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ABSTRACT

Context. The impact of Sagittarius and other satellite galaxies such as the Large Magellanic Cloud on our Galaxy and in particular
its disc is gradually being disclosed. Simulations tailored to the interaction of the Milky Way (MW) and Sagittarius show rings and
spiral arms appearing in the Galaxy disc. However, spiral arms can also be induced by the bar or by disc instabilities.
Aims. We aim to study the dynamics of tidally induced spiral arms in the context of the different encounters with Sagittarius
and determine their kinematic signatures in the shape of ridges and waves in angular momentum, similar to those detected with
Gaia DR2.
Methods. We built toy models of the interaction between a host and a satellite galaxy using orbital integrations after a tidal distant
encounter. We derived analytically the shape of the structures seen in phase space as a function of time for simple power-law potential
models. We compared these models to a more realistic N-body simulation of the MW Sagittarius-like interaction and also to real data
from Gaia DR3.
Results. As previously found, an impulsive distant tidal approach of a galactic satellite generates a kick in velocities that leads to a
two-armed spiral structure. The arms are made of orbits in between their apocentres and pericentres, thus, they correspond to regions
with average negative galactocentric radial velocity. The two-arm pattern rotates at an angular speed of ω − 1/2κ which depends on
Galactocentric radius, thus causing winding with time range of 0.8–2.1 Gyr, respectively. This winding produces ridges in the R − Vφ

projection with alternating signs of VR and oscillations of VR in the LZ − φ space, similar to those observed in the Gaia data. The
frequency of these kinematic features increases with time, offering a powerful means to infer the potential and the perturbation’s onset
time and azimuthal phase. Fourier analysis allows us to date the impact times of simple models and even to date perturbations induced
from subsequent pericentric passages that appear as simultaneous waves. For the MW, the Fourier analysis indicates a superposition
of two different frequencies, confirming previous studies. Assuming that both are due to impulsive and distant pericentre passages,
we find perturbation times <0.6 Gyr and in the range of 0.8–2.1 Gyr. The latter is compatible with a previous pericentre of Sagittarius
and would be associated to about four wraps of the spiral arms in the observed radial range.
Conclusions. Further work on the self-gravitating response of galactic discs and possible degeneracies with secular processes induced
by the bar is necessary. Our study is a first step towards shedding more light on the elusive structure and dynamics of the spiral arms
of the Galaxy.

Key words. Galaxy: disk – Galaxy: kinematics and dynamics – Galaxy: evolution – galaxies: interactions – galaxies: spiral –
Galaxy: structure

1. Introduction

The hierarchical formation of galaxies in the paradigm of cold
dark matter has consequences, not only on how galaxies grow,
but also on how they evolve dynamically (e.g. Dressler 1980;
Barnes & Hernquist 1992). Undeniable evidence of this are the
many galaxies that have been caught interacting with a com-
panion (Arp 1966). The Milky Way (MW) is no exception: the
impact of Sagittarius and other galactic satellites such as the
Large Magellanic Cloud (LMC) on our Galaxy and, in particu-
lar, on its disc is gradually unfolding. For example, host-satellite
interactions have been proposed as a mechanism of excitation of
the Galactic warp (e.g. Hunter & Toomre 1969; Weinberg 1995;
Ibata & Razoumov 1998) and disc heating (Quinn et al. 1993).
The vertical asymmetries in the density and in the vertical veloc-
ity seen in Widrow et al. (2012) also raised suspicion of disc
perturbations from satellites (Gómez et al. 2013). More recent
observational evidence for this process came from the discov-

ery of the phase spiral (Antoja et al. 2018) in the second data
release (DR2; Gaia Collaboration 2018a) of the Gaia mission
(Gaia Collaboration 2016).

Mergers can alter the morphology of galactic discs, exciting
the formation of bridge and tail arms in the outermost regions,
and of bars, rings, and spiral structure in the inner parts (e.g.
Toomre & Toomre 1972; Noguchi 1987; Barnes & Hernquist
1992; Kazantzidis et al. 2008; Pettitt & Wadsley 2018). Simula-
tions tailored to the interaction of the MW and Sagittarius also
show that rings and spiral arms would appear in our disc as a
response to the interaction (Younger et al. 2008; Purcell et al.
2011). On the other hand, spiral arms can also be excited inter-
nally by bars or can be self-excited disc modes.

There are multiple theories about the dynamics, forma-
tion, and persistence of spiral structure (e.g. density wave
model, swing-amplification theory, transient structures, invari-
ant manifolds; see reviews by Sellwood & Masters 2022
and Dobbs & Baba 2014). For the particular case of the
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MW, there is evidence of spiral arms in young and old
populations (Georgelin & Georgelin 1976; Reid et al. 2009;
Drimmel & Spergel 2001), but a precise global map of the spi-
ral structure is missing, let alone a solid theory for its origin and
dynamics. Persistent unknown aspects are the number of spiral
arms in the Galaxy, their exact composition (gaseous versus stel-
lar), their long- or short-lived nature, their excitation mechanism
and relation with the bar, and how they rotate with respect to
the stellar disc (as a rigid pattern, with pattern speed depend-
ing on radius, or co-rotating with the stars; Roca-Fàbrega et al.
2013). Despite all these unknowns, there are fewer doubts about
the importance of spiral structure in the dynamical evolution
of the stellar disc, its gas, and the newly formed stars (e.g.
Debattista et al. 2006; Sellwood 2014).

Density structures such as spiral arms and rings, inde-
pendently of their origin or dynamics, must be intrinsically
related to patterns in the planar velocities. The mean veloc-
ities in the X − Y projection around the Sun seen first in
the Gaia DR2 data by Gaia Collaboration (2018b) may be
related to spiral arms and, interestingly, different types of arms
could lead to different velocity patterns (e.g. Grand et al. 2015;
Antoja et al. 2016). Some of the observed diagonal ridges in
the Vφ − R projection (Antoja et al. 2018; Kawata et al. 2018)
and EDR3 data (Gaia Collaboration 2021) have been tenta-
tively related to transient spiral structure (Hunt et al. 2018,
2019; Khanna et al. 2019), to resonances of density wave arms
(Hunt et al. 2019; Barros et al. 2020; Michtchenko et al. 2018),
or to recent crossings with the spiral arms (Quillen et al. 2018).
Other ridges are very likely related to the bar (Antoja et al. 2018;
Hunt et al. 2018; Fragkoudi et al. 2019, 2020; Monari et al.
2019; Laporte et al. 2020). Ridges can also appear due to an
interaction with an external satellite (e.g. Laporte et al. 2019;
Khanna et al. 2019).

Most likely, different processes are at play in the dynamics
of the MW disc. Ramos et al. (2018) found different slopes in
the ridges seen in the Vφ − R projection, which could indicate
different origins. Friske & Schönrich (2019) discovered a com-
plex wave of VR as a function of angular momentum and spec-
ulate that it could be a superposition of the effects of the bar
and the spiral structure. It is, therefore, of the utmost importance
to understand the dynamics of different types of spiral arms and
identify observable signatures that help us distinguish them from
each other and from other disturbances. In particular, the dynam-
ics of tidally induced arms in the context of the MW remains
poorly explored.

Here we study the effects of a perturbing satellite (similar
to Sagittarius) on the MW disc, paying special attention to how
these structures are seen in phase space in the shape of ridges
and other kinematic disturbances similar to those detected in
the data. Our aim is to study their dynamics, distinguish them
from other types of arms, and ultimately constrain the spiral
structure of the MW and the interaction with Sagittarius. We
first use simple toy models of impulsive and distant encoun-
ters to explore the formation and dynamics of spiral structure
(Sect. 2). We link the spiral arms generated in these models
to the ridges in the Vφ − R projection and to a wave of VR
as a function of angular momentum (Sect. 3). Since we see
that the frequency of these features becomes larger with time
due to the phase-wrapping, we develop a method to recover
the time of impact and the parameters of the potential through
Fourier analysis (Sect. 4). We then look at the more realistic
N-body simulation by Laporte et al. (2018) that we compare
against our simpler models (Sect. 5). Finally, we compare mod-
els and real MW data from Gaia DR3 (Gaia Collaboration 2022)

Table 1. Models used in this work.

Model Type Potential IC σ [V0]

0 Epicycles n = 0 Grid of orbits 0.
1cf Orbits n = 0 Dehnen, cold 0.05
1hf Orbits n = 0 Dehnen, hot 0.2
1hd Orbits n = −0.1 Dehnen, hot 0.2
1hr Orbits n = 0.1 Dehnen, hot 0.2
L18 N-body

Notes. The columns indicate: the label of the model, the type of model,
the potential used, the type of initial conditions, and the radial velocity
dispersion at R0 in units of V0.

in Sect. 6. We discuss our results in Sect. 7 and conclude in
Sect. 8.

2. Toy models of kinematic waves

In this section we present a series of models of the Galactic spi-
ral arms after an impulsive and distant tidal encounter, in partic-
ular, those often referred to as kinematic spiral waves. To intro-
duce basic equations and give a brief historical overview, we start
from the idea of the rotated ellipses (Sect. 2.1) and continue with
models from orbit integrations for different distribution func-
tions (Sect. 2.2). These are all two-dimensional models (2D) that
we compare to the more complex and three-dimensional (3D)
N-body model of Sect. 5. In Table 1 we list all these models and
specify their details.

We use cylindrical coordinates (R, φ, VR, Vφ). In all our mod-
els, the plots are presented with rotation in the clockwise direc-
tion and φ and Vφ are positive in this sense. The origin of φ is set
at the negative X axis.

For convenience, in the toy models presented below we use
spherical power-law models that in the 2D idealisation are equiv-
alent to an axisymmetric potential with orbits confined to the
plane. In these potentials, the circular velocity curve is:

Vc(R) = V0

(
R
R0

)n

, (1)

where n is the slope of the curve, and V0 its value at R = R0. We
explore models with a perfectly flat circular velocity curve (log-
arithmic potential) and slightly decreasing (n = −0.1) or increas-
ing (n = 0.1) circular velocity curves. The frequencies of nearly
circular orbits (with guiding radius Rg) for models of the type of
Eq. (1) are:

ω(Rg) =
V0

Rn
0

Rn−1
g (2a)

κ(Rg) =
V0

Rn
0

√
2(n + 1)Rn−1

g (2b)

ω(Rg) −
1
2
κ(Rg) =

V0

Rn
0

(
1 −

1
2

√
2(n + 1)

)
Rn−1
g . (2c)

The circular velocity curves as well as the azimuthal ω,
radial κ, and ω − 1

2κ frequencies of these models are shown
in Fig. 1. For completeness we add other slopes of the cir-
cular velocity curves corresponding to n = 0.5, −0.5 (Keple-
rian), and 1 (homogeneous sphere). As default values we use
V0 = 240 km s−1 and R0 = 8 kpc, similar to the MW case
(e.g. GRAVITY Collaboration 2021; Reid & Brunthaler 2020;
Schönrich et al. 2010).
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Fig. 1. Circular velocity curve and frequencies for power-law models.
We show potentials with different slopes indicated in the legend. The
models used in the present study are shown as thicker solid lines, while
dashed lines show other models for comparison. We show the circular
velocity curve (top left), the azimuthal frequency (top right), the radial
epicyclic frequency (bottom left) and ω− 1

2 κ (bottom right). The vertical
dotted line marks the Sun’s position R0 = 8 kpc.

2.1. Lindblad and Kalnajs ellipses

The concept of the kinematic spiral waves was born around the
1950’s, in the words of Lindblad (1956), as a “line of thought
which may lead to a satisfactory dynamical theory of the spiral
phenomenon”. The basis of the idea is that, in a reference frame
that moves at frequencyω− 1

2κ, orbits are seen as closed ovals, or
equivalently, that the apsidal lines move at this frequency relative
to each other if this frequency does not remain the same at all
radii (this is the precessing rate of the closed ovals).

To illustrate this, we present our Model 0 in Fig. 2. In this
model we built a series of orbits using the equations of perfect
epicyclic orbits:

R = Rg + ARg cos
(
κ(Rg)t + ψ0

)
(3a)

VR = −ARgκ(Rg) sin
(
κ(Rg)t + ψ0

)
(3b)

φ = φ0 + ω(Rg)t − γA
(
sin(κ(Rg)t + ψ0) − sin(ψ0)

)
(3c)

Vφ =
R2
gω(Rg)

R
. (3d)

For simplicity, in this example we used a flat circular velocity
curve (n = 0). In these equations A is the epicyclic amplitude
and t is the time. The constant ψ0 gives the phase in the epicy-
cle but is irrelevant in this particular exercise and it is set to 0.
This is similar for φ0 which is the initial azimuth of the orbits
and we took it to be 0. We sampled different Rg and times t,
choosing A = 0.1, and printed the orbits in the ω − 1

2κ refer-
ence system where they become closed orbits (Fig. 2, top left).
These ellipses will appear in this configuration only for a given
instant of time as the different ω − 1

2κ at different radius would
make the ovals precess at different rhythms. Lindblad (1956),
Lindblad & Lindblad (1958) and Kalnajs (1973) noticed, how-
ever, that this frequency can be nearly constant at intermediate
and outer radius of disc galaxies (Fig. 1). In this way, the set of
ovals remains quite fixed relative to each other creating barred
shapes, or, if the ovals appear rotated, persistent trailing spiral
structure (left panel of the second row, which has been obtained

Fig. 2. Rotated ellipses after Kalnajs (1973). Top panel: a series of orbits
in the reference frame of ω − 1

2 κ for which the orbits close. In the first,
second and third column, we plot the orbits, the orbits coloured as a
function of radial velocity (VR), and as a function of azimuthal velocity
(Vφ − Vc), respectively. Two bottom rows: the same but for increasingly
rotated ellipses.

by rotating the ellipses of the top panel giving them different val-
ues of φ0, in particular with the inner and outer ellipses differing
by 150 deg). We refer to Binney & Tremaine (2008, Sect. 6.2)
for more details.

In a more realistic case where ω − 1
2κ is not exactly constant

with radius but has a small slope, a configuration like that of the
top panels evolves towards more tightly wound spirality, such as
in the second and third rows of Fig. 2 (the latter done by increas-
ing the difference between inner and outer ellipses to 300 deg).
This structure slowly curls with time (at a rate of ω− 1

2κ), which
is slower for raising circular velocity curves (right bottom panel
of Fig. 1), with the limit of perfect flatness of ω − 1

2κ (thus, no
curling with time) for the homogeneous sphere (n = 1).

The second and third columns of Fig 2 indicate in colours
the radial and azimuthal velocity (the later represented with
respect to the circular velocity Vc), respectively, which follow
from Eq. (3). As Kalnajs (1973) already noticed, the spiral arms
form by the accumulation of orbits in-between their apocentres
and pericentres, thus coinciding with regions where orbits are
travelling inwards (negative VR) and have Vφ − Vc = 0. Imme-
diately past the arms, the orbits reach their pericentre and have,
thus, maximum Vφ and VR = 0. The radial and azimuthal veloc-
ities show a π/4 rad shift in azimuth. With time, the regions of
accumulations of orbits become more concentrated in configura-
tion space, or, in other words, the angular region occupied by the
spiral overdensitiies (and consequently the regions of VR < 0) is
smaller compared to the inter-arm regions.

Interestingly, a configuration like the one in Fig. 2 (top)
can result after a tidal interaction with a companion galaxy. For
example, following Struck et al. (2011), the gain in velocities for
an impulsive and weak interaction is:

∆VR = ∆V
R cos(2φ)

D
(4a)

∆Vφ = −∆V
R sin(2φ)

D
, (4b)
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where D is a scale parameter (the radius of the disc), and ∆V
is a velocity amplitude obtained from the tidal constants and the
ratio of the disc size to the distance of closest approach.

Spiral patterns of the kinematic-wave type that roll up at
a rate ω − 1

2κ have been reported in multiple N-body simu-
lations (Oh et al. 2008, 2015; Struck et al. 2011; Hu & Sijacki
2018; Pettitt et al. 2016; Pettitt & Wadsley 2018; Semczuk et al.
2017; Hu & Sijacki 2018). This idea has also been recently put in
context of the MW by Bland-Hawthorn & Tepper-García (2021)
who measured the winding frequency of the spiral structure
formed in an N-body simulation following an impulsive impact
of a Sagittarius-like perturber. Deviations from the ω − 1

2κ rate
are seen when a bar is also present and can depend on the self
gravity of the disc and on time (Pettitt & Wadsley 2018; Oh et al.
2015). In those cases, the frequency usually lies between ω− 1

2κ

and ω − 1
4κ. We see in Sect. 5 that some of the pericentres of

the N-body simulation that we explore also follow these kind of
spiral patterns that slowly wind with time.

2.2. Model 1: Full orbital integration

In our modelling series that we dub Model 1, we used galpy1

(Bovy 2015) to integrate orbits. This is more realistic than our
previous Model 0 in which all orbits followed perfect epicycles.
We built four different models of this type (Table 1) combining
different initial conditions and potentials. We used two differ-
ent sets of initial conditions from the distribution functions of
Dehnen (1999) with radial velocity dispersion at R0 = 8 kpc
of 0.05 and 0.2 times V0, which for V0 = 240 km s−1 give 12
and 48 km s−1, respectively. The labels of the models (Table 1)
indicate the dispersion with c and h standing for cold and hot,
respectively. All of them have 200 000 test particles. We sampled
the distribution only between 0.6 and 1.9 R0 (4.8 and 15.2 kpc,
respectively) in order to focus on the central parts of the disc. We
use a scale-length of 1/4R0, and an exponential radial-velocity-
dispersion profile with scale-length R0. We chose three analytical
potentials from the power law family with n = 0, n = −0.1 and
n = 0.1 (marked with solid thicker lines in Fig. 1). In the model
labels this slope is indicated with f , d, r indicating flat, decreas-
ing and rising circular velocity curves, respectively. Although
we generated distribution functions consistent with the corre-
sponding slope, the initial conditions were integrated for 10 Gyr
in order to diminish the effect of the phase-mixing patterns that
appear as a consequence of not having a fully consistent distri-
bution function.

After this, we added the velocity kicks of Eq. (4) keep-
ing positions unchanged. We used arbitrary values of ∆V =
10 km s−1 and D = 20 kpc. These directly give the initial con-
ditions for the orbital integration and are represented in the top
row of Fig. 3 in the configuration space X − Y . The first column
gives the positions of the toy orbits. Second and third columns
indicate the average radial velocity VR and azimuthal Vφ−Vφ(R),
respectively, where Vφ(R) is the average azimuthal velocity at
that radius. The quadrupole signature of Eq. (4) after the sim-
ulated satellite impact at t = 0 is seen, with VR and Vφ shifted
by a phase of π/4. With this scheme the orbits are distributed at
special epicyclic phases depending on their location inside the
disc.

The next rows of Fig. 3 show the evolution of the positions
and velocities of Model 1hf (with hot initial conditions and the
logarithmic potential). The initial pattern rotates at an angular

1 http://github.com/jobovy/galpy

Fig. 3. Tidal spiral arms of Model 1hf. We show the time evolution
between 0 and 1 Gyr (indicated in the panels of the first column) of the
disc in the X − Y space, in density (left column), coloured by average
radial velocity VR (middle) and average azimuthal velocity Vφ − Vφ(R)
(i.e. with respect to the mean at the given radius, third column). The
dashed and dashed-dotted lines show the prediction of the spiral arms
location following the winding with ω − 1

2 κ. The sector of the disc
marked with dotted lines is a region whose dynamics we examine later
in Fig. 6.

speed of ω − 1
2κ, which depends on radius R, and thus its locus

follows:

φ(R, t) =

(
ω(R) −

1
2
κ(R)

)
t + φ0. (5)

Because of the radial dependence of the rotation speed, the pat-
tern wind (shears) with time. In the top panel of Fig. 3 we
show a dashed and a dot-dashed line corresponding to oppo-
site azimuthal regions that have negative radial velocities at the
initial times. In the following rows, these lines are wound as
described in Eq. (5). These lines mark the position of stars that
are at an epicyclic phase of ψ = π/2 at each time. A material arm
(made of the same stars at all times) would instead phase-mix at
a rate of ω, that is, with a much steeper dependence on R and
thus much faster. Another fundamental difference with material
arms is that here the pattern is composed of stars with common
epicycle phase at a given time, and thus stars that instantaneously
are on top of the crest of the wave change with time.

Continuing with Fig. 3, the epicyclic oscillations lead to
regions of high orbital crowding, creating a trailing two-armed
spiral structure. In particular, the location of the maximum den-
sity (locus of the arms) corresponds to regions with stars whose
epicyclic phases passed apocentre and now move towards peri-
centre. This leads to the correspondence between the locus of the

A61, page 4 of 20
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Fig. 4. Spiral arms of different models in polar coordinates. We show the
φ − R projection at 1 Gyr, in density (left column), coloured by average
radial velocity VR (middle) and average Vφ − Vφ(R) (right). The black
lines show the predicted location of the spiral arms.

arms and regions with negative radial velocity. This also results
in the regions of negative VR getting compressed in configuration
space (i.e. their azimuthal width at a fixed radius gets smaller).
The inter-arm regions correspond to positive radial velocities.
This is the same behaviour as in the formalism presented in
Sect. 2.1 (Fig. 2). For this particular model, even after 1 Gyr,
clear spiral structure is seen in the range of radii from 5–10 kpc
(similar to that of the volume sampled by Gaia).

A polar representation often does a better job at showing the
spiral arms in density. Figure 4 shows the positions and velocities
in the φ − R plane now for different models at 1 Gyr. Again, the
azimuthal component of the velocity corresponds broadly to a
phase shift of π/4 with respect to VR. The first two rows show
different levels of kinematic temperature of the initial conditions
from cold to hot (1cf, 1hf). The potential used was the same and,
therefore, the winding rate and the exact location of the arms and
associated velocity regions are equal. The differences are related
to the level of dispersion (noise) in the average positions and
velocities.

We note that additional substructure appears both in density
and velocities in Fig. 4. For example, a clear pattern of small
substructure in density, VR and Vφ is seen especially for the
cold model (first row). These patterns must be the result of the
phase mixing but their exact mathematical descriptions were not
derived here where we focus on the structure of our interest (i.e.
the spiral arms). We note that similar substructure is observed in
similar models such as from Struck et al. (2011).

The three bottom rows of Fig. 4 compare different slopes of
the circular velocity curve for the hotter initial conditions: Model
1hf with n = 0 flat (second row), Model 1hd with n = −0.1
decreasing circular velocity curve (third row) and Model 1hr
with n = 0.1 rising circular velocity curve (last row). The differ-
ent models have different slopes of the frequencies with radius,
in particular of ω− 1

2κ: as shown in Fig. 1 this frequency is flatter
for the rising circular velocity curve, and becomes progressively
steeper for the flat and the decreasing curves. This results in a
more tightly wound pattern in the 1hd case (smaller pitch angle).

The degree of winding with time of these kinematic-wave toy
models depends, therefore, both on the time (after impact) and
on the slope of the circular velocity curve. For a certain time, the

Fig. 5. Number of spiral wraps. We show in colours the expected max-
imum number of spiral wraps at different radius ranges (4–10 and 10–
15 kpc in the first and second columns, respectively) as a function of
time t and slope of the circular velocity curve n. We have used 21 for
the upper limit of the colour bar but the number of wraps goes beyond
this in the bottom part of the left panel.

number of spiral wraps crossing at a certain azimuth φi within the
range between Rmin and Rmax is given by b φ(Rmin)−φi

2π c−b
φ(Rmax)−φi

2π c,
where φ(R) is the one defined by Eq. (5). Figure 5 shows the
number of spiral wraps at certain radius ranges as a function of
time and of the slope of the circular velocity curve. Since this
number depends on φi, for the figure we show the maximum
number of wraps encountered for all possible φi. At inner radius,
the number of wraps is much larger at a given t and n, as expected
from the slope of the curve ω − 1

2κ. At a certain time and radius,
the number of wraps is larger the more negative the slope of the
circular velocity curve n is. In the outer parts of this idealised
disc, the number of wraps is small even for larger times after the
supposed impact.

Below we explore in detail these kinematic waves seen in
other projections of phase space. This helps us to link them with
the ridges in the R−Vφ plane and a VR wave with angular momen-
tum, which are features observed in the MW.

3. Ridges and angular momentum waves

In Fig. 6 we focus on a particular azimuthal region of the disc to
look at other projections of phase space. We start with Model 1hf
(hot initial conditions and flat circular velocity curve). We take
only the region of φ = [π − 0.2, π + 0.2] rad (marked with dot-
ted lines in Fig. 3), which corresponds to a sector of ≈22.9 deg
centred on the positive X axis. In the first column we show a den-
sity histogram of the radius of the particles. We see some clear
bumps that correspond to locations of higher density, that is to
say the spiral arms generated in the model. The vertical dashed
black lines show the predicted positions of the arms. These are
obtained by first inverting Eq. (5) and using Eq. (2)c to obtain:

R(φ, t) =

V0

Rn
0

(
1 − 1

2

√
2(n + 1)

)
t

(φ − φ0)


1

1−n

. (6)

Then we find the positions of the multiple wraps, Rm (m =
1, 2, etc) by adding π to the azimuth φ an integer number of
times m, that is changing φ to φ+mπ to obtain Rm = R(φ+mπ, t).
For this particular example we take φ0 = π/2 (the initial azimuth
of the arms in our model) and the azimuth φ = π (the centre of
the sector chosen).

As shown before, the number of wraps of spiral arms cross-
ing the region becomes larger with time. The spatial separation
between wraps at a given time increases with R due to the smaller
slope of ω − 1

2κ with R at large radii.
The second column of Fig. 6 shows the density in the R−Vφ

space, while the third one is the same but coloured by average
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Fig. 6. Ridges and waves for Model 1hf. We show the time evolution between 0 and 3 Gyr (indicated in the first column) of the disc region at
φ = π ± 0.2 rad (marked with dotted lines in Fig. 3). First column: a normalised density histogram of the radius of the particles R. Second and
third columns: the R − Vφ projection in density and coloured by mean VR, respectively. Fourth column: the particles in the LZ − VR projection. The
vertical dashed lines in all panels indicate the prediction of the spiral arm locations following a winding rate of ω − 1

2 κ.

VR. At the beginning (t = 0, first row), there is a flat distribu-
tion of Vφ as a function of R because in this model the circular
velocity curve is flat. The dispersion in Vφ is larger for inner
radii, as expected for typical disc galaxies and exactly as gener-
ated in the initial conditions. The φ = π ± 0.2 rad region corre-
sponds to initially positive radial velocities (thus dominated by
red colours in the third column) as can be seen also in the top
middle panel of Fig. 3. As time goes by, sawtooth-shaped oscil-
lations appear in the R− Vφ projection, with the parts of positive
slope roughly corresponding to negative radial velocities (blue
colours) and the decreasing parts of the oscillations having pos-
itive radial velocities (red colours). As we have seen before, the
negative VR regions are linked to the kinematic spiral arms and
thus we see that in this projection the spiral arms correspond
to the blue bands. We also plot vertical dashed black lines in
the radius where the arms are located, which indeed coincide
with the centres of the blue bands. The blue and red velocity
bands tend to get stepper with time, with the blue ones becom-
ing almost vertical due to the spiral arms becoming more tightly
wound (smaller pitch angle). The bands of alternating negative
and positive radial velocity also become closer due to the wind-
ing of the pattern.

Finally, in the fourth column of Fig. 6, we show the radial
velocity as a function of the angular momentum. The initial dis-
tribution shows simply a straight line with a small positive slope,

resulting from the imposed initial perturbation that increases lin-
early with R – combined with the transformation from R to LZ
for a perfectly flat circular velocity curve in an azimuth where
particles have not gained or lost angular momentum (panel in
the third column of the first row in Fig. 3). Again we see larger
velocity dispersion at inner radii. With time, oscillations in VR
appear, with increasingly larger frequency. The growing ampli-
tude with LZ comes from the imposed velocities at the begin-
ning (Eq. (4)). The black dashed vertical lines correspond to the
location of the arms in the space of LZ (corresponding to the
minima in VR). They were obtained similarly as Rm. We first
transformed Eq. (6) to angular momentum (taking into account
that the arms are made of orbits exactly at their guiding radius)
LZ(φ, t) = R(φ, t)Vc(R(φ, t)):

LZ(φ, t) =

(
V0

Rn
0

) 2
1−n


(
1 − 1

2

√
2(n + 1)

)
t

(φ − φ0)


1+n
1−n

, (7)

and then set φ0 = π/2, φ = π, and changed φ to φ + mπ, that is
computing LZ,m = LZ(φ+mπ, t). For a flat circular velocity curve
(n = 0), Eq. (7) becomes:

LZ(φ, t) = V0
2

(
1 − 1

√
2

)
t

φ − φ0
. (8)
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Fig. 7. Ridges and waves for different models. The columns are the same as in Fig. 6 but now each row shows a different model for the time of 1 Gyr.

At a given time, the frequency of the VR oscillation depends
on LZ , as it also depends on R. This can be seen in Eq. (8) since
the separation between valleys of minimum VR is ∆LZ ≡ LZ,m −

LZ,m+1 ∝
1

m2+k1m+k2
, where k1 and k2 are constants and m takes

larger values for the valleys at smaller LZ (and similarly for n , 0
with Eq. (7)). However, from Eq. (7) one also realises that the
oscillations in VR have constant period if plotted as a function
of L−1

Z instead of LZ . We note a similar behaviour for non-flat

circular velocity curves as a function of L
n−1
n+1
Z . This is explored

further in Sect. 4.
Figure 7 shows the ridges and waves for the different flavours

of Model 1 at 1 Gyr of evolution. In the first two rows we com-
pare the different initial conditions but use the same logarith-
mic potential model. The effects of the velocity dispersion are
observed between panels. Taking the second, third and fourth
rows we can compare different slopes of the circular velocity
curves (n = 0,−0.1, 0.1). The effect of n is to modify the overall
slope of the Vφ − R curve making it flat, decreasing, and rising.
We also note less ridges and less oscillations for the rising curve
model (1 h) due to the slower winding rate, as already noticed
in Fig. 4. The ridges in the third column appear more conspic-
uous and elongated in Model 1hd since the VR pattern, which
follows lines of negative slope in this diagram, is favoured by
the decreasing circular velocity curve. In fact, the VR pattern in
the third column follows lines of constant angular momentum
(in accordance with what is seen in the fourth column). On the
contrary, the slope of the ridges in the Vφ − R (second column)
changes with the slope of the circular velocity curve combined
with the sawtooth pattern. As for the wave of VR with LZ , we
note that the wavelength varies between models with different n.

To examine the azimuthal dependency of the ridges, in Fig. 8
we show the radial velocity as a function of LZ and φ for dif-
ferent models with different circular velocity curves (columns)
and times (rows). As already explained, for the kinematic spiral
arms, the regions of negative (blue) VR correspond to the arms.
The black lines show the locations of the arms in this projection.
They were obtained by computing the minima of the VR wave

Fig. 8. Azimuthal dependency of the LZ-VR wave. We show the waves
by plotting the mean VR as a function of azimuth φ and LZ for different
models (from left to right) and their time evolution from 0 to 3 Gyr (from
top to bottom).

following Eq. (7), where in practice one needs to plot LZ as a
function of φ mod π. In the first row (t = 0), there is the perfect
quadrupolar alternation of negative and positive VR regions for
all models as imposed in the initial conditions. As time goes on,
more wraps of the spiral are seen in the shape of inclined bands.
As already seen, the number of wraps (bands) depends both on
the time and the slope of the circular velocity curve. In the same
manner, the (negative) slope of the blue and red pattern increases
as a function of time and decreases with LZ at a fixed time.
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Fig. 9. Spiral arms of Model 1hf for two consecutive perturbations. The
first perturbation starts at t = −2 Gyr and has ∆V1 = 10 km s−1, and the
second starts at t = 0 and has ∆V2 = 15 km s−1. The plot has the same
structure as Fig. 3 but fewer times are shown. The lines show the arms
location consequence of the second impact.

As a final analysis with these simple models, we simulated
two consecutive impacts which would reflect a more general sit-
uation during a satellite interaction with a disc. To do this, our
initial conditions are those of Model 1hf after 2 Gyr of the first
impact. At that time the particles receive a new velocity kick
following Eq. (4) with ∆V2 = 15 km s−1, thus higher than the
previous one (which was of ∆V1 = 10 km s−1). The initial condi-
tions and the configuration at 0.5 and 1 Gyr of evolution after the
second impact are shown in Fig. 9. A series of largely wrapped
spirals remaining from the first impact are observed at the ini-
tial stage to which the new pattern of Eq. (4) is superposed. At
0.5 Gyr a combination of the two patterns is visible, although
the later one dominates visually due to its larger wavelength
and amplitude. The inspection of the azimuthal sector at φ = π
(Fig. 10) shows that the superposition of the two patterns is vis-
ible in the ridges and in the angular momentum space as two
superposed waves with different wavelengths.

The inspection of the figures in this section indicate that
the wavelength of the oscillations in various projections give
information on both the time after perturbation and the circular
velocity curve. We even see that signatures of multiple impacts
may persist as superposed waves with different wavelengths. We
therefore explore this further in Sect. 4, using Fourier analysis.

4. Frequency analysis

In this section we perform Fourier transforms (FT) of the signa-
tures of the kinematic spiral arms in phase space to estimate the
time of impact (i.e. the start of the phase mixing process) using
the fact that they increase their frequency with time.

As already noticed, at a given time the frequency decreases
with LZ , making the frequency of this signal ill-defined. Moti-
vated by the shape of the curves of minimum VR in the LZ − φ

space (Eq. (7)) we can transform the LZ coordinate to make it
linearly dependent on φ:

L
n−1
n+1
Z =

(
V0

R0
n

) −2
1+n 1

1 − 1
2

√
2(n + 1)

φ − φ0

t
. (9)

In this way, the curves of minimum VR are straight and equally

spaced in the L
n−1
n+1
Z − φ space. For the particular case of n = 0 in

a flat circular velocity curve, this means simply using L−1
Z :

L−1
Z =

V−2
0

1 − 1
√

2

φ − φ0

t
. (10)

As an example, in Fig. 11 we show the different flavours of

Model 1 at time t = 1 Gyr in the transformed space L
n−1
n+1
Z − φ.

These depict straight and equally spaced bands. The black lines
correspond to the analytical description given in Eq. (9). If a cer-
tain azimuthal coverage is available in the data, a fit of Eq. (9)
to the blue bands gives, for known V0, n and R0, a direct deter-
mination of φ0 and t from the slope and intercept. In practice
one could also do a 2D FT for this fit. However, since our real
data (see Sect. 6) do not cover a wide range of φ we explore how
to gain (partial) information from data with limited azimuthal
coverage.

From Fig. 11 and from Eq. (9) we can see that in a certain
azimuthal location (φ) the valleys of minimum VR are now equi-
spaced a distance (i.e. the wavelength):

∆L
n−1
n+1
Z =

(
V0

Rn
0

) −2
1+n 1

1 − 1
2

√
2(n + 1)

π

t
. (11)

Therefore, with this equation we can try to recover the time of
impact t in our simple models by measuring the frequency of the
oscillations in VR with a FT in this transformed coordinate.

We start by an example with Model 1hf in a given azimuth
that we take as φ = π corresponding to the one in Fig. 6, and first
choose the time t = 2 Gyr. The signal (VR oscillation) and FT
(amplitude against frequency) are shown in the top and bottom
panels of Fig. 12, respectively. We use VR/LZ to obtain a signal
with constant amplitude with LZ (countering the imposed initial
conditions, Eq. (4)), although this does not affect the FT. For
comparison, we do the FT of the LZ −VR curve (blue colours and
bottom horizontal axis) and the case of the transformed coordi-
nate L

n−1
n+1
Z − VR, that for this case of n = 0 is L−1

Z − VR (orange
curves and top horizontal axis). In the FT in the LZ coordinate
we see multiple peaks over a wide range of frequencies. This is
due to the fact that the frequency is not constant along the LZ
axis. When we use L−1

Z , however, the signal shows a uniform
frequency and the FT reveals a clear peak.

Figure 13 (left) shows the amplitude of the FT now for all
times for the same Model 1hf (colour map). A clear diagonal
band is observed indicating an increase in the frequency with
time following the expected ∝t from the inverse of Eq. (11). The
analytical formula is superposed in white and we see a perfect
match between the predicted and the computed frequency, mean-
ing that the FT analysis allows to recover the impact time for this
simple model. In the two following right panels in Fig. 13 we
show the computed frequency for the models with different slope
of the circular velocity curve n. As expected, models with circu-
lar velocity curves with positive (negative) slope have a slower
(faster) rhythm of phase mixing. We note that to do the FT in

the transformed space L
n−1
n+1
Z , we have assumed that we know n.
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Fig. 10. Ridges and waves for Model 1hf for two consecutive perturbations. The plot has the same structure as Fig. 6 but fewer time steps are
shown. The pink and black dashed vertical lines are the location of spiral arm wraps from the first and second perturbation, respectively.)

Fig. 11. Azimuthal dependency of the LZ − VR wave in the transformed

LZ space. We plot the mean VR as a function of azimuth φ and L
n−1
n+1
Z

for different models (different columns) and at a time of 1 Gyr. Com-

pared to Fig. 8, the transformation from LZ to L
n−1
n+1
Z makes the colour

bands straight and equispaced, improving the FT analysis and allowing
a determination of the time of impact.

Alternatively, one could search for the n that produces a clearer
FT peak.

Finally, in the right panel of Fig. 13 we show the FT ampli-
tude of Model 1hf with two superposed perturbations offset by
2 Gyr (see Fig. 10). For this idealised model, two lines corre-
sponding to the signal of each individual perturbation are iden-
tified at all times, from which we can recover both impact times
using Eq. (11).

In this section we have built simple models in which
the dynamics can be described analytically. We now explore
the more realistic N-body model using the simulation of
Laporte et al. (2018) (Sect. 5) and continue with an analysis of
the MW data (Sect. 6).

5. N-body model

Our last model is the simulation L2 by Laporte et al. (2018).
Briefly, this idealised live N-body simulation followed the inter-
action of a Sgr-like object with a MW-like host from the time
of virial radius crossing to the present-day. The simulation was
run with the Gadget-3 code (Springel 2005). The host dark halo
and bulge were represented by Hernquist (1990) profiles with
masses Mh = 1012 M� and Mb = 1010 M�, and scale radius of
a = 53 kpc and a = 0.7 kpc, respectively. The disc followed an
exponential profile in the radial direction and a sech2 profile in

Fig. 12. Example of frequency analysis of the VR wave for the Model
1hf at time t = 2 Gyr. Top: blue line is the average VR as a function of LZ ,
while the orange line is in the scale of L−1

Z , shown in the top horizontal
axis. Bottom: fourier amplitude as a function of frequency in LZ (blue
and bottom axis) and in L−1

Z (orange, top axis). The frequencies are in
units of (km s−1 kpc−1)

−1
(blue) and km s−1 kpc−1 (orange).

the vertical one with scale radius Rd = 3.5 kpc and scale height
zd = 0.53 kpc, and a total stellar mass of Md = 6 × 1010 M�.
The model was generated with GalIC (Yurin & Springel 2014)
which was modified to include adiabatic contraction following
the (Blumenthal et al. 1986) implementation. The Sgr-like pro-
genitor was modelled as a Hernquist sphere of 8 × 1010 M� and
a = 8 kpc, made to match a NFW halo of virial mass 6×1010 M�
with concentration c = 28. This corresponds to a concentration
that is about twice as concentrated as the mean of the Gao et al.
(2008) mass-concentration relation which has about 0.3 dex scat-
ter. For more details we refer the reader to Laporte et al. (2018).

The pericentre passages of Sagittarius occur approximately
at 2.3, 4.5, 5.6, 6.2 and 6.4 Gyr after the start of the simulation
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Fig. 13. Frequency analysis of the VR wave for different models. From left to right: we show Models 1hf, 1hr, 1hd, and 1hf with 2 perturbations.

The colour indicates the amplitude of the Fourier transform as a function of time when the LZ is transformed to L
n−1
n+1
Z . The diagonal lines in all

models show the increase in frequency with time, which is faster for the decreasing circular velocity curve mode (1hd). In the ideal model with
two perturbations, two lines of the frequency corresponding to the two different impacts are detected at all times.

Fig. 14. Spiral arms of Model L18p1. This is the same as Fig. 3 but for
the L18 model immediately before the first pericentre (2.4 Gyr).

(the last pericentre roughly corresponds to the present time). We
present the analysis of this model in four different time intervals
starting always at a time previous to a pericentre: (1) the first
pericentre (Model L18p1), (2) the second one (Model L18p2),
(3) the third one (Model L18p3), and (4) the final sequence of
snapshots when the last two pericentres (fourth and fifth) occur
(Model L18p45). There are notable differences between these
four time intervals. First, we examine the disc structure seen
face-on and the velocity moments in Figs. 14–17, correspond-
ing to the different time ranges.

Fig. 15. Spiral arms of Model L18p2. This is the same as Fig. 14 but for
immediately before the second pericentre (4.5 Gyr).

Immediately after the first pericentre (panel at 2.4 Gyr in
Fig. 14) there is a situation very similar to our simpler models: a
quadrupole pattern in velocity (second and third columns) closely
following the behaviour described by Eq. (4) (but already slightly
coiled at 2.4 Gyr). Indeed, as shown in Fig. 11 of Grion Filho et al.
(2021) where the same model is explored, there is a strong m = 2
mode in the Fourier decomposition of the radial and azimuthal
accelerations at 2.2 Gyr (together with an m = 1 mode) for parti-
cles at radius of 10 kpc. With time, the velocity patterns wrap and
a bi-symmetric spiral structure in density appears (first column).
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Fig. 16. Spiral arms of Model L18p3. This is the same as Fig. 14 but for
immediately before the third pericentre (5.6 Gyr).

As before, the spiral arms correspond to regions of negative radial
velocity and null azimuthal velocity with respect to the azimuthal
mean. A dipole in Vφ appears in the very central kpc which might
be due to small centring uncertainties.

For the next time interval, in the first row of Fig. 15, we see
that at 4.4 Gyr (that is 2 Gyr after the first pericentre) the spiral
wraps from the first pericentre are still visible both in density
and in velocities. After the second pericentre (panel at 4.6 Gyr),
we again see a dominant m = 2 mode in the velocities that once
more starts winding and forming a two-armed spiral structure.
The impact of this second pericentre is slightly stronger than the
first one, reflected in larger kick velocities (for example compar-
ing panels at 2.4 and 4.6 Gyr). The signatures of the small scale
ripples from the previous pericentre are hard to distinguish soon
after the next impact (hardly visible by 0.3 Gyr after the second
impact; middle row of Fig. 15). However, the signal of the pre-
vious impact can be seen better in other phase space projections
(see below).

After the third pericentre (Fig. 16), a similar generation of
a two-armed pattern is observed in density and in the velocity
moments. In this case, though, the initial velocity perturbations
follow Eq. (4) (quadrupole signature) only in the inner disc but
not in the outer parts. This is due to the perturber crossing at
a much closer distance (in fact it crosses the disc) and thus the
condition of a distant impact is only roughly fulfilled in the inner
parts. The resulting inner spiral, especially in velocities, is not as
symmetric as before but in general evolves as in previous peri-
centres. The spiral structure in this case is even stronger than

Fig. 17. Spiral arms of Model L18p45. This is the same as Fig. 14 but for
the fourth pericentre (6.1 Gyr). The successive percientre at 6.4 occur
also in this set of times.

previously (both in density and velocities), as expected after a
closer pericentre. Again some ripples stemming from the previ-
ous (second) impact are visible at the first times after the third
pericentre. The outer parts of the disc follow slightly different
patterns in velocity.

The time span in Fig. 17 includes the last two pericentres of
this model. These occur at separations shorter than the dynam-
ical times of the stars in the disc outskirts (Grion Filho et al.
2021), producing large impact on the disc dynamics. The den-
sity structure of these final stages of the simulation is more com-
plex, with two spiral arms but also rings and a central bar with
ansae (appearing at about 6.1 Gyr). The velocity patterns asso-
ciated to the spiral arms are not so clear, perhaps masked by
the signal of the bar. The inner quadruple of the bar is obvi-
ous and the quadrupole with a phase shift of π/2 in some snap-
shots (e.g. 6.3 Gyr) could be due to the surpassing of corotation
(Mühlbauer & Dehnen 2003) or the start of two new tidal arms
given that these structures appear somehow sheared in the fol-
lowing snapshot.

Now we examine the dynamics corresponding to a certain
azimuthal angle in the disc (φ = π ± 0.2) examining the four
different time ranges in Figs. 18–21, as we did for the simple
models (Figs. 6, 7 and 10). For this model, we could not use
Eq. (6) and thus in these figures we visually located the position
of the overdensities in the histogram (first column) that corre-
spond to the arm locations (or the bar in some cases) and marked
them with vertical lines. For the vertical lines in the LZ − VR
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Fig. 18. Ridges and waves for Model L18p1. The structure of the panels is as for Fig. 6. The average VR in bins of LZ is shown as a black line in
the last column.

projections (fourth column) again we could not use Eq. (7) but
we estimated the location of the minima by doing LZ = RVc as
in the analytical model but with Vc obtained from the N-body
model, in particular, at a time previous to the perturber.

Starting with the first pericentre (L18p1), in Fig. 18 we
observe ridges and a VR wave with a very similar behaviour to
Models 1. This is not surprising since we already saw similarity
in the X−Y projection. Ridges form in a sawtooth shape (second
column), with the ascending parts corresponding to the spiral
arms in density (marked with vertical lines) and negative radial
velocity, and positive radial velocities in the interarm regions and
the descending ridges. We again see alternation of positive and
negative radial velocities in the third column2. By 3 Gyr, three
spiral arm wraps are seen in the histogram of radius (first col-
umn) with three associated ridges in the middle columns. A wave
of VR in LZ forms with a progressively shorter wavelength with
time similar to Models 1. The vertical lines in this projection cor-
respond almost perfectly to the minima, as in our simple models.

The situation after the second pericentre (Fig. 19) is rem-
iniscent of our simple model with two consecutive pericentres
(Fig. 10) but with the added complexity in the L18 model. Even-
though we saw that the small spiral ripples in the X − Y projec-
tion that remained from the first pericentre seemed to disappear
in a relatively short time, here we keep seeing the correspond-
ing ridges: at 4.6 Gyr just after the new pericentre occurs, the
velocity VR seems overall dominated by negative values (blue)
but we still see some small scale pattern of blue-red alternate (as
evidenced also by the wave in LZ − VR in the fourth column).
By 4.8 Gyr, for example, one clear bump in the histogram of

2 Before the first pericentre at 2.2 Gyr we see some diagonal ridges
indicating phase mixing originating from the initial conditions of the
simulation. At the time where the perturber approaches for the first time,
these structure are relatively well-mixed with no further consequences
in the period dominated by the perturber. These patterns are also recog-
nizable in Fig. 22.

R is seen corresponding to the new spiral wrap at this azimuth
(clearly seen in Fig. 15) but we observe ridges with substructure
in the second column and multiple blue and red bands in the third
column. In these panels some of the thinner ridges do not follow
the sawtooth shape anymore. This is because the two patterns of
ridges (from the current and previous pericentre) superpose.

Overall the LZ − VR wave in Fig. 19 follows the same
behaviour as in the earlier pericentre but with additional higher
frequency undulations. The effects of the first pericentre are thus
still visible after 3 Gyr after the first impact (at 5.2 Gyr, bottom
panels). Although we suspect that this substructure also exist in
configuration space, it is much harder to see due to the statis-
tical noise. As in other work in different context, the velocity
substructure seems to be preserved much better (Helmi & White
1999). Finally, the vertical lines in the fourth column coincide
only approximately with the minima of the wave. This could be
because in this case it is more difficult to locate the spiral arms in
the first column due to the interference between the two perturba-
tions and because the use of the Vc from early times is not accu-
rate anymore. The dynamics of the third pericentre (Fig. 20) also
shows waves of different wavelengths from the different pericen-
tres, similarly to L18p2.

In the final 2 pericentres (Fig. 21) there are clear bumps in
the R histograms (associated to the spiral structure) that corre-
late with the thicker up-going ridges in the second column and
with the negative radial velocities bands in the third column
(and valleys in the fourth column). However, the correspondence
between vertical lines and minima is good only in some cases
possibly for the same reasons stated above. The spiral structure
and associated dynamics seem more complex, probably due to
the accumulation of effects of the multiple (and progressively
stronger) impacts and the formation of the bar and rings, as
already seen in Fig. 17.

Figure 22 compares the azimuthal variation of the radial
velocity wave in angular momentum at different times of the
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Fig. 19. Ridges and waves for Model L18p2. The structure of the panels is as for Fig. 6.

Fig. 20. Ridges and waves for Model L18p3. The structure of the panels is as for Fig. 6.

L18 model. Columns are the four different time spans specified
at the beginning of the section. Overall the maximum velocities
are larger for the last pericentre, as expected. The first pericen-
tre is dominated by two approximately flat lines of alternate VR
initially3 that progressively become stepper with time and for
smaller LZ , very similar to Models 1. The evolution after the

3 We see again some short wavelength pattern that remains from the
relaxation of the initial conditions as explained in footnote 2.

second and third pericentres (second and third columns) glob-
ally follows a similar behaviour with hints of the superposi-
tion of the previous wave which create substructure inside each
of the negative and positive regions. At larger angular momen-
tum we see structure not following the diagonal patterns. This
could be due to larger effects in these outer disc parts due to the
new encounter (not fulfilling exactly the distant tide impulsive
approximation). In addition or alternatively, it could be because
the signatures of the first pericentre are less phase mixed due
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Fig. 21. Ridges and waves for Model L18p45. The structure of the panels is as for Fig. 6.

Fig. 22. Azimuthal dependency of the LZ − VR waves for the different time ranges of Model L18 organised in columns.
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Fig. 23. Frequency analysis of the VR wave for the L18 model. The plot

is done as in Fig. 13 but we show the FT in the LZ (top) and L
n−1
n+1
Z with

n = −0.1 (bottom).

to the longer orbital timescales, in practise superposing waves
of similar wavelengths. In the last time range, the kinematics at
small angular momentum seems affected by the bar, as already
mentioned. At larger angular momentum, there are more com-
plex colour patterns than the inner diagonal stripes seen at other
times and LZ .

Now we apply the FT to the signal in this simulation pursu-
ing the measurement of the increase in frequency with time after
the different perturbations. We arbitrarily focus on the region
around φ = π as in previous examples. Figure 23 shows the
amplitude of the FT for all times. In the top panel we show the

FT done in LZ space and on the bottom we use L
n−1
n+1
Z , motivated

by the discussion of Sect. 4 and the analytical formula Eq. (9).
We note that this approach assumes that the potential is of the
power-law type with a well defined n (constant with R), while
this is not exactly the case for the model L18 (see for example
Grion Filho et al. 2021 for the circular velocity curve and fre-
quencies). This is, however, a first exploration of the potential
of this methodology and not a far off approximation to realistic
Galactic potentials despite its simplicity. One could also do it
by using the exact frequencies of the model, which is something
we can try in the future. Here we explored different values of n
between −0.1 and 0.1 and found that, globally, n ∼ −0.1 retrieve
higher FT amplitudes. At certain times, in particular towards the
end of the simulation, n ∼ 0.1 also returns large amplitudes.
This could be due to a change of the orbital frequencies at later
times. Here for simplicity we show as n = −0.1 (bottom panel in
Fig. 23).

In Fig. 23 an increase in signal can be seen coinciding with
the pericentres (marked with white vertical lines) in both pan-
els, but the signal seems clearer when the FT is done in LZ . This
could be a sign that we are not using the proper transformation
to LZ as explained above. This makes the process of age dat-
ing the perturbations from the analytical formula difficult. The
poor signal might also be due to the resolution of the model. In
any case, it is still possible to see diagonal bands of frequency
increasing linearly with time and starting at the first two pericen-
tres. The FT amplitude also increases at times close to the last
pericentres but we do not distinguish individual bands probably
because of our time resolution and because the pericentres occur

now very close in time and in the regime where bar effects start
appearing.

An interesting question is whether we can detect multiple
perturbations with different onset times simultaneously. While
some signal could be seen directly in Figs. 18–21 and 22 (in
some cases well after successive impacts), this is not so clear in
Fig. 23 where the start of a new diagonal line seems to wash out
the signs of the previous one. At this point it is not clear whether
this is a real effect due to the later perturbations being stronger,
or it is a detection problem since we could not find an optimal
transformation of LZ and/or binning problem. In the future one
could explore doing the FT in 2D in the full LZ − φ space, which
most likely increases the signal, as pointed out in Sect. 4.

6. Data

The ridges in the R − Vφ projection have been studied exten-
sively but for an easier comparison with previous models we
show again some figures with real MW data using radial veloc-
ities and astrometry from DR3 (Gaia Collaboration 2022) and
distances from StarHorse (Anders et al. 2022). We also applied
the following quality cuts: (i) astrometric quality selections,
RUWE < 1.4 & parallax_over_error > 5, and (ii) selection of
non-spurious solutions (Rybizki et al. 2022), fidelity_v2 >
0.5. We also removed stars with rv_template_teff ≥ 8500
K since these stars present a residual bias of a few km s−1

in radial_velocity even after some proposed corrections
(Blomme et al. 2022). In addition, we applied a correction to
the radial_velocity to stars with grvs_mag ≥ 11 and
rv_template_teff < 8500 (Katz et al. 2022) for which we
use radial_velocity − 0.02755 × grvs_mag2 + 0.55863 ×
grvs_mag − 2.81129.

We further select stars in the disc with the cut at |Z| <
0.8 kpc, ending up with a sample of 22 829 342 stars. To com-
pute to cylindrical coordinates, we assume R0 = 8.277 kpc,
U� = 9.3, Vc + V� = 251 and W� = 8.59 km s−1 from
GRAVITY Collaboration (2022) and Reid & Brunthaler (2020),
Z� = 0.0208 kpc from Bennett & Bovy (2019) and V� = 12.24
from Schönrich et al. (2010).

For Fig. 24 we selected a wedge of φ� ± 0.2 rad around
the Sun-Galactic Centre line. The density structure in Fig. 24
(which is now in logarithmic scale) is the result of a complex
convolution of the sample magnitude distribution and the differ-
ent types of stars (most of the dwarf stars being located close to
the Sun) with the true underlying density profile of the Galactic
disc. In the second and third columns we see multiple thin and
close ridges, resembling the later stages of a phase mixing pro-
cess better than the initial ones. The existence of four minima in
VR as a function of LZ (third panel) would indicate four wraps
of spiral arms in the observed radial range if these were all due
to a unique satellite impact but no other perturbation. We see a
fifth minima at low angular momentum but at this range of LZ
selection effects are more dominant (favouring eccentric orbits)
and this position is closer to the region of the bar and could thus
more likely be unrelated to the phenomena that we study here.

The ridges seen in the real data do not show such a clear saw-
tooth shape in Fig. 24 as in some models presented in Sects. 2–
5. However, this might depend on the particular plotting tech-
nique or sample used since some zigzagging seems present in
Fig. 12 in Hunt et al. (2019) and Fig. 16 in Gaia Collaboration
(2021). We also note that the sawtooth shape is not as strong
in the simple model with decreasing circular velocity curve
(as perhaps in the MW) nor in the more realistic L18 model.
The sawtooth shape also disappears when multiple perturbations
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Fig. 24. Ridges and waves for the MW data (|Z| < 0.8kpc, |φ| < 0.2 rad). The different panels follow the structure of Fig. 6.

Fig. 25. Azimuthal dependency of the LZ − VR waves for the MW data
(|Z| < 0.8kpc).

coexist, which is very likely the case for our Galaxy. Addi-
tionally, the zigzag is present also in models that do not have
tidally induced arms, such as those by Khanna et al. (2019) and
Hunt et al. (2018). Therefore, this shape can not be used to dis-
entangle between models.

A wave in the LZ − VR space was already detected in
Friske & Schönrich (2019) who measured two wavelengths of
1350 and 285 km s−1 kpc and attributed the larger one to the
signatures of the bar. The new, larger sample used here shows
a similar result (right panel in Figs. 24–25) but much better
defined oscillations and larger radial (LZ) and azimuthal span.
Following up on previous sections, we also compute the FT for
the data. One could try to do a fit of Eq. (9) directly in the
LZ − φ space. However, the range of φ is small and we do not
see a regular slope of the coloured bands in Fig. 25. This is
already a warning of the higher complexity of the data com-
pared to our models. Yet we do the FT to the LZ − VR curve
at φ = φ�, and attempt to do a fit using Eq. (11) for a back-
of-the-envelope calculation. To do this, we need to assume an
n (slope of the circular velocity curve). We considered differ-
ent circular velocity curves of the MW in the literature, namely
from McMillan (2017), Sofue (2020), Eilers et al. (2019) and
MWpotential2014 from Bovy (2015), and we find the n that best
fits each curve in the range where we detect our signal (5.5–
12 kpc). We obtain n =0, −0.03, −0.06, and −0.1, respectively.
We note, however, that only the curves by Eilers et al. (2019) and
MWpotential2014 are well fitted by a single power law model.
By contrast, McMillan (2017), for example, shows raising and
decreasing trends with the limit at R ≈ 8 kpc.

In Fig. 26 we show two curves corresponding to the VR signal
(top) and FT amplitudes (bottom) in different spaces: LZ (blue,

bottom axis) and L
n−1
n+1
Z (orange, top axis), where we choose n = 0

(i.e. L−1
Z ), as an example from all the above circular velocity

curves. We find that LZ gives slightly more defined frequency
peaks than L−1

Z and again this could be due to a bad approxima-
tion of the real potential to the power law type. In this case we
also use VR/LZ but it does not affect the results of the FT.

In the LZ coordinate (blue) we find two defined peaks at
a small and a large frequency. We note though that the peak
at smaller frequency is at the limit of the first frequency point
allowed by the data, and thus only an upper limit can be mea-
sured. Since our sampling of the frequencies is sparse, we only
give a range of possible location of the peaks. We measured this
range with the half-distance between the peak the consecutive fre-
quency points. These error ranges are marked as horizontal blue
error bars on the bottom panel of Fig. 26. The frequencies that
we find correspond to wavelengths of >1100 and in the range of
290−360 km s−1 kpc, thus similar to Friske & Schönrich (2019).
For L−1

Z and in the case of the larger frequency zone, a broad flat
peak is seen at approximately 10 000 km s−1kpc. Again, for the
smaller frequency we can only measure an upper limit.

The limiting frequencies obtained in each case are given in
Table 2. In all cases, we computed the times of impact using
Eq. (11) and assuming Vc = 239.26 km s−1 and R0 = 8.277 kpc.
As expected, the obtained times are sensitive to the adopted
value of n, with larger n yielding larger times. Considering all
cases, our analysis gives times of around <0.6 Gyr from the low
frequency peak and of 0.8–2.1 Gyr from the larger frequency
one. We discuss these estimated times in Sect. 7.2 .

7. Discussion

7.1. Spiral arms, ridges, waves, and frequencies

The response associated to the density wave theory in the tight-
winding approximation (TWA) predicts that density and aver-
age radial velocity are anti-correlated inside corotation radius
(i.e. the spiral arms coincide with negative radial velocities)
but are positively correlated outside corotation (Lin et al. 1969;
Mayor 1970). The TWA arms also coincide with regions of null
azimuthal velocity with respect to the average at that radius (as
expected from the relation between radial and azimuthal veloci-
ties in disc orbits). In Antoja et al. (2016; see also Siebert et al.
2012 and Roca-Fàbrega et al. 2014) we found that this was
indeed approximately the case in test particle simulations with
potentials including TWA arms with a constant pattern speed.
However, the self-consistent isolated N-body models examined
in that study with strong spiral arms and with transient arms
showed more complexity. More recently, in Eilers et al. (2020)
the kinematic perturbation associated to logarithmic spiral arms
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Fig. 26. Frequency analysis of the VR wave in the MW data. The plot is
built as in Fig. 12. The orange curves are for n =0, which is one example
of the different cases examined. The horizontal error bars indicate the
uncertainty in the peaks frequency (see text for details).

was calculated through approximating orbits in a potential
including the spiral perturbation. The resulting peaks of high-
est density, i.e. the spiral arms, coincided with locations of zero
average radial velocities. More examples of the analysis of the
spiral arms’ kinematics can be seen in Grand et al. (2015) and
Pettitt et al. (2020) who also focused on the density wave theory,
transient spirals, and spirals coexisting with bars.

The spiral structure of our models induced by an external
perturber corresponds to phase-space regions with negative aver-
age radial velocities and zero azimuthal velocity with respect
to the average. This is consistent with the theoretical considera-
tions of Kalnajs (1973) about kinematic waves and was observed
in early N-body modelling of a galaxy perturbed by a point
mass (Sundelius et al. 1987) and later, for example, in Oh et al.
(2008). Here we put this in the context of spiral arms that could
be tidally induced by the successive encounters of the MW and
Sagittarius. This clear kinematic signature can potentially help
to distinguish different types of spiral arms described above.

Moreover, the tidally induced spiral arms correspond to diag-
onal ridges with negative radial velocity VR in the R − Vφ projec-
tion, which does not necessarily correspond to regions of higher
stellar density in this projection. Our spiral arms are also linked
to the LZ − VR wave, corresponding to its valleys (negative VR).
Since the spiral arms in density space are much more difficult
to detect in real data due to extinction and selection effects, our
findings offer a potential method to infer the number of spiral
arms and their location. This is different from Khoperskov et al.
(2020), where the spiral arms were associated to regions of high
density in the Rg − φ plane (essentially regions of accumulation
around certain angular momentum). Their spiral arms, thus, do
not correspond to spiral arms necessarily seen in configuration
space (see also Hunt et al. 2020), where we believe spiral arms

Table 2. Frequencies of the VR wave and times of impact from MW
data.

Low frequency High frequency

n Frequency Time Frequency Time
[Gyr] [Gyr]

LZ <0.0009 0.0028 – 0.0034

L
n−1
n+1
Z 0. <3500 <0.6 7100 – 11 800 1.3 – 2.1

−0.03 <5300 <0.6 10 600 – 17 700 1.2 – 2.0
−0.06 <8200 <0.5 16 400 – 27 300 1.1 – 1.8
−0.1 <15 300 <0.5 25 500 – 56 100 0.8 – 1.7

Notes. The different rows refer to when the FT is done with different
coordinates (LZ and L

n−1
n+1
Z ) as indicated in the first column. The units of

the frequency are (km s−1kpc)−1 for the first row and ((km s−1kpc)
n−1
n+1 )−1

for the rest. For the later cases we give also the derived impact times.

must be defined. From our models we see that overdensities in cer-
tain projections of phase space do not correspond to overdensities
in other projections, in particular not in configuration space.

In our models the number of ridges in the R − Vφ plane,
the number of alternating changes of sign of VR in this projec-
tion, and the number of oscillations in the LZ − VR wave (all
these corresponding to spiral wraps) depend on the form of the
planar potential and the time after the perturbation. For simple
models with power law potentials, we give analytical descrip-
tions of the number of wraps, positions of the ridges, etc, as a
function of time t (after the perturbation), the initial phase φ0,
and the parameters of the circular velocity curves (slope n and
normalisation values V0 and R0). By measuring the frequency
of the LZ − VR wave and assuming a reasonable model for the
gravitational potential, one can obtain the time of onset of the
perturbation. Ideally, one would try to fit the potential parame-
ters and time of impact simultaneously. Here we also show that
planar kinematic disturbances can contain signatures of multi-
ple events as superimposed waves of different wavelengths. Our
Fourier analysis allows the approximate detection of different
impact times for these simple models, while there seems to be
a certain detection limit for the analysed N-body simulation, in
which there is added complexity due to other perturbations, a
potential deviating from simple power laws, and low number of
particles.

We note that there is a clear analogy between this and
the estimation of the impact time using the phase spiral in
Antoja et al. (2018) and also in using this phase-space structure
to constrain the potential (Widmark et al. 2021), but our observ-
able in this case relates to the planar potential and not the ver-
tical one. As discussed in Laporte et al. (2019) and Hunt et al.
(2021) for the phase spiral, multiple perturbations from the pla-
nar velocities could potentially be easier to identify in the outer
parts of the Galaxy due to longer phase mixing times (Fig. 5).
Developing a framework in which both the planar and vertical
dynamics are modelled together is necessary and could provide
a more robust fit to both disturbances at the same time. We now
proceed to discussing the applicability of our idea to currently
available Milky-Way data.

7.2. The case of the Milky Way

Our simple models with orbital integrations provide a basis
to understand the dynamics of tidally induced arms and their
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manifestations in different phase-space projections. They have
proven to be very helpful to understand what happens in more
complex models such as that of L18, and potentially real disc
galaxies such as the MW. One of the simplifications of our sim-
ple models is the condition of distant and impulsive impacts.
A natural extension of our work could be to relax the distant-
impact condition and explore different impact configurations in
our toy models that could resemble the later interactions with a
Sagittarius-like system, i.e. when the perturber may even cross
the disc, and excite more complex structures such as asym-
metric rings and spirals (Appleton & Struck-Marcell 1996). The
other fundamental assumption in our simple modelling is the
neglection of the effects of self-gravity of the disc and other
perturbations, mostly the bar (and possibly other types of spi-
ral arms). More investigation is needed in order to see how
these additional aspects can hamper our ability to constrain
the time of the perturbations and potential of the MW. For
example, Darling & Widrow (2019) show that phase-mixing
timescales are longer when one considers self-gravity. Simi-
larly, Pettitt & Wadsley (2018) and Oh et al. (2015) show how
the phase-mixing rhythms of tidally induced arms are altered by
self-gravity or by the bar.

As both the existence of the bar and of the external perturber
Sagittarius are well established, the Galactic disc must be suffer-
ing from sequels of both, the key questions being whether one
of the two is the dominant mechanism, whether the two have
superposing effects – and are thus detectable as separate waves
– or whether they interact with each other. Hunt et al. (2019)
studied the combined effects of a bar and spiral arms with test
particles and backward integration of orbits, but they considered
only quasi-stationary density wave arms and transient corotating
arms. In a future study, our simple modelling could be used to
examine the combination of bar and tidally induced spiral arms,
complemented by a more detailed study of the later stages of
the model L18 or other N-body models. In particular, one could
explore how the FT analysis presented here could help to distin-
guish waves/signatures from different dynamical processes, such
as the bar.

In the N-body simulation that we use here, the effects of the
Galactic bar start to become important during the last pericen-
tres, complicating the interpretation of the density and velocity
structures due to the interaction. The kinematics associated to
a barred potential has been well studied in the literature. For
a recent example, we refer to Fig. D.1 of Bernet et al. (2022),
which shows the R − Vφ projection coloured by VR for test par-
ticle simulations with different bar pattern speeds at 30 deg with
respect to the bar’s long axis. We see that there are clear differ-
ences between the bar and the external perturbation model. As
expected, there is a limited number of ridges in the bar mod-
els: the most clear ones are those associated to corotation, Outer
Lindblad Resonance (OLR) and 1:1 resonance4. These ridges do
not have the conspicuous sawtooth shape seen in our models, and
some of them have changing slopes or breaks with R, and their
VR signal is different depending on the resonance. This translates
into a wave in the LZ − VR space that does not have the symme-
tries that we see in the waves of external perturbations in the
simple models.

For the bar case, the VR wave in the LZ − φ plot (similar
to Figs. 8 and 23) can be seen in Fig. A1 of Trick et al. (2021)
and Fig. 12 of Chiba et al. (2021). There we see that the bar
mostly creates a quadrupolar structure in VR that changes sign

4 Other resonances, such as the 6:1, 4:1, and 3:1 resonances, are notice-
able in other models (Monari et al. 2019).

at the main resonances (see also Mühlbauer & Dehnen 2003).
Trick et al. (2021) show that for long integration times, this
structure has phase angle φ constant with LZ , thus different from
the external perturbation case. Only for short integration times
does one see certain slopes, but this could also depend on the
resonance, thus different from the global pattern in our models.
These aspects should be key to consider in the comparison with
the Milky-Way data (see below). However, Chiba et al. (2021)
show that this quadrupolar pattern turns into multiple bands and
slopes when the bar slows down, which is a natural process in
galactic dynamics. In this case, the simulations resemble more
the data although additional effects might still be at play.

Finally, we note that simple barred models predict density
gaps and bumps around some resonances such as the OLR (for
example Fig. 9 in Trick et al. 2021, or Figs. 6–7 in Melnik et al.
2021). While it is well described that the different bar reso-
nances can create structures in density (Buta & Combes 1996),
this has been hardly considered for the MW. These struc-
tures have mostly ring shape but we note that, locally, they
might be confused with spiral arms. It should be explored fur-
ther whether their kinematics makes them distinguishable from
spiral arms.

In any case, awaiting a clearer picture of how different
dynamical effects (bar, external perturbation, etc) superpose, our
simple modelling indicates two times of impact of <0.6 and
0.8–2.1 Gyr, respectively for the small and large frequencies
detected in the data. These frequencies could in principle also
be related to the effects of a static bar (Mühlbauer & Dehnen
2003; Chiba et al. 2021; Trick et al. 2021) in the small frequency
case, as discussed in Friske & Schönrich (2019), and to a slow-
ing bar according to Chiba et al. (2021) in the large one. From
our simple modelling, the small-frequency signal (related to
the short time) could alternatively be linked to a recent pas-
sage of Sagittarius, although this is expected to happen a bit
earlier in time and to have conditions far from the distant-
impact hypothesis. The large-frequency peak yields times com-
patible with the perturbation from the previous-to-last (or ear-
lier) pericentre (e.g. de la Vega et al. 2015; Laporte et al. 2018;
Law & Majewski 2010; Purcell et al. 2011). Signatures of previ-
ous pericentres would not be washed away if Sagittarius signifi-
cantly lost mass between pericentres.

Minchev et al. (2009) obtained a time of perturbation of
1.9 Gyr from the visual comparison of the separation between
arches in the VR − Vφ plane in the data and in their toy models.
Their method is considerably different from ours, since we start
with initial conditions that specifically mimic the ones follow-
ing an impulsive and distant impact with a satellite. Furthermore,
we derive an analytic formula for the oscillations in the (trans-
formed) LZ − φ space, consider the azimuthal dimension of the
phase-mixing, and relate the perturbation with the tidally induced
spiral arms. In any case, one of our derived perturbation times is
consistent with the one obtained by Minchev et al. (2009).

Our derived lower limit of the impact time related to
the large-frequency signal (0.8 Gyr) is also comparable to the
times inferred from the phase spiral in Antoja et al. (2018;
500–900 Myr) in the pure phase-mixing case (although it
was estimated to be 400 Myr in Binney & Schönrich 2018),
but this is expected to be larger in the self-gravitating case
(Darling & Widrow 2019). The times are also compatible
with direct age-dating of the phase spiral (Tian et al. 2018;
Laporte et al. 2019; Bland-Hawthorn et al. 2019), which seems
to be present in young samples (0.5–1 Gyr).

We note that the amplitude of the VR wave in the last pericen-
tres of the L18 model is too large compared to the data (&20 vs.
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10 km s−1). This could simply be due to the lack of exploration
of different setups for Sgr’s halo and disc structure in the cur-
rent models. It could also be connected to the existent discussion
around the mass of Sagittarius at each pericentre and whether
these impacts are enough to create the phase spiral (see discus-
sion in García-Conde et al. 2022). This should also be addressed
in future investigations.

8. Summary and conclusion

We have presented a series of models of tidally induced spiral
arms and shown how these relate to the ridges and waves seen in
certain projections of phase space, similar to those observed in
the Gaia data for the MW. Our main results and conclusions are:
1. An impulsive distant tidal impact generates an initial

quadrupole in velocities that leads to a two-armed spiral
structure that wind with time at an approximate rate of
ω − 1/2κ. The arms progressively have smaller pitch angles
and there is an increasing number of spiral wraps in a partic-
ular azimuth in the disc with time (Sect. 2.2).

2. The location of the maximum density (locus of the arms)
coincides with regions where the average galactocentric
radial velocity is negative, and the azimuthal velocity with
respect to the average at each radius is zero (Sect. 2.2). This
is because the arms coincide with orbital phases in-between
apocentre and pericentre.

3. The winding of the spiral arms and the associated velocity
pattern produce a global wave in VR that depends on azimuth,
manifesting as inclined stripes in the LZ − φ plane, and as
oscillations of VR as a function of LZ in a given region of the
disc (Sect. 3), as observed also in the Gaia data. The wave-
length of this oscillation decreases with time (and increases
with LZ at a fixed time). This wave is seen as a pattern of
stripes with alternating signs of VR in the R − Vφ projec-
tion. Each stripe with negative VR corresponds to a spiral arm
wrap.

4. In the R−Vφ plane, a sawtooth shape appears, with increasing
number of oscillations with time (Sect. 3). Each oscillation
is associated to a spiral wrap, but the stars that belong to the
arms do not lie on the down-going ridges but on the regions
with negative radial velocity in this projection. The sawtooth
shape is diluted in more complex models such as N-body and
when multiple mechanisms are at play (Sect. 5).

5. The relation between density and average velocities (and
associated ridges and waves in phase space) is different for
other models of spiral arms, offering a way to distinguish
between different dynamical models of arms (Sect. 7.1).

6. With the realistic simulation of the interaction between
Sagittarius and the MW, we see that the first three pericen-
tres of Sagittarius seem close to the impulsive and distant
tide approximation in the central and intermediate regions
of the disc, and thus, the dynamics follows the items above
(Sect. .5).

7. The rhythm at which new spiral arms wraps appear with
time, and thus new ridges in the R−Vφ projection and oscilla-
tions of VR with LZ , depends on the orbital frequencies of the
disc through the radial dependence of ω − 1

2κ. The number
of all these phase-space features and their separation offers a
means to infer at the same time the potential (essentially the
circular velocity curve parameters) and the starting time and
phase of the perturbation. We give analytical formulae for
simple power law models that at a theoretical level (in pure
phase mixing events) successfully recover the impact times
and even disentangle impacts from different successive peri-
centres (Sect. 4).

8. For the MW we find a superposition of two different wave-
lengths of >1100 and 290 − 360 km s−1kpc, similar to the
values of Friske & Schönrich (2019) who detected it for the
first time (Sect. 6).

9. Using typical values of the circular velocity curve of the
MW, we obtain times of <0.6 Gyr and 0.8–2.1 Gyr, asso-
ciated to these two wavelengths (Sect. 6). The first one is
slightly smaller than the last Sagittarius pericentre and thus
the long wavelength signal could be related to other mecha-
nisms. The range of earlier times is consistent with estimated
previous and previous-to-last pericentre of this galactic satel-
lite. These would correspond to four spiral wraps in the range
of the data coverage.

10. The validity of this calculation is subject to the assumptions
that the impact with Sagittarius was impulsive and distant,
and that there is no intervention of other aspects such as self-
gravity or the bar, which, on the other hand, has been shown
to reproduce several of the observed kinematic features else-
where as well (Sect. 7.2).

Here we provided various models of the dynamics of tidally
induced arms and a first application to the MW case. However,
the complex dynamics of the MW disc certainly requires more
investigation.

Acknowledgements. We thank the anonymous referee for the insightful and
helpful comments. Work produced with the support of a 2021 Leonardo
Grant for Researchers and Cultural Creators, BBVA Foundation. The Foun-
dation takes no responsibility for the opinions, statements and contents of
this project, which are entirely the responsibility of its authors. We thank
Prof. Dr. Curtis J. Struck for useful discussions. TA acknowledges the grant
RYC2018-025968-I funded by MCIN/AEI/10.13039/501100011033 and by
“ESF Investing in your future”. This work was (partially) funded by the Spanish
MICIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”
by the “European Union” through grant RTI2018-095076-B-C21, and the
Institute of Cosmos Sciences University of Barcelona (ICCUB, Unidad de
Excelencia ’María de Maeztu’) through grant CEX2019-000918-M. FA
acknowledges financial support from MICINN (Spain) through the Juan de la
Cierva-Incorporcion programme under contract IJC2019-04862-I. MB received
funding from the University of Barcelona’s official doctoral program for the
development of a R+D+i project under the PREDOCS-UB grant. CL acknowl-
edges funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No.
852839). This work has made use of data from the European Space Agency
(ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by
the Gaia Data Processing and Analysis Consortium (DPAC, https://www.
cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has
been provided by national institutions, in particular the institutions participating
in the Gaia Multilateral Agreement.

References
Anders, F., Khalatyan, A., Queiroz, A. B. A., et al. 2022, A&A, 658, A91
Antoja, T., Roca-Fàbrega, S., de Bruijne, J., & Prusti, T. 2016, A&A, 589, A13
Antoja, T., Helmi, A., Romero-Gómez, M., et al. 2018, Nature, 561, 360
Appleton, P. N., & Struck-Marcell, C. 1996, Fund. Cosmic Phys., 16, 111
Arp, H. 1966, Atlas of Peculiar Galaxies (Pasadena: Caltech)
Barnes, J. E., & Hernquist, L. 1992, ARA&A, 30, 705
Barros, D. A., Pérez-Villegas, A., Lépine, J. R. D., Michtchenko, T. A., & Vieira,

R. S. S. 2020, ApJ, 888, 75
Bennett, M., & Bovy, J. 2019, MNRAS, 482, 1417
Bernet, M., Ramos, P., Antoja, T., et al. 2022, A&A, 667, A116
Binney, J., & Schönrich, R. 2018, MNRAS, 481, 1501
Binney, J., & Tremaine, S. 2008, Galactic Dynamics: 2nd Edition (Princeton:

Princeton University Press)
Bland-Hawthorn, J., & Tepper-García, T. 2021, MNRAS, 504, 3168
Bland-Hawthorn, J., Sharma, S., Tepper-Garcia, T., et al. 2019, MNRAS, 486,

1167
Blomme, R., Fremat, Y., Sartoretti, P., et al. 2022, A&A, in press, https://
doi.org/10.1051/0004-6361/202243685

Blumenthal, G. R., Faber, S. M., Flores, R., & Primack, J. R. 1986, ApJ, 301, 27
Bovy, J. 2015, ApJS, 216, 29

A61, page 19 of 20

https://www.cosmos.esa.int/gaia
https://www.cosmos.esa.int/web/gaia/dpac/consortium
https://www.cosmos.esa.int/web/gaia/dpac/consortium
http://linker.aanda.org/10.1051/0004-6361/202244064/1
http://linker.aanda.org/10.1051/0004-6361/202244064/2
http://linker.aanda.org/10.1051/0004-6361/202244064/3
http://linker.aanda.org/10.1051/0004-6361/202244064/4
http://linker.aanda.org/10.1051/0004-6361/202244064/5
http://linker.aanda.org/10.1051/0004-6361/202244064/6
http://linker.aanda.org/10.1051/0004-6361/202244064/7
http://linker.aanda.org/10.1051/0004-6361/202244064/8
http://linker.aanda.org/10.1051/0004-6361/202244064/9
http://linker.aanda.org/10.1051/0004-6361/202244064/10
http://linker.aanda.org/10.1051/0004-6361/202244064/11
http://linker.aanda.org/10.1051/0004-6361/202244064/12
http://linker.aanda.org/10.1051/0004-6361/202244064/13
http://linker.aanda.org/10.1051/0004-6361/202244064/13
https://doi.org/10.1051/0004-6361/202243685
https://doi.org/10.1051/0004-6361/202243685
http://linker.aanda.org/10.1051/0004-6361/202244064/15
http://linker.aanda.org/10.1051/0004-6361/202244064/16


A&A 668, A61 (2022)

Buta, R., & Combes, F. 1996, Fund. Cosmic Phys., 17, 95
Chiba, R., Friske, J. K. S., & Schönrich, R. 2021, MNRAS, 500, 4710
Darling, K., & Widrow, L. M. 2019, MNRAS, 484, 1050
de la Vega, A., Quillen, A. C., Carlin, J. L., Chakrabarti, S., & D’Onghia, E.

2015, MNRAS, 454, 933
Debattista, V. P., Mayer, L., Carollo, C. M., et al. 2006, ApJ, 645, 209
Dehnen, W. 1999, AJ, 118, 1201
Dobbs, C., & Baba, J. 2014, PASA, 31, e035
Dressler, A. 1980, ApJ, 236, 351
Drimmel, R., & Spergel, D. N. 2001, ApJ, 556, 181
Eilers, A.-C., Hogg, D. W., Rix, H.-W., & Ness, M. K. 2019, ApJ, 871, 120
Eilers, A.-C., Hogg, D. W., Rix, H.-W., et al. 2020, ApJ, 900, 186
Fragkoudi, F., Katz, D., Trick, W., et al. 2019, MNRAS, 488, 3324
Fragkoudi, F., Grand, R. J. J., Pakmor, R., et al. 2020, MNRAS, 494, 5936
Friske, J. K. S., & Schönrich, R. 2019, MNRAS, 490, 5414
Gaia Collaboration (Prusti, T., et al.) 2016, A&A, 595, A1
Gaia Collaboration (Brown, A. G. A., et al.) 2018a, A&A, 616, A1
Gaia Collaboration (Katz, D., et al.) 2018b, A&A, 616, A11
Gaia Collaboration (Antoja, T., et al.) 2021, A&A, 649, A8
Gaia Collaboration (Vallenari, A., et al.) 2022, A&A, submitted

[arXiv:2208.00211]
Gao, L., Navarro, J. F., Cole, S., et al. 2008, MNRAS, 387, 536
García-Conde, B., Roca-Fàbrega, S., Antoja, T., Ramos, P., & Valenzuela, O.

2022, MNRAS, 510, 154
Georgelin, Y. M., & Georgelin, Y. P. 1976, A&A, 49, 57
Gómez, F. A., Minchev, I., O’Shea, B. W., et al. 2013, MNRAS, 429, 159
Grand, R. J. J., Bovy, J., Kawata, D., et al. 2015, MNRAS, 453, 1867
GRAVITY Collaboration (Abuter, R., et al.) 2021, A&A, 647, A59
GRAVITY Collaboration (Abuter, R., et al.) 2022, A&A, 657, L12
Grion Filho, D., Johnston, K. V., Poggio, E., et al. 2021, MNRAS, 507, 2825
Helmi, A., & White, S. D. M. 1999, MNRAS, 307, 495
Hernquist, L. 1990, ApJ, 356, 359
Hu, S., & Sijacki, D. 2018, MNRAS, 478, 1576
Hunt, J. A. S., Hong, J., Bovy, J., Kawata, D., & Grand, R. J. J. 2018, MNRAS,

481, 3794
Hunt, J. A. S., Bub, M. W., Bovy, J., et al. 2019, MNRAS, 490, 1026
Hunt, J. A. S., Johnston, K. V., Pettitt, A. R., et al. 2020, MNRAS, 497, 818
Hunt, J. A. S., Stelea, I. A., Johnston, K. V., et al. 2021, MNRAS, 508, 1459
Hunter, C., & Toomre, A. 1969, ApJ, 155, 747
Ibata, R. A., & Razoumov, A. O. 1998, A&A, 336, 130
Kalnajs, A. J. 1973, PASA, 2, 174
Katz, D., Sartoretti, P., Guerrier, A., et al. 2022, A&A, submitted

[arXiv:2206.05902]
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