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Spontaneous imbibition dynamics in two-dimensional porous media: a generalized interacting multi-capillary model

The capillary bundle model, wherein the flow dynamics of a porous medium is predicted from that of a bundle of independent cylindrical tubes/capillaries whose radii are distributed according to the medium's pore size distribution, has been used extensively. But, as it lacks interaction between the flow channels, this model fails at predicting complex flow configuration, including those involving two-phase flow. We propose here to predict spontaneous imbibition in quasi-two-dimensional (quasi-2D) porous media from a model based on a planar bundle of interacting capillaries. The imbibition flow dynamics, and in particular, the breakthrough time, the global wetting fluid saturation at breakthrough, and which capillary carries the leading meniscus, are governed by the distribution of the capillaries' radii and their spatial arrangement. For an interacting capillary system consisting of 20 capillaries, the breakthrough time can be 39% smaller than that predicted by the classic, non-interacting, capillary bundle model of identical capillary radii distribution, depending on the spatial arrangement of the capillaries. We propose a stochastic approach to use this model of interacting capillaries for quantitative predictions. Comparing bundles of interacting capillaries with the same capillary diameter distribution as that of the pore sizes in the target porous medium, and computing the average behavior of a randomly-chosen samples of such interacting capillary bundles with different spatial arrangements, we obtain predictions of the position in time of the bulk saturating front, and of that of the leading visible leading front, that agree well with measurements taken from the literature. This semi-analytical model is very quick to run and could be useful to provide fast predictions on one-dimensional spontaneous imbibition in porous media whose porosity structure can reasonably be considered two-dimensional, e.g., paper, thin porous media in general, or layered aquifers. 49 gle pore/tube was observed to be strongly dependent on the 50 geometries of the capillaries 29-40 . 51 Due to the similarity in the macroscopic laws describing 52 the time evolution of the imbibition length between imbibition 53 in a capillary tube and imbibition in a homogeneous porous 54 medium, the capillary bundle model, considering a bundle of 55 non-interacting capillaries of different radii, is classically con-56

 . In 59 a quasi-two-dimensional (2D) porous medium such as paper, 60 Bico and Quéré 47 showed that there are two imbibing fronts, 61 a leading front in the small pores and a bulk saturating front 62 which lags behind, which is contradictory to the predictions 63 of the classic bundle of (non-interacting) capillaries, where 64 the pores with larger radii have the leading front during imbi-65 bition. 66 The model geometry consisting of interacting capillaries 67 (i.e., a capillary bundle where an opening allowing fluid ex-68 change exists between adjacent capillairies, see e.g. Ref.55) 69 accounts for the effect of the interaction between pores on 70 the pore scale flow dynamics, which in turn affects the Darcy 71 scale flows in porous media 48-55 . In a system of two inter-72 acting capillaries, the imbibition in the capillary of smaller

73

radius is found to be faster than that in the one of larger ra-74 dius, unlike the behavior suggested by Eq. (1). However, a 75 majority of these models were limited to predicting the im-76 bibition dynamics in an ordered arrangement of pores or in 77 two and three interacting capillary systems. For a system con-78 sisting of three interacting non-cylindrical capillaries, Unsal

I. INTRODUCTION

When a wetting fluid is placed in contact with a porous medium, the fluid spontaneously imbibes into the pore space due to capillary suction. Such spontaneous imbibition in the porous matrix is crucial for applications such as oil recovery from reservoirs 1-3 , Paper Analytic Devices (µPADs) [START_REF] Taghizadeh-Behbahani | A paper-based length of stain analytical device for naked eye 1055 (readout-free) detection of cystic fibrosis[END_REF][START_REF] Soda | Equipment-free detection of k+ on mi-1057 crofluidic paper-based analytical devices based on exhaustive replacement 1058 with ionic dye in ion-selective capillary sensors[END_REF] , textiles [START_REF] Dai | Bioinspired janus textile with conical micropores for human body mois-1062 ture and thermal management[END_REF] , inkjet printing [START_REF] Rosello | Dripping-onto-substrate 1064 capillary breakup extensional rheometry of low-viscosity printing inks[END_REF][START_REF] Wang | Fabrication of monolayers of 1067 uniform polymeric particles by inkjet printing of monodisperse emulsions 1068 produced by microfluidics[END_REF] , microfluidics [START_REF] Liu | Microfluidic investigations of crude oil-1070 brine interface elasticity modifications via brine chemistry to enhance oil 1071 recovery[END_REF][START_REF] Gharibshahi | Hybridiza-1073 tion of superparamagnetic fe3o4 nanoparticles with mwcnts and effect of 1074 surface modification on electromagnetic heating process efficiency: A mi-1075 crofluidics enhanced oil recovery study[END_REF][START_REF] Carrell | Beyond the lateral flow assay: A review of paper-1078 based microfluidics[END_REF][START_REF] Schaumburg | Assessing the rapid flow in multilayer 1080 paper-based microfluidic devices[END_REF][START_REF] Rich | Characterization 1083 of glass frit capillary pumps for microfluidic devices[END_REF] , lab-on-chip devices [START_REF] Lin | Performance analysis of 1086 a proton-exchange membrane fuel cell (pemfc) with various hydrophobic 1087 agents in a gas diffusion layer[END_REF][START_REF] Lee | A whole blood sample-to-answer 1089 polymer lab-on-a-chip with superhydrophilic surface toward point-of-care 1090 technology[END_REF] , point-of-care diagnostics [START_REF] Liang | Smartphone-app 1093 based point-of-care testing for myocardial infarction biomarker ctni using 1094 an autonomous capillary microfluidic chip with self-aligned on-chip focus-1095 ing (sof) lenses[END_REF][START_REF] Joung | based multiplexed 1098 vertical flow assay for point-of-care testing[END_REF] , Polymer Electrolyte Membrane Fuel Cell (PEMFC) [START_REF] Xiao | A 1101 novel fractal model for relative permeability of gas diffusion layer in proton 1102 exchange membrane fuel cell with capillary pressure effect[END_REF][START_REF] Carrere | Liquid water in cathode gas diffusion layers of pem 1105 fuel cells: Identification of various pore filling regimes from pore network 1106 simulations[END_REF] , micro heat pipes [START_REF] Singh | Enhanced ther-1109 mal performance of micro heat pipes through optimization of wettability 1110 gradient[END_REF][START_REF] Chernysheva | Simulation of heat and mass transfer in 1112 a cylindrical evaporator of a loop heat pipe[END_REF] , in understanding the motion of blood cells [START_REF] Pozrikidis | Axisymmetric motion of a file of red blood cells through 1115 capillaries[END_REF] and in the design of bio-inspired drainage and ventilation systems [START_REF] Singh | The architectural design of smart ventila-1118 tion and drainage systems in termite nests[END_REF] . Capillary driven imbibition in a homogeneous porous medium follows diffusive dynamics, where the imbibition length is proportional to the square root of time [START_REF] Li | Criteria for applying the 1121 lucas-washburn law[END_REF][START_REF] Gruener | Capillarity-driven oil flow in nanopores: Darcy 1123 scale analysis of lucas-washburn imbibition dynamics[END_REF][START_REF] Cai | Capillary imbibition and flow 1126 of wetting liquid in irregular capillaries: A 100-year review[END_REF] . This kind of dynamics was first characterized by Lucas [START_REF] Lucas | Ueber das zeitgesetz des kapillaren aufstiegs von flüssigkeiten[END_REF] and Washburn [START_REF] Washburn | The dynamics of capillary flow[END_REF] for a horizontal cylindrical capillary tube: during the spontaneous imbibition of a wetting fluid of viscosity µ in a tube of radius r, the imbibition length (which here is simply the longitudinal position of the meniscus along the tube) is given by

l = rσ cos θ w 2µ t, (1) 
where σ is the surface tension coefficient and θ w is the wetting angle of the invading fluid on the tube's wall. In Eq. (1), the prefactor of the √ t law is proportional to √ r, which implies that at any given time the meniscus will have advanced a) Electronic mail: jyoti.phirani@strath.ac.uk more along a capillary of larger radius than along one of 48 smaller radius. Later, the phenomenon of imbibition in a sin-et al. [START_REF] Unsal | Co-current and counter-1214 current imbibition in independent tubes of non-axisymmetric geometry[END_REF][START_REF] Unsal | Co-and counter-current 1217 spontaneous imbibition into groups of capillary tubes with lateral connec-1218 tions permitting cross-flow[END_REF][START_REF] Unsal | Bubble snap-off and 1221 capillary-back pressure during counter-current spontaneous imbibition into 1222 model pores[END_REF] showed experimentally that the imbibition speed is fastest in the capillary of least effective radius. On the contrary, Ashraf et al. [START_REF] Ashraf | Spontaneous imbibition in ran-1211 domly arranged interacting capillaries[END_REF] , using a one-dimensional lubrication approximation model and considering a system of three interacting cylindrical capillaries, showed that imbibition is not always fastest in the capillary of smallest radius. Furthermore, both these studies [START_REF] Ashraf | Spontaneous imbibition in ran-1211 domly arranged interacting capillaries[END_REF][START_REF] Unsal | Co-current and counter-1214 current imbibition in independent tubes of non-axisymmetric geometry[END_REF] showed that, for three capillary systems, the random positioning of the capillaries strongly impacts the invasion behaviour. But how the interconnection between capillaries impacts the overall imbibition dynamics is far from being fully understood in the general case of a larger number of tubes. Consequently, interacting capillary systems, despite having a complexity which is intermediate between that of the classical bundle of non-interacting capillaries, have so far not been used to predict the generalized imbibition phenomenon observed in porous media consisting of several pores of irregular sizes and varying connectivity. To this aim, more complex models have been introduced since, based on pore-network geometries inferred from a geometrical analysis of the porous medium in which imbibition is to be investigated [START_REF] Bultreys | Verifying pore network mod-1225 els of imbibition in rocks using time-resolved synchrotron imaging[END_REF][START_REF] Bultreys | Improving the description of two-phase flow in rocks by in-1229 tegrating pore scale models and experiments[END_REF][START_REF] Foroughi | Pore-by-pore modelling, vali-1232 dation and prediction of waterflooding in oil-wet rocks using dynamic syn-1233 chrotron data[END_REF] . We will present here a model of intermediate complexity between those early interacting-capillary models and pore network models. Note that in many practical cases, the detailed porous structure is not known, and only an estimate of the pore size distribution is available; in such cases a pore network model cannot be applied without making assumptions on the unknown structure, whereas the model presented here can be applied directly.

We thus propose a generalized one-dimensional model to predict spontaneous imbibition in a capillary bundle consisting of any number of randomly arranged cylindrical tubes that interact with each other, with any arbitrary distribution of the capillaries' radii. The model generalizes the study by Ashraf et al., [START_REF] Ashraf | Spontaneous imbibition in ran-1211 domly arranged interacting capillaries[END_REF] for systems of two and three interacting capillaries, to an arbitrary number of interacting capillaries. It is meant to model spontaneous imbibition in quasi-2D porous media for which the pore size distribution is known. The model is inspired from a model developed to tackle spontaneous imbibition in stratified geological porous media [START_REF] Ashraf | A generalized model for spontaneous imbibition 1235 in a horizontal, multi-layered porous medium[END_REF] . The two models are formally very similar to each other, but, due to the difference in geometries (flat layers for the stratified geological formation, cylindrical tubes in the present model), the equations are not identical. More importantly, the two studies differ widely in that the relative positioning of the layers in a geological medium is given, whereas, for a quasi-2D porous medium whose pore size distribution is known, the relative positioning of connected capillaries of different diameters within the 2D bundle that can predict the medium's behavior is not known a priori. Here, we explain the underlying physical phenomena causing the menisci to advance at different rates in the different capillaries, and demonstrate that both the spatial arrangement of the interacting capillaries, and, for a given arrangement, the contrasts in the capillaries' radii (i.e., their ratios), are crucial in predicting the imbibition dynamics. In contrast to the standard (non-interacting) capillary bundle, this model provides predictions that are qualitatively consistent with the phenomenology of spontaneous imbibition in real (quasi-)two-dimensional (2D) porous media. In particular, this model correctly predicts that the smaller pores In this study we shall generalize the reduced order model of Ashraf et al., [START_REF] Ashraf | Spontaneous imbibition in ran-1211 domly arranged interacting capillaries[END_REF] to an arbitrary number of capillaries positioned in the same plane and interacting with their neighbours. For a flat bundle of three interacting capillaries, the model of Ashraf et al., [START_REF] Ashraf | Spontaneous imbibition in ran-1211 domly arranged interacting capillaries[END_REF] showed that the distribution of radii and the spatial arrangement of the capillaries impact the imbibition behavior in the capillary system significantly. The meniscus in the capillary of smallest radius does not always move ahead of the others.

In the following sections, we examine the dynamics of menisci during spontaneous imbibition in a flat bundle containing an arbitrary number of interacting capillaries. This generalization of the interacting capillaries' model follows the model development formulations from the study of Ashraf et al., [START_REF] Ashraf | A generalized model for spontaneous imbibition 1235 in a horizontal, multi-layered porous medium[END_REF] for imbibition in stratified porous media. In a stratified porous medium, the contrasts in layer transmissivities and the relative positioning of the layers control the imbibition dynamics, whereas in the present interacting capillaries bundle model, the positioning of the capillaries also plays a crucial role, but the role played by the transmissivities in the stratified medium is played by the product of the capillaries' permeabilities by their cross-sectional areas, both of which are controlled by the contrasts in the capillaries' radii.

We first describe below the one-dimensional model formulation for a system of four interacting capillaries to understand the underlying equations, before generalizing the model to a multiple-interacting capillary system.

B. Model development for four interacting capillaries

To predict the dynamics of spontaneous imbibition in a porous medium using a system of interacting capillaries, we need to take the arrangement of capillaries into account, unlike for the classic capillary bundle (sometimes called bundleof-tubes) model. For a porous medium made of n interacting capillaries, there are n! /2 different arrangements. Fig. 2 shows a bundle of four interacting capillaries that are ordered spatially according to their radii r α > r β > r γ > r δ ; we call this arrangement αβ γδ . The capillary pressure in tube i

(i = α, β , γ, δ
) is given by the Young-Laplace equation as [START_REF] Young | III. an essay on the cohesion of fluids[END_REF][START_REF] De Laplace | Supplément au dixième livre du Traité de mécanique 1243 céleste[END_REF] ,

Pc i = 2σ cos θ w r i , ( 2 
)
where σ is the surface tension and θ w the contact angle; hence, Pc α < Pc β < Pc γ < Pc δ . The corresponding imbibition lengths in the tubes at any time t are denoted respectively α β γ δ FIG. 2. Schematic showing the spontaneous imbibition in an ordered system of four interacting capillaries. The imbibition lengths in capillaries α, β , γ, δ of radii r α , r β , r γ , r δ are denoted by z α , z β , z γ , z δ , respectively. The cross section of the system of interacting capillaries is also shown.

by z i (t). We consider the assumptions from Ashraf et al. [START_REF] Ashraf | Spontaneous imbibition in ran-1211 domly arranged interacting capillaries[END_REF] 3. Spontaneous imbibition in a system of four interacting capillaries with a spatial arrangement of β γαδ of the capillaries. The imbibition lengths in capillaries α, β , γ, δ of radii r α , r β , r γ , r δ are z α (t), z β (t), z γ (t), z δ (t), respectively. The schematics of the imbibition phenomenon show the fluid transfer at menisci locations with arrows. Fot this spatial arrangement, depending upon the contrasts in the capillaries' radii, the possible orders in the invasion lengths can be (a)

z α < z β < z γ < z δ , (b) z α < z β < z δ < z γ and (c) z α < z δ < z β < z γ .
The cross section of the system of interacting capillaries is also shown for (a).

z δ (t) relative to z β (t) and z γ (t) depends on the contrasts in the 283 capillaries' radii.

284

The detailed development of the generalized one-285 dimensional model for this system of four interacting capil-286 laries with arrangement β γαδ is described in Appendix A.

287

The pressure drop across each of the sections is determined 288 individually, i.e., for sections (I) 0

< z < z α , (II) z α < z < z β , 289 (III) z β < z < z γ , and (IV) z α < z < z δ . As spontaneous im- 290
bibition is driven by capillary forces, the sum of the pressure 291 drops across all the sections of a capillary is equal to the cap-292 illary pressure of that capillary.

293

Pc i = ∑ j P i ( j) , (3) 
where P i ( j) is the pressure drop across the section of index 

Pc α = 8µz α (t) r 4 α + r 4 β + r 4 γ + r 4 δ r 2 α dz α dt + r 2 β dz β dt + r 2 γ dz γ dt + r 2 δ dz δ dt , ( 4 
) 301 Pc δ -Pc α = 8µ(z δ (t) -z α (t)) r 2 δ dz δ dt , ( 5 
) 302 Pc β -Pc α = 8µ(z β (t) -z α (t)) r 4 β + r 4 γ r 2 β dz β dt + r 2 γ dz γ dt , (6) 
303

Pc γ -Pc β = 8µ(z γ (t) -z β (t)) r 2 γ dz γ dt . (7) 
Eqs. ( 4) to ( 7) are rendered non-dimensional by normaliz- 

Z i = z i L , i = α, β , γ, δ and T = Pc α r 2 α 8µL 2 t . ( 8 
)
Introducing the contrasts in radii, λ i = r i /r α , and in capillary 308 pressures, ε i = Pc i /Pc α , for i = β , γ, δ , we then obtain the 309 non-dimensional form of Eqs. ( 4) to (7) as

310 1 = Z α 1 + λ 4 β + λ 4 γ + λ 4 δ dZ α dT + λ 2 β dZ β dT + λ 2 γ dZ γ dT + λ 2 δ dZ δ dT , (9) 
311 ε δ -1 = Z δ -Z α λ 2 δ dZ δ dT , ( 10 
) 312 ε β -1 = Z β -Z α λ 4 β + λ 4 γ λ 2 β dZ β dT + λ 2 γ dZ γ dT . ( 11 
) 313 ε γ -ε β = Z γ -Z β λ 2 γ dZ γ dT , (12) 
Further assuming that the contact angle θ w is the same in all 314 capillaries, we have ε i = 1/λ i , and upon rearranging the gov-315 erning Eqs. ( 9) to ( 12) and adding them, we obtain,

316 2 1 + ∑ i=β ,γ,δ ε i λ 4 i T = Z 2 α + Z 2 β λ 2 β + Z 2 γ λ 2 γ + Z 2 δ λ 2 δ . (13) 
Eq. ( 13) expresses that, in a system of interacting capillaries, C. Generalizing the one-dimensional spontaneous imbibition 329 model in the interacting capillary system 330 Equation ( 13) is readily generalized to a system of n inter-331 acting capillaries, in the form

332 2 n ∑ i=1 ε i λ 4 i T = n ∑ i=1 ψ i Z i (14) 
where

ψ i = πr 2 i z i /(πr 2 α L) ( j = 1, 2, ..., n) is the non- 333
dimensional volume imbibed in the capillary of index i.

334

Eq. ( 14) expresses that the sum over all capillaries of 335 the non-dimensional volumes times the corresponding non-336 dimensional imbibition lengths, is proportional to time. This 337 can be compared to the dynamics in a bundle of non-338 interacting capillaries, for which we know that the dynam-339 ics are diffusive, i.e., for each of the capillaries, the imbibed 340 length square is proportional to time.

341

We note from the derivation of Eq. ( 13) for the system con- First, the algorithm searches for the capillary of largest ra-358 dius in the arbitrary arrangement, whose meniscus position is 359 z a at a given time; it is denoted C i in Fig. 4, where the capil-360 laries in the order of arrangement are denoted from C 1 to C n .

361

The pressure drop in the region 0 < z < z a is determined for all 362 the capillaries and the algorithm then considers two regions: We first explore the imbibition of a system of four interact-381 ing capillaries, followed by the imbibition in a system consist-382 ing of 20 capillaries. 

592

The capillary radii are identical in the two cases. For non-593 interacting capillaries, by non dimensionalizing the Wash-594 burn's law, z 2 i = (Pc i r 2 i /4µ)t, we obtain 595

Z 2 i = 2ε i λ 2 i T, (15) 
where Z i = z i /L is the non-dimensional length imbibed in 596 the capillary of radius r i and L is the total length of the For instance, the leading meniscus for an orderly arranged interacting capillary system is in the smallest radius capillary and we know that the fraction of saturation contributed by the smallest radius capillary is small. For the arrangement 2 shown in Fig. 9, the leading meniscus is in the capillary of radius 100 m. In the capillary bundle model, the crosssection area of the leading capillary (200m) is 13.93% of the total cross-section area, whereas for the ordered arrangement and the arrangement number 2, the respective cross-section area of the leading meniscus capillaries are 0.03% and 3.43%. 

= 2Pc eff K µ t , ( 16 
)
where K is the medium's permeability and we have assumed 760 that at time t = 0 no wetting fluid has yet invaded the medium.

761

If we choose to non-dimensionalize time by the character-762 iztic time (µL 2 )/(Pc eff K), we obtain from Eq. ( 16) the non- 

P(z β (t),t)-P(z α (t),t) = - 8µ(z β (t) -z α (t)) r 2 β v β (t) + ω dq α A β . (A7) 
At the meniscus in the capillary β , the capillary pressure jump Similarly, for z > z β (t), the meniscus in the capillary γ trav-922 els with a velocity given by

923 dz γ dt = v γ (t) + (1 -ω) dq α πr 2 γ + dq β πr 2 γ . (A9) 
The pressure drop between z = z β (t) and z = z γ (t) in capillary γ is then given by,

P(z γ (t),t) -P(z β (t),t) = - 8µ(z γ (t) -z β (t)) r 2 γ v γ (t) + (1 -ω) dq α πr 2 γ + dq β πr 2 γ . ( A10 
)
The pressure jump across the meniscus in each of the 924 capillaries is given by the Young-Laplace equation [START_REF] Young | III. an essay on the cohesion of fluids[END_REF][START_REF] De Laplace | Supplément au dixième livre du Traité de mécanique 1243 céleste[END_REF] , i.e.,

925

Eq. ( 2), from which it follows that 926 P(z i ,t) 

-P 0 = -Pc i = - 2σ cos θ w r i , ( 
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  carry the leading front, while the larger pores carry the lag-139 ging saturating front responsible for the mass uptake of fluid 140 in the porous medium, as measured in a paper-based porous 141 medium[START_REF] Bico | Precursors of impregnation[END_REF] . Furthermore, we provide a successful quantitative 142 comparison between the measurements of Bico & Quéré on 143 the leading and lagging imbibition fronts to predictions of the 144 model obtained using a stochastic approach: the predicted be-145 havior is the average of those obtained for all possible spatial 146 organizations of the capillaries' diameter distribution. Though 147 less accurate than fully numerical (and much more compli-148 cated) pore network models, this semi-analytical model has 149 the advantage of running within seconds on any computer.150The presentation is organized as follows. We first review 151 the model by Ashraf et al.,[START_REF] Ashraf | Spontaneous imbibition in ran-1211 domly arranged interacting capillaries[END_REF] (section II A). We then pro-152 ceed to extend it to a system consisting of 4 interacting cap-153 illaries (section II B), before presenting the generalized one-154 dimensional model predicting spontaneous imbibition in an 155 interacting multi-capillary system (section II C). We then ex-156 amine the imbibition dynamics in a system of four interacting 157 capillaries (section III A) and in a similar system consisting of 158 20 capillaries (section III B). In the discussion, we first com-159 pare the predictions of our model to those of the classic, non-160 interacting, capillary bundle (section III C 1), and, finally, con-161 front its predictions of the leading and lagging fronts in a real 162 quasi-2D porous medium from the literature to the published 163 experimental measurements (section III C 2). Section IV con-164 tains a summary of the work and conclusive remarks, and dis-165 cusses prospects to this study. 166 II. MODELS 167 A. Capillary imbibition in interacting capillaries 168 Using the capillary system shown in Fig. 1, Ashraf et al., 55 169 used volume of fluid 63 (VOF) two-phase flow simulations to 170 study spontaneous imbibition in a bundle of two or three inter-171 acting capillaries. These CFD (computational fluid dynamics) 172 calculations provided the entire pressure and velocity fields 173 inside the connected capillaries. They showed that (1) the in-174 vading wetting fluid transfers between two adjacent capillar-175 ies from the capillary of larger radius to that of smaller radius, 176 but this transfer occurs only in the immediate vicinity of the 177 (less advanced) meniscus of the capillary of larger radius; (2) 178 that everywhere else (that is, everywhere except in the vicinity 179 of that meniscus), the flow in the capillaries is not perturbed 180 by the transfer of fluid between the capillaries; and (3) that, 181 consequently, the pressure can be considered uniform over all 182 transverse sections of the capillary system where both capil-183 laries are filled with the same fluid, since no flow occurs along 184 the transverse direction (if one neglects the small regions in 185 the vicinity of the less advanced meniscus). These findings 186 (1-3) served as basic assumptions to develop a reduced or-187 der, Washburn-like one dimensional model for a bundle of two 188 and three interacting capillaries that can interact hydrodynam-189 ically with the neighbouring capillaries along their touching 190 sides. The model predicted that in a bundle of two interact-ing capillaries the meniscus in the capillary of smaller radius moves ahead of the other one during the spontaneous imbibition, in consistency with the results of the VOF simulations.

FIG. 1 .

 1 FIG. 1. Spontaneous imbibition in two interacting capillaries, (a) cross-sectional view, (b) lateral view showing the contact angle θ w .

FIG.

  FIG.3. Spontaneous imbibition in a system of four interacting capillaries with a spatial arrangement of β γαδ of the capillaries. The imbibition lengths in capillaries α, β , γ, δ of radii r α , r β , r γ , r δ are z α (t), z β (t), z γ (t), z δ (t), respectively. The schematics of the imbibition phenomenon show the fluid transfer at menisci locations with arrows. Fot this spatial arrangement, depending upon the contrasts in the capillaries' radii, the possible orders in the invasion lengths can be (a)z α < z β < z γ < z δ , (b) z α < z β < z δ < z γ and (c) z α < z δ < z β < z γ .The cross section of the system of interacting capillaries is also shown for (a).

294j

  = (I), (II), (III), (IV ) of the capillary of index i = α, β , γ, δ . 295 By solving the system of equations expressing (i) Darcy's law 296 in each of the capillaries, and (ii) the relations between the 297 meniscii's advancement and the fluid velocities and fluid ex-298 change between the capillaries, we obtain the equations gov-299 erning the flow in the interacting capillaries, which are, 300

304

  ing the positions by the total capillary system's length, L, and 305 time by [8µL 2 /(Pc α r 2 α )], thus defining the non-dimensional 306 positions and times 307

317

  the sum of the squares of the product of the non-dimensional 318 radius with the non-dimensional distance invaded in all the 319 capillaries is proportional to the invasion time T . For dif-320 ferent arrangements of a system of 4 interacting capillaries 321 having the same contrasts in capillary radii, the total capil-322 lary suction of the system remains the same. Therefore, for 323 any of the 4! /2 = 12 possible arrangements, rearranging the 324 equations governing the imbibition process, and adding them, 325 leads to Eq. (13). However, the velocity at which the indi-326 vidual meniscii travels in each of the tubes depends on the 327 particular arrangement of the capillaries.

342FIG. 4 .

 4 FIG. 4. Schematic of spontaneous imbibition in an n-capillary system where the capillaries are positioned randomly. The capillaries in the arrangement are denoted by C 1 ,C 2 , • • •C n . The capillary radii are denoted as r a , r b , r c , • • •, and the corresponding imbibition distances at time t are denoted by z a (t), z b (t), z c (t), • • •.

383A.FIG. 8 .FIG. 9 .Fig. 9 (FIG. 10 .

 89910 FIG. 5. Spontaneous imbibition in a system of four interacting capillaries which are positioned with respect to each other according to the arrangement β γαδ , for three different contrasts in capillary radii. (a), (c), (e) represent the schematics of possible imbibition behavior at a given time t. The distribution of radii predicting the imbibtion phenomenon are indicated in the plots (b), (d) and (f). The non-dimensional times at which the leading meniscus reaches the outlet end of the interacting capillary system (T bt ) for the cases (b), (d) and (f) are 0.43, 0.40 and 0.39, respectively.
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  FIG. 11. (a) Spatial saturation profile during spontaneous imbibition in a bundle-of-tubes consisting of twenty non-interacting capillaries at T = 0.1, T = 0.3, and T = T bt = 0.5. (b) Average spatial saturation profile for 1000 different spatial arrangements of the system consisting of twenty interacting capillaries of identical radii as in (a), at T = 0.1, T = 0.3, T = T bt .

Consequently, as shown

  by Fig.11(b), the cross-sectional saturation decreases gradually with longitudinal position for the classic capillary bundle model, while in the case of interacting capillaries a steep decrease is observed already at small longitudinal positions. Fig.11(b) also shows that the standard deviation in saturation from the average across the 1000 arrangements at T = 0.1 and T = 0.2, which is as high as 0.2 at Z = 0.59 and 0.69, respectively; whereas for T = T bt , it is 0.18 at Z = 0.76. In real two-dimensional porous media where the spatial arrangement of pores may vary, the interacting capillaries model will be more helpful in predicting the accurate imbibition behaviour than the classic capillary bundle model. The saturation of the porous medium with length and the breakthrough time significantly differ for the classic (noninteracting) capilary bundle and for the different arrangements of the interacting multi-capillary system, although the contrast in the radii of the capillaries is the same.

2 . 2 FIG. 13 .

 2213 FIG. 12. Imbibition in a system of two interacting capillaries having radii r α = 300 m and r β = 170 m. Predictions from our semianalytical model (solid lines) compare well to the data (symbols) of Bico and Quéré 47 . The inset of the figure shows the same comparison for predictions of the classic (non-interacting) capillary bundle model (solid lines), obtained through Eq. 15, which underestimates the advancement Z β of the meniscus in the narrower capillary (red line) by a factor 5.695 696

763 dimensional equation Z 2 =(

 2 2T . Since, according to Bico 764 and Quéré's observation mentioned above, it is the lagging 765 (macroscopic) front that carries most of the interface between 766 the two fluids, Eq. 16, and therefore its non-dimensional coun-767 terpart, can be assumed to describe the behavior of the lag-768 ging front. From the experimental data for the lagging front, 769 Pc eff K)/(µL 2 ) is measured to be 9.7 • 10 -5 s -1 , which we 770 thus use to non-dimensionalize all plots in Fig.13. The de-771 pendence of Z 2 on T for the lagging (macroscopic) front then 772 has a slope 2 (as shown by the dotted gray line in Fig.13),773while that for the leading (microscopic) front exhibits a larger 774 imbibition rate, with a slope 2.67 (as shown by the orange 775 dotted line in Fig.13).776IV. CONCLUSIONS777 In conclusion, we investigated spontaneous imbibition of a 778 wetting fluid in a randomly arranged planar system of inter-779 acting capillaries. This generalized model can predict the im-780 bibition behavior for all the n! /2 possible arrangements of an 781 interacting n-capillary system. It is inspired from a previous 782 work on stratified geological formations, with planar layers 783 instead of cylindrical capillaries. 784 Using an interacting capillary system containing 4 capillar-785 ies, we showed that the imbibition dynamics depends signifi-786 cantly on the arrangement of the capillaries within the capil-787 lary system, for a given distribution of the capillary radii. Sim-788 ilarly, the dynamics are affected by that distribution for a given 789 arrangement of the capillaries. Furthermore, we showed that 790 the arrangement and radii distribution of the capillaries jointly 791 control the relative menisci's locations, the breakthrough time, 792 and which capillary carries the leading meniscus. The cross-793 sectional saturation of the impregnating fluid along the length 794 of the capillary system also changes with a change in the ar-795 rangement of the capillaries. However, the total capillary pres-796 sure driving the flow is identical for all arrangements, there-797 fore, the overall volume fraction occupied by the invading 798 fluid (i.e, the global saturation of the wetting fluid) at a given 799 time remains the same across all arrangements, until break-800 through occurs in one of the arrangements. 801 Similarly, considering 1000 randomly-chosen different ar-802 rangements of an interacting twenty-capillary system having a 803 uniform distribution of radii between 10 m and 200 m, we ob-804 served that, depending on the arrangement of the capillaries, 805 the leading meniscus can be in any of the capillaries whose 806 radii are between 10 m and 100 m, and the non-dimensional 807 breakthrough time lies between T bt = 0.31 and T bt = 0.42. 808 The dynamics of spontaneous imbibition as predicted by 809 this new model is significantly different from that predicted by 810 the classic bundle of non-interactive capillaries (or tubes), for 811 which the leading meniscus is always in the largest radius cap-812 illary. For the interacting multi-capillary system mentioned 813 above, on the contrary, the leading meniscus can be in any 814 of the capillaries having radii between 10 m and 100 m. We 815 observed that the breakthrough occurs earlier than in the clas-816 sic capillary bundle, where it occurs at non-dimensional time 817 T bt = 0.5 for the aforementioned 20-capillary-system, to be 818 compared to the 0.31-0.42 range for the 20-capillary-system 819 mentioned above. Furthermore, for this system the saturation 820 at breakthrough time falls in the range 0.69-0.79, whereas for 821 the classic capillary bundle it is equal to 0.86. The dependence 822 of the saturation as a function of the longitudinal position are 823 also shows a stark contrast between the predictions of the clas-824 sic capillary bundle and the average behavior of the 1000 ar-
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  Pc β and some of the impregnating fluid transfers from β 918 to γ, which we assume to correspond to a differential flow 919 rate dq β . The velocity of the meniscus in the capillary β for 920 z > z β (t) is then

A11) 1 .

 1 We initiate the model formulation by finding the largest 941 radius capillary, C i . The pressure field is identical in all 942 capillaries for z < z a (t), and the corresponding pressure 943 gradient is related to the fluid velocity in each capillary 944 by Hagen-Poiseuille's law. Some of the invading fluid 945 from capillary i transfers to other capillaries in the im-946 mediate vicinity of the meniscus position z a (t).

947 2 . 3 .

 23 For z > z a (t), the imbibing fluid in the capillaries C 1 to 948 C (i-1) is separated from the imbibing fluid in the capil-949 laries C (i+1) to C n . We thus classify the capillaries on 950 either sides of the capillary C i in two regions, the cap-951 illaries C 1 to C (i-1) in the first one, the capillaries from 952 C (i+1) to C n in another one. The fluid transfer from the 953 capillary C i is divided among the other capillaries ac-954 cording to their radii. If the fluid transfer to the 'top 955 region' is dq t , the fraction of dq t flowing from capillary 956 C i to a capillary of radius r p would be r 4 p dq t /∑ i-1 q=1 (r 4 q ). 957 Similarly, for the 'bottom region', if dq b is the fluid 958 transfer from C i , the fractional flow in a capillary of 959 radius r r will be r 4 r dq b /∑ n s=i+1 (r 4 s ). This fluid trans-960 fer causes the flow rates to increase in capillaries C 1 to 961 C (i-1) and C (i+1) to C n . 962 The widest capillary among the capillaries C 1 to C (i-1) , 963 C j is now identified. For z a (t) < z < z b (t) the pres-964 sure field in the imbibing fluid is identical in capillaries 965 C 1 to C (i-1) , and is related to the fluid velocity in each 966 capillary by Hagen-Poiseuille's law. In the vicinity of 967 z = z b (t), some of the invading fluid transfers from C j 968 to the capillaries C 1 to C ( j-1) and C ( j+1) to C (i-1) , which 969 increases the flow rate in these capillaries.

970 4 .979 5 .

 45 Similarly, the widest capillary among capilllary C (i+1) 971 to C n , which we denote C k , is chosen. The pressure field 972 is identical in the capillaries C (i+1) to C n for z a (t) < z < 973 z c (t), and the pressure gradient is related to the fluid 974 velocity in each of these capillaries from the Hagen-975 Poiseuille law. A z = z c (t), some of the fluid invad-976 ing C k transfers into the capillaries C (i+1) to C (k-1) and 977 C (k+1) to C n , which increases the flow rate in in these 978 capillaries. The impregnating fluids in the regions encompassing 980 capillaries C 1 to C ( j-1) and C ( j+1) to C (i-1) are sepa-981 rated by displaced fluid in capillary C j for z > z j . Again, 982 the capillary of largest radius among the capillaries C 1 983 to C ( j-1) is identified, as well as the capillary of largest 984 radius among the capillaries C ( j+1) to C (i-1) . The simi-985 lar procedure previously explained for the pressure field 986 and its relation to the fluid velocity is repeated for those 987 two regions.

988 6 . 7 . 8 .

 678 Fig. C.1(a),(b),(f),(g),(i),(j),(k),(l). For the arrangements 1013

FIG. C. 1 .

 1 FIG. C.1. Spontaneous imbibition in a system of four interacting capillaries of radii r α = 80 m, r β = 60 m, r γ = 40 m and r δ = 20 m. The non-dimensional positions of the four menisci are shown as a function of non-dimensional time for all the 12 possible arrangements in (a) to (l). The arrangement, the ordering of the menisci locations, and the breakthrough times for each of the cases (a) to (l) are provided as legends of the plots.
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	239	
	240	according to which (1) the pressure equilibrates over the sec-
	241	tions of the capillary system that are entirely filled with the
	242	invading fluid, and (2) fluid transfers from a capillary having
	243	a larger radius to an adjacent capillary having a smaller radius
	244	just before the meniscus, which in the model we assume to oc-
	245	cur at the position of the meniscus. We show this fluid transfer
	246	between adjacent capillaries in the vicinity of the meniscus by
	247	vertical arrows in Fig. 2. We consider the interaction between
	248	the capillaries to be sufficiently low for the Poiseuille flow in
	249	each of the capillaries to be maintained. At any given time
	250	t, the less advanced meniscus (i.e., that for which the imbibi-
	251	tion length is the smallest) will be in the capillary for which
	252	the driving capillary pressure jump across the meniscus is the
		smallest, hence it is will be the meniscus in the α capillary.
	254	
	255	illaries. Similarly, the next-less-advanced meniscus is neces-
	256	sarily the β capillary driven by the capillary pressure Pc β , so
	257	at any time t the pressure field is identical in capillaries β , γ
	258	and δ for z α (t) < z < z β (t), and so forth: the pressure field is
	259	identical in the δ and γ capillaries for z β (t) < z < z γ (t).The
	260	imbibition length in capillary δ , z δ (t) is the largest at any time
	261	t.
	262	We now consider one of the random arrangements as shown
	263	in the schematic of Fig. 3, where the order of arrangement
	264	of the capillaries is β γαδ . It was explained by Ashraf et
	265	al., 54 that, for a randomly-arranged interacting capillary sys-
	266	tem, the meniscus in the smallest radius capillary does not
	267	always lead. For this arrangement, depending upon the con-
	268	trasts in the radii, three different positionings of the menisci
	269	are possible as shown in Fig. 3 (a), (b) and (c). At any given
	270	time t, for 0 < z α (t), the pressure field is identical in all capil-
	271	laries, and the pressure drop from the inlet to z α (t) is Pc α . For
	272	z > z α (t), the imbibing fluid is continuous in the capillaries β
	273	and γ, since they are connected. Therefore, the pressure field
	274	is the same in the capillaries β and γ for z α (t) < z < z β (t). As
	275	r β > r γ (meaning that the capillary suction in β is less than
	276	that in γ), during the spontaneous imbibition, z β (t) < z γ (t), at
	277	all times. Although the capillary δ is filled with the imbibing
		phase, the non-wetting fluid in α disconnects it from capillar-

253

For z < z α (t), the pressure field must be identical in all cap-278 ies β , γ for z > z α (t). Therefore, for z > z α (t) the pressure 279 field in δ can be different from that in β , γ. For the arrange-280 ment β γαδ shown in the schematic of Fig. 3, z α < z β < z γ 281 and z α < z δ during the imbibition process and the position of

  (k+1) to C n on the other hand in the 'bottom region'. The

	373	
	374	pressure drops are determined in each of the subregions. This
	375	procedure is then performed recursively until the algorithm
	376	has identified the pressure drop in each of the sections for ev-
	377	ery capillary. It can then formulate the governing equations,
		which are consequently solved to obtain the advancement of

363

the 'top region' consisting of the capillaries C 1 to C (i-1) and 364 the 'bottom region' consisting of the capillaries C (i+1) to C n 365 (see Fig.

4

). The largest radius capillaries in each of these 366 two regions are determined and the pressure drop in the re-367 spective regions are determined for sections z a < z < z b and 368 z a < z < z c . Now, each of these two regions is further divided 369 into two subregions each, i.e., containing the capillaires C 1 to 370 C ( j-1) on the one hand and C ( j+1) to C (i-1) on the other hand 371 in the 'top region', and C (i+1) to C (k-1) on the one hand and 372 C 378 all menisci as a function of time. 379 III. RESULTS AND DISCUSSIONS 380

  The capillaries β and γ are on the other side of the capillary 902 α with respect to the capillary δ . As the capillary pressure 903 jump of the capillary β is smaller than that in the capillary γ, 904 the meniscus in β lags behind that in γ. Hence, the imbibing 905 fluid in these capillaries is continuous for z α (t) < z < z β (t).

	the positions of whose axes in a transverse plane would be the	
	nodes of a triangular grid.	900	since the pressure in the non-wetting fluid is the atmospheric
			pressure.
		906	
		907	Defining ω and (1 -ω) as the fractions of dq α transferred
		908	respectively to β and γ, we can write an equation similar to
		909	Eq. (A4) for both β and α, where ωdq α and (1 -ω)dq α ap-
		910	pear respectively as a differential velocity term arising from
		911	fluid transfer. Considering that the pressure field is the same
		912	in the capillaries β and γ for z α (t) < z < z β (t), we then obtain
		913	in that z range:
		825 826 827	rangements of interacting capillaries. Indeed, the interacting capillary system shows a steep decrease in the saturation with v β (t) + ωdq α πr 2 β πr 2 β = v γ (t) + (1-ω)dq α πr 2 γ γ πr 2 . (A6)
		914	length as compared to the classic capillary bundle. Addition-Combining Eq. (A2) and Eq. (A6), we then obtain the fraction
			ω from the capillaries' radii: ω = r 4 β /(r 4 β +r 4 γ ). Therefore, the
		916	
		850	
		851	front carried by larger pores, which agrees very well with
		852	the experimental findings. The quantitative predictions for
		853	the positions in time of these two fronts, obtained from av-
		854	eraging over the statistics of randomly-chosen arrangements,
		855	agree well with the measurements.
		856	This generalized model for spontaneous imbibition in a pla-
		857	nar bundle of interacting capillaries, which is semi-analytical
		858	and runs extremely quickly, could be useful for fast as-
		859	sessment of one-dimensional imbibition dynamics in design-
		860	based porous media such as loop heat pipes, diagnostic
			devices and microfluidic devices, or in real porous media
		865	
			three-dimensional models by considering parallel capillaries,

828

ally, the interacting multi-capillary system shows that the spa-829 tial arrangement of the capillaries may cause significantly dif-830 ferent saturation values at a given longitudinal position. 831 So, how is this model consisting of a planar bundle of inter-832 acting capillaries to be used to predict spontaneous imbibition 833 in quasi-two-dimensional porous media whose pore size dis-834 tribution is known? We propose to use a stochastic approach, 835 i.e., to consider the average behavior between a large number 836 of randomly-picked spatial arrangements of the capillary di-837 ameters, the distribution of these diameters being equal to the 838 pore size distribution of the real porous medium. We tested 839 that method against data from the literature. Firstly, qualita-840 tive observations relative to which ranges of pore sizes mainly 841 contribute to the leading and lagging fronts of the imbibition 842 interface, and to the longitudinal saturation profile, are consis-843 tent between experiments from the literature and the predic-844 tions of our model. Secondly, to validate the model's quanti-845 tative predictive capacity, we compared its predictions to im-846 bibition measurements in filter paper, performed by Bico and 847 Quéré 47 . The model predicts that the visible leading front is 848 carried by smaller pores and that the bulk saturating front re-849 sponsible for most of the fluid mass invasion is the lagging 861 whose porosity structure can reasonably be considered two-862 dimensional, e.g., paper, thin porous media in general, or lay-863 ered aquifers. 864 Prospects to this work include extending this approach to 901 915 pressure drop in capillaries β and γ for z α (t) < z < z β (t) is
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In capillary α, for 0 < z < z α (t), the pressure drop is given by the Hagen-Poiseuille law as,

where µ is the imbibing fluid's viscosity, v α (t) is the instantaneous velocity of the wetting fluid in the capillary α, P 0 is the inlet pressure and P(z α (t),t) is the pressure in the imbibing fluid at z α (t), as shown in Fig. 3. Since the pressure fields are identical in all capillaries for z < z α (t), the pressure gradient is the same in all capillaries , which from Eq. (A1) implies

where the index i (i = α, β , γ, δ ) indicates quantities relative to the capillary of radius r i and v i (t) (i = α, β , γ, δ ) is the velocity of the imbibing fluid for z < z α (t).

The capillary pressure jump through the fluid-fluid interface is Pc α at z α (t), where some of the imbibing fluid transfers from the capillary α to other capillaries. The volumetric fluid transfer from the capillary α to the capillaries β and γ is dq α , whereas the fluid transfer from the capillary α to the capillary δ is dq α . The velocity of the advancing meniscus in capillary α, dz α /dt, is thus given by

For z α (t) < z < z δ (t), the velocity of the fluid in capillary δ is similarly given by

so the pressure drop in the capillary δ between z = z α (t) and

At z = z δ (t), the pressure jump across the meniscus is Pc δ , for i = α, β , γ, δ . Note that the prefactor 2 is controlled by cir-927 cular cross-section of the tube, another geometry (e.g., square 934

Appendix B: Generalization of the model for an arbitrary 938 number of capillaires

939

The following step-by-step procedure must be followed: