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Abstract. The EarthCARE mission aims to probe the Earth’s
atmosphere by measuring cloud and aerosol profiles using
its active instruments, the Cloud Profiling Radar (CPR) and
ATmospheric LIDar (ATLID). The correct identification of
hydrometeors and aerosols from atmospheric profiles is an
important step in retrieving the properties of clouds, aerosols
and precipitation. Ambiguities in the nature of atmospheric
targets can be removed using the synergy of collocated radar
and lidar measurements, which is based on the complemen-
tary spectral response of radar and lidar relative to atmo-
spheric targets present in the profiles. The instruments are
sensitive to different parts of the particle size distribution and
provide independent but overlapping information in optical
and microwave wavelengths. ATLID is sensitive to aerosols
and small cloud particles, and CPR is sensitive to large ice
particles, snowflakes and raindrops. It is therefore possi-
ble to better classify atmospheric targets when collocated
radar and lidar measurements exist compared to using a sin-
gle instrument. The cloud phase, precipitation and aerosol
type within the column sampled by the two instruments can
then be identified. ATLID-CPR target classification (AC-TC)
is the product created for this purpose by combining the
ATLID target classification (A-TC) and CPR target classi-
fication (C-TC). AC-TC is crucial for the subsequent syn-
ergistic retrieval of cloud, aerosol and precipitation proper-
ties. AC-TC builds upon previous target classifications using

CloudSat and CALIPSO synergy while providing richer tar-
get classification using the enhanced capabilities of Earth-
CARE’s instruments, specifically CPR’s Doppler velocity
measurements to distinguish snow and rimed snow from
ice clouds and ATLID’s lidar ratio measurements to objec-
tively discriminate between different aerosol species and op-
tically thin ice clouds. In this paper, we first describe how the
single-instrument A-TC and C-TC products are derived from
ATLID and CPR measurements. Then the AC-TC product,
which combines the A-TC and C-TC classifications using a
synergistic decision matrix, is presented. Simulated Earth-
CARE observations based on combined cloud-resolving and
aerosol model data are used to test the processors generating
the target classifications. Finally, the target classifications are
evaluated by quantifying the fractions of ice and snow, liq-
uid clouds, rain, and aerosols in the atmosphere that can be
successfully identified by each instrument and their synergy.
We show that radar–lidar synergy helps better detect ice and
snow, with ATLID detecting radiatively important optically
thin cirrus and cloud tops, while CPR penetrates most deep
and highly concentrated ice clouds. The detection of rain and
drizzle is entirely due to C-TC, while that of liquid clouds
and aerosols is due to A-TC. The evaluation also shows that
simple assumptions can be made to compensate for when the
instruments are obscured by extinction (ATLID) or surface
clutter and multiple scattering (CPR); this allows for the re-
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covery of the majority of liquid cloud not detected by the
active instruments.

1 Introduction

Clouds and aerosols play an essential role in the Earth’s ra-
diation balance and condition the temperature of the atmo-
sphere on very variable timescales. A large-scale knowledge
of their life cycle and spatial extent is therefore important to
understand the climate of the Earth and to predict weather
conditions. The EarthCARE mission was designed to pro-
vide some answers to this complex subject, particularly for
a better understanding of the interactions between clouds,
aerosols and radiation, which is necessary for the improve-
ment of numerical weather prediction models (Illingworth et
al., 2015).

EarthCARE is a joint ESA (European Space
Agency)/JAXA (Japan Aerospace Exploration Agency)
mission scheduled for launch in 2024 (Wehr et al., 2023).
The satellite will be in a sun-synchronous orbit with a 25 d
repetition cycle and at low altitude (around 408 km) in order
to maximise the sensitivity of its instruments (do Carmo
et al., 2021). Its two active instruments are ATLID (AT-
mospheric LIDar), a high-spectral-resolution lidar (HSRL)
operating at 355 nm, and CPR (Cloud Profiling Radar), a
Doppler radar operating at 94 GHz. A full description of
the payload is given in Wehr et al. (2023). EarthCARE’s
radar and lidar invite comparisons with the following active
instruments in the A-Train constellation (Stephens et al.,
2018): CloudSat’s CPR (Stephens et al., 2008) and CALIOP
(Cloud–Aerosol Lidar with Orthogonal Polarization) aboard
CALIPSO (Winker et al., 2010). The larger antenna and
lower orbit of EarthCARE’s CPR offers around 7 dBZ
higher sensitivity than CloudSat, and its Doppler capability
will facilitate richer observations of cloud and precipitation
by measuring the vertical motion of hydrometeors; more
details on the specification of the two radars can be found in
Burns et al. (2016) and Illingworth et al. (2015). ATLID’s
355 nm wavelength means the backscattering properties of
clouds and aerosols and the atmosphere will be different
from those of CALIOP at 532 nm, while its smaller field of
view and narrower filter will reduce daytime background
noise. With its HSRL capability for distinguishing Rayleigh
(molecular) from Mie (particulate) backscatter, ATLID
will be better able to discriminate types of aerosol and
optically thin ice clouds (Illingworth et al., 2015). The main
advantage of joint radar–lidar observations is that the two
instruments provide complementary spectral responses to
the targets in the column that they sample; that is, each
instrument is sensitive to different parts of the particle size
distribution. Independent but overlapping information from
the microwave and optical spectral domains is obtained by
joint observations from radar and lidar. The lidar is sensitive

to the smallest particles (aerosols, ice particles and cloud
droplets), and the radar is sensitive to larger ones such as
snowflakes and raindrops. Thus, some ambiguities in the
detection made by one instrument will be compensated
for by the sensitivities of the other. An essential first step
before inferring the properties of cloud, precipitation and
aerosols in a retrieval algorithm is to reliably locate and
identify the types of targets detected throughout the atmo-
spheric profile. In some respects, the two instruments detect
complementary parts of the atmosphere – aerosol typing
will rely only on lidar measurements, and precipitation will
rely solely on radar observations – but the detection and
identification of ice, liquid and mixed-phase clouds benefits
enormously from the synergy of radar and lidar (Ceccaldi
et al., 2013). In designing target classification processors
for EarthCARE’s active instruments, we therefore benefit
from the past experiences of using radar–lidar measurements
from ground-based (CloudNet; Illingworth et al., 2007) and
satellite (DARDAR-MASK; Ceccaldi et al., 2013; Delanoë
and Hogan, 2010) observations. The EarthCARE synergistic
product is constructed differently than DARDAR-MASK,
although both are basically based on the same approach.
Indeed, the radar–lidar measurements are combined at each
altitude grid point to create a synergistic target classification
product in a single step thanks to the already existing
and validated EarthCARE products, A-TC and C-TC. The
EarthCARE production model (Eisinger et al., 2023) allows
for target classifications from ATLID (A-TC) and CPR
(C-TC) to be encapsulated in distinct L2a products, which
are used for single-instrument retrieval products such as the
CPR cloud and precipitation retrieval (C-CLD; Kollias et
al., 2022) and ATLID ice cloud retrieval (A-ICE; Donovan
et al., 2023a). A-TC and C-TC encode the types of targets
relevant to each instrument, namely liquid clouds, ice clouds
and aerosols by ATLID and liquid clouds, drizzle and
rain, ice clouds, and snow by CPR. The single-instrument
target classifications A-TC and C-TC are then merged,
without the need to reanalyse their measurements, into the
synergistic target classification product (AC-TC), which
should, in all cases, be consistent with – or superior to –
the single-instrument products. AC-TC is a necessary input
to EarthCARE’s synergistic retrieval of clouds, aerosols
and precipitation (ACM-CAP; Mason et al., 2022). While
EarthCARE’s synergistic target classification will make use
of the enhanced capabilities of ATLID and CPR to make
distinctions in aerosol species and precipitation type that
were not possible for CloudSat-CALIPSO, it is expected that
AC-TC will facilitate continuity with DARDAR-MASK.
Like DARDAR-MASK, the AC-TC product will also be
used to derive important statistics of the spatial and temporal
distributions and structures of aerosols, clouds and precipi-
tation, as well as their properties and thermodynamic phase
(e.g. Huang et al., 2012; Mason et al., 2014; Mioche et al.,
2015, 2017; Mülmenstädt et al., 2015; Vérèmes et al., 2019;
Listowski et al., 2019, 2020).
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In this paper, we first describe how single-instrument tar-
get classifications are derived from ATLID (A-TC; Sect. 2)
and CPR (C-TC; Sect. 3). The decision matrix used to pro-
duce the synergistic target classification AC-TC is then de-
tailed in Sect. 4. The tests and results obtained with the pro-
cessors developed for the calculation of A-TC, C-TC and
AC-TC will then be presented (Sect. 5), making use of simu-
lated data from one of the EarthCARE test scenes derived
from high-resolution model data as described in Qu et al.
(2022) and Donovan et al. (2023a). In Sect. 6, the perfor-
mance of the single-instrument and synergistic target classi-
fications will be evaluated by quantifying the extent to which
they accurately resolve the amounts of aerosols, clouds and
precipitation present in the numerical weather model used to
create the simulated test scenes. Finally, we summarise the
performance of the target classification products and discuss
the contributions of AC-TC to EarthCARE science (Sect. 7).

2 ATLID target classification: A-TC

The range-resolved ATLID observations provide informa-
tion about the vertical and horizontal structure of aerosol
and clouds and their respective sub-typing. Identification of
these (sub-)types is based on the use of the ATLID depo-
larisation signals, temperature, altitude, the extinction and
backscatter profiles, and the corresponding lidar ratio. For
this retrieval, the ATLID target classification (A-TC) module
has been created. The A-TC procedures are applied to layers
which are assumed to be homogeneous. Both the layering de-
termination and the subsequent classification procedures are
called from either the large-scale aerosol (and thin cloud) ex-
tinction and backscatter (A-AER) algorithm or the optimal-
estimation Extinction and Backscatter retrieval algorithm (A-
EBD). The A-AER and A-EBD procedures are components
of the ATLID profile processor (A-PRO) described in Dono-
van et al. (2023b). The A-PRO processor also generates the
A-TC product.

The A-TC classification main inputs are per-layer esti-
mates of the particulate (Mie) extinction (αMie) and backscat-
ter (βMie), lidar ratio (S), the linear depolarisation ratio (δ),
and the attenuated particulate backscatter (ATBM ). Error es-
timates for all these quantities are also required. In addition
to the lidar-derived quantities, meteorological data (e.g. tem-
perature and tropopause height) are supplied by the ECMWF
(European Centre for Medium-Range Weather Forecasts)
in the form of the X-MET EarthCARE auxiliary product
(Eisinger et al., 2023). The main algorithm follows a deci-
sion tree structure in which various conditional thresholds
are applied. Here, a brief treatment is presented; more details
can be found in Donovan et al. (2023b).

The creation of the target classification involves four main
sub-procedures. The four main sub-procedures are as fol-
lows, with the output of each procedure serving as input to
the subsequent ones:

1. layering determination

2. simple (fall-back) classification

3. detailed classification

4. hybrid-mode classification smoothing.

Each of these steps are described in turn in the following sub-
sections.

2.1 Layer determination

The layer determination procedures that are implemented
within A-PRO are necessary, in part, due to the need for
averaging in order to increase the signal-to-noise ratio of
the lidar-derived inputs. The procedures for determining lay-
ers are implemented as a part of the A-AER algorithm de-
scribed in detail within Donovan et al. (2023b); here, a brief
overview of the layer determination procedures is given. The
layering determination is a two-step procedure, a coarse-
layering determination and a subsequent layer-splitting pro-
cedure.

2.1.1 Coarse layering

The coarse layering is determined using the input ATLID-
featuremask (A-FM). The A-FM product provides a proba-
bility mask for the existence of atmospheric features within
the lidar profile product (van Zadelhoff et al., 2023b) at the
native ATLID resolution. The A-FM is re-gridded to the joint
standard grid (JSG; Eisinger et al., 2023) by selecting the
maximum featuremask value present within each JSG pixel,
except in the case of surface detections. Each data column is
then treated in turn, and layer boundaries are assigned when-
ever

1. a transition between clear-sky featuremask values (as
determined by the threshold, e.g. 5) and significant fea-
turemask values exists between two adjacent feature-
mask values,

2. the absolute difference between two adjacent feature-
mask values exceeds a defined threshold,

3. a transition between featuremask values exceeding the
clear-sky threshold and attenuated or surface pixels ex-
ists,

4. the lidar-scattering ratio (R = 1.0+ βMie
βRay

) calculated by
A-AER crosses a set threshold (e.g. 10).

Steps (1) and (2) produce layer boundaries where transitions
between significant features and clear-sky exist or where
transitions between weak and strong features exist. Step (3)
assigns layer boundaries when the point of attenuation in
the lidar signal is reached. Step (4) assigns layer bound-
aries when the absolute value of the change in R exceeds
a given threshold, e.g. near the top and bottom of layers
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(e.g. water clouds) but not around layer peaks. As an op-
tion, layer boundaries can be assigned when the temperature
crosses 0 ◦C and/or when the temperature crosses −40 ◦C
(homogeneous-freezing threshold).

2.1.2 Layer splitting

After the coarse-layer structure is determined, each layer by
itself is examined to see if the layer should be further subdi-
vided. The basic idea is to test to see if it is valid to represent
the layer as a homogeneous entity or if it is better to split the
layer into a number of homogeneous sub-layers. The pro-
cedure relies on examining the behaviour of a reduced chi-
squared goodness-of-fit variable applied to the scattering ra-
tio, lidar ratio and the depolarisation ratio which is calculated
for all possible sub-layering for up to four distinct sub-layers
(depending on the extend of the coarse layer). For example,
for the case of two sub-layers, we have the following:

χ2
N,nl1 = χ

2
N,R,nl1 +χ

2
N,S,nl1 +χ

2
N,δ,nl1 , (1)

where N is the number of sub-layers being considered (two
in this case), and nl1 is the depth of the first sub-layer. In
general,

χ2
N,Q,nl1 =

1
nc− 1−N

[ nl1∑
i=1

nc∑
j=i+1

((
Qi−<Q1 >

σQi

)2

+

(
Qj−<Q2 >

σQi

)2)]
, (2)

whereQ is used to represent the quantity in question, i.e. the
A-AER-calculated scattering ratio (R = 1.0+ βMie

βRay
), the lidar

ratio (extinction-to-backscatter ratio; S = αMie
βMie

) and the linear

depolarisation ratio (δ = βMie,Cr
βMie,Co

). The σs represent the appro-
priate uncertainty estimate, nc is the coarse-layer depth, and
<Q1 > represents the mean of the quantity in question (R,
S or δ) evaluated for the sub-layering structure in question.
Only those quantities which have been successfully retrieved
are used; e.g. if, for a layer, the S ratio is not valid, it is not
used.

For each trial number of sub-layers, the lowest value of,
e.g. χ2

N,nl1
in the case of two layers, or, e.g. χ2

N,nl1,nl2
for

two sub-layers, is selected and forms the sequence χ2
Best(N).

The sequence of χ2
Best values is then examined to decide on

the number of sub-layers to assign to the coarse layer. The
number of sub-layers is chosen if either

– an increase inN results in a large drop in χ2
Best(N) (i.e a

relative decrease set by a defined threshold e.g. a factor
of 10) compared to the proceeding value of N , or

– a subsequent increase in N does not result in a relative
decrease in χ2

Best(N) that is better than some defined
threshold (e.g. 10 %).

Once the optimal number of sub-layers is decided upon, the
sub-layering structure corresponding to the selected value of
χ2

Best(N) is imposed upon the coarse layer, and the layering
structure for the column in question is updated.

2.2 Simple classification

The simple-classification procedure serves as input to the
more detailed-classification procedure and as a fall-back
when the more detailed-classification procedure can not be
(fully) applied due to e.g. not all input variables required for
the detailed procedure being valid. The procedure can also
alter the layering structure to ensure that layers do not span
the tropopause.

The main steps of the simple-classification procedure are
depicted in Fig. 1. First, a crude aerosol–cloud separation is
performed using a threshold test based on the scattering ratio
(R). The threshold itself (Rcld(z)) is a function of height and
decreases with height as a function of atmospheric density,
i.e.

Rcld(z)= 1.0+ (Rcld− 1.0)
ρ(z)

ρsurf
, (3)

where ρ is the atmospheric density. A threshold of Rcld = 5
was found to work well for the test scenes. It should be men-
tioned that this value (along with any other thresholds men-
tioned in this work) is provisional and will be refined using
actual observations in the commissioning phase of the mis-
sion after launch. For cloudy layers, the layer mean wet-bulb
temperature, i.e. < Tw >=

∑n
i=1Tw,i/n (where n is the ex-

tent of the layer), is compared to both the melting temper-
ature and the homogeneous-freezing temperature. A second
scattering ratio test, this one aimed at identify large scattering
ratios associated with water clouds, is also applied (Rwater =

10, which is density dependent in a manner similar to Rcld).
Finally, for layers not yet assigned as being liquid or ice,
the integrated-depolarisation-to-integrated-backscatter ratio
is examined. Values of this ratio above 1×104 are interpreted
as being indicative of ice clouds.

After the layer “simple class” has been assigned, layers
spanning the tropopause height are further scrutinised. Lay-
ers which can be split while leaving no layer smaller than
three pixels in vertical extent are split at the tropopause
height. If this is not the case, then the tropopause level is it-
self adjusted. The logic for this procedure is linked to the fact
that the tropopause height estimate may itself be uncertain.

2.3 Detailed classification

The main steps of the detailed-classification procedure are
depicted in Fig. 2.

2.3.1 Tropospheric cloud and aerosol discrimination

For layers whose top is at or below the tropopause level, the
first step in the A-TC classification procedure is to perform
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Figure 1. Schematic of the A-TC simple-classification procedure.

the cloud–aerosol separation based on a threshold applied to
the layer mean Mie backscatter. This threshold can be spec-
ified as a look-up table based on altitude and temperature.
By default, four temperature–altitude regions are defined and
presented in Table 1. The reader is reminded that it is ex-
pected that this scheme will be updated on the basis of ob-
servations during the commissioning phase. Layers that ex-
ceed the threshold are classified as being clouds. Layers that
do not meet this threshold are provisionally treated as being
aerosol or thin ice clouds in case the mean layer temperature
is below freezing. Layers classified as being water clouds in
the input simple classification will also be set to water clouds
on the basis of this previous assignment.

Table 1. ATLID default cloud backscatter thresholds (detailed pro-
cedure).

Region Threshold (m−1 Sr−1)

Below 2.5 km 1.0× 10−5

Warm tropospheric (Tw > 0 ◦C) 1.0× 10−5

Cold tropospheric 1.0× 10−6

Stratospheric 1.0× 10−7

2.3.2 Cloud phase determination

Layers identified as cloud then undergo a cloud phase de-
termination step. Here, the layer-integrated linear depolari-
sation ratio and attenuated backscatters are used in a man-
ner similar to that used in CALIPSO data processing. Hu et

https://doi.org/10.5194/amt-16-2795-2023 Atmos. Meas. Tech., 16, 2795–2820, 2023
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Figure 2. Schematic of the A-TC detailed-classification procedure.

al. (2009) showed that this combination of parameters can
effectively discriminate ice from liquid and horizontally ori-
ented ice crystals. The liquid water relationship was calcu-
lated using Monte-Carlo lidar radiative transfer simulation
results (Hu et al., 2007) for a range of extinctions and par-
ticle sizes. For ATLID lidar, Monte Carlo simulations have
shown that the relationship between layer-integrated attenu-
ated backscatter and layer depolarisation is expected to be
similar to those measured by CALIPSO (Donovan et al.,
2015). Liquid layers whose layer mean temperature is below
freezing are classified as supercooled water layers.

2.3.3 Aerosol type determination (including ice)

For areas classified as containing aerosols (or thin ice) only,
A-TC contains procedures for assigning probabilistic aerosol
types. For the aerosol classification, a suitable set of basic
aerosol types must be defined. This basic set must be com-
plete enough to reasonably encompass the range of types en-
countered in nature but should not be more extensive than

justified by the measurements so that the basic number of
types is tractable. The classification should allow the sepa-
ration of natural and anthropogenic aerosols. The types need
to be described consistently in terms of microphysical prop-
erties (size, shape and refractive index), which are used to
represent them in scattering models, and in terms of optical
and radiative properties, which are observed with the Earth-
CARE instruments and are used for the classification (lidar
ratio, linear depolarisation ratio and Ångström exponent).

To assist all the EarthCARE processors, the Hybrid End-
To-End Aerosol Classification (HETEAC) model for the
EarthCARE mission (Wandinger et al., 2023) has been de-
fined based on ground and aircraft observations. The HET-
EAC model aims to ensure that the different aerosol prod-
ucts from the multi-instrument platform are consistent for all
EarthCARE processors, including the definition of the broad-
band optical properties needed for the EarthCARE radiative
closure.

Based on the HETEAC framework, 2D-oriented Gaussian
distributions in the linear depolarisation ratio δ and lidar ratio

Atmos. Meas. Tech., 16, 2795–2820, 2023 https://doi.org/10.5194/amt-16-2795-2023
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Figure 3. Probability density distributions for the six aerosol types
and ice crystals currently being used within A-TC.

S are defined for each aerosol class (see Fig. 3). Each class is
defined by a central δ, S position, effective Gaussian widths
in each dimension and the correlation between δ and S.

All the classification parameters are defined in a configura-
tion file to make the validation and updating of the algorithm
to new parameterisations straightforward. The central δm, S
positions and associated 1σ values for each of the particle
types will need to be validated in a future effort. For each
observed combination of the observed layer lidar ratio and
depolarisation, the probability that the layer belongs to each
defined class is calculated based on Gaussian statistics. The
type probabilities are the main results from the procedure;
however, the most probable type is provided in the output. In
cases where a single type is not dominant or where all classes
have a low associated probability, then an unknown classifi-
cation may result.

2.3.4 Additional ice aerosol separation

Ice crystals are also treated as an aerosol type, since they span
part of the δ–S parameter space not occupied by aerosols
(see Fig. 3). This is used to further refine the separation be-
tween thin ice clouds from aerosol fields. This is required,
since the backscatter-threshold-based cloud aerosol separa-
tion step applied earlier tends to produce halos of aerosol
around upper-level ice clouds.

For layers identified as thin ice by the δ–S-based typing
procedure, a further consistency check is applied to help
ensure that the ice assignment made by the procedure is
valid. The layer extinction is first compared to a configurable
threshold of 7× 10−6 (m−1) (which was found to be suit-
able for the current test scenes). If the layer extinction does
not exceed this threshold and if the probability that the layer
may be an aerosol type (excluding the thin-ice type) exceeds
a configurable threshold (e.g. 1 %), then the layer type is
reassigned from the thin-ice category to the most probable
aerosol type. In principle, the threshold can be specified as a

Table 2. ATLID default stratospheric classes.

Stratospheric class S (sr) δM (%)

STS (PSC type I) 55 0.0
NAT (PSC type II) 40 15
Stratospheric ice 30 40
Stratospheric ash 55 45
Stratospheric sulfate 40 3
Stratospheric smoke 70 3

function of height and/or temperature and is expected to be
tuned when real observations are available.

2.3.5 Stratospheric-layer classification

Layers whose tops are above the tropopause level are sub-
jected to a similar classification procedure involving thresh-
olds on the attenuated backscatter and examining the layer
depolarisation ratio and lidar ratio. The following default
stratospheric classes have been defined (see Table 2).

2.4 Class smoothing and outputs

After the classification procedures have been applied to all
the layers in each column, a final additional step is per-
formed. For areas classified as being weak targets, e.g. thin
ice cloud and aerosols, a smoothing filter at height and along-
track is applied to the classification in order to increase the
homogeneity of the classification and remove any small gaps.
The filtering performed is based on a hybrid-median (HM)
filtering technique, which is very effective in removing single
noise events and filling gaps. Since the HM technique uses
only median values, there are no smoothing edge effects.

In the case of classifications, an integer-based scale is used
where individual values will have very different meanings.
The median of an array of values may not necessarily reflect
the most common target and cannot be used in this case. To
overcome this, the target type’s frequency of occurrence is
calculated, and the highest target type occurrences (modes)
are used instead of the median.

In Fig. 4, the flow diagram of the weak target smoothing
is shown. For the entire orbit, a box of size nhor× 3 is de-
fined around each pixel. Within each box, the highest parti-
cle type occurrence is calculated. The local position can only
be updated when the initial classification is clear sky or ice
cloud or when it contains one of the aerosol types. In those
cases when a pixel is switched to clear sky while there is
a confidently retrieved particle extinction or when a pixel is
switched to ice while the temperature is greater than 0 ◦C, the
original classification is retained. Any pixels which can not
be defined due to the procedure and which were previously
clear sky are set to unknown.

The classifications yielded by A-TC, and their numerical
values as encoded in the target classification variable, are
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Figure 4. Flow diagram depicting the smoothing strategy of A-TC
weak targets to increase homogeneity. The same strategy is per-
formed for the entire grid five times (large box) where any local
weak target type (ice or aerosol type) is updated to the type with the
highest occurrence in a nhor× 3 local sub-domain. The final three
boxes perform checks to ensure that no obvious misclassifications
have been made.

shown in Table 3. A-TC outputs are produced for three hor-
izontal resolutions. These correspond to the high, low and
medium resolutions used by the A-EBD algorithm compo-
nent of the A-PRO processor (Donovan et al., 2023b). Vari-
ables in the AC-TC product also correspond to these three
resolutions (see Sect. 4). The table contains information not
directly related to the classification procedure described here
but rather propagated from the ATLID-featuremask (A-FM;
van Zadelhoff et al., 2023b) and A-PRO (e.g. attenuated re-
gions). The information is provided on a pixel-by-pixel basis
and not on a layer-by-layer basis (though the per-column lay-
ering used is available in A-PRO outputs).

Finally, it should be noted that, for the high-, medium- and
low-resolution products, the layering structure is the same
for each version, but the horizontal scale varies. High res-
olution corresponds to about 1 km along-track; medium is,
by default, is 50 km; while low corresponds to 150 km. The

Table 3. ATLID target classification.

Class numbers A-TC classes

−3 Missing data
−2 Sub-surface
−1 Attenuated
0 Clear
1 Liquid
2 Supercooled liquid
3 Ice
10 Dust
11 Sea salt
12 Continental pollution
13 Smoke
14 Dusty smoke
15 Dusty mix
20 STS (PSC type I)
21 NAT (PSC type II)
22 Stratospheric ice
25 Stratospheric ash
26 Stratospheric sulfate
27 Stratospheric smoke

medium and low horizontal scales are configurable with A-
PRO.

3 CPR target classification: C-TC

The range-resolved CPR radar reflectivity and mean Doppler
velocity measurements provide unprecedented information
about the vertical and horizontal structure of clouds and
precipitation. The CPR observations, along with informa-
tion about the cloud and precipitation altitude, remove word-
texture thickness, and temperature is used in the identifica-
tion of the different types of clouds and precipitation and
hydrometeor types. Such a CPR-based target classification
is very important for the evaluation of global and regional
numerical models. There is considerable heritage in target
classification algorithms using range-resolved radar and lidar
observations for both surface-based (e.g. Illingworth et al.,
2007; Kollias et al., 2009) and space-based systems (Marc-
hand et al., 2008; Mace and Zhang, 2014; Ceccaldi et al.,
2013; Delanoë and Hogan, 2010).

The EarthCARE CPR target classification (C-TC) is based
on a decision tree algorithm with fixed rules, and it is de-
signed to work as a stand-alone product. The main steps of
the detailed C-TC classification procedure are depicted in
Fig. 5. In order to facilitate its use and integration in the syn-
ergistic target classification, we have adopted similar target
classification definitions and names. Doppler velocity classi-
fication provides additional information about the quality or
applicability of the mean Doppler velocity measurements for
the cloud and precipitation retrieval algorithms.
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Figure 5. Schematic of the C-TC detailed-classification procedure.
(∗) Refer to the text for a detailed explanation.

The first step in the C-TC algorithm is the objective de-
termination of the boundaries (echo top and echo base) of
the different hydrometeor layers observed in the atmospheric
column sampled by the CPR. The output of the CPR feature-
mask algorithm (C-FMR; Kollias et al., 2022) is used to esti-
mate the time series of the hydrometeor layer boundaries. We
refer to these boundaries as hydrometeor layer boundaries
and not cloud layer boundaries, since it is challenging when
using only CPR measurements to discriminate between cloud
and light precipitation in liquid clouds, and there is no clear
definition of ice cloud versus precipitating ice. Thus, the re-
ported boundaries report the vertical extent of both cloud and
precipitation type hydrometeors in the atmospheric column.

The second step in the C-TC algorithm is the determina-
tion of the presence of the radar signature of the melting
layer. The melting-layer detection algorithm is applied in hy-

Table 4. CPR target classification.

Class numbers CPR classes

−1 Missing data
0 Sub-surface
1 Clear
2 Liquid cloud
3 Drizzling liquid cloud
4 Warm rain
5 Cold rain
6 Melting snow
7 Rimed snow
8 Snow
9 Ice cloud
10 Stratospheric cloud (ice)
11 Insects (or artefacts)
12 Heavy rain likely
13 Heavy mixed-phased likely
14 Heavy rain
15 Heavy mixed-phased
16 Rain in clutter
17 Snow or mixed-phased in clutter
18 Cloud in clutter
19 Clear in clutter
20 Unknown

drometeor layers with tops and boundary heights below and
above the 0 ◦C wet-bulb isotherm. The methodology is based
on the work of Geerts and Dawei (2004), with some addi-
tional criteria added and existing thresholds modified. First,
local reflectivity maxima Zmax close to the freezing level
(1 km above and 1 km below) are identified. These maxima
are considered to be candidates for the bright band if (a) the
reflectivity 500 m below (Zb) exceeds the reflectivity 500 m
above (Za), (b) the local maximum reflectivity exceeds Za
by at least 2.5 dB, and (c) the velocity gradient in a layer
500 m above the 0 ◦C wet-bulb isotherm and 500 m below
the level of Zmax exceeds the threshold of 2 m s−1 km−1. If
these conditions are satisfied, the level of Zmax represents the
level where melting starts. Then the level of maximal value
of Doppler velocity (z(Vdmax)) is determined in the layer be-
tween z(Zmax) and z(Zmax−800m). The bottom of the melt-
ing layer is determined as the level above the z(Vdmax)where
the absolute value of the vertical gradient of the Doppler ve-
locity is minimal.

The third step is the cloud and precipitation type classi-
fication (Table 4). Using the estimated hydrometeor layer
boundaries, the X-MET (Eisinger et al., 2023) temperature,
melting-layer height boundaries, radar reflectivity and mean
Doppler velocity, the rules described later in Sect. 3 are em-
ployed for the determination of different cloud and precipi-
tation types.
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3.1 Clear skies

If the C-FMR hydrometeor featuremask reports no signif-
icant meteorological origin echoes in the atmospheric col-
umn, then the atmospheric column is declared to be clear (at
least with respect to the sensitivity of the CPR).

3.2 Ice classification

A layer is identified as ice if the base of the layer is above
the height of the 0 ◦ wet-bulb isotherm. At temperatures
lower than −20 ◦ (homogeneous-ice-freezing regime), all
CPR echoes are classified as ice clouds. At temperatures
warmer than −20 ◦C, the following two additional solid pre-
cipitation categories are allowed: snow and rimed snow.

The following conditions have to be satisfied to identify
the presence of a snow layer in each profile: 75 % of the pix-
els need to have a reflectivity and a Doppler velocity higher
than −15 dBZ and 0.4 m s−1, respectively. It is important to
note that the hydrometeor sedimentation Doppler velocities
are first adjusted for density effects by referencing them to
standard surface level conditions before they are used as in-
put to the C-TC algorithm an indicator. The depth of the layer
has to be greater than 300 m to be identified as snow.

In a detected snow layer at temperatures higher than
−15 ◦C, in the presence of larger particles, a rapid increase
in terms of Doppler velocity above 1 m s−1 (referenced in
relation to surface level conditions) is treated as the signa-
ture of riming. Since rimed snow and snow aggregates can
have similar values of radar reflectivity, the localisation of
the rimed snow layer is based mainly on the vertical struc-
ture of Doppler velocity. The minimal vertical gradient of
integrated Doppler velocity required to identify the riming
is 0.5 m s−1 km−1. This velocity increase downwards cannot
be accompanied by a reduction in radar reflectivity. If one or
more of the ice layer boundaries is above the height of the
tropopause, it is characterised as stratospheric ice cloud.

3.3 Liquid clouds

If the top of the hydrometeor layer is below the height of the
−3 ◦C isotherm, then the layer (and all the layers below it) is
classified as liquid cloud.

Liquid layers are further classified as non-precipitating
(drizzle-free and slightly drizzling clouds) and liquid precip-
itating clouds (heavy drizzle and rain). Radar reflectivity has
been traditionally used (in the absence of other complemen-
tary measurements such as lidar observations) to distinguish
precipitating from non-precipitating liquid clouds (Kollias et
al., 2011). Different radar reflectivity thresholds have been
proposed in the literature, with values ranging between −25
and 0 dBZ (Frisch et al., 1995; Mace and Sassen, 2000; Kras-
nov and Russchenberg, 2005; Liu et al., 2008; Zhu et al.,
2022). A general conclusion is that there is no unique thresh-
old in any of the parameters that can be used to do the sep-

aration between drizzle-free and drizzling clouds. There is,
rather, a probability of precipitation that increases within a
range of reflectivity, a range of liquid water path (LWP) or a
range of Doppler velocity. In addition, as suggested by Fox
and Illingworth (1997) and Mace and Sassen (2000), the ver-
tical structure of the radar reflectivity profile can be used in
the estimation of the probability of the drizzle-free occur-
rence. In particular, a steady increase with altitude is a good
indicator of drizzle-free conditions. In C-TC, the identifica-
tion of drizzling clouds is based on the following two pa-
rameters: a CPR reflectivity threshold and the CPR-derived
apparent cloud thickness (H ) determined as the liquid cloud
vertical extension. The CPR reflectivity threshold for detect-
ing the presence of drizzle is set to−20 dBZ. This is based on
the aforementioned literature and the impact of the CPR sam-
pling volume on the reported radar reflectivity. If the maxi-
mum reflectivity Zmax exceeds −11 dBZ, then the presence
of drizzle is assumed to be almost certain. On the other hand,
if the profile maximum reflectivity Zmax is below −29 dBZ,
then the presence of drizzle is ruled out. Thus, the overlap
of possible drizzle or cloud-only conditions exists across the
Zmax range of values between −29 and −11 dBZ. In this
Zmax range, if the thickness H of the radar column exceeds
700 m, then the profile is classified as certainly drizzling.
On the other hand, if the thickness H is lower than 400 m,
i.e. three CPR range gates or less, the profile is identified
as cloud-only drizzling. The CPR profiles that have thick-
nesses between 400 and 700 m and Zmax between −29 and
−11 dBZ correspond to the overlapping-conditions regime.

In addition to the distinction between non-precipitating
liquid clouds and drizzle-containing liquid clouds, we further
classify liquid clouds as warm rain if Zmax in the column ex-
ceeds 0 dBZ.

3.4 Cold rain and insects

If a hydrometeor layer has a base below the height of the 0 ◦C
wet-bulb isotherm and a top above the height of the −3 ◦C
isotherm, then the layer below 0 ◦C is classified as cold rain
(this could be rain originating from melting ice) and ice (ice
cloud, snow or rimed snow) above the top of the melting
layer. The procedure described in the ice clouds section is
then applied to characterise the ice layer above the melting
layer. If a melting layer was detected, then melting snow will
overwrite the cold-rain pixels inside of the melting layer.

Over land and when the air temperature is not lower than
15 ◦C, there is a significant record of observations from pro-
filing millimetre-wavelength radars (Luke et al., 2008; Chan-
dra et al., 2013; Kollias et al., 2014; Lamer and Kollias, 2015)
that suggest that most of the radar echoes are from deep in-
sect layers. Furthermore, because of non-Rayleigh scatter-
ing, the insect radar reflectivity is typically below −20 dBZ.
Based on the above information, all CPR echoes over land
and below 3 km altitude with reflectivity lower than−20 dBZ
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and temperatures not lower than 15 ◦C are classified as in-
sects.

3.5 Multiple scattering and extinction

Following Battaglia et al. (2011), multiple-scattering (MS)
effects are detected computing the top-down integral of re-
flectivity I (z) values above a certain threshold Zthres. MS is
likely to be encountered below the heightH(MS)where I (z)
exceeds a critical value Zthres. For the EarthCARE CPR tech-
nical specifications, the best statistical match to identify MS
is achieved when Zthres is selected to be equal to 12 dBZ and
when I (z) exceeds 41 dBZint. All values below the H(MS)
level are classified as heavy rain or heavy mixed-phased pre-
cipitation if temperatures are below 0 ◦C.

When MS is not detected but the CPR does not provide
measurements of the surface return echo, it is most likely
because the receiver signal is completely saturated due to
attenuation. All values between the ground surface and the
first detected layer are classified as likely heavy rain or likely
heavy mixed-phased precipitation if temperatures are below
0 ◦C.

The values and descriptions of the CPR target classifica-
tion are given in Table 4.

4 The synergistic target classification: AC-TC

AC-TC is a synergistic product that combines ATLID and
CPR observations and therefore provides information on hor-
izontally and vertically resolved structures of different atmo-
spheric targets (aerosols, clouds, rains, etc.). It takes up the
essential information from the two instruments with the ad-
vantage of removing any ambiguity regarding the nature of
the atmospheric targets thanks to the complementarity of the
instrumental responses (see Sect. 4.1). This product is the
result of prior knowledge acquired during the development
and maintenance of DARDAR-MASK (Ceccaldi et al., 2013;
Delanoë and Hogan, 2010, https://www.icare.univ-lille.fr/
dardar/documentation-dardar-mask/, last access: 20 May
2023), which combines CloudSat and CALIPSO measure-
ments. The AC-TC product will, however, incorporate the
improvements in target classification provided by Earth-
CARE’s new high-spectral-resolution lidar and Doppler
radar capabilities, as shown below.

The AC-TC processor assigns all pixels in an EarthCARE
granule to the classifications defined in Table 5 by merg-
ing A-TC and C-TC products according to a synergistic de-
cision matrix (Fig. 6). Some preprocessing is needed for
the input products so that the atmospheric profile obtained
from each instrument has the same altitude sampling. ATLID
and synergistic data products use a common joint standard
grid (X-JSG; Eisinger et al., 2023), which is defined by the
vertical resolution of ATLID (≈ 103 m) and along-track ac-
cording to CPR (1 km, corresponding to ≈ 2 radar pixels),

with an across-track sampling size of 1 km. A-TC and C-TC
are defined on different vertical grids; ATLID data are on
the X-JSG grid by definition, while C-TC is on the native-
radar-sampling grid. Both vertical grids have an approxi-
mate 100 m sampling. The C-TC variables are regridded onto
the X-JSG vertical grid using a nearest-neighbour approach,
which will result in relatively small vertical displacement (a
maximum 50 m offset) that is not expected to result in any
noticeable issues. The top of the cloud will be defined by li-
dar signals due to its higher vertical resolution.

4.1 Decision matrix

The radar and lidar provide independent information of the
same probed atmospheric regions in the microwave and op-
tical domains, respectively. Radar can penetrate thick ice
clouds and precipitation, while lidar can detect aerosols, ice
clouds and liquid clouds. Target detection will then be based
on the combination of signals from both instruments and will
follow a decision tree. This process is described in this sec-
tion. First of all, it is useful to recall the main information
provided by the two instruments. The lidar retrieves informa-
tion on the nature of hydrometeors thanks to the backscat-
ter signals in the Mie channel, as well as their depolarisa-
tion. Strong Mie backscatter is the signature of either liq-
uid clouds, of ice in high concentrations or of mixed-phase
cloud. The radar reflectivity provides information on opti-
cally thick ice clouds and on larger precipitation particles
(snow or rain). Radar measurements thus take precedence
over lidar for the identification of rain, drizzle and snow. The
parts of ice clouds detected by both instruments overlap at
best, but neither instrument resolves the entire profile inde-
pendently. These complementary properties of radar and li-
dar demonstrate the appeal of using a synergistic approach
to produce a comprehensive classification of all hydromete-
ors and aerosols in the atmosphere. The AC-target classifi-
cation is presented in Table 5, where the main instrumental
properties according to which each class is defined are de-
scribed in the third column. Each co-located pixel of the CPR
and ATLID measurement profiles is assigned a class in Ta-
ble 5 according to the probing properties of the instruments,
resulting in the decision matrix shown in Fig. 6. Some in-
strument detection properties useful for filling the decision
matrix summarised in Table 5 are recalled in the following
Sect. 4.2 to 4.7

4.2 Liquid cloud

The detection of liquid cloud is challenging for CPR but is
possible depending on the sensitivity and the presence of
drizzle. On the other hand, the lidar is very sensitive to the
highly concentrated small droplets and shows a very strong
signal return. AC-TC distinguishes the following two types
of liquid cloud: warm and supercooled. Supercooled liquid
identified in A-TC can be co-located with ice clouds, snow
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Table 5. Definition of AC-target classes linked to the lidar–radar properties involved.

Class Class definition Lidar–radar properties involved
numbers

−1 Unknown (missing data) Lidar class: missing data and/or attenuated
Radar class: missing data, cloud and/or precipitation not present or unknown

0 Ground Both radar and lidar indicate the ground (lidar can be attenuated, and radar has issues with clutter)

1 Clear sky When lidar sees clear sky or if the lidar is extinguished and when radar indicates clear sky

2–4 Rain in clutter Classes of possible rain, snow, cloud and mixed-phase in radar clutter are entirely flagged from
Snow in clutter radar (C-TC) when ATLID is extinguished
Cloud in clutter

5–6 Heavy rain When CPR is dominated by multiple scattering or is strongly attenuated
Heavy snow

7 Clear (possible liquid) When radar sees clear sky but lidar is attenuated (radar is not sensitive to non-precipitating
liquid clouds)

8 Liquid Lidar is very sensitive to smaller droplets that are highly concentrated; the radar has difficulties
with identifying them. Lidar takes over radar except when the latter indicates rain
(drizzle or from melting ice), snow or ice

9 Drizzling liquid cloud Lidar class indicates liquid, and radar indicates drizzle or rain from melting ice

10 Warm rain Radar takes over lidar when the latter indicates nothing (missing data or extinguished).
The liquid cloud in this case has small droplets, the tops of which are detected by the lidar.

11 Rain from melting Radar takes over lidar, since the latter indicates nothing (missing data or extinguished).
(cold rain) Aerosol detected by the lidar will be flagged as cold rain.

12 Melting snow Radar indicates melting snow and takes over lidar class.

13 Snow (possible liquid) Radar takes over lidar, since the latter indicates nothing (missing data or extinguished)

14 Snow (no liquid) Radar class indicates snow, and lidar does not say liquid

15 Rimed snow Radar class indicates rimed snow and takes over lidar when the latter
(possible liquid) indicates nothing (missing data or extinguished)

16 Rimed snow and Radar indicates rimed snow, and the lidar detects liquid or supercooled water
supercooled liquid

17 Snow and supercooled Radar indicates snow, and lidar indicates liquid or supercooled
liquid

18 Supercooled Lidar takes over radar except when the latter indicates rain (drizzle or from melting ice), snow or ice

19 Ice cloud Radar class indicates ice, and lidar detects nothing (missing data or extinguished)
(possible liquid)

20 Ice and supercooled Radar indicates ice, and lidar indicates liquid or supercooled (in principle, liquid should be
liquid supercooled in the subzero troposphere)

21 Ice cloud (no liquid) Radar and lidar classes indicate ice cloud

22 Stratospheric ice Radar or lidar detect stratospheric features (i.e. above tropopause)

23 STS – PSC type I Stratospheric features: PSC type I from A-TC (cannot be detected by radar)

24 NAT – PSC type II Stratospheric features: PSC type II from A-TC (cannot be detected by radar)

25 Insects Insect comes from radar, (C-TC) but lidar is used to confirm that it is not ice clouds or liquid.
Insect class is confirmed when radar indicates insect and when lidar is clear sky or is attenuated

26–31 Tropospheric aerosol type Entirely flagged by A-TC except when radar indicates rain from melting snow, snow or

32–34 Stratospheric aerosol type ice (note that this is quite unlikely to happen).
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Figure 6. The AC-TC decision matrix assigning the synergistic classification at each pixel based on A-TC classes (horizontal) and C-TC
classes (vertical). Synergistic classifications are mostly assigned in ice and mixed-phase clouds; in most other situations, one instrument or
another takes precedence. The decision matrix includes all combinations, including those that are physically unlikely or impossible except
due to an error in the input products. The decision matrix assigns a common-sense interpretation to these conflicts, but occurrences of these
instances will be tracked for the purposes of verification and quality assurance. Two such conflicts are denoted with asterisks; ∗ indicates
disagreements about temperature or thermodynamic phase, while ∗∗ indicates significant disagreement about altitude.
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and rimed snow in C-TC, in which case AC-TC returns a
mixed-phase classification.

4.3 Ice cloud, snow, rimed snow and melting ice

Ice clouds can be detected by both radar and lidar. CPR will
not be able to detect the optically thinnest ice clouds. As a re-
sult, when ice is identified either by A-TC or C-TC, AC-TC
reports an ice or snow class. Furthermore, the magnitude and
vertical structure of CPR’s mean Doppler velocity measure-
ment are used to distinguish between ice clouds, snow and
rimed snow (see Sect. 3). Melting ice corresponds to the area
where snowflakes melt and are converted into raindrops. This
information comes from C-TC. Complementary information
is used to classify mixed-phase cloud when A-TC indicates
the presence of supercooled liquid and when C-TC identifies
ice cloud, snow or rimed snow. When ATLID is extinguished,
the C-TC classification is used, but the possible presence of
liquid cloud is reflected in the target classification (i.e. liquid
possible).

4.4 Rain

The above set of rules mainly distinguishes the different
types of clouds but so far neglects precipitation and its de-
termination. There are two types of rain, namely cold rain
and warm rain, both referring to the types of clouds in which
the rain originates. Rain assignment will therefore depend on
C-TC only. In the warm-rain case, it is relatively straight-
forward; the liquid water cloud itself has small droplets, for
which the top is detected by the lidar if the beam is not extin-
guished by higher cloud layers. The radar will start to detect
the droplets when they grow into drizzle and raindrops. Cold
rain originates from the melting of snow.

4.5 Aerosol

Due to their small size, aerosols cannot be detected by radar.
Therefore the aerosol class only depends on lidar measure-
ments, and the radar flag should indicate clear sky (or un-
known or clutter). If the radar detects an echo, it is important
to check the confidence level in the lidar flag – for exam-
ple, if the radar detects ice cloud, the pixel will be treated as
such. In all other cases, when an A-TC aerosol classification
is available, AC-TC will inherit the corresponding aerosol
type from A-TC.

4.6 Insects

The detection of insects comes from the radar measurement
(see Sect. 3.4) in the absence of lidar measurements which
could confirm that the radar is detecting another hydrome-
teor classification. When the radar identifies insects and the
lidar classification reports clear sky (or attenuated), the pixel
is maintained to the insect class. This target classification is
rarely made by CloudSat; however, the increased sensitivity

of the EarthCARE CPR might give rise to increased detec-
tion of insects. In the case of insects above clouds, the lidar
signals should detect no Mie signals and no decrease in the
Rayleigh signals. Also, the smearing of the radar signal due
to the long pulse length has to be taken into account before
assigning the insect flag to the radar return. In general, more
than one pixel is needed to be sure that insects are detected.
In principle, insect detection is considered if A-TC indicates
clear sky and C-TC indicates liquid cloud or light rain. Note
that insects can be erroneously detected if the lidar signal is
very weak – for example, due to contamination by photons
from the sun.

4.7 Ground or clear-sky detection and the unknown or
clutter situation

The ground or sub-surface classification is assigned below
the level at which the lidar detects a surface return. It is also
assigned when the radar sees the ground and the lidar is at-
tenuated or has data issues (missing data).

Clear sky is identified when lidar and radar both indicate
clear sky. In the case where the lidar is extinguished (fully
attenuated) and the radar indicates clear sky, the classification
includes the possibility of liquid cloud targets.

The unknown classification occurs when there is no reli-
able information from both radar and lidar.

Concerning the radar surface clutter region, it essentially
relies on a specific processing of the radar reflectivity signal
coming from zones assumed to be close to the ground. The
C-TC classes resulting from this processing will be taken as
such for this region.

5 Case study: tests with the Halifax scene

Simulated data is needed to test the methods and associ-
ated processors developed to calculate A-TC, C-TC and AC-
TC. Three simulated scenes covering approximately one-
eighth of an EarthCARE orbit (5000 km) were therefore de-
veloped, namely the scenes of Halifax (covering the mid-
latitudes of the Northern Hemisphere passing over eastern
Canada, the western Atlantic Ocean and the Caribbean), Baja
(which crosses western Canada, the United States and the
Baja Peninsula) and Hawaii (above the central Pacific Ocean
beginning near Hawaii; Donovan et al., 2023a). AC-TC was
also applied to the Baja and Hawaii scenes, but only the re-
sults for the Halifax scene are presented in this section. The
results for the other two scenes are presented in a broader
evaluation context in Mason et al. (2022). The Halifax scene
is one of the three test scenes developed based on high-
resolution cloud-resolving model data from the Environment
and Climate Change Canada (ECCC) GEM (Global Envi-
ronmental Multiscale) model merged with CAMS (Coperni-
cus Atmosphere Monitoring Service) aerosol data. The con-
struction of the model fields is described in detail in Qu et
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al. (2022). The radiative transfer and instrument simulation
methods applied in order to produce EarthCARE ATLID,
CPR, MSI and BBR (Wehr et al., 2023) simulated L1 data
are described in Donovan et al. (2023a). The ECCC model
scenes were produced to facilitate the development and test-
ing of the EarthCARE processors implemented in the Pay-
load Data Ground Segment (PDGS). Figures 7 and 8 show
some sample true model fields along with simulated L1
ATLID and CPR data for the Halifax scene. In particular, the
aerosol–cloud mass and effective radius extracted from the
scene are shown along with the ATLID Mie, Rayleigh and
cross-polar L1 attenuated backscatters, and the radar reflec-
tivity. Even at the level of the L1 data, the complementarity of
the lidar and radar fields is apparent. For example, the radar
is not attenuated by the extensive clouds present near the cen-
tre of the scene. On the other hand, the lidar readily detects
the aerosol fields and (supercooled-)liquid water clouds that
are largely missed by the radar.

The AC-TC processor will produce the synergistic target
classification product that takes the A-TC and C-TC prod-
ucts as inputs. Figure 9a and b show the ATLID and CPR tar-
get classifications corresponding to the ECCC Halifax scene
(Donovan et al., 2023a).

The A-TC algorithm is described in Sect. 2. Here, the
ice clouds are, in general, well seen and classified by A-TC
(Fig. 9a). As A-TC can only classify the targets up to the
point where the lidar signal is attenuated, a substantial area
marked as attenuated exists between about 35 and 45◦ N and
is unclassified. Extensive supercooled liquid layers are also
present in this region. The broken warm liquid clouds south
of about 35◦ N are, in general, well detected by the lidar. The
aerosol layers present south of about 35◦ N are broadly well
classified by the A-TC; however, there are some areas of mis-
classification present here and there (the true classification
should be continental pollution above about 2.5 km and sea
salt below). Here, both aerosol types are non-depolarising so
that the aerosol type is based on the layering determination
and the lidar–ratio estimate from A-PRO (see Donovan et al.,
2023b).

C-TC is based on the methodology discussed in Sect. 3.
In the high-latitude (50 to 70◦ N) part of the Halifax scene,
C-TC correctly identifies the echoes containing ice cloud and
snow (see Fig. 9b). This classification is based on the temper-
ature of the layer, while the separation between ice cloud and
snow is based on temperature, radar reflectivity and Doppler
velocity thresholds. At lower latitudes (39 to 43◦ N), a large-
scale frontal precipitation system is observed, and a tran-
sition from snow to cold rain is correctly captured by C-
TC. After a brief snow period, the hydrometeor layer base
is warmer than 0 ◦C.

Using the CPR radar reflectivity and mean Doppler veloc-
ity and the X-MET based height of the 0 ◦C, the C-TC iden-
tifies the presence of melting snow. Above the melting layer,
ice and snow hydrometeors are detected, and below the melt-
ing layer, cold rain is observed. Finally, at even lower lati-

tudes (35 to 37◦ N), another mesoscale precipitation system
is observed with a convective core. In the convective core, C-
TC identifies the presence of rimed particles in the upper part
of the layer and cold rain below. Overall, C-TC accurately
captures most of the important features of the precipitation
systems in the Halifax scene.

The AC-target classification is shown in Fig. 9c. The ver-
sion shown is the low-resolution version based on the A-
target classification with a long along-track integration length
(see Sect. 2.4), which is reflected in the low-resolution AC-
target classification. Medium- and high-resolution AC-TC
target classification variables are also included in AC-TC
product as well as A-TC target classification (all resolutions)
and C-TC target classification variables. Figure 9c shows that
the resolved structures resemble the union of those classi-
fied by the two instruments in Fig. 9a and b; specifically, ice
cloud tops detected by A-TC expand upon the ice clouds re-
solved by C-TC; the large parts of the scene where ATLID
is extinguished are filled in by the detection of snow, melt-
ing snow and rain in C-TC; and where C-TC reported clear
skies, A-TC often provides the detection of aerosols layers.
Synergistic classifications are possible where A-TC detects
a layer of supercooled liquid and where C-TC detects ice
clouds and snow; here, AC-TC is able to diagnose a range
of mixed-phase classifications.

The AC-TC product, which incorporates A-TC at all res-
olutions and C-TC, can, on its own, be used to derive im-
portant statistics regarding the spatiotemporal distributions
and structures of aerosols, clouds and precipitation, as well
as their properties and thermodynamic phases (e.g. Mioche
et al., 2015, 2017; Vérèmes et al., 2019; Listowski et al.,
2019, 2020). It also facilitates the application of the ACM-
CAP synergistic retrieval algorithm (Mason et al., 2022).
Principally, it identifies the nature of the targets in each pixel
and highlights classifications that are uncertain or ambigu-
ous, thereby informing subsequent algorithms where they
should perform a retrieval (e.g. an ice cloud algorithm would
only be applied to pixels containing ice cloud) and in some
cases the confidence that they should assign to the observa-
tions at each pixel (e.g. when the lidar is extinguished in ice
cloud, so the presence of mixed-phase cloud cannot be ruled
out). In addition, AC-TC will be ideal for deriving cloud frac-
tion and cloud overlap on arbitrary model-type grids. It is
therefore important to validate the target classification prod-
ucts using simulated scenes for which the expected result is
known, as is the case with the Halifax scene of Fig. 9c.

6 Evaluation

The three test scenes (see Sect. 5) and the numerical model
quantities used to create them (Sect. 5 and Qu et al., 2022)
can be used to carry out an omniscient evaluation of the tar-
get classifications. In this section, we quantify the degree to
which the spatial distributions of broad classes of hydrom-
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Figure 7. Panels (a) and (b) correspond to the total hydrometer and aerosol mass density and the effective particle radius. Panels (c) and (d)
correspond to the mass and effective radius for (solid+liquid) precipitation. More detailed species-by-species information can be found in
Qu et al. (2022).

eteors or aerosols are accurately represented by the lidar,
radar and synergistic target classifications. The capability of
a target classification to recover the distribution of aerosols,
clouds and precipitation can be considered volumetrically,
which prioritises the optically thin or light-precipitation fea-
tures that are often critical to radiation and energy budgets,
or in a mass-weighted sense to focus on the total mass con-
tents. The broad classes considered here are ice clouds and

snow (Sect. 6.1), liquid clouds (Sect. 6.2), rain (Sect. 6.3),
and aerosols (Sect. 6.4). The verification of each product
compares the target classification against the mass content of
water or aerosol species in the numerical model and assigns
each pixel the status of hit (correct identification), miss (in-
correctly classified as clear or another class, where a target
exists in the model), false positive (a classification is made
where no target exists in the model) or correct negative (cor-
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Figure 8. In order from top to bottom: simulated ATLID cross-talk-corrected attenuated backscatters and simulated CPR radar reflectivity
factor for the Halifax scene. Note that the stripy area in the top-left section of the radar reflectively panel corresponds to an area above the
PRF-determined radar maximum altitude for that section of the orbit.

rectly classified as clear or another class) after masking for
sub-surface pixels and regions where the instrument is ex-
tinguished. For C-TC and AC-TC, additional statuses are
included for correct inference and false inference in pixels
where no detection is made due to surface clutter, attenua-
tion or multiple scattering of the radar beam but where it may
be possible to infer the presence of precipitation contiguous
with the pixels above. These inferences are not made unilat-
erally within the target classification but are an interpretation
of the classes that encode information about the limitations

of the active instruments. The evaluation will show that, in
some cases, these choices will result in some amount of false
inferences, even while they improve the total fraction of hy-
drometeors that are accurately resolved.

While the Halifax scene is used to illustrate the evaluation
of the target classifications, Fig. 10 provides the percentages
of each class of hydrometeors that are correctly identified
across all three test scenes (Halifax, Baja and Hawaii) by vol-
ume (fraction of pixels containing each constituent) and by
mass content. The stacked bar charts indicate the fraction of
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each class that is undetected (i.e. reported as clear sky), accu-
rately detected, inferred (i.e. may be contextually likely, such
as in contiguous regions of surface clutter or within convec-
tive cores) or obscured (i.e. another classification is made or
the instrument is extinguished, such as in the case of aerosols
that are not detected in the presence of hydrometeors). This
evaluation gives an indication of the fraction of targets that
may be resolved by EarthCARE’s active instruments within
the limitations of their sensitivities and viewing geometry;
however, we note that the three test scenes have not been
designed to be statistically representative of the entire atmo-
sphere, so this evaluation should not be interpreted as quan-
tifying the global or long-term performance of EarthCARE’s
target classification products.

6.1 Ice clouds and snow

The synergy of radar and lidar is greatest in ice clouds and
snow, which are well sampled by both instruments.

ATLID detects (Fig. 11a) most cloud top features, with
the exception of very optically thin cloud edges. The dif-
ference between the volumetric and mass-weighted fractions
detected in A-TC (Fig. 10) shows that around one-third of
pixels containing some ice are undetected by ATLID, but
these make a negligible contribution to the total mass of ice
and snow in the scene. The penetration of ATLID varies sig-
nificantly through the scene, from 1 to 2 km in the high-
latitude mixed-phase clouds and deep convective clouds to
up to 8 km through layered parts of the scene around 40◦ N;
the most rapid extinction of ATLID occurs in the presence
of mixed-phase clouds. Roughly another one-third of pixels
containing ice cloud and snow across the three scenes are ob-
scured by the extinction of ATLID. Across the three scenes,
these obscured pixels contain almost 90 % of the mass of ice
and snow.

Despite its high sensitivity, the spatial coverage of ice
cloud identified by C-TC (Fig. 11b) illustrates CPR’s pref-
erential sensitivity to larger particles. In the high-latitude
mixed-phase cloud (50 to 63◦ N) and deep convective cloud
(36 to 38◦ N) where ice growth and aggregation processes re-
sult in larger snowflakes, CPR resolves the cloud top nearly
as accurately as ATLID; however, the high and optically thin
clouds where particle sizes remain small (e.g. 38 to 48◦ N,
where Fig. 7b shows ice clouds with effective radii less than
10 µm) contribute to the roughly 40 % of pixels containing
ice that are not detected by CPR (Fig. 10). CPR is obscured
by ground clutter in the lowest 0.5 km and is dominated by
multiple scattering in the convective core (around 36◦ up to
around 8 km). Across the three test scenes (Fig. 10), these ob-
scured regions account for around 4 % of pixels but contain
25 % of the total mass of ice. Almost all of this ice and snow
can be recovered because C-TC includes the likely identifi-
cation of snow when contiguous with the surface clutter and
of heavy precipitation within convective cores. This infer-
ence brings the coverage of CPR detection of ice clouds and

snow to around 60 % by volume and more than 99 % by mass
– however, the significant regions of cloud tops detected by
ATLID and not by CPR are a reminder of the radiative im-
portance of even very-low-water-content clouds.

The synergy of ATLID and CPR (Fig. 11c) allows for a
more complete detection through the profile of ice clouds
and snow (70 % by volume across the three scenes; Fig. 10)
than is possible with either instrument alone. While the con-
tribution of ATLID to detected ice clouds (around 10 % by
volume) is around 0.1 % of the mass of ice and snow across
the three scenes, the accurate detection of cloud tops from li-
dar is critical to EarthCARE’s radiative closure. Ice at cloud
edges or in virgae that goes undetected by both EarthCARE
instruments represents around 26 % by volume and a negligi-
ble fraction by mass. Ultimately, AC-TC correctly identifies
around 70 % of ice clouds and snow by volume, containing
more than 99 % of the total ice water content, across the three
simulated test scenes (Fig. 10).

6.2 Liquid

As noted in the descriptions of the single-instrument tar-
get classifications, CPR (Sect. 3) is most sensitive to the
largest hydrometeors and rarely detects non-precipitating liq-
uid cloud unless collocated with drizzle or rain. C-TC cor-
rectly identifies around 1 % of liquid clouds by volume in
the Halifax scene (Fig. 12b) and around 3 % across all the
test scenes (Fig. 10). We note that non-precipitating liquid
clouds are not well represented in the present scenes, and
the identification of liquid clouds in C-TC may be more ef-
fective in such cloud regimes. Conversely, A-TC (Sect. 2)
capitalises on the strong signal returned from liquid clouds
to detect the tops of liquid cloud layers, but its rapid extinc-
tion in a liquid results in no information about the physical
depth of that layer or the possibility of layers below. The
shallow layers of correctly identified liquid cloud in the Hal-
ifax scene (Fig. 12a) represent around 25 % of the volume of
liquid clouds or around 7 % of total liquid water content in
the scene; the grey shading in the figure shows the extinction
of the instrument, while the hatching shows the true extent
of liquid cloud in the model. Stated another way, across all
three test scenes (Fig. 10) around 80 % of pixels containing
liquid cloud and around 93 % of liquid water content are ob-
scured by the extinction of the lidar signal. The synergistic
classification of liquid cloud in AC-TC is therefore domi-
nated by ATLID but includes possible-liquid-cloud classifi-
cations wherever ATLID is extinguished.

To explore the potential for recovering a greater fraction
of liquid clouds – and motivated by a synergistic retrieval
(ACM-CAP; Mason et al., 2022) that assimilates solar ra-
diances, which include a strong signal from liquid clouds –
we evaluate the simple inference that liquid cloud is found
wherever CPR detects rain or rimed snow and wherever CPR
signal is itself extinguished or strongly affected by multiple
scattering in heavy precipitation. In all of these cases, it could
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Figure 9. (a) A-TC, (b) C-TC and (c) AC-TC for the Halifax scene.

Figure 10. Fractions of hydrometeors or aerosols correctly identified by A-TC, C-TC and AC-TC over the three simulated test scenes. For
A-TC and AC-TC, the low-resolution version of the target classification is used. The volume fraction refers to the percentage of pixels on
the joint standard grid that are correctly identified by the target classification as containing the constituent in question. The mass fraction is
calculated as the percentage of the total water or aerosol mass content within correctly identified volumes, where the true mass content is
defined by the numerical model fields from which the scenes are created. Values in parentheses indicate the total fraction including inferred
classifications.
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Figure 11. An intercomparison of ATLID (a), CPR (b) and synergistic (c) detection of ice and snow target classifications for the Halifax
scene. The volume fraction is calculated from the fraction of pixels detected compared to those containing any ice and snow in the GEM
model after interpolation to the JSG (hatched areas). The mass fraction is based on the combined mass of ice cloud, snow, graupel and hail
from the GEM model. The total fractions in C-TC and AC-TC include the inferred presence of ice and snow that cannot be detected directly
by the instrument, such as within the ground clutter or where CPR is extinguished in deep convection. Atmospheric temperature contours
from the model are overlaid. Grey shading indicates where each instrument is extinguished.

be judged as likely that liquid cloud is present. For the Hal-
ifax scene, these inferred classifications (Fig. 12c) result in
the correct identification of 65 % of liquid cloud by volume
and up to 80 % of liquid water content; however, a significant
number of false inferences is introduced due to the differ-
ence between widespread stratiform rain and the more com-
plex spatial distribution of the liquid clouds. Across the three
simulated test scenes, the assumption of liquid cloud in rain
increases the volume fraction correctly identified to around
95 % and the mass fraction to nearly 99 %. The effect of this
assumption on the synergistic retrievals of liquid cloud and
the top-of-atmosphere shortwave radiative closure is evalu-
ated in Mason et al. (2022) and Barker et al. (2023), respec-
tively.

6.3 Rain

The detection of rain is made solely by CPR, so AC-TC in-
herits its identification of rain entirely from C-TC; hence, we
only evaluate C-TC here. In the Halifax scene (Fig. 13), the
majority of rain is correctly identified; some false positives
near the melting layer are due to the ambiguous classification
of melting snowflakes. A band of rain around 42◦ N is mis-
classified in the presence of a temperature inversion, wherein
C-TC classifies snow rather than rain. The highly sensitive
CPR detects even very light rain; its major limitations in the
detection of rain are within the surface clutter and when CPR
is fully extinguished or dominated by multiple scattering in
heavy precipitation. C-TC correctly identifies around 68 % of
rainy pixels, representing around 36 % of the total rain water
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Figure 12. An intercomparison of ATLID (a), CPR (b) and synergistic (c) detection of liquid target classifications for the Halifax scene.
The volume fraction is calculated from the fraction of pixels detected compared to those containing any liquid cloud in the GEM model
after interpolation to the JSG (hatched areas). The mass fraction is based on the mass of liquid cloud water from the GEM model. The total
fractions in AC-TC include the inferred presence of liquid that cannot be detected directly by the instrument but may be inferred, such as
being collocated with rain or where CPR is extinguished in deep convection. Atmospheric temperature contours from the model are overlaid.
Grey shading indicates where each instrument is extinguished.

content in the Halifax scene (or 75 % by volume and 32 %
by mass across all three scenes; Fig. 10). Inferring the likely
presence of rain in the surface clutter and in heavy precip-
itation brings the volume fraction detected to around 95 %
and the mass fraction to around 98 %. While the ∼ 500 m
surface clutter region of EarthCARE CPR is shallow com-
pared to that of CloudSat, in mid-latitude stratiform rain, this
may represent a significant part of the rain layer, with non-
negligible contributions to radar-path-integrated attenuation.
This significant result is that the heaviest precipitation – of-
ten concentrated in relatively narrow features wherein CPR
will be completely extinguished – accounts for a majority of
the total rain mass content.

6.4 Aerosols

The detection of aerosols is made solely by ATLID, so we
only evaluate A-TC here. The Halifax scene (Fig. 14) illus-
trates that some large areas of aerosols from the numerical
model are not detected by A-TC; the target classification cor-
rectly identifies aerosols in around 38 % of pixels or around
43 % of aerosol mass content across the three test scenes. The
aerosols that are undetected by the spaceborne lidar are ei-
ther in low-concentration aerosol layers or are in parts of the
atmosphere obscured by other hydrometeors. The aerosols
that are below the sensitivity of the instrument include the
elevated aerosol layer between 54 and 63 ◦ N in the Halifax
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Figure 13. An intercomparison of AC-TC detection of rain for the Halifax scene. The volume fraction is calculated from the fraction of pixels
detected compared to those containing any rain in the GEM model after interpolation to the JSG (hatched areas). The mass fraction is based
on the mass of rain from the GEM model. The total fractions in AC-TC include the inferred presence of rain that cannot be detected directly
by the instrument but may be inferred, such as in regions of radar surface clutter contiguous with rain or where CPR is extinguished in deep
convection. Atmospheric temperature contours from the model are overlaid. Grey shading indicates where each instrument is extinguished.

scene, even when A-TC applies the longest horizontal inte-
gration scales, and at the edges of other layers. These missed
aerosols represent around 30 % by volume across the three
scenes and about 10 % of total aerosol mass content. The
larger portion of missed aerosols is obscured by other tar-
gets; this represents around 32 % by volume and almost 50 %
of the mass of aerosols across the three scenes.

False-positive identifications of aerosols are relatively rare
but can be seen in the Halifax scene (Fig. 14) at the edges
of ice clouds. Over the three test scenes, around 4 % of ice
clouds by volume, representing a negligible fraction of total
ice water content, are classified as aerosols, while around 6 %
by volume and 7 % by mass of aerosols are classified as ice
clouds.

7 Conclusion

The EarthCARE space mission is developed to probe the
Earth’s atmosphere, particularly for the measurement of pro-
files of clouds and aerosols which play an essential role in
the balance of the Earth’s radiative system. Its payload con-
sists of a set of instruments to achieve these goals, includ-
ing the high-spectral-resolution lidar ATLID and the CPR, a
Doppler radar. A necessary condition for the retrieval of the
physical properties of clouds, aerosols and precipitation from
atmospheric profiles measured by each instrument is to ac-
curately identify the presence of hydrometeors and aerosols.
For this, a classification of atmospheric targets (hydromete-
ors and aerosols) has been established for each instrument,
namely A-TC for ATLID target classification and C-TC for
CPR target classification. The synergy between ATLID and
CPR measurements can then be used to remove ambigu-
ity in the target classifications. Indeed, ATLID is sensitive
to the smallest particles (aerosols and cloud particles, even
molecules), while the CPR is sensitive to the largest ones

(large ice particles, snowflakes and raindrops). This is this
same approach that was used in the analysis of the observa-
tions made with the lidar and the radar aboard CloudSat and
CALIPSO, the two satellites of the A-Train constellation. It
was this experience that led to the creation of the synergistic
DARDAR-MASK products, which were leveraged by Earth-
CARE to create a similar product, AC-TC for ATLID CPR
target classification. The novel capabilities of EarthCARE’s
active instruments are reflected in the single-instrument and
synergistic target classifications; specifically, ATLID’s mea-
surement of lidar ratio is used to differentiate optically thin
ice from aerosols and to accurately type different aerosol
species (Sect. 2), while CPR’s Doppler velocity measure-
ments distinguish snow and rimed snow from ice cloud and
provide vertically resolved information on the depth of the
melting layer (Sect. 3).

How A-TC and C-TC classifications are derived from li-
dar and radar measurements was respectively described in
Sects. 2 and 3. The Halifax scene, a numerical simulation
of EarthCARE observations, is used to illustrate and test the
different products created. The way the AC-TC classifica-
tion is calculated from the A-TC and C-TC products, as well
as the new radar–lidar synergy decision matrix created for
EarthCARE, was detailed in Sect. 4. The tests and results
obtained with the processors developed for the calculation of
A-TC, C-TC and AC-TC were also presented. They showed
that these products are correctly built when analysed with
reference to the Halifax scene.

The production of simulated EarthCARE scenes has pro-
vided an opportunity for an omniscient evaluation by which
we can quantify the detection efficiency of EarthCARE’s ac-
tive instruments and the benefits of their synergy (Sect. 6).
The greatest area of radar–lidar synergy is in ice clouds,
where A-TC and C-TC have areas of overlap (around 25 %
of pixels containing ice clouds across the three test scenes)
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Figure 14. An intercomparison of AC-TC detection of aerosol for the Halifax scene. The volume fraction is calculated from the fraction of
pixels detected compared to those containing any aerosol in the GEM model after interpolation to the JSG (hatched areas). The mass fraction
is based on the mass of aerosol from the GEM model. Atmospheric temperature contours from the model are overlaid.

and complementary coverage with optically thin ice clouds
seen only by ATLID (about 10 % by volume) and deep and
precipitating ice seen only by CPR (about 30 % by volume).

The detection and classification of aerosols and liquid
cloud are dominated by ATLID, and both are therefore
strongly affected by the rapid extinction of the lidar; across
the three test scenes, around 80 % of pixels containing liq-
uid cloud were undetected due to extinction, while 30 % of
pixels containing aerosols were obscured by extinction or by
other targets (i.e. hydrometeors). The extinction of ATLID is
communicated in AC-TC by the inclusion of possible-liquid
classifications, which conveys the unknown presence of liq-
uid cloud (or, indeed, aerosols) in parts of the atmosphere
where only information from CPR is available. While C-
TC includes liquid cloud classification, in practice, the radar
signal is dominated by drizzle drops and snowflakes where
present; hence, in parts of the profile where ATLID measure-
ments are not available, the presence and physical depth of
mixed-phase and liquid cloud layers remain difficult to diag-
nose. Indeed, across the three test scenes, less than 10 % of
liquid cloud water was directly detected by ATLID. To better
understand the extent of liquid clouds that are not apparent
to ATLID, we have evaluated a simple set of assumptions
that infer the presence of liquid cloud in areas co-located
with the following three classifications made by CPR: all rain
classes, rimed snow when ATLID is extinguished and the
heavy precipitation classifications made when CPR is over-
whelmed by multiple scattering and attenuation. Evaluation
over the three test scenes showed that the coarse assumption
allowed a majority of liquid cloud water content to be ac-
counted for, specifically around 75 % of liquid water content,
which is up from around 10 % directly detected by the active
instruments. This evaluation using clouds from a numerical
weather model shows a significant underestimation of liq-
uid clouds by spaceborne radar–lidar synergy that has long
been acknowledged, but difficult to quantify, in CloudSat-
CALIPSO target classifications. Indeed, liquid cloud within

rain is already assumed within CloudSat rain retrievals (Leb-
sock and L’Ecuyer, 2011). A simplified retrieval of liquid
cloud based on these inferences is made in EarthCARE’s
synergistic retrieval algorithm (ACM-CAP) and is evaluated
in Mason et al. (2022).

The classification of precipitation is solely informed by
CPR; C-TC accurately identifies around two-thirds of all
rainy pixels, representing around one-third of rain water con-
tent, across the three test scenes. Two limits on the detection
of rain by CPR are radar ground clutter within around 500 m
of the surface and when the radar signal is overcome by mul-
tiple scattering and attenuation in heavy precipitation. When
cautious assumptions are made to infer the presence of rain in
these situations – assuming rain is continuous to the surface
through clutter when contiguous with rain detected above the
surface clutter and in convective cores – more than 95 % of
rain water content can be accounted for. Similar inferences
can also be used to improve the detection of snow in C-TC
and AC-TC; across the three test scenes, more than 30 % of
ice water content was within deep convective cores or the
surface clutter zone. All such inferred precipitation classes
are distinguished within the C-TC and AC-TC products from
those based directly on measurements; their inclusion is in-
tended to prevent biases in the spatial distribution of precipi-
tation provided by the target classification products, and they
are used within the synergistic retrieval algorithm ACM-CAP
to permit continuous (if more uncertain) retrievals of cloud
and precipitation through heavy-precipitation features (Ma-
son et al., 2022).

EarthCARE’s target classification products build upon
the success of DARDAR-MASK products from CloudSat-
CALIPSO. The following three target classification algo-
rithms and L2 data products have been introduced: A-TC
for ATLID, C-TC for CPR and the synergistic product AC-
TC. AC-TC will provide continuity with DARDAR-MASK
while taking advantage of EarthCARE’s novel capabilities,
namely an improved detection of rimed snow from CPR’s
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Doppler velocity and a probabilistic aerosol discrimination
framework using ATLID’s measurements of depolarisation
and lidar ratio.
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