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Abstract

In a context of climate change, the stakes surrounding water availability are getting higher. Decomposing and quantifying the

effects of climate on discharge allows to better understand their impact on water resources. We propose a methodology to

separate the effect of change in annual mean of climate variables from the effect of intra-annual distribution of precipitations. It

combines the Budyko framework with outputs from a Land Surface Model (LSM). The LSM is used to reproduces the behavior

of 2134 reconstructed watersheds over Europe between 1902 and 2010, with climate inputs as the only source of change. We

fit to the LSM outputs a one parameter approximation to the Budyko framework. It accounts for the evolution of annual

mean in precipitation (P) and potential evapotranspiration (PET). We introduce a time-varying parameter in the equation

which represents the effect of long-term variations in the intra-annual distribution of P and PET. To better assess the effects

of changes in annual means or in intra-annual distribution of P, we construct synthetic forcings fixing one or the other. The

results over Europe show that the changes in discharge due to climate are dominated by the trends in the annual averages of

P. The second main climate driver is PET, except over the Mediterranean area where changes in intra-annual variations of P

have a higher impact on discharge than trends in PET. Therefore the effects of changes in intra-annual distribution of climate

variables are not to be neglected when looking at changes in annual discharge.
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• Evaluate the role of climate change on the evolution of discharge of European rivers.9
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• Analyse the effects of changes in the intra-annual distribution of precipitations on12
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Abstract14

In a context of climate change, the stakes surrounding water availability are get-15

ting higher. Decomposing and quantifying the effects of climate on discharge allows to16

better understand their impact on water resources. We propose a methodology to sep-17

arate the effect of change in annual mean of climate variables from the effect of intra-18

annual distribution of precipitations. It combines the Budyko framework with outputs19

from a Land Surface Model (LSM). The LSM is used to reproduces the behavior of 213420

reconstructed watersheds over Europe between 1902 and 2010, with climate inputs as21

the only source of change. We fit to the LSM outputs a one parameter approximation22

to the Budyko framework. It accounts for the evolution of annual mean in precipitation23

(P ) and potential evapotranspiration (PET ). We introduce a time-varying parameter24

in the equation which represents the effect of long-term variations in the intra-annual25

distribution of P and PET . To better assess the effects of changes in annual means or26

in intra-annual distribution of P , we construct synthetic forcings fixing one or the other.27

The results over Europe show that the changes in discharge due to climate are dominated28

by the trends in the annual averages of P . The second main climate driver is PET , ex-29

cept over the Mediterranean area where changes in intra-annual variations of P have a30

higher impact on discharge than trends in PET . Therefore the effects of changes in intra-31

annual distribution of climate variables are not to be neglected when looking at changes32

in annual discharge.33

Plain Language Summary34

Water availability is a high stake for all societies. Different competing activities rely35

on that resource and its scarcity challenges social, economical and environmental con-36

flicts. With climate change, river discharge and more generally the full water cycle is im-37

pacted. Furthermore, many human activities such as dams and irrigation concurrently38

change the balance of the water cycle over watersheds. Which is the impact of climate39

change on discharge? How to separate the effect of climate change from the effect of di-40

rect human activities? Models are a way to represent reality with an understanding of41

the physical phenomena included. They can be used to represent the behavior of water-42

sheds without human intervention. We develop a methodology to highlight the climate43

factors impacting discharge. It compares the impact of changes in seasonality to changes44

in annual averages of climate variables. We find that annual discharge changes are mostly45

driven by changes in annual precipitation over Europe. The increasing temperature leads46

to increasing evaporative demand and is the second most impacting factor over most of47

Europe. However, over the Mediterranean area where water is more limiting, changes48

in the seasonality of precipitations has a higher impact than changes in the evaporative49

demand.50

1 Introduction51

Water is a key resources for all societies and both its excess and its scarcity can52

lead to challenging economical, environmental and social issues. Understanding the hy-53

drological cycle and how it evolves due to a changing climate is a major challenge of the54

century. If we focus our analysis on past changes over Europe, the atmospheric demand55

for moisture (PET ) has been raising, along with modifications of precipitations (P ). The56

observed changes in P show that not only the annual average of P is changing but there57

are differences in these changes between Summer and Winter, dependent on the area (Zveryaev,58

2004). Over Europe, Christidis and Stott (2022) showed that the Mediterranean area59

tends to become dryer while the rest of Europe becomes wetter over the past century,60

with weaker relative trends in Summer than in Winter. Therefore it is important to not61

only look at the effects of changes in the annual averages of climate variables but also62

to look at the effect of changes in seasonality and intra-annual distribution of these vari-63
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ables. The distribution of P within the year and its coupling or decoupling from the at-64

mospheric demand PET will influence the partitioning of water between evapotranspi-65

ration and runoff at the annual scale.66

Changes in the different climate variables governing the water cycle will evidently67

change equilibriums in the water balance over the different watersheds, impacting the68

discharge of rivers. Milly et al. (2005) showed that streamflow trends world wide are and69

will continue to be significantly impacted by changes in climatic factors. Studies show70

the impact of distribution and concentration of rainfall events on peaks of discharge Q71

(Tuel et al., 2022). However rivers are also highly managed and human activities are a72

main driver of change in the functioning of watersheds. The main difficulty in analyz-73

ing the effect of climate is to decompose the effects of the different drivers of change on74

discharge and isolate the effect of climate to better understand its relative importance.75

Our goal in this study is to propose a tool which can decompose and analyze the sen-76

sitivity of discharge to climate change and separate it from internal watershed changes.77

Physical based hydrological and Land Surface Models (LSM) are getting more and78

more complex, able to reproduce the behavior of watersheds and to model discharge. How-79

ever due to that complexity, it is more difficult to decompose the effects of individual80

climate factors and to interpret their outputs. Other types of models are simpler, de-81

pendent on fewer variables, such as statistical models. These later models are more em-82

pirical and their elaboration is often limited by the available data. They can’t always83

relate to physical phenomena due to their simplicity. Our methodology combines both84

types of models to benefit from both the performance and complexity of the physical based85

model and from the simplicity of analysis of the more empirical model.86

The empirical framework we chose to work with is the Budyko framework. It is well-87

known and widely used in hydrological studies. It relies on the annual mean of the wa-88

ter and energy balance at the scale of a watershed (Tian et al., 2018), taking into account89

the water and energy limitations of the physical system. This framework relies on the90

hypothesis that each watershed is at an equilibrium and introduces an empirical param-91

eter which encompasses the watershed characteristics and its evaporation efficiency. The92

main limitation is that the empirical parameter fitted on discharge observations doesn’t93

distinguish between the concurring effects of climate change and human activities. Fur-94

thermore these effects tend to change the annual evaporation dynamics of watersheds95

and the equilibrium of the system on which the framework relies. The present study in-96

troduces a time-moving window to fit the Budyko framework to better capture the ef-97

fect of climate change and this transition of the equilibrium state.98

To focus on the effects of climate change, the present study applies the Budyko frame-99

work to outputs of a state of the art LSM. The LSM represents the physical behavior100

of watersheds and the only source of change introduced in the dynamics of the modeled101

watersheds is the evolving climate variables applied to the models. The use of LSM out-102

puts also allows to play with the climate parameters to better separate the effects of the103

different elements of climate change (changes in annual averages against changes in intra-104

annual distribution of climate variables).105

This article is structured as follows: we first present the Budyko framework with106

its underlying hypothesis and limits. Then we explain the methodology we developed107

to apply it to the chosen LSM. Synthetic forcings are created to test if our methodol-108

ogy allows to analyse the effects of different aspects of climate change. We explain the109

use of the time-moving window to look at temporal trends in the different climatic ef-110

fects. Finally we explain the results obtained over Europe of the effect on discharge trends111

over the past century of the different element of climate change (changes in annual av-112

erages against changes in intra-annual distribution of climate variables).113
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2 The Budyko framework114

2.1 General presentation115

Over watersheds which can be considered as closed systems, the water balance equa-116

tion (1) applies to explain the equilibrium between the variables of the hydrological cy-117

cle: the river discharge (Q), the evapotranspiration (E), the precipitation (P ) and the118

change in the water storage over the watershed between two time steps (∆S).119

P −∆S = Q+ E (1)120

Long-term, ∆S can be reasonably considered as negligible. Ideally, this hypoth-121

esis should be applied over a period long enough that the equilibrium of the system is122

reached (L. Zhang et al., 2008). This also supposes no external perturbations impact-123

ing the water budget such as groundwater mining or water transfers to or from other basins.124

This hypothesis can be applied over time series of yearly resolution (hydrological125

year) or coarser, so we can be freed from seasonal variations of the water storage. For126

the region considered, the hydrological year starts in September, at the end of the dry127

season, when the reservoirs are supposedly filled at their lowest, to minimize the differ-128

ences in ∆S from one year to another. Later on, unless specified otherwise, the variables129

P , E and Q represent the annual averages over the hydrological year.130

Commonly used in hydrological research to study Q and E, the budyko framework131

relies on this long-term equilibrium of water balance over a catchment, coupled to the132

energy balance. It postulates that the partition of annual water budget between runoff133

and evapotranspiration over a catchment, represented by the evapotranspiration E, is134

a function of the relative water supply (rainfall P ) and the atmosheric water demand135

(potential evapotranspiration PET ) (Tian et al., 2018; Xing et al., 2018; Yang et al., 2007).136

The later depends on both the energy availability and on atmospheric turbulences. There-137

fore this framework takes into account the water and energy limitations of the system138

which can’t evaporate more than the atmospheric demand allows and more water than139

the catchment reaches with the source of water (P ). Different analytical approximations140

to this hypothesis (Budyko curves) have been developed, expressing the evapotranspi-141

ration rate (E/P ) as a function of the aridity index (PET/P ) over a catchment (fig. 1).142

This framework relies on a closed water budget in time and space and neglects ∆S.143

So it has to be applied over a closed watershed and fitted on a long-term equilibrium.144

Therefore it is applied over annual averages at the very least and adjusted over several145

years to consider a long-term equilibrium and validate the hypothesis on ∆S.146

2.2 One parameter equation147

Parametric equations were developed, introducing an empirical parameter repre-148

senting the catchment characteristics. Two of the most widely used are the Fu’s equa-149

tion (2) (Ning et al., 2019; Simons et al., 2020; L. Zhang et al., 2008; Zheng et al., 2018)150

and the Mezentsev–Choudhury–Yang equation (3) (Luo et al., 2020; Roderick & Farquhar,151

2011; Wang et al., 2020; Xing et al., 2018; Xiong et al., 2020). These equations can be152

found under different names in the litterature such as Tixeront-Fu equation for (2) or153

Turc-Mezentsev for (3) (Andréassian & Sari, 2019).154

E

P
= 1 +

PET

P
−
(
1 +

(
PET

P

)ν) 1
ν

(2)155

E =
P ∗ PET

(Pω + PETω)
1
ω

(3)156
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Figure 1. Budyko framework: relationship between evapotranspirative ratio (E/P ) and arid-

ity index (PET/P ) (Fu’s equation). E, PET , P are annual averages. ν associated to the purple

curve is larger than ν associated to the orange curve and translate in a higher evaporation ef-

ficiency above the watershed. For a given watershed with constant characteristics, there is still

a dispersion around the curve of the dots for a given year due to intra-annual variations of the

climate cycle (orange dots). The curve and its associated ν represents the average behavior of the

watershed. The original framework includes trends in annual climate variables by a displacement

along the curve (red arrow). However it doesn’t include trends which could impact the way water

is partitioned over the catchment such as long-lasting trends in intra-annual distribution of P and

PET (blue arrows).

The two parameters derived from equation (2) and (3) are linearly correlated, im-157

plying that both equations are almost equivalent (Andréassian & Sari, 2019; du et al.,158

2016; Roderick & Farquhar, 2011). We examine the sensitivity of the results to the para-159

metric equation used. A limitation exists when fitting Fu’s equation for watersheds with160

a particularly high dryness index such as in arid climates. In these areas, the uncertainty161

of the estimated ν will increase as the values used to fit the curve are all too close to the162

plateau (fig 1) and not scattered enough to correctly fit the curve. We fit the watershed163

parameter ω with Choudhury’s equation (3) and a set of E/PET and P/PET . This method164

ratios to PET gives us a plateau in humid areas as opposed to the previous fit ratioed165

to P . We obtain very similar results for the methodology with either equation used. We166

conclude that our area of study is not strongly impacted by this issue and that we could167

use either equation. For the rest of the study, we use results obtained with Fu’s equa-168

tion (2).169

Evapotranspiration (E) measurements are not available over large spatial and tem-170

poral scales. Therefore most study work from discharge (Q) analysis. Q can be calcu-171

lated from the water balance equation (1) where ∆S has been neglected. With Fu’s equa-172

tion (2) used to express E in (1), it yields (4):173

Q = P ∗
(
1 +

(
PET

P

)ν) 1
ν

− PET = f(P, PET, ν) (4)174
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2.3 Discussion of the watershed parameter175

The watershed parameter is empirical, calculated by fitting the data over a spe-176

cific catchment for a given time-period considered to be in an equilibrium state. It de-177

termines the shape of the curve. It reflects the various hydrological characteristics of the178

watershed such as topography, vegetation coverage, soil properties, etc, which play a part179

in the annual partitioning of water between evapotranspiration and runoff over the catch-180

ment.181

The original Budyko hypothesis considers a stable equilibrium state of the water-182

shed behavior over the entire period studied. It correspond to a given curve (fig. 1) with183

a given value of the parameter ν for one watershed. The evolution of climate is taken184

into account through the evolution of annual averages of climate variables (fig. 1, red185

arrow). The variability of the annual values (E/P , PET/P ) around the fitted curve are186

due to intra-annual variations of the climate cycle, such as the distribution of rain which187

changes the covariance between P and PET over the year. For instance, a difference in188

heavy rain events over a catchment can change the capacity of the soil to store water and189

change the dynamic of the water partition into runoff and evaporation even if the an-190

nual amount of precipitation stays constant. More generally, a change in synchroniza-191

tion between P (water available) and PET (energy demand from the atmosphere) will192

change E/P for the same average climate (Abatzoglou & Ficklin, 2017; S. Li et al., 2022).193

In an equilibrium state, the intra-annual variations are supposedly without trends and194

white noise around that equilibrium. The fitted parameter ν represents the average be-195

havior of the basin.196

However watersheds are not always in an equilibrium state. In the various factors197

characterized with the watershed parameter ν, some can be considered as time invari-198

ant (soil type, topography, ...) while others are possibly affected by long-lasting changes.199

Then the original framework reaches a limit. Furthermore, changes can occur in the hy-200

drological properties of the surface water system, most likely due to direct human in-201

tervention such as river management, irrigation, land cover change, while other changes202

can occur due to climate change or to other climate land surface feedbacks, such as long-203

lasting changes in heavy raining events and seasonality of climate variables. One diffi-204

culty is that these changes are often simultaneous and the framework being semi-empirical,205

it does not allow to separate these types of changes easily.206

Several studies attempt to address these deficiencies. Most studies consider a change207

between two periods considered as stable, a period of reference and a period post-changes208

(Jiang et al., 2015; Luo et al., 2020; Wang et al., 2020; Zhao et al., 2018; Zheng et al.,209

2018) and fit the parameter independently over each period. They obtain two different210

curves (fig. 1) with two different watershed parameter characterizing the two different211

equilibrium state before and after change. As a first hypothesis, they then consider that212

changes in the parameter are only due to anthropogenic changes. Assuming ν to be cli-213

mate invariant, the changes due to climate is taken into account in the framework only214

through the changes of the average P and PET (fig. 1, red arrow). Such method neglects215

the potential effects of climate, such as evolution of seasonality of climate variables, on216

the evolution of watersheds behaviors reflected by the watershed parameter (fig. 1, blue217

arrows).218

In a second type of attempt, several studies developed an expression of the water-219

shed parameter as a function of significant factors. This would allow to express the evo-220

lution of ν over time and decompose the effects of climate and human activities through221

the different factors chosen. Different methods such as step-wise regressions, neural net-222

work were used to identify pertinent factors. However it requires to have enough infor-223

mation on the factors chosen and strong hypotheses stand behind the expression. Ning224

et al. (2019); Tian et al. (2018); D. Li et al. (2013); S. Li et al. (2022); Xing et al. (2018);225

X. Zhang et al. (2019), constructed their function across several basins, accounting for226

–6–



manuscript submitted to Water Resources Research

spatially different human, climate and land characteristics. Environmental factors such227

as soil moisture, seasonality of P and PET , aridity index (S. Li et al., 2022; Ning et al.,228

2019), vegetation fraction and routing depth (Gentine et al., 2012; D. Li et al., 2013; Ning229

et al., 2019), relief ratio, drought severity index, seasonality of P and synchronicity be-230

tween P and PET (Xing et al., 2018) were selected depending on the study. Direct hu-231

man factors considered were irrigated area (Tian et al., 2018) or water applied for irri-232

gation (D. Li et al., 2013), land use and land cover change in highly managed areas (Tian233

et al., 2018) or even GDP per capita (X. Zhang et al., 2019). Other factors were tested234

but not selected, some selected in some studies but not in others, showing the high de-235

pendence of the final expression on the choice of factors tested and on the area of study.236

One strong hypothesis is then that such a relationship defined over spatial differences237

is also applicable to explain temporal differences (Luo et al., 2020).238

Other studies (Jiang et al., 2015; Zhao et al., 2018) looked at time-varying human239

activities and climate change to construct expressions over time, using a time-moving240

window to fit the evolution of the catchment parameter over a basin. Factors chosen were241

temperature, PET and irrigated areas (Jiang et al., 2015). This approach faces another242

limitation due to the availability of information on the time evolution of the different fac-243

tors. Ning et al. (2019) used a mixed technique, applying their fit across 30 basins at dif-244

ferent time scales using moving time-windows and found that the impact of vegetation245

cover and climate seasonality on the watershed parameter was stronger over longer time246

steps.247

3 Methodology248

The methodology proposed here uses the Budyko framework to explore the sen-249

sitivity of discharge to climate change. It focuses on the parameter ν and attempts to250

decompose its dependence on climate. We want to explore the climate dependence of ν,251

without having to express it directly. We use the output of a Land Surface Model to re-252

produce the behavior of watersheds with constant characteristics, subjected to climate253

change but no other source of change. We develop a time varying ν(t) to capture part254

of the change in the behavior of the watersheds due to climate. We compare its effects255

to the magnitude of change in discharge already captured with the traditional framework256

which only considers changes in annual averages of P and PET .257

3.1 Simulations with a Land Surface Model (LSM)258

To isolate the effect of climate change from other factors which could affect water-259

sheds, we work with outputs of a Land Surface Model (LSM). The model constructs wa-260

tersheds with constant hydrological properties and represents an idealized watershed, with-261

out any direct changes from human intervention and other non climatic perturbations.262

Therefore the only source of long-term change would be due to a difference in response263

to an evolving climate.264

3.1.1 A ”natural reference” simulation265

In this study, we use the LSM Organizing Carbon and Hydrology In Dynamic Ecosys-266

tems (ORCHIDEE) from the Institut Pierre Simon Laplace (IPSL). It includes biophys-267

ical and biogeochemical processes to simulate the global carbon cycle and quantify ter-268

restrial water and energy balance. It can be run coupled to an atmospheric model or in269

off-line mode. In that latter case, the atmospheric conditions are forced by an indepen-270

dent dataset. In the following, we will use the model in stand-alone conditions, with the271

forcing dataset GSWP3 which covers 1901 to 2013 (Hyungjun, 2017) with a resolution272

of 0.5°for all climate variables. The hydrological network of the ORCHIDEE LSM is con-273

structed from the hydrological elevation model HydroSHEDS (Lehner et al., 2008) which274
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Figure 2. Scheme of the method: The Land Surface Model (LSM) is forced with the forcing

dataset to calculate E. The LSM is considered to represent the ”climatic reality” over a catch-

ment, without any changes in the watershed characteristics. We then average P , PET and E and

integrate it over each watershed to get annual averages for all catchments. Then we fit Fu’s equa-

tion. A) The fit of the equation over the entire century results in the calculation of an empirical

parameter ν which represents the average catchment characteristics. B) To have an evolution

of ν(t) over time, the fit was in a second time applied successively over an 11-year sliding time-

period.

covers the area studied with the resolution of 30 arc seconds (approximately 1 kilome-275

ter at the equator). The hydrological information is then upscaled to the resolution of276

the atmospheric grid, the hydrological coherence being preserved by the construction of277

Hydrological Transfer Units (HTU) at the sub-grid level (Polcher et al., 2022). From a278

database of gauging stations, upstream basins are reconstituted on the hydrological el-279

evation model grid and then projected on the atmospheric grid during the process. We280

have access to 2134 stations over the area studied for which the LSM calculates a dis-281

charge and for which we have the reconstituted upstream basin.282

We consider that the final product correctly reproduces the hydrological network283

and the water partitioning over a watershed due to climatic phenomena. The modeled284

watersheds have fixed constant land surface characteristics which will react to the cli-285

mate data input at each time step (30 min time step). Therefore the LSM output de-286

pend on both the evolving annual average and the evolving distribution over the year287

of the climate variables.288

The watershed parameter of the Budyko curve is calculated over each catchment289

with a fit of the equation curve E/P = f(PET/P ) (equation 2), using the minimum290

root mean square error (RMSE) for a given set of annual averages of evapotranspiration291

E, precipitation P and potential evapotranspiration PET data (Jiang et al., 2015; Yang292

et al., 2007).293

The climatic variables defining P and PET are from a forcing dataset, GSWP3294

here. P is the sum of rainfall and snowfall. PET is calculated through Penman-Monteith295

–8–
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Table 1. Synthetic forcings created

Forcing
name

Average P Intra-annual
variation of P

Descriptiona

1 ref - - Reference forcing: GSWP3 (1901-2012)
2 f2000 fixed fixed P has been entirely fixed for each year,

equal to the precipitation and the season-
ality of the year 2000.

3 cstmean fixed - Only the average value of P has been
fixed for every year to the one of year
2000

4 cstintravar - fixed Only the intra-annual variations of P
have been fixed for every year to the one
of year 2000

aFor forcings 2 to 4, P has been modified compared to the reference: the average value of P over
the year and/or the distribution of precipitations over the year have been fixed for each year to
the value of the year 2000.

equation applied at a 30 min time step (Barella-Ortiz et al., 2013). E is the output of296

the LSM forced with the same forcing. The gridded outputs (PET , E) are at the res-297

olution of the forcing dataset (0.5°). Then we consider the annual mean P , PET and298

E over hydrological years, integrated over each catchment. The catchments’ shape has299

been reproduced at finer resolution and then projected on the 0.5°grid.300

We fit the parameter once with all points over the entire time period covered by301

the climate dataset to get ν representing the average behavior for each catchment (fig.302

2, A).303

3.1.2 Synthetic forcings to analyze the effect of variation of seasonal-304

ity305

In order to better understand the effect of inter and intra-annual climate variations306

on the Budyko framework and on discharge Q, we constructed synthetic climate forc-307

ings. To separate the effect of changes in annual averages of climate variables from the308

effect of changes in the intra-annual covariance of P and PET , we constructed synthetic309

forcings fixing one or the other.310

The calculation of PET is based on Penman-Monteith equation applied at a 30 min311

time step (Barella-Ortiz et al., 2013). It includes many related climate variables and non-312

linear relationships, making it very difficult to anticipate how a change in a given climate313

variable may influence its behavior. It was therefore too complicated create synthetic314

forcings for which we would modify climate variables in order to fix PET seasonality for315

instance. Therefore we only modify the precipitation P in the synthetic forcings, to see316

how it impacts our results compared to the reference forcing.317

The reference forcing is the GSWP3 dataset from September 1901 to September318

2012 (3h time step). Then we constructed three forcings which were modified over hy-319

drological years (table 1, fig. 3a):320

• f2000 : A forcing where all 3h values of P are set to the values of the year 2000321

(September 1999 to September 2000) for each year. Therefore all component of322

P (average and intra-annual variations) are set constant.323
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• cstmean: A forcing for which we keep the relative intra-annual distribution of P324

of each year but where the average P of each year was set constant. The 3h val-325

ues of P are scaled so the yearly average over the hydrological year is set to the326

one of the year 2000 (September 1999 to September 2000).327

• cstintravar : A forcing for which we keep the annual average of P for each year but328

where the relative intra-annual distribution of P was set constant. The 3h values329

of P are set to the values of the year 2000 (September 1999 to September 2000)330

for each year and then scaled over each hydrological year so the yearly average is331

set to the one of the corresponding year in the reference forcing.332

Fig. 3a shows the resulting annual averages of P , PET , E integrated over a given333

catchment in southern Spain, along with the average monthly distribution of P over the334

year for each modified forcing. PET is the same for all forcings. The inter-annual vari-335

ability of P and E is canceled for f2000 since the variability of E over that area is mostly336

linked to P . The inter-annual variability of E for cstmean is highly reduced but not com-337

pletely canceled since it is also dependent on intra-annual distribution of P . For ref and338

cstintravar, the average monthly distributions of P shown here are computed over the339

century. It however varies from one year to another which is not illustrated here. For340

f2000 and cstmean, the average monthly distribution of P shown here corresponds to341

the distribution of P over the year 2000 and is the same for each year in these forcings,342

with just a scaling difference in the forcing cstmean. Over that given watershed, it re-343

sults in a concentration of P over April and October and a particularly dry month of Febru-344

ary over every year.345

We expect that the Budyko framework will work better to reproduce the LSM out-346

put when the variation of intra-annual distribution of P are canceled. Indeed the vari-347

ability of the annual points (E/P , PET/P ) around the curve (fig. 1) should be highly348

reduced.349

3.2 Introducing a time-varying watershed parameter ν350

For a watershed with constant hydrological properties (which is the case when we351

consider modeled watershed in ORCHIDEE), if we consider that ν is independent of cli-352

mate, it should be time invariant.353

However, the intra-annual synchronization of P and PET (or the annual covari-354

ance between PET and P ) impacts the annual mean of E and Q and the average effect355

of this synchronization is included in the adjustment parameter ν, which is therefore not356

completely independent of climate. Through its simple framework, the Budyko model357

does not cover possible changes at intra-annual time scales which can impact the covari-358

ance between PET and P over a year. Therefore long-term changes in seasonality should359

induce a climatic time dependence, not accounted for in the framework with a constant360

ν. Considering a time varying parameter should therefore improve the Budyko model361

to better reproduce E and its climatic evolution.362

3.2.1 Fit with a sliding time-window363

To get a time varying parameter ν(t) for each catchment, we do several fits over364

successive 11-year time-sliding sub-periods (fig. 2, B).365

We chose 11 years as the smallest time-length over which we could apply the Budyko366

framework relevantly, considering than each 11-year sub-period is stationary (∆S = 0).367

Tian et al. (2018) found that below than time length the fit of the ν parameter was too368

unstable to be relevant.369

This time-varying ν(t) should enable to capture the possible long-term (above 10370

years) variations in the intra-annual water-partitioning over a catchment. These long-371
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term changes in the annual covariance between P and PET should be the main climatic372

factors involved in the climatic dependence of ν. The variations of ν may however not373

be completely independent of the annual averages of P and PET . Crossed effects be-374

tween annual averages and intra-annual distributions would also be captured into ν vari-375

ations. For instance, a concentration of raining events over a shorter period would in-376

crease the runoff (change in intra-annual distribution of P ), effect which would be am-377

plified by an increase of the total amount of water rained (change in annual average of378

P ).379

3.2.2 Decomposing the impact of climate on discharge trends380

The watershed parameter ν is a conceptual variable providing little insight into the381

magnitude of discharge changes. We thus examine the impact of ν(t) changes on the river382

discharge Q and compare the impact of these changes to the impact of annual averages383

of climate variables (P and PET ) changes on Q over time. We gather P and PET in384

a ”climate” variable C = (P, PET ) to simplify the discussion.385

Following our previous hypothesis (equation 4), Q can be estimated with the Budyko386

framework using C and ν: Q = f(C, ν(t)).387

Q can be decomposed with first order partial derivatives (equation 5), with the first388

term of the right hand side, representing the partial derivative due to climate variables389

C and the second term for the partial derivative due to changes in the watershed param-390

eter ν(t). We then estimate the partial derivatives due to C and due to ν independently.391

dQ

dt
=

δQ

δC

dC

dt
+

δQ

δν

dν

dt
with C = (P, PET ) (5)392

To independently estimate the partial derivative due to climate variables C, we need393

to cancel the second term. To do so, we calculate the discharge Qc = f(C, ν), with a394

constant value of ν. The trend of that discharge dQc

dt matches the term with the partial395

derivative due to C in equation (5).396

To estimate the partial discharge trend due to ν(t), we need eliminate the trends397

in annual averages of P and PET over the century to cancel the first term. We randomly398

draw P and PET pairings for each year. We do so several times and average the results399

for each year. It gives us a random climate without trends over the century. We then400

apply Fu’s equation (2) with the resulting random annual averages of P and PET and401

the time varying ν(t) calculated with the forcing before the random drawing. It gives402

Qν = f(Crand, ν(t)) for which the climate trends are only due to variations captured403

by the time varying parameter ν(t). The trend dQν

dt matches the term with the partial404

derivative due to ν in equation (5). In the end, we get:405

dQ

dt
=

dQc

dt
+

dQν

dt
(6)406

We calculate the trends of each term and their significance using the Mann-Kendall407

non-parametric test, associated to Thiel-Sen slope estimator.408

This gives us time-series and associated trends for each of the watershed studied.409

Fig. 3 shows an example for a watershed in southern Spain. Fig. 3a shows the inter-annual410

variability of annual averages of climate variables P , PET directly calculated from the411

atmospheric forcing and E modeled by the LSM, for the different synthetic forcings. Over412

this watershed, E mostly relates to P . Fig. 3b shows the time-varying ν(t) resulting from413

the time-sliding window calculation (blue curve), compared to ν calculated with one fit414

over the entire century (dashed purple line), for the reference forcing. The bottom plot415
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(a) Watershed. The colors show the share of the grid point within the watershed. Yellow points
are completely within it while bordering grid points are red.
Modified forcings over a given basin: the first row of graphs shows the inter-annual variability of
P , PET and E for each forcings. The second row shows the average seasonal distribution of P
over the catchment for each forcings over the entire century. The average monthly distributions of
P shown here are computed over the century. It however varies from one year to another for the
reference forcing and the forcing cstmean which is not illustrated here.

  

Example for a given basin :

Intra-
annual 

variations
(m³/s)

reference forcing f2000 cstmean

Annual 
averages

(m³/s)

cstintravar

PET PET PET PET

(b) Watershed parameter ν fitted over the entire time period (dashed purple line) and ν(t) fitted
successively over a sliding 11-year time-window (blue line) for the reference forcing.

(c) Discharge estimated with Budyko for the reference forcing: Q = f(P, PET, ν(t)) (blue line),
Qc = f(P, PET, ν) (purple line), Qν = f(Prand, E0rand, ν(t)) (black line) with their associated
trends. Unsignificant trends are dashed. Here all trends are significant.

Figure 3. Time series obtained through the full application of our methodology for a given

basin
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in fig. 3c shows the decomposition of the discharge, comparing the full discharge to par-416

tial discharges and their respective trends. The full discharge Q is modeled with the Fu’s417

equation with annual averages of P and PET from the reference forcing and ν(t). The418

first partial discharge QC is the one calculated without ν(t) variations. It covers most419

of Q variations for that given basins. The second partial discharge Qν covers some of420

the missing variations of Q and some of the missing trend. From that figure we can con-421

clude that most variations and trends of the discharge in this basin are explained by C =422

(P, PET ).423

4 Results424

4.1 Performance of Budyko with or without a time variant ν parame-425

ter426

Our hypothesis is that for watershed with constant hydrological properties, the dis-427

persion of annual points around the curve is due to intra-annual variations of climate.428

If these variations did not exist, the original framework should be very close to perfect429

to model the discharge Q.430

To test this hypothesis, we examine the performance of the original Budyko frame-431

work with a constant parameter ν to reproduce the discharge from the LSM for the ref-432

erence forcing compared to the forcing cstintravar. For that later forcing, we removed433

the intra-annual variations of P from one year to another which should improve the per-434

formance of the Budyko framework close to perfect if the hypothesis is valid.435

We use the Nash-Sutcliffe coefficient (NSC) as performance indicator (equation (7),436

fig. 4). We consider a NSC> 0.5 to be satisfactory (Moriasi et al., 2007).437

NSC = 1−
∑years

i=0 (Qli −Qbi)
2∑years

i=0 (Qli −Ql)2

{
with Ql= dicharge from the LSM
and Qb= Result from the methodology with Fu’s equation

(7)438

We obtain NSC values above 0.5 for 89.9% of all 2134 watershed tested for the orig-439

inal Budyko framework (Qc, calculated with a constant ν) applied with the reference forc-440

ing (boxplot on the left, fig. 4). The original framework is therefore already effective to441

reproduce the annual discharge over watersheds with constant hydrological properties442

reacting to an evolving climate.443

For the forcing cstintravar, NSC for Qc increases to above 0.6 for all watersheds444

(boxplot on the right, fig. 4). This confirms our hypothesis: the framework is even more445

effective if there are no intra-annual variations of P from one year to another. Most of446

the variability not captured by the original framework is therefore due to the intra-annual447

variability of P and the covariance of P and PET .448

When looking at NSC for the framework applied to the reference forcing with a time449

varying parameter Q(ref) = f(C(ref), ν(t)), we gain up to 0.26 points of NSC for the450

tested watershed and reach 94.1% of all watersheds with NSC>0.5 (boxplot on the cen-451

ter, fig. 4). It doesn’t reach the performance of Qc with the forcing cstintravar but en-452

ables to capture some of the variation due to intra-annual trends of climate variables.453

The part captured are long-term trends due to our choice of the 11-year time moving454

window. This validates our hypothesis that the introduction of a time varying watershed455

parameter ν(t) improves the framework to better encompass climate variability and the456

effect of climatic trends on discharge, including the effect of climate change on intra-annual457

distribution and covariance of climate variables (P and PET ).458

To sum up, most of the inaccuracy of the original framework for watershed with459

constant hydrological properties are due to variability in intra-annual distribution of cli-460
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Figure 4. Boxplot of Nash-Sutcliffe coefficient (NSC) over all watersheds: for the forcing of

reference with the constant parameter ν, with the time varying parameter ν and for the forcing

cstintravar (where the seasonal distribution of P have been fixed over the entire time period)

with a constant ν. It represents how well Budyko framework reproduces the discharge output

from ORCHIDEE. A value above 0.5 is considered as satisfactory. Very similar results are found

when looking at R2 from a linear regression.

mate variables (P and PET ). Our time varying parameter improves the framework by461

allowing to capture long-term trends in these variations. We now analyze their effect on462

discharge, compare to the effect of trends in annual average of climate variables.463

4.2 Comparing the effects of intra-annual variations of P on discharge464

Q to the effects of variations in annual averages of P in Europe465

We consider our area of study, Western Europe (2134 watersheds modeled) (fig. 7).466

We first look at the results for the reference forcing for two examples, a basin in Eng-467

land (fig. 5) and a basin in Italy (fig. 6). The discharge obtained through our method-468

ology applied to the reference forcing is the first plot on the top left fig. 5b and 6b. The469

blue curve represents the full discharge modeled Q = f(C, ν(t)), the purple line the dis-470

charge Qc = f(C, ν) with only variations in C accounted for and the black line Qν =471

f(Crand, ν(t)) with only the variations of ν(t), mostly changes in the intra-annual co-472

variance of P and PET , accounted for. We represented anomaly of discharge ((Q−Qmean)/Qmean)473

in order to better compare the plots to each other. For both examples (fig. 5b and 6b),474

with the reference forcing, the dominant effect in the variations of annual discharge Q475

(blue line) is due to the annual mean of climate variables C (purple line). Indeed, the476

blue and the purple curves have very similar variations and trends. We extend the re-477

sults over all of Europe. Fig. 7a, 7b, 7c show the relative trends over each basins, respec-478

tively of Q, Qc and Qν , for the reference forcing. There are significant decreases in the479

total discharge Q (fig. 7a) (-0.3% to -0.4% per year over the past century) over sparse480

basins in Spain, the Pyrenees, Italy, Slovenia, Greece and Eastern Europe. There are sig-481

nificant increases (fig. 7a) (+0.2% to +0.4% per year over the past century) over sparse482

basins in France, Germany, Denmark, Sweden, Northern UK and Serbia. Similarly as483

for the two examples, these trends are mostly due to changes in the annual averages of484
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(a) Annual average of climate variables P (light blue line), PET (yellow line) and E (purple
line) modeled with the LSM for each academic forcing. Not shown here, the intra-annual
distribution of P has been fixed for the forcings f2000 and cstintravar.

(b) Normalized anomaly of discharge estimated with Budyko: Q = f(P, PET, ν(t)) (blue
line), Qc = f(P, PET, ν) (purple line), Qν = f(Prand, PETrand, ν(t)) (black line) with their
associated trends. Unsignificant trends are dashed. Here the results for each academic forcing
are shown. The scale of the y-axis changes and is divided by 5 for the focings f2000 and
cstmean.

Figure 5. Example 1: Time series obtained through the full application of our methodology

for a given basin in England.
–15–



manuscript submitted to Water Resources Research

(a) Annual average of climate variables P (light blue line), PET (yellow line) and E (purple
line) modeled with the LSM for each academic forcing. Not shown here, the intra-annual
distribution of P has been fixed for the forcings f2000 and cstintravar.

(b) Normalized anomaly of discharge estimated with Budyko: Q = f(P, PET, ν(t)) (blue
line), Qc = f(P, PET, ν) (purple line), Qν = f(Prand, PETrand, ν(t)) (black line) with their
associated trends. Unsignificant trends are dashed. Here the results for each academic forcing
are shown. The scale of the y-axis changes and is divided by 5 for the focings f2000 and
cstmean.

Figure 6. Example 2: Time series obtained through the full application of our methodology

for a given basin in Italy.
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(a) Relative trends dQ/Q
dt :

ref
(b) Relative trends dQc/Q

dt :
ref

(c) Relative trends dQν/Q
dt :

ref

(d) Relative trends dQ/Q
dt :

f2000
(e) Relative trends dQc/Q

dt :
f2000

(f) Relative trends dQν/Q
dt :

f2000

(g) Relative trends dQ/Q
dt :

cstmean
(h) Relative trends dQc/Q

dt :
cstmean

(i) Relative trends dQν/Q
dt :

cstmean

(j) Relative trends dQ/Q
dt :

cstintravar
(k) Relative trends dQc/Q

dt :
cstintravar

(l) Relative trends dQν/Q
dt :

cstintravar

(m) Colorbar: significant relative trends (% of change per year over
the century)

Figure 7. Decomposition of significant relative Q trends (% of change per year over the cen-

tury) for all the tested forcings: the first line is the reference forcing. The first column is the

total change in Q, the second column is the partial change due to trends in annual average of

P and PET , the last column is the partial change due to changes in the watershed parameter,

mostly due to trends in intra-annual distribution of P and PET . For the modified forcings:

f2000 has the annual average and intra-annual distribution of P fixed for every year to their

value for the year 2000. cstmean has only the annual average of P fixed. cstintravar has only

the intra-annual distribution of P fixed. White areas don’t have significant trends.
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C = (P, PET ) since the Budyko framework with a constant parameter Qc captures most485

of it (fig 7b). The inter-annual variability of C is high, making the trends less than 95%486

significant over most basins for Q and Qc. Changes in C are the dominant factors ex-487

plaining the trends in Q over the past century in Europe. This is confirmed by the re-488

sults obtained with the forcing cstintravar (bottom right for fig. 5b and 6b and maps489

fig. 7j to 7l). It shows that without inter-annual changes in P distribution, in other words,490

with a maximum reduction of the inter-annual changes in the annual covariance of P and491

PET , the discharge Q obtained and the associated relative trends are very similar to the492

results obtained with the reference forcing. Therefore the effects of changes in the co-493

variance of P and PET is minor compared to the effects of changes in the annual mean494

of climate variables C in most of Europe.495

However, there are some areas where the effects of intra-annual distribution of P496

can’t be neglected. If we look at the Tiber river in Italy (fig. 6b), the trend in Qc is sim-497

ilarly significant for both the reference forcing and the forcing cstintravar but the trend498

in the total discharge Q is only significant for the forcing cstintravar. For the reference499

forcing, the decreasing trend in the discharge due to C (Qc) is counteracted by the in-500

creasing trend due to ν(t) (Qν), making the final trend in discharge Q not significant.501

More generally over Europe, when we erase the inter-annual variability of C, we capture502

the effect of trends in the intra-annual distribution of P and PET , through our ν(t), in503

Qν (fig 7c). It tends to increase discharge especially in the South-West of Spain, Italy504

and Western France (+0.1% per year over the century). It corresponds to the increas-505

ing trend for the black line in fig. 6b, top left graphs for the Tiber river. It has an op-506

posite trend towards decreasing discharge in Eastern Europe and has a rather neutral507

effect in the rest of Europe (fig. 7c and example of the basin in England fig. 5b, top left508

graph, black line). This effect is masked in the total trend in discharge by the high inter-509

annual variability of C (fig. 5b and 6b, top left graphs, blue line). However it amplifies510

the trends due to changes in annual averages of C over some watersheds such as the Duero511

basin (North-West of Spain, decrease in discharge), western France and northern Ger-512

many (significant increase in discharge over some watersheds where the effect of changes513

in C alone was not significant). In some other areas, such as for the Tiber river in Italy,514

or in Southern UK, the effect of intra-annual variability of P and PET counteracts the515

effect of C, making the relative total Q trends loose their significance due to opposite516

signals (decreasing trend due to the evolution of C while the effect of change in the intra-517

annual distribution of the climate variables tend to an increase in the discharge).518

To look more closely at the effects of the intra-annual variations of P on discharge,519

we examine the results for the synthetic forcing f2000 and cstmean (respectively top right520

and bottom left fig. 5b and 6b and maps 7d to 7f and 7g to 7i).521

When we look at the results for the synthetic forcing f2000 (fig 7d to 7f), for which522

P has been entirely set to that of year 2000 for each year, we therefore only get the trends523

due to changes in PET . For the synthetic forcing cstmean, only the annual mean of P524

has been set, we therefore get the trends due to PET and due to changes in the intra-525

annual distribution of P .526

Free of the high inter-annual variability of the annual mean of P , the trends in dis-527

charge are significant over more watersheds for both forcings, with significant trends for528

1883 basins with the forcing f2000 and 1756 basins for the forcing cstmean against only529

352 basins with significant trends in Q out of 2134 for the reference forcing. However,530

their magnitude is also a lot smaller. When we compare to the discharge obtained with531

the reference forcing, it shows that the main factor driving Q is the annual mean of P532

since when free of its variations, the discharge looks completely different.533

For the forcing f2000, the effect of PET is towards a decrease in discharge over all534

of Europe (less than -0.1% to -0.2% per year over the century) (fig. 7d). It is found for535

both the chosen examples that the effect of PET (top right graphs) tends to decrease536
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discharge (purple line, Qc when P has been fixed). It is coherent with the the signifi-537

cant increase in PET (fig. 5a and 6a, top right). The effect of intra-annual variations538

of PET (fig 7f and black lines, top right graph fig. 5b and 6b) has the same order of mag-539

nitude, if not a little smaller (less than -0.1% per year over the century), than the effect540

of inter-annual change of the annual average of PET (fig 7e or purple line top right graph541

fig. 5b and 6b). It tends to amplify the effect of the later, especially over Western France542

and Southern UK and has a slight opposite effect towards increasing trends in Q (less543

than +0.08% per year over the century) over the East of Europe, West of Spain and for544

the Tiber river. The effect of changes in annual mean of PET in this specific case is can-545

celed in the total discharge (blue line) by the effect of the changes in the intra-annual546

distribution of PET captured in Qν (black line) (6b).547

For the forcing cstmean, we now add the effect of changes in the covariance of P548

and PET due to changes in the intra-annual distribution of P . Depending on the area,549

there are two different responses. The two basins chosen in example each correspond to550

one type of response. In the case of the basin in England (Trent river), the results ob-551

tained for the forcing cstmean (fig. 5b, bottom left) are very similar to the results ob-552

tained for f2000 (fig.5b, top right). It means that the effect due to changes in the co-553

variance of P and PET have little impact compare to the effect of the annual mean of554

PET over that basin. It matches the results over the North of Europe, especially over555

France, Germany, South of UK where the trends in Q (fig 7g) are mostly driven by changes556

in the annual mean of PET (fig 7h). However over the second example of the Tiber river557

in Italy, the results obtained for the forcing cstmean (fig. 6b, bottom left) shows that558

the changes in the total discharge Q (blue line) match the changes due to the evolution559

of ν(t) (Qν , black line). In that latter case, the effect of the intra-annual variations of560

P is dominant to the effect of changes in PET . This matches the results over the South561

of Europe (Spain, Italy) where for the forcing cstmean, the trends in Q (fig 7g) are mostly562

driven by changes in ν(t) (fig 7i). These trends are increasing trends in discharge which563

diverges from the trends due to changes in C in the area (reference forcing and forcing564

f2000, purple lines).565

To sum up the results obtained with the synthetic forcings, the annual mean of P566

is the first driver of change in the annual discharge over all of Europe but its high inter-567

annual variability tends to hide the trends over most areas. The second most important568

climatic driver of change in discharge is dependent on the area. Over the South of Eu-569

rope (Italy, Spain) where water is the limiting factor to evapotranspiration, the second570

most important climatic factor driving discharge changes is the intra-annual distribu-571

tion of P . Over the rest of Europe where water is less limiting, the second most impor-572

tant factor driving discharge changes is the increasing PET .573

5 Discussion574

Several studies have shown the impact of climate change on climate variables over575

the past century on our area of interest. Annual precipitations increased between 1901576

and 2005 over most of Europe but the Mediterranean area where they tend to decrease577

(Douville et al., 2021; Knutson & Zeng, 2018). Trends per decade are less significant due578

to the high inter-annual variability of P (Douville et al., 2021). Trends in PET are linked579

to an increase in the energy available at the surface, highly correlated to the raising tem-580

peratures (Douville et al., 2021; Vicente-Serrano et al., 2014). Few studies have directly581

looked at the trends in PET over Europe, except over the Mediterranean area where stud-582

ies have shown a significant increase in PET over the end of the century (Vicente-Serrano583

et al., 2014; Kitsara et al., 2013). The intra-annual variations of climatic variables are584

more difficult to assess and very little indices exist to measure the inter-annual changes585

in the distribution of climate variables. Garćıa-Barrón et al. (2018) defined indices to586

assess the evolution over time of the intra-annual cycle of P over the Iberian peninsula.587

They find that there is a shift over the end of the century of the main rainfall periods588
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towards autumn, especially over the Atlantic basins and an increase in the inter-annual589

variability of the intra-annual cycle, especially over the Mediterranean basins.590

We look at the trends in P , PET and calculated the indices defined by Garćıa-Barrón591

et al. (2013) to evaluate the trends in the intra-annual cycle of P for the forcing GSWP3.592

We find that our results concur with those in the literature, validating that this forcing593

reasonably reproduces the climatic trends of the past century over Europe. The trends594

in PET are significantly (95% level) increasing over all of Europe. However the trends595

in P are most often non significant because of its high inter-annual variability, with a596

significant trend in the annual average of P for 413 catchments out of the 2134 selected.597

The trends in the intra-annual cycle are also mostly qualitative.598

We find in the present study that the main driver of annual discharge Q is the an-599

nual mean of P . As expected with the increase in P over western Europe and the de-600

crease in P observed in the Mediterranean area, the trends in Q have a concurring di-601

rection.602

Our methodology allows to separate the effect of this main driver from secondary603

climatic parameter which also affect discharge trends. The effects of intra-annual vari-604

ations of P on discharge are mostly considered in the literature through the study of sea-605

sonality and annual extremes of P and PET , to examine their impact on floods (Douville606

et al., 2021; Rottler et al., 2020; Milly et al., 2002) and drought events (Douville et al.,607

2021; Vicente-Serrano et al., 2014). However we find that over the Iberian peninsula and608

the Mediterranean area at least, the effect of the evolution of intra-annual variations of609

P is the second most important factor impacting the changes in the annual discharge,610

with a higher effect on discharge than the increase of PET over the century. The intra-611

annual covariance of P and PET impacts the annual behavior of the catchment and the612

annual balance between evapotranspiration and discharge since it changes the timing be-613

tween water and energy availability throughout the year. Therefore intra-annual distri-614

bution of P deserves more attention when studying the evolution of annual discharge.615

The evolution of the intra-annual cycle of P tends towards decreasing discharge in the616

Mediterranean area. It counteracts partially the effect of decreasing P and increasing617

PET on discharge. It could be explained by the tendencies of the annual cycle to have618

an increasingly marked seasonality, concentrating rain events in less but more intense619

events over the year and thus increasing runoff and relative discharge. Furthermore, our620

methodology allows to identify these effects despite the only qualitative trends observed621

in the indices used to measure the intra-annual distribution of P .622

Over the rest of Europe where water is less of a limiting factor, the secondary most623

important climatic factor on discharge changes is PET , which leads to a decrease in dis-624

charge due to the increasing evaporative demand by the atmosphere. In the Mediterranean625

area, PET trends have a lesser impact because the water limit is dominating, being al-626

ready reached at the end of spring and during all summer. A warmer summer doesn’t627

have therefore a strong impact.628

6 Conclusions and perspectives629

Similarly to the results of Abatzoglou and Ficklin (2017); S. Li et al. (2022); Xing630

et al. (2018), we found that the original Budyko framework with a constant watershed631

parameter ν does not capture climate related changes in the watershed behavior impact-632

ing its evaporation efficiency. We have shown that this could be alleviated by introduc-633

ing a time-dependent parameter ν(t) which would include the effect of these changes.634

Our method doesn’t need to define an expression of this ν(t), which would be highly635

dependent on the area of study and on the factors available. It can directly be used to636

estimate the effects over time of changes in the climatic parameter and quantify their637

relative impacts on discharge trends. To do so we use a time-moving window. The choice638
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of the window size determines the size of the trends accounted for. It works as a filter639

of frequency and only captures the effect of variations over periods the size of the win-640

dow or larger. We had to find a balance between the length of our dataset and the per-641

tinent length of the trends we wanted to analyse. Since we want to look at the effects642

of climate change, we do not need to capture the high inter-annual variability and can643

focus on decadal trends or longer. Furthermore, a shorter time window would not be adapted644

to the hypothesis to the Budyko framework which needs a long enough time-period to645

be fitted. So the window can’t be shorter (Tian et al., 2018). We could test longer time-646

window to test which is the limit time-length capturing the most impacting effect on dis-647

charge. However the longer the time-window, the fewer the points we will have to eval-648

uate the trends.649

We apply our modified Budyko framework to LSM outputs to isolate the discharge650

variations due to changes in climate factors. This methodology relies on the capacity of651

the chosen LSM to reproduce the ”natural” response of a catchment to climate, such as652

its behavior and response to changes in the intra-annual distribution of P . Our method-653

ology to calculate a time-varying ν(t) for the Budyko framework, when applied to the654

output of LSM simulated watersheds with constant hydrological properties, allows to cap-655

ture the long-term variability of Q due to climate effects not included in the variations656

of the averages of P and PET .657

These changes captured in the time varying ν(t) are mostly due to changes in the658

covariance of the intra-annual distribution of P and PET . However the effect of intra-659

annual distribution of climate variables on discharge is not completely independent from660

the annual mean of P and PET which can impact the magnitude of the identified trends.661

This is shown by the slight differences observed in Qν between respectively the reference662

forcing and the forcing cstmean (fig. 7c and 7i) and between the forcing f2000 and the663

forcing cstintravar (fig. 7f and 7l). For each pair of forcings, the intra-annual distribu-664

tion of P is the same but the inter-annual mean of P differs between the two. The dif-665

ference observed in Qν for each pairing is due to a linked effect between the annual mean666

and the intra-annual distribution of P . Therefore the amplitude of the effect of intra-667

annual distribution of P and PET quantified here may depend on the choice of the av-668

erage P fixed (P from the year 2000 in this study). However the differences are smaller669

than the identified trends, suggesting that the main conclusions over Europe would not670

change. When studying specific basins, it could be however interesting to choose spe-671

cific pairings intra-annual distributions/annual averages of P to construct synthetic forc-672

ings, to compare how specific associations combine. When looking at absolute values in-673

stead of trends, the choice of the reference year will also play an important part. For in-674

stance for the watershed in Italy, the effect of the intra-annual distribution of P of the675

year 2000 tend to a higher discharge (fig. 6b, bottom left, black line, the intra-annual676

distribution of the end of the century tend to a higher discharge), explaining that when677

we set every year to its value for the forcings f2000 and cstintravar, we get a higher av-678

erage discharge over the entire century (see average discharge, y-axis legend).679

Furthermore, we could not simply fix PET or its intra-annual variations in our syn-680

thetic forcings due to its non linearity dependence on a number of climate variables. There-681

fore we could not decompose the effects of PET as easily as for the effects of P , which682

would be interesting to do especially in the areas where P is less limiting such as in the683

West of France or in the North of Europe.684

The amplitude of the results could also depend on the choice of the model or of the685

forcing data. We tested the use of other forcing datasets: WFDEI (Weedon et al., 2014),686

which covers the time period from 1979 to 2010, with the same resolution than GSWP3687

and E2OFD (Beck et al., 2017), also covering 1979 to 2010 but at a lower resolution. We688

also tested the use of another model with another forcing, the model SURFEX (Quintana-689

Segúı et al., 2020) forced with SAFRAN (Quintana-Segúı et al., 2017), over the Ebro river.690

It gave very similar results over the overlapping period, with little differences in the sig-691
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nificance of the trends and their amplitude, showing that the results mostly are depen-692

dent on the resolution of the forcing rather than on the forcing or the model used. This693

validates our methodology to use a LSM as a climatic reference. Again when looking at694

specific basins, it would be interesting to use higher resolution forcings to get a more ac-695

curate picture on the effects of climate change on discharge. We could detail the diver-696

sity of behaviors between sub-basins within a given catchment, for instance separating697

the behavior of upstream sub-basins within mountainous areas from the downstream part698

of the catchment which could be differently responding to climate change.699

If we were to work from observations instead of model outputs, there would be other700

non-climate related sources of variability such as direct human activities or vegetation701

changes which would modify the watersheds’ behaviors. Our next step is to apply the702

methodology to quantify these human induced changes and compare their magnitude703

to those attributed to climate in the present study responses.704

7 Open Research705

Data availability statement706

The forcing dataset GSWP3 used to grid P and other climate data and run the LSM707

over Europe between 1901 and 2010 in the study is attributed to Hyungjun (2017). It708

is available upon request via doi:10.20783/DIAS.501.709

The Land Surface Model used to calculate E0 and model the discharge in this study710

is the LSM Organizing Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE)711

from the Institut Pierre Simon Laplace (IPSL). The Main version used in this study is712

available upon request on the official website https://orchidee.ipsl.fr/.713

It relies on the hydrological elevation model HydroSHEDS (Lehner et al., 2008) to714

construct its routing graphs for rivers and reconstruct the upstream areas of gauging sta-715

tions placed on its grid. It is available to download from https://www.hydrosheds.org/.716

The gauging stations positioned on the grid come from a database composed from717

several sources. The main dataset is the one from the Global Runoff Data Centre (GRDC).718

It is available to download from https://www.bafg.de/GRDC/EN/02 srvcs/21 tmsrs/719

riverdischarge node.html. It was completed over Spain with data obtained from the720

Geoportal of Spain Ministerio (Ministerio de Agricultura, pesca y alimentacion, Minis-721

terio para la transicion ecologica y el reto demografico, 2020) and over France with data722

from the database HYDRO (Ministere de l’ecologie, du developpement durable et de l’energie)723

(available on request to https://www.hydro.eaufrance.fr/, downloaded in February724

2021). In this study, we only used the position of these stations and the associated up-725

stream area to reconstruct meaningful watersheds.726

–22–



manuscript submitted to Water Resources Research

References727

Abatzoglou, J. T., & Ficklin, D. L. (2017, September). Climatic and physiographic728

controls of spatial variability in surface water balance over the contiguous729

United States using the Budyko relationship. Water Resources Research, 53 ,730

7630–7643. doi: 10.1002/2017WR020843731
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