to the thickness of the ice layer, along the lines of
Roberts & Nimmo (2008) and Beuthe (2018). In our setup, the core
is modelled as a homogeneous elastic body with rigidity μc = 4 ×
1010 Pa and whose density is adjusted to ensure that, when varying
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Figure 7. Tidal Love number k2 as a function of the mantle viscosity ηM

for the internal model T hot
5 of Dumoulin et al. (2017). The two curves corre-

spond to numerical results from ALMA3 assuming Andrade creep parameters
α = 0.2 and α = 0.3, respectively. Red vertical segments represent the range
of the estimates obtained by Dumoulin et al. (2017), while the grey shaded
area represents the most recent observed value of k2 and its 2σ uncertainty
according to Konopliv & Yoder (1996).

the thickness of the ice shell, the average bulk density of the model is
kept constant at ρb = 1610 kg·m−3. Since in ALMA3 a fluid inviscid
rheology can be prescribed only for the core, we approximate the
ocean layer as a low viscosity Newtonian fluid (ηw = 104 Pa·s).
The ice shell is modelled as a conductive Maxwell body whose
viscosity profile depends on the temperature T according to the
Arrhenius law:

η(T ) = ηm exp

[
Ea

Rg Tm

(
Tm

T
− 1

)]
, (45)

where Ea is the activation energy, Rg is the gas constant, Tm is the
temperature at the base if the ice shell and ηm is the ice viscosity at
T = Tm. Following Beuthe (2018), we use Ea = 59.4 J (mol · K)−1,
ηm = 1013 Pa·s and Tm = 273 K, and assume that the temperature
inside the ice shell varies with radius r according to

T (r ) = T
r−a

rb−a
m T

rb−r
rb−a

s , (46)

where rb is the bottom radius of the ice shell and Ts = 59 K is the
average surface temperature. Since in ALMA3 the rheological param-
eters must be constant inside each layer, we discretize the radial
viscosity profile given by eq. (45) using a onion-like structure of
homogeneous spherical shells. To assess the sensitivity of results to
the choice of discretization resolution, we perform three numerical
experiments in which the thickness of ice layers is set to 0.25, 0.5
and 1 km. The ice and water densities are set to ρ i = 930 kg·m−3

and ρw = 1020 kg·m−3, respectively, while the ice rigidity is set
to μi = 3.5 × 109 Pa, a value consistent with evidence from tidal
flexure of marine ice (Vaughan 1995) and laboratory experiments
(Cole & Durell 1995).

Fig. 8(a) shows the elastic tidal LNs h2, l2 and k2 for the Enceladus
model discussed above as a function of the thickness of the ice
shell. The elastic tidal response is strongly dependent on the ice
thickness, with the h2 LN decreasing from ∼0.090 for a 10-km-
thick shell to ∼0.015 for a 50-km-thick shell. It is of interest to
compare these results with elastic LNs obtained by Beuthe (2018)
in the uniform-shell approximation. It turns out that the h2 LN
shown in Fig. 8(a) is slightly smaller than corresponding results
from Beuthe (2018), with relative differences between the 5 and
10 per cent level, consistently with their estimate of the effect of
incompressibility. Fig. 8(b) shows the real and imaginary parts of
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Figure 8. Elastic harmonic degree 2 tidal Love numbers for Enceladus (a)
as a function of the thickness of the ice shell. In (b), real and imaginary parts
of the viscoelastic tidal Love number h2 for a forcing period of 1.73 d are
shown. Solid lines and dashed lines correspond to discretization steps for
the ice shell of 0.50 and 1.00 km, respectively. Please note that Im(k2) has
been multiplied by a factor of 10 to improve readability.

the h2 tidal LN as a function of the thickness of the ice layer for
a periodic load of period T = 1.37 d, which corresponds to the
shortest librational oscillation of Enceladus (Rambaux et al. 2010).
As discussed above, for this numerical experiment we implemented
in ALMA3 a radially variable viscosity profile by discretizing eq. (45)
into a series of uniform layers. Solid and dashed lines in Fig. 8(b)
show results obtained with a discretization step of 0.5 and 1.0 km,
respectively; we verified that with a step of 0.25 km the results
are virtually identical to those obtained with a step of 0.5 km. The
effect of the discretization is evident only on the imaginary part
of h2, where a coarse layer size of 1 km leads to a significant
overestimation of Im(k2) if the ice shell is thinner than ∼15 km. By
a visual comparison of the results of Fig. 8(b) with fig. 4 of Beuthe
(2018), we can see that the imaginary part of h2 is well reproduced,
while the real part is underestimated by the same level we found
for the elastic LNs; this difference is likely to be attributed to the
incompressibility approximation adopted in ALMA3.

5.3 Loading LNs for transient rheologies in the Earth’s
mantle

Loading LNs are key components in models of the response of the
Earth to the spatio-temporal variation of surface loads, including
the ongoing deformation due to the melting of the late Pleistocene
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Figure 9. Loading Love number hn(t) for n = 2 (frame a), n = 10 (b) and n
= 100 (c), obtained with the VM5a viscosity model by Peltier & Drummond
(2008) and with two variants that assume Burgers (VM5a-BG) or Andrade
(VM5a-AD) rheologies in the upper mantle layers.

ice complexes (see e.g. Peltier & Drummond 2008; Purcell et al.
2016), the present-day and future response to climate-driven melting
of ice sheets and glaciers (Bamber & Riva 2010; Slangen 2012),
and deformations induced by the variation of hydrological loads
(Bevis et al. 2016; Silverii et al. 2016). Evidence from Global
Navigation Satellite System measurements of the time-dependent
surface deformation point to a possible transient nature of the mantle
in response to the regional-scale melting of ice sheets and to large
earthquakes (see, e.g. Pollitz 2003, 2005; Nield et al. 2014; Qiu
et al. 2018). Here, it is therefore of interest to present the outcomes
of some numerical experiments in which ALMA3 is configured to
compute the time-dependent h loading Love number assuming a
transient rheology in the mantle. Numerical estimates of hn(t) and
of its time derivative ḣn(t) would be needed, for instance, to model
the response to the thickness variation of a disc-shaped surface load,
as discussed by Bevis et al. (2016).

In Fig. 9 we show the time evolution of the hn(t) loading LN for
n = 2, 10 and 100, comparing the response obtained assuming the
VM5a viscosity model of Peltier & Drummond (2008), which is
fully based on a Maxwell rheology, with those expected if VM5a is
modified introducing a transient rheology in the upper mantle layers.
An Heaviside time history for the load is adopted throughout. In
model VM5a-BG we assumed a Burgers bi-viscous rheological law
in the upper mantle, with μ2 = μ1 and η2/η1 = 0.1 (see Table 1),
while in model VM5a-AD an Andrade rheology (Cottrell 1996)
with creep parameter α = 0.3 has been assumed for the upper
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Figure 10. Time-derivative of the loading Love number ḣn(t) for harmonic
degrees n = 2, 10 and 100, adopting the rheological models described in the
caption of Fig. 9.

mantle. For n = 2 (Fig. 9a) the responses obtained with the three
models almost overlap. Indeed, for long wavelengths (by Jean’s rule,
the wavelength corresponding to harmonic degree n is λ = 2πa

n+ 1
2

,

where a is Earth’s radius) the response to surface loads is mostly
sensitive to the structure of the lower mantle, where the three variants
of VM5a considered here have the same rheological properties.
Conversely, for n = 10 (Fig. 9b) we see a slightly faster response to
the loading for both transient models in the time range between 0.01
and 1 kyr. For n = 100, the transient response of VM5a-BG and
VM5a-AD becomes even more enhanced between 0.01 and 10 kyr.
It is worth to note that, for times less than ∼10 kyr, the two transient
versions of VM5a almost yield identical responses, suggesting that
an Andrade rheology in the Earth’s upper mantle might explain
the observed vertical transient deformations in the same way as
a Burgers rheology. The differences between the three models are
more evident in Fig. 10, where we use ALMA3 for computing the
time derivatives ḣn(t) (this option was not available in previous
versions of the program). Compared with the Maxwell model, the
transient ones show a significantly larger initial rate of vertical
displacement, that differ significantly for Burgers and Andrade.
The three rheologies provide comparable responses only ∼0.1 kyr
after loading. We shall remark, however, that the incompressiblity
approximation used in ALMA3 has a significant impact on the hn

Love number, as we discussed in Section 4.3, so the results shown
above must be taken with caution, and a more detailed analysis of
the impact of compressibility on the time evolution of LNs would
be in order.
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Figure 11. Radial profiles of density (a) and rigidity (b) for the Moon
models by Weber et al. (2011) (W11, blue) and Garcia et al. (2011, 2012)
(G12, red). Models W11 and G12 include 10 and 71 homogeneous layers,
respectively.

5.4 Tidal dissipation on the Moon

The Moon is the extraterrestrial body for which the most de-
tailed information about the internal structure is available. In addi-
tion to physical constraints from observations of tidal deforma-
tion (Williams et al. 2014), seismic experiments deployed dur-
ing the Apollo missions (Nunn et al. 2020) provided instrumen-
tal recordings of moonquakes which allowed the formulation of
a set of progressively refined interior models (see, e.g. Heffels
et al. 2021).

In this last numerical experiment, we configured ALMA3 to com-
pute tidal LNs for the Moon according to the two interior models
proposed by Weber et al. (2011,W11 hereafter) and Garcia et al.
(2011, 2012, G12 hereafter). Profiles of density ρ and rigidity μ for
models W11 and G12 are shown in Fig. 11, with the most notable
difference being that the former assumes an inner solid core and a
fluid outer core, while the latter contains an undifferentiated fluid
core. We emphasize that model G12 includes 70 rheological layers
in the mantle and crust, demonstrating the stability of ALMA3 with
densely layered planetary models. For both models, we assumed a
Maxwell rheology in the crust and the mantle, with a viscosity of
1020 Pa·s. A more realistic approach has been followed by Nimmo
et al. (2012), who have modelled the Moon’s LNs and dissipation
adopting an extended Burgers model for the mantle, which also
accounts for transient tidal deformations (Faul & Jackson 2015).
Such rheological model is not incorporated in the current release
of ALMA3, but it can be implemented by the user modifying the
source code in order to compute the corresponding complex rigid-
ity modulus μ(s). The fluid core has been modelled as a Newtonian
fluid with viscosity 104 Pa·s while in the inner core, for model
W11, we used a Maxwell rheology with a viscosity of 1016 Pa·s,
a value within the estimated ranges for the viscosity of the Earth
inner core (Buffett 1997; Dumberry & Mound 2010; Koot & Dumb-
erry 2011). Following the lines of Harada et al. (2014, 2016) and
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Figure 12. Modulus of the tidal Love number |k2| for the Moon (frame a),
phase lag (b) and quality factor (c) as a function of the LVZ viscosity, for a
forcing period T = 27.212 d. Blue and red curves correspond to the Moon
models by Weber et al. (2011) and Garcia et al. (2011, 2012) shown in
Fig. 11. Shaded areas in frames (a) and (c) correspond to the 1σ confidence
intervals for measured values of k2 and Q according to Williams & Boggs
(2015).

Organowski & Dumberry (2020), we defined a 150-km-thick low-
viscosity zone (LVZ) at the base of the mantle and computed the
k2 tidal LNs as a function of the LVZ viscosity for a forcing period
T = 27.212 d.

For both W11 and G12 models, Fig. 12 shows the dependence on
the LVZ viscosity of the k2 tidal LN (Fig. 12a), of its phase lag angle
(Fig. 12b) and of the quality factor Q (Fig. 12c). With the considered
setup, for a LVZ viscosity smaller than 1015 Pa·s the tidal response
of the two models is almost coincident, while for higher viscosities
model G12 predicts a stronger tidal dissipation. Shaded grey areas
in frames (Figs 12a and c) show 1σ confidence intervals for exper-
imental estimates of k2 (Williams et al. 2014) and Q (Williams &
Boggs 2015). With both models we obtain values of k2 within the
1σ interval for an LVZ viscosity smaller than about 5 × 1015 Pa·s;
interestingly, for that LVZ viscosity the G12 model predicts a qual-
ity factor Q within the measured range, while model W11 would
require a slightly higher LVZ viscosity (1016 Pa·s). Of course, a de-
tailed assessment of the ability of the two models to reproduce the
observed tidal LNs would be well beyond the scope of this work,
and several additional parameters potentially affecting the tidal re-
sponse (as e.g. the LVZ thickness or the core radius) would need to be
considered.
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6 C O N C LU S I O N S

We have revisited the Post-Widder approach in the context of eval-
uating viscoelastic LN and their time derivatives for arbitrary plan-
etary models. Our results are the basis of a new version of ALMA3, a
user friendly Fortran program that computes the LNs of a multilay-
ered, self-gravitating, spherically symmetric, incompressible plan-
etary model characterized by a linear viscoelastic rheology. ALMA3

can be suitably used to solve a wide range of problems, either in-
volving the surface loading or the tidal response of a rheologically
layered planet. By taking advantage of the Post-Widder Laplace
inversion method, the evaluation of the time-domain LNs is simpli-
fied, avoiding some of the limitations of the traditional viscoelastic
normal mode approach. Differently from previous implementations
(Spada 2008), ALMA3 can evaluate both time-domain and frequency-
domain LNs, for an extended set of linear viscoelastic constitutive
equations that also include a transient response, like Burgers or
Andrade rheologies. Generalized linear rheologies that until now
have been utilized in flat geometry like the one characterizing the
extended Burgers model (Ivins et al. 2020) could be possibly im-
plemented as well modifying the source code, if the corresponding
analytical expression of the complex rigidity modulus is available.
Furthermore, ALMA3 can compute the time-derivatives of the LNs,
and can deal with step-like and ramp-shaped forcing functions. The
resulting LNs can be linearly superposed to obtain the planet re-
sponse to arbitrary time evolving loads. Numerical results from
ALMA3 have been benchmarked with analytical expressions for a
uniform sphere and with a reference set of viscoelastic LNs for an
incompressible Earth model (Spada et al. 2011). The well-known
limitations of the incompressibility approximation in modelling de-
formations of large terrestrial bodies have been quantitatively as-
sessed by a comparison between numerical outputs of ALMA3 and
viscoelastic LNs recently obtained by Michel & Boy (2021) for a re-
alistic, compressible Earth model. The versatility of ALMA3 has then
been demonstrated by a few examples, in which the LNs and some
associated quantities like the quality factor Q, have been evaluated
for some multilayered models of planetary interiors characterized
by complex rheological profiles and by densely layered internal
structures.
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