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ABSTRACT
The classical Kuiper Belt Object (KBO) Arrokoth was surveyed by the New Horizons spacecraft
on 1st January 2019, revealing a small bilobed object with a red surface, whose spectral slope
lies in the average of the whole KBOs population. This red color has been assigned to reddish
organic materials, either inherited from the protosolar disk during accretion, or formed through
radiolytic processes in the surface due to exposure to solar or interstellar photons, Solar Wind,
Solar Energetic Particles or Galactic Cosmic Rays. We report here a study investigating the
radiolytic scenario, based on numerical calculations and experimental simulations run with
swift heavy ions (74.8 MeV 136Xe19+ and 33.06 MeV 58Ni9+), and low-energy 105 keV 18O6+
ions on CH3OH ice, the only molecule identified at Arrokoth’s surface. Calculations show
that sputtering is essentially controlled by Solar Wind (H and He), and that the sputtering rate
depends on the nature of the material: erosion thickness over 4.55 Gyr are a few micrometers
for amorphous carbon (as an analog of red organics) and a ∼ 240 �m to around ∼ 10 mm
for H2O and CO ice, respectively. Chemistry within the subsurface is essentially controlled by
Galactic Cosmic rays (H and He), which penetrate deep down to several tens of meters and
deliver an electronic dose higher than 1 eV.atom−1 in the first meter. The electronic and elastic
doses delivered by Solar Wind ions are limited to the first 10s nm of the top surface, but Solar
Energetic Particles deliver high electronic doses in the first 100 �m of the surface (up to 200
eV.atom−1). Experimental simulations show that irradiating methanol ice with a dose consistent
with that in planetary conditions, results in the formation of reddish organic materials made
of aliphatic, conjugated and unconjugated olefinic, acetylinic, carbonyl and hydroxyl groups.
A similarity with irradiated simple polymers (e.g. polyethyleneglycol) and materials formed
through cold plasma experiments (tholins) is observed. There is little dependence with the nature
and energy of the ion. The residue recovered at room temperature was analyzed with High
Resolution Mass Spectrometry (Orbitrap), revealing a complex composition with around 6596
chemical formulas and likely several tens of thousands of molecules. Altogether, these analyses
support active polymerisation mechanisms similar to those observed in irradiated polymers, as
bond-breaking, cross-linking or formation of olefinic bonds through recombination of radicals in
adjacent carbon atoms. Considering both sputtering and radiolysis, as well as material ablation
due to dust bombardment reported in literature, a scenario is taking shape as the production of
reddish organics deep in the subsurface, and the settling of an organic crust at the top surface
through volatiles removal. The presence of methanol and absence of water, inconsistent with
sputtering fractionation, remains unexplained.

ing author
irico@univ-grenoble-alpes.fr (E. Quirico)
l.: Preprint submitted to Elsevier Page 1 of 19
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Reddish Organics at Arrokoth’s surface

ction
-Neptunian Object (TNO) Arrokoth was surveyed by the New Horizons spacecraft on 1st January 2019
019). This small cold classical1 Kuiper Belt Object (KBO) ∼ 33 km across has a bilobed shape, and
o rounded icy planetesimals (r ∼ 9.7 and 7.1 km). Reflectance spectra and spectro-photometric data
e LEISA and MVIC components of the Ralph instrument have revealed a reddish surface (Reuter et al.,
et al., 2020), as observed for a large fraction of the whole population of classical KBOs (Cruikshank
arucci et al., 2005; Doressoundiram et al., 2008; Perna et al., 2010; Brown, 2012; Lacerda et al., 2014).
been identified, while no other ices were detected. The red material at Arrokoth surface has possibly two
primordial origin, i.e. formed in the proto-solar disk and accreted with the other constituents that form
a radiolytic origin, as the airless Arrokoth is directly exposed to energetic radiations: Solar and interstellar
r Wind (SW), Solar Energetic Particles (SEPs) and Galactic Cosmic Rays (GCRs). The penetration of
s very shallow (few hundreds of nm), with limited impacts on optical effects. In contrast, ions penetrate
subsurface, trigger chemistry and sputtering, and several experimental simulations have reported the
eddish organic materials from simple ices (Moore et al., 1996; Brunetto et al., 2006; Dartois et al., 2013;
., 2015; Auge et al., 2016, 2019; Urso et al., 2020b). However, the nature of the organic species formed in
ents remains poorly known, and the experimental doses are not necessarily in agreement with the actual
he surface and in the subsurface of Arrokoth.
dy, our objective is to question a radiolytic origin of the red color of Arrokoth through numerical
d ion irradiation experiments. We report numerical simulations that estimate the sputtering rate of a
sed of pure methanol ice, the elastic and electronic doses and the destruction yield of methanol upon
bsurface (section 2). We present in a second step (section 3, 4) the results of ion irradiation of methanol
onducted under conditions that fit with estimates provided by calculations. The organic byproducts were
by Visible and IR spectroscopy, and the room temperature residue was investigated by High Resolution
metry (HRMS). These results are finally discussed (section 5) in the general astrophysical context of
ing to the conclusion that reddish materials should be present in Arrokoth conditions through a radiolysis
trolled by GCRs, provided that the first meters of the surface were not removed by dust ablation or
in the Kuiper Belt.

ic particles at Arrokoth’s surface
tion, we provide estimates of (1) the erosion thickness controlled by sputtering and (2) the electronic and
deposed versus depth in a methanol putative surface. The electronic and nuclear irradiation doses are a
or of the energy made available for chemistry in an irradiated solid, and a simple proxy for comparison
ntal data presented in the next section.
ing
nsider the sputtering effect of SW and GCR for species present on a semi-infinite surface. In that case,
iolysis chemistry during the process, the column density N (molec.cm−2 or at.cm−2) of a molecule or
d by an ion X with an energy E reads:

−YX(E) (1)

s the fluence (ions.cm−2) and YX (molec.ion−1 or at.ion−1) the sputtering yield. This column density
the erosion thickness t:

t = C M
�Na

Δt
92∑
i=1

∫
Emax

Emin
Y iX(E)

(dN
dE

)
i
dE (2)

al: small objects on low inclination and low eccentricity orbits, over heliocentric distances between 42 and 47 au.
l.: Preprint submitted to Elsevier Page 2 of 19
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Reddish Organics at Arrokoth’s surface

is the molar mass, Δt the irradiation time, � the density,Na the Avogadro number, i the atomic number
al element, and

(
dN
dE

)
i
the ions differential flux at energy E. The angular dependency of the sputtering

ted and the value at normal incidence is used. The density of crystalline methanol ice � = 1.02 g.cm−3

m Torrie et al. (1989). Our calculations were limited to the most abundant elements H, He, C, N, O,
. In the case of GCR, which is omnidirectional and isotropic, C=�, resulting from the average over all
m 0 to 90 ° for the co-latitude angle and 0 to 180 ° for the azimuthal angle.
f SW is more complicated and needs assumptions and simplifications. Arrokoth’s obliquity is 99◦, close
means that the surface is in average uniformly irradiated during half of an orbital period. Therefore, the
e over 4.55 Gyr was taken as 2.225 Gyr. We have assumed that SW is directional and hits a smooth and
surface, and only consider the surface perpendicular to the rotation vector. As the angle of the incoming
ct to the surface varied between 0 and �∕2, the averaged irradiation flux equals the flux at �=0 (� being
angle with respect to the normal vector at the surface) multiplied by the averaged cosine cos�=2∕�. As
y is given per steradian, we multiply by �, assuming an isotropic flux density over an hemisphere, which
the actual value. Finally, this leads to C=2.
EPs differential fluxes were used. First, we used the He fluence measured at 1 au between 10/97 and
aldt et al. (2007), assuming a simple scaling law with the solar abundances of Meyer et al. (1998). The
x at 44 au was obtained by applying a 1/442 factor (Fig. 1). This scaling appears consistent with the ∼
nce (R being the heliocentric distance) of the proton density and energy flux (Liu et al., 2021; Adhikari
owever, it neglects interstellar pickup ions and cooling of the bulk plasma temperature, which results as
f the SW peak at ∼ 1 keV/u. In this respect, we used for comparison a differential protons flux modelled
P (Voyager 1 and 2) and PEPSSI (New Horizons) instruments (Fig. 1). The contribution of the slow and
EPs (E > 10 keV/u) are processed as two distinct sources in some publications (Urso et al., 2020a). Here,
l fluxes used span the range 1 x 10−4 - 30 MeV/u and include both of them. However, the quiet Sun
t prevailed in the period 10/1997 to 06/2000 have been extrapolated to 4.55 Gyr. This assumption does
first millions of years of the very active young Sun, which could have been 100-1000 times more active
ss loss. Unfortunately, young Sun SW/SEPs fluxes are basically unknown due to the lack of compelling
n of stellar wind around solar-type stars, and poorly reliable indirect estimates (Ribas et al., 2005).
bution of GCR ions to sputtering was estimated using the differential flux of Webber & Yushak (1983).
ial flux, in atom.cm−2.s−1.sr−1.(MeV)−1, was established for protons in Local Interstellar Medium and
pute using the following parametric equation:

CE0.3

(E + E0)0.3
(3)

.42 x 104 and E0 a form parameter related to solar modulation, set to 400 MeV to fit Voyager 1 protons
(Stone et al., 2013; Cummings et al., 2016) (Fig. 1). For other chemical elements, a scaling law of the
ance was applied and the C and the E0 parameters were tuned to fit Voyager 1 data (Cummings et al.,
. Last, but not least, the GCR flux at 44 au is not similar to that in LISM, due to the heliospheric shielding
., 2005). Measurements at 40 au are only available for protons (Cooper et al., 2003), therefore sputtering
ave been run using the LISM differential fluxes to consider separately the contribution of each element,
stimating the erosion thickness.
s surface and subsurface are possiblymade of several ices and organicmaterials, but to date onlymethanol
tified by the New Horizons spacecraft (Grundy et al., 2020). In addition, its composition could have
4.55 Gyr. We therefore focused on three case models for which sputtering yields were available at low
O ice, (2) H2O ice, as the most and less volatile molecules in the icy component of the surface, and
s carbon as a simulant of putative reddish organics dispersed in the surface materials. Note that pure
expected to be present at the surface of Arrokoth, due to its surface temperature, and is used here to
per limit of surface sputtering. The case of methanol ice could not be considered, due to the scarcity
yields available in literature. Amorphous carbons constitute a broad family of disordered solids, which
according to their elemental composition (H/C, N/C), sp3/sp2 ratio and optical properties (e.g. Tauc or
rrari & Robertson, 2000). As there is a limited number of sputtering yields published to date, we had to
l.: Preprint submitted to Elsevier Page 3 of 19
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meters of the Webber and Yushak (1983) parametric equation that fit Voyager 1 data with Ai chemical
ances.

C E0 Ai
1

9.42 x 104 400 1
5.5 x 105 700 8.14 x 10−2

8.5 x 104 800 1.67 x 10−3

1.3 x 105 850 2.44 x 10−4

1.4 x 105 750 1.57 x 10−3

2.0 x 105 600 2.26 x 10−2

2.0 x 105 600 1.90 x 10−4

2.0 x 105 600 1.11 x 10−4

et al. (2016)

ollected on different types of amorphous carbons, and calculate sputtering yields at low energy through
simulations (SRIM software; http://www.srim.org/).

ring yield of CO ice YCO follows a S2e dependance (Se being the electronic stopping power) for irradiationated by electronic interactions (Brown et al., 1984; Seperuelo Duarte et al., 2010). However, at low
solar wind peak, elastic interactions and cascade recoils significantly contribute to sputtering (Sigmund,
et al. (1995) measured sputtering yields of CO ice irradiated with He+, Ne+, Ar+ and Kr+ ions in the
. Chrisey et al. (1990) focused on He ions in the range 10-60 keV, and Schou & Pedrys (2001) report
lds of protons in the range 9-60 keV. We observe that in the case of H and He irradiations, dominated
interactions, there is no good match between these studies and values obtained from Brown et al. (1984)
Duarte et al. (2010). Reproducibility is a challenging issue, as sputtering yields are very sensitive to
, surface morphology or sample ageing. Note, for instance, that the data of Chrisey et al. (1990) have
by Schou & Pedrys (2001), and, here, we have used these rescaled data. H seems a particular case as its
ld seems to follow a E1.3 dependency with Se (Schou & Pedrys, 2001), as observed in the case of H2Ol. (1995).
lculations, we have combined the low energy data of Schou & Pedrys (2001) and Balaji et al. (1995) with
own et al. (1984) and Seperuelo Duarte et al. (2010). The sputtering yield value at the high-energy edge of
y data of Schou & Pedrys (2001) and Balaji et al. (1995) was extrapolated at higher energy until it meets
yield of Seperuelo Duarte et al. (2010). This extrapolation certainly results in an overestimation of the
ng yield in this energy range. In the case of protons, no data exist in the SW energy range, we therefore
he low energy values of Schou & Pedrys (2001) towards low and high energy, resulting once again in an
of the role of protons. Finally, for estimating the erosion thickness of the C, N, O, Mg, Si and Fe ions,

ollowing approximations: YCO[C]≃YCO[N]≃YCO[O]≃YCO[Ne]; YCO[Mg]≃ YCO[Si]≃YCO[Ar]; and
O[Kr].SW erosion are tabulated in Table 2. We first observe that the erosion thicknesses calculated with the
/SEPs flux distribution are lower by around a factor of ten compared to the differential flux extrapolated
surements of Mewaldt et al. (2007). We hereafter focus on the results obtained with the modelled
x. The most contributing ion to erosion thickness is H (6 mm), followed by O, He and Fe, and the total
ess is ∼ 10 mm. This upper limit value is significant, but it is unlikely it was achieved in real conditions.
CO molecules were likely mixed up with other polar species, lowering their sublimation temperature
eir sputtering yield, and second because we have severely overestimated H sputtering yields. For GCR
n, calculations run for H, He and Fe provide erosion thicknesses of 6.8 x 10−3, 6.9 x 10−3 and 0.55 �m,
or an irradiation time of 4.55 x 109 yr. The actual values are lower, because the GCR density flux is
r at 44 au (Cooper et al., 2003). In any case they are very weak, and by far the contribution of GCR to
ring is negligible with respect to SW/SEPs.
l.: Preprint submitted to Elsevier Page 4 of 19
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Table 2
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sion thickness of CO, H2O and a-C surfaces at 44 au over 4.55 Gyr

ickness (�m)
ice H2O ice a-C
ewaldt @ 1au/442 2Model Mewaldt @ 1au/442 Model Mewaldt @ 1au/442 Model

89 6216 1400 168 16.1 1.9
12 1261 254 29 9.3 1.1
6 758 85 0.9 0.9 0.10

35 5 0.5 0.02 0.002
5 939 142 14 0.7 0.09
4 222 24 2.6 0.6 0.06
4 214 22 2.4 0.6 0.07
2 402 126 12 0.8 0.1
71 10047 2058 237 29.0 3.35

Ps differential flux from Mewaldt et al. (2007) at 1 au rescaled at 44 au by applying a factor 1/442. 2Using
SW/SEPs differential flux estimated from modelling (see Text).

ce
ring yield of water ice at E < 50 keV/u was calculated with the parametric equation of Fama et al. (2008),
energies the sputtering yields of Brown et al. (1984) and Dartois et al. (2015) were used (Fig. 2). There
tch between the two sets of data, except for H (which is unexpected due the non quadratic dependence
ulations show that the erosion thickness is 237 �m, and that H is the most contributing ion (168 �m).
hous carbon
energy range, the sputtering yields of amorphous carbon (C atom.ion−1) have been estimated with the
e for the H, He, C, N, O, Mg, Si, Fe elements at 0.5, 1, 5, 10, 50, 10 and 500 keV. The sputtering yield
as then set to the highest of these values, and assumed to be constant up to high energies dominated
interactions. Calculations were run for a H/C=0.5 carbon material, � = 1.5 g.cm−3, displacement
lattice binding energy 1 eV and surface binding energy 4 eV (values for sp3-rich amorphous carbons,
t al. (1993); Vukovic et al. (2018)). SRIM simulations provide values consistent within a factor of 2 with
measurements for a tetrahedral amorphous carbon (ta-C) irradiated with 50 keV Ga ions (Stanishevsky,
er energies, experimental measurements are available, but display huge variabilities from a few tens to
C atom.ion−1 (Assmann et al., 1996; Behrisch et al., 1996; Boutard et al., 1989; Dollinger et al., 1996;
002; Khan et al., 2013; Pawlak et al., 1999). H-bearing amorphous carbons seem to have a much higher
ld than pure amorphous carbons, and we have selected the data from Pawlak et al. (1999) on a polymeric
amorphous carbon (polymeric a-C:H). This kind of amorphous carbon resembles to the methanol ice
ced in this study (see below), except for the presence of oxygen. The fit of Pawlak et al. (1999) data leads
3 + 1759Se (Se in keV.nm−1), which is different from the quadratic dependance observed for ices (for
r ions). Note that irradiation leads to chemical fractionation and structural evolution of the film, and a
uttering yield over irradiation time. With all this in mind, the upper value of the erosion thickness is 3.35
order of magnitudes lower than water ice.

nic and nuclear doses
onic and nuclear doses (eV.atom−1) deposited in the subsurface at a depth of z can be written as:

= C M
6�Na

Δt
89∑
j=0

92∑
i=1

∫
Emax

Emin
S ie,n(z, E)×

Ai
dN
dE

(dj , E)dE (4)
vertical depth in the surface, dj the distance between the ion entry point and the point at z where the

ated (the ion incidence angle is �j = arcos(z∕dj) = j�∕180 and j ∈ [0; 89]), M the molar mass, �
l.: Preprint submitted to Elsevier Page 5 of 19
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methanol ice, Na the Avogadro number, dN/dE the differential flux (SW or GCR), Emin and Emax the
nergy range, Ai the solar or LISM abundance of the itℎ chemical element and Δt the irradiation duration
GCR, 2.225 Gyr for SW). C=2 or � for SW and GCR, respectively. Power law grids were used for the
rgy ranges, as zi = zmin(zmax∕zmin)i∕N (zmin:zmax=10−4 : 60 x 103 mm, GCR; =10−5:5 mm, SW) and
ax∕Emin)i∕N (Emin:Emax=10−2:104 MeV/u, GCR; =3x10−4:30 MeV/u, SW). The stopping powers S iealculated with the SRIM software for pure methanol ice, and the numerical code was computed with
gor Pro 8.04 (Wavemetrics). We have used the same differential fluxes and chemical elements that were
ering calculations. Note the dose is given in eV/atom, i.e. we have calculated the dose for one methanol
divided it by 6.
s are displayed in Figure 3 for Galactic Cosmic rays. Using the LISM differential flux, the total dose is
−1 until 1 m, and is in the range 1-10 eV.atom−1 until 10 m. The main contributors are H and He for
hese two ions are the only ones penetrating above 1 m. At 40 au, we have run a calculation for protons
rential flux of Cooper et al. (2003) (Fig. 3). The LISM electronic dose is 4.9-6.3 times larger than that
first 100 mm, and progressively reaches the 40 au values when increasing depth. We then infer that the
se at 40 au lies around 10 eV.atom−1 in the first 10 mm, is higher than 1 eV.atom−1 in the first meter,
ve. These calculations also show that the nuclear dose remains below 0.2 eV.atom−1. It is worth noting
ration of GCR is much higher than the sputtering thickness controlled by SW/SEPs (237 �m for water
m for a-C).
e of SW and SEPs, sputtering and dose deposition upon depth need to be computed simultaneously,
plantation depth is smaller than the erosion thickness. A time-resolved simulation was run over 2.25
cremental time of 222500 years (Fig. 4). For protons, calculations show that the layer that receives a >
nuclear dose is around 30 nm thick. This dose of 10 eV.atom−1 is the critical nuclear dose above which
s material transforms into an amorphous carbon (Faure et al., 2021) for details. However, the electronic
een 10 and 200 eV/atom in the first 100 �m, which are very high values.

ental methods
nts were conducted at Grand Accélérateur National d’Ions Lourds (GANIL, Caen, France) on the
ARIBE beamlines with the IGLIAS setup (Tab. 3; see Auge et al. (2018) for a detailed description).
ra were collected with a Bruker Vertex 70v FTIR spectrometer, operating with a MCT-detector and a 4
−1spectral resolution, for E1 and (E2, E3, E4), respectively. The angle between the spectrometer beam

e surface was 78 ◦. Thin films were deposited at normal incidence with a needle placed at around 15 mm
or a ZnS window. The deposition rate was adjusted to get a good optical quality, and sample thickness
using the band strengths of Bouilloud et al. (2015). The gaseous species sputtered in the chamber were
a MKS Microvision 2 quadrupole mass-spectrometer (QMS). IGLIAS is also equipped with a Perkin
a 650 VUV spectrometer, but the rapid degradation of the optical quality of the sample upon irradiation
ant scattering that blurred the absorption signal.
lution Mass Spectrometry analysis of the final organic residue was performed with an LTQ Orbitrap
pectrometer (Thermo Scientific, Bremen, Germany). This instrument is an hybrid mass spectrometer
n trap connected to an Orbitrap cell. The ion production was done with an IonMaxTM electrospray (ESI)
consists in a soft ionization achieved by protonation or deprotonation, respectively [M+H]+ or [M-H]−
were performed at the maximum instrument resolution (100000 at m/z = 400) for a mass accuracy of
g an Automatic Gain Control (AGC) set to 500000 ions storage. For accurate mass calibration, we used
al default LTQ-Orbitrap-XL instrument calibration mixture made of cafeine, Met-Arg-Phe-Ala peptide
Ultramark 1621 (a mixture of fluorinated phosphazine polymers) in positive mode, and a mixture of
yl sulfate, sodium taurocholate and ultramark 1621 for negative mode.
ents were run with the following ESI source parameters, in positive and negative mode, respectively: 3.5
heath gas at 3 and 10 (arb), capillary temperature at 275 ◦C and tension on the transfer tube at 40 and
easurements consisted of 3 scans of 256 microscans. The detailed description of the whole procedure
n Wolters et al. (2020).
ic residue recovered at room temperature was solubilized through five washing with 250 �L of methanol
PLC/MS grade) into a petri dish. The solution inside the petri-dish was transfered into a glass vial, and
was washed again by adding 100 �L of methanol. This fraction was added to the previously recovered
l.: Preprint submitted to Elsevier Page 6 of 19
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glass vial. A procedural blank was made by washing the cleaned petri-dish with 2 x 250 �L of methanol
o a glass vial. Finally, the optical absorption of this solution was measured in the range 200-800 nm with
V-730 spectrometer, and then analyzed by HRMS. Methanol was purchased from Sigma Aldrich (high

grade) and deuterated methanol was purchased from Eurisotop (purity 99.80 %).

ental results
a series of experiments on methanol ice run with different ions at different energies (Tab. 3). One

as run on deuterated methanol to easier the identification of simple by-products.
-136Xe19+ at 0.55 MeV/u

oscopic monitoring
film was deposited at 10 K and irradiated at normal incidence with 0.55 MeV/u 136Xe19+ ions (E=74.8
. At this temperature, solid methanol is amorphous and its density is sensitive to the deposition conditions
beam collimation, angle with respect to the substrate). Luna et al. (2018) report a value of 0.664 g.cm−3

ce deposited at 10 K and 0.636 g.cm−3 at 20 K, while Hudson et al. (2020) report 0.779 g.cm−3 at 15 K.
also report different values for crystalline methanol ice: 1.02 against 0.795 at 120 K, for Hudson et al.
na et al. (2018), respectively. The value of Hudson et al. (2020) is similar to the value determined by
ction (Torrie et al., 1989), which would mean that perfectly stacked monocristalline solids were formed.
is unrealistic and the value of Luna et al. (2018) is more consistent with polycrystalline films hosting a
osity due to voids at grains boundary. Finally, regarding that amorphous films display a range of porosity,
experimental conditions, we used an average of both studies as 0.71 ± 0.072 g.cm−3 for calculating the
d in the sample.
um fluence was 8 x 1012 cm−2, corresponding to an electronic dose De=5.9 eV.atom−1. The column

ickness of the film were estimated using the infrared integrated cross-section of the C-O band determined
t al. (2015) (integrated between 986 and 1070 cm−1) (Tab. 3). The sputteredmethanol thickness achieved
um fluence of 8 x 1012 cm−2 was estimated to be 0.03-0.06 �m (against 10.8 �m for the initial thickness of
g the sputtering yield of Dartois et al. (2019) rescaled to the electronic stopping power of our experiment
uadratic dependence with the electronic stopping power). As a result, the radiolytic process mostly
ecrease of the methanol ice film and there is no need to model sputtering. For the CO most volatile
estimate of the upper value of sputtered thickness lies around 0.4 �m, using the sputtering yield of pure

Seperuelo Duarte et al. (2010). The experiment was conducted in two steps: (1) the study of the film
us by-products during irradiation, until the maximum fluence of 8 x 1012 ions.cm−2; (2) and during a
grammed Desorption (TPD) using a thermal ramp of 0.05 K.min−1.
ra of the film during irradiation are displayed in Fig. 5. CO, CO2, CH4 and H2CO are detected as the
y-products, consistently with previous studies (Moore et al., 1996; Brunetto et al., 2006). These species
cted in the gas phase by the QMS spectrometer, plus H2 and H2O. H2 is also a well known by-product
ample dehydrogenation. H2O results from methanol radiolysis according to experiments run on CD3ODowever, a fraction could be due to contamination from the residual gas in the chamber. The infrared
H3OH molecule decrease and broaden with increasing fluence, and above an electronic dose of 1.45
road congested organic bands arise between 1700 and 1300 cm−1. At the maximum fluence, the spectrum
splays a slope and an asymmetry in the edges of the large 3500-3000 cm−1OH band (Fig. 6), which
ficant scattering. Accordingly, we have considered that VUV absorption measurements collected during
re blurred by significant and unquantified scattering.
e TPD sequence, the film was progressively stripped from volatile species, until the formation of a
dish organic residue at room temperature (Fig. 6). CO starts sublimating around 25 K and a large fraction
m the film before 65 K. However, a few CO molecules remain until 130 K, pointing to CO binding
ith polar hydroxyl groups (Kouchi, 1990). CH4 and H2CO are fully sublimated at 130 K, while CO2around 150 K. The organic bands in the region 1800-1200 cm−1are almost unchanged below 130 K,
ressively decrease until room temperature by a factor ranging from 2 to 6.5 (Fig. 6). Between 175 and
ape of the OH band changes and displays 3 components that point to the presence of crystalline water
ck of C-O band around 1000 cm−1shows that all CH3OH has gone. These observations are confirmed
urements, which show, in addition, that methanol essentially sublimates between 125 and 155 K, H2O
l.: Preprint submitted to Elsevier Page 7 of 19
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eriments parameters.

Ion E F max De max Se Dn max Sn t N PR
MeV ions.cm−2 eV.atom−1 keV. �m−1 eV.atom−1 keV.�m−1 nm mol.cm−2 nm

0 136Xe19+ 74.8 8 x 1012 5.9 5934 0.047 49.5 10872 1.43 x 1019 25875
0 58Ni9+ 33.1 1 x 1013 4.4 3574 0.016 12.5 1270 1.70 x 1018 21630
0 18O6+ 0.105 1.38 x 1015 16.1 132 5.7 46.3 898 1.20 x 1018 520

0 18O6+ 0.105 6.12 x 1014 10.1 132 3.54 46.3 1512 2.00 x 1018

0.105 1.57 x 1015 25.9 9.07 1488
0.105 1.65 x 1015 27.2 9.53 1335
0.105 1.70 x 1015 28.0 9.82 1276

re. E: total energy of the ion. F max: maximum fluence. De max: maximum electronic dose. Se: electronic
er. Dn: maximum nuclear dose. Sn: nuclear stopping power. t: thickness. N: CH3OH column density. PR:
e (penetration depth of the ion). The relative uncertainty on thickness and column density is estimated to
Sn were calculated with SRIM for a density of 0.71 g.cm−3 for CH3OH, and 0.80 g.cm−3 for CD3OD. Note
there is a factor of 2 between the dose at the entry and exit of the sample, and the dose indicated in the
re the dose accumulated in the uppermost layers of the sample. For experiments E3 and E4, the thickness
d ions implant into the sample. To optimize the thickness of the final irradiation residue, the sample was
steps, each consisting in depositing a layer followed by irradiation. Due to sputtering and to avoid further

irradiation of the underlying film, the thickness of each film was larger than PR.

nd 210 K, and that H2CO has a narrow sublimation surge around 30 K (See Appendix B). Above 210
ith significant intensity were detected, all ices have vanished and the infrared spectra are dominated by
ials (Fig 7). Their spectra display:
feature between 2900 and 3600 cm−1, due to the OH chemical group (BOH );
atic band between 2800 and 3000 cm−1with peaks at 2958, 2933 and 2879 cm−1, due to the symmetric
-symmetric stretching modes of CH3 and CH2 modes, the C-H stretching mode and complex vibrational
ions including Fermi resonance with the overtones of bending modes (MacPhail et al., 1984) (BsCHx

);
metric broad band between 1800 and 1500 cm−1(BC=O,C ), which comprises the stretching modes of
d C=C;
band between 1500 and 1300 cm−1(BbCHx

), resulting from different vibration modes of CHx groups,
g bending.
e a global drop of band intensities when increasing temperature, i.e. a broad range of volatilities and
weight. In spectra normalized at 1700 cm−1, BOH , BsCHx

and BbCHx
drop with increasing temperature,

crease of the H/C and O/C elemental ratio, and thereby an increase of unsaturation. By the way, this
BbCHx

is essentially controlled by CHx groups. The BC=O,C band is a very congested feature. It is
the stretching modes of the carbonyl (C=O) and olefinic (C=C) chemical groups (Fig. 8). The C=O
ponent lies between 1670 and 1800 cm−1and that of C=C between 1670 and 1600 cm−1(Lin-Vien,

jugated C=C bonds, which do not lead to �−�∗ transitions in the visible (no colouring effect), lie between
−1. C=C bonds conjugated with C=O lie between1650 and 1600 cm−1, and C=C/C=C conjugation lie
40-1600 cm−1. C=C conjugation also leads to a splitting of the stretching mode into symmetric and anti-
mponents. Figure 8 shows a tentative spectral decomposition of the spectrum of the refractory residue.
lack of constraints on the actual number and position of the components, other solutions are possible
iguous spectral decomposition can be achieved. Complicating the picture, the band strength of olefinic
atic C=C are very sensitive to the molecular environment, in particular to the C=O group that has a
moment (Painter et al., 1981).
osition of the film after irradiation was estimated using the integrated absorption cross-sections from

17 18
l. (2015). The following column densities were found: NCO2= 1.59 x 10 ; NCO= 2.10 x 10 ; NCH3OH=
l.: Preprint submitted to Elsevier Page 8 of 19
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CH4
= 3.20 x 1017; NH2CO= 7.49 x 1017 molec.cm−2. The column density of CH2+CH3 groups wasng the band strengths of the antisymetric stretching bands (Dartois et al., 2007), and was found to be 4.1

cm−2 for the spectra collected at 210 K during the TPD. The fraction of alkyl groups that sublimated
annot be directly estimated because they are blurred by other bands, in particular the broad OH band. As
, it was roughly estimated through the intensity of the (BbCHx

) band, which decreases by a factor of 2.7
d 210 K. Using the initial column density of CH3OH NCH3OH=1.43 x 1019 molec.cm−2, we estimate
account for 50% of the starting carbon atoms, and CH2+CH3 groups represent 18% of these detected
. However, we have not estimated the contribution of carbonyl and olefinic groups, due to the strong
stion. In addition, aliphatic CH and non-protonated C have not been estimated. We then only estimate
of ∼ 10% for initial carbon atoms incorporated in organic molecules. Beside the lack of detection of
nyl, non-protonated and C-H aliphatics, some small volatile species may have been undetected by FTIR
k of IR active vibrations) and by QMS data, due to a lack of precision in peak intensites and reference
er explanation is the quite large uncertainty on band strengths. Usually a relative error of 30% is given,
lso be blurred by systematic errors (e.g. lack of knowledge about density). Last, spectral congestion and
ction are always an issue, and can lead to very significant systematic errors (i.e. H2CO).e recovered at room temperature was dissolved inmethanol for analysis by VUV absorption spectroscopy
ansmission spectrum of the solution shows an absorption continuum from theUV to∼ 500 nm, consistent
sh colour observed by the naked eye. This information is semi-quantitative, as the nature of the species
entrations are unknown in the detail.
ular complexity of room-T residues
tra of the residue solubilized inmethanol were collected along the procedure described in section 3. These
plex in terms of peak numbers (several thousands). We have used here a homemade software developed

the IGOR Pro software (Wavemetrics) (Orthous-Daunay et al., 2019). The data description was achieved
ssive steps: (1) the description of the mass spectrum, (2) the analysis of the apparent diversity and (3)
n of the attributed stoichiometric formulas. A mass spectrum contains much information simply derived
and intensity of the peaks, such as intensity patterns and profiles, or systematic mass differences. Once
ta structure has been described, the stoichiometric diversity is analyzed through dedicated mathematical
hich are allowed by the high precision and mass resolution of the Orbitrap spectrometer. Several data
s, based on all the attributed formulas, can eventually be used for comparison to reference samples.
splays the mass spectrum of the sample collected in ESI positive mode between 150 and 800 Da. The
le, with a maximum intensity around 320 Da, shares similarities with those of N-rich tholins acquired
lytical conditions (Vuitton et al., 2021; Moran et al., 2020; Maillard et al., 2018; Jovanovic et al., 2020).
intensity profile decreases more slowly, with less than one decade of intensity between 320 and 800 Da.
nsity patterns are observed in the spectrum, similarly to the abovementioned tholins. They are usually
signature of polymerization, the mass difference between two consecutive maxima being an averaged
al monomers. Here, the value of 14.016 Da shows that the polymerization growth is dominated by the
2 molecular groups. Similar observations can be achieved from the ESI negative mode mass spectrum.

dized process was used to assign a unique molecular formula to ions peaks over the entire mass range
Da) (Vuitton et al., 2021). A unique formula is first assigned to a peak at low mass, and peaks at
re then identified through the addition of CH2 (alkylation) or other building groups (C, O, NH). Overall,the building blocks appear in a Mass defect-versus-Mass (MDvM) diagram, where the mass defect is
between the exact mass and the closest nominal mass (Fig. 11). The MDvM plot allows direct visual
point alignments representing monomers that separate repetitive molecular groups. Trends due to CH2,ups are displayed in Figure 11.
signment led to 6596 exact stoichiometric formulae, which represents several tens or hundred thousands
compounds due to the large number of isomers for each mass. The unsaturation was estimated through
und equivalents (DBE), defined as the number of rings plus the number of double and triple bonds in a
ule. It was calculated from each stoichiometric formula CcHℎOoNn as:

cHℎOoNn) = c −
ℎ
2
+ n
2
+ 1 (5)
l.: Preprint submitted to Elsevier Page 9 of 19
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ygen is known to create double bounds like in ketones or carboxylic acids, it does not control unsaturation
r of double bonds and rings, and a triple bond corresponding to 2 double bonds). As our sample is
de of C, H and O atoms, unsaturation is only achieved by carbon and hydrogen. Figure 12 displays two
s of stoichiometric diversity of the residue. On the left, O/C value is plotted against mass for varying
ygen atoms. For a given oxygen value, data points appear as a hyperbolic distribution, consistent with
nalyses (Maillard et al., 2018; Moran et al., 2020). This representation is a way to assess the attribution
misattribution will appear on the wrong hyperbolic line. This diagram also shows that the radiolytic

ates all oxygen levels. Hence, we are not only observing O1-bearing molecules that could refer to alcohol,
xy chemical functions, or O2-bearing molecules that could refer to carboxylic acids, but a broad diversity
tructures that contain several oxygenated groups. This points to the complexity of the compounds and the
vity of the radiolytic chemical process. Figure 12 also reports the DBE value plotted against mass peak.
he DBE values are not very high, as they are controlled only by carbon and hydrogen. In the case of N-rich
BE distributions show values up to 40 due to the ability of nitrogen to promote unsaturation (Maillard
t a given number of oxygens, almost all DBE values are observed, indicating that the polymerisation

nsible for the unsaturation is weakly or not sensitive to the oxygen functionality. Note however that, due
al technique, especially using the electrospray source as ionisation method, we are only sensitive to polar
is means that this study does not investigate pure hydrocarbon diversity, i.e. when the number of oxygen
o.
e elemental ratio of the polar fraction of the residue were calculated from both ESI positive and negative
g the stoichiometric composition of mass peaks ponderated by peak intensities. We found H/C=1.50 ±
0.4 ± 0.02. These estimates must be considered with care, because the ionisation yield is controlled by
structure, which must promote protons exchange with the solvent.
- 58Ni9+ at 33.1 MeV

ation of CD3OD with 58Ni9+ ions resulted in the production of similar simple by-products as CO, CO2d HDCO, detected by FTIR spectroscopy and MS/QMS (Fig. 13). CD4 could not be detected because
f its bands was coincident with broad features of methanol. Interestingly, we observed the formation of
es, demonstrating that water is also a by-product of methanol irradiation. This confirms that the water
the infrared spectra collected during the TPD sequence are not controlled by contamination from the
m in the chamber.
stimated the band strengths of several vibration modes of pure CD3OD from experiments run at IPAG
g a He-Ne laser for determining the film thickness (Appendix A). We then determined the radiolytic
oss-section of deuterated methanol, by fitting the first derivative of the column density with the following

�dN + Y (6)

to �d=(1.5 ± 0.6) x 10−13 cm2.ion−1. We have compared this value to the data of de Barros et al.
artois et al. (2019) (Fig. 14). The reanalysis of earlier data by Dartois et al. (2019) led to a destruction
of methanol of (4.14 ± 2.0) x 10−17S1.11±0.11e . However, one cross-section from de Barros et al. (2011)
ed correctly, and the error estimated by these authors (± 5 %) was clearly underestimated. We run again
ore realistic errors (± 25 %) and got �d = (5.5 ± 3.0) x 10−17S1.06±0.08e . The destruction cross-section
3OD in this study lies at the edge of the 95% confidence area, and is consistent with CH3OH data. As

the destruction of the C-O bond, the effect of D atoms appears weak or negligible.
- 18O6+ at 105 keV

itions of CH3OH ice irradiation with low energy 18O6+ ions are different from the two previous
un with swift heavy ions. The penetration depth is lower than the thickness of the film, ions eventually
e deposited dose varies upon depth. Moreover, there is a significant contribution of elastic interactions
s Se in Tab. 3). Even though those conditions are different, we observe qualitatively a similar evolution
e: formation of CO, CO2, H2CO and CH4 as simple byproducts, and similar bands assigned to organics
H groups) (Fig. 13). After the sublimation of ices, a residue was recovered at room temperature, which
x

l.: Preprint submitted to Elsevier Page 10 of 19
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ities with those recovered in experiment E1. In details, we observe slight differences in the shape of the
that ranges from 1500 to 1800 cm−1. This experiment shows that, at least qualitatively, the final organic
not depend significantly on the ion energy over 4 orders of magnitudes. The same mechanisms seem to
ich is consistent with observations on simple polymers that do not contain aromatic species (Faure et al.,
tingly, the presence of elastic interactions does not modify the main composition of the organics.

on
c by-products: chemical routes and composition
iments show that complex organics are formed from pure methanol ice for electronic doses consistent
rrokoth surface, down to 1 m deep. These complex organics are a mixture of molecules spanning a broad

ht, from a few to several hundred C atoms. The most refractory fraction recovered at room temperature is
uble in polar solvents. The similarity of the infrared features in the region 1800-1200 cm−1across 40-300
continuum, i.e. species bearing similar chemical groups as OH, CH, CH2, CH3, olefinic C=C and, in
ance, C≡C. The molecular complexity is high, with 6596 molecular formulas and several hundred of
olecules. The formation mechanisms includes bond breaking, radical recombination and sputtering of

lecules in the gas phase. The large H2 signal in the QMS spectra reveals a large dehydrogenation, turning
ratio from 4 to 1.5 in the refractory residue collected at room temperature. The formation of olefinic and
ds results from the recombination of adjacent carbon radicals (Balanzat et al., 1995; Steckenreiter et al.,
et al., 2010). Interestingly, the chemical evolution of methanol ice shares similarities with the irradiation
enated polymers, e.g. poly-ethylene-glycol (PEG) (Faure et al., 2021). The infrared spectra of irradiated
imilar features in the range 1800-1200 cm−1, CO and CO2 as simple by-product, and overall the spectral
s similar between the two materials. Noteworthy is the abundance of OH groups, very weak or negligible
EG compared to irradiated methanol. A large fraction of the initial hydroxyl groups in methanol are then
ing the irradiation of methanol ice. The profile of the band BsCHx

points to a significant proportion of
sus methyl groups (nCH2

∕nCH3
around 1 at 210 K and 0.83 at 300 K), which supports short alkyl chains

t cross-linking.
methanol also shares similarities with organic solids produced from cold plasma vapor deposition (e.g.
21)). The HCO tholin from that study is made of C=O, C=C, CHx and OH groups, and accordingly the
ra are fairly similar. The relative abundances of these chemical groups are, however, not strictly similar
methanol residue, which result from the initial composition of the gas mixture injected in the plasma
the physical conditions in the plasma. This points to similarities between the physical processes at play
ma experiment and in an irradiated solid. Structural and chemical effects triggered by swift heavy ions
be accounted for by the thermal spike model (Toulemonde et al., 1993). In this model, incoming ions
lectrons, which are locally released and leave ionized tracks (diameter ∼ 1 nm). The interactions of these
atoms generate electronic cascades and a plasma with high-temperature electrons, which eventually

c energy to the atomic lattice and trigger a temperature surge of several thousands of degrees for atoms
This temperature surge is responsible of sputtering in the vicinity of the sample surface. The whole
hese processes is shorter than 1 ns, i.e. it is an ultra-fast pyrolysis that is very difficult to simulate in
, even by means of femto-second laser (Toulemonde et al., 1993). The thermal degradation of organic
gh fast pyrolysis (∼ 1 s) leads to aromatic-rich residues (Cui et al., 2016), which are very different from
hanol or oxygenated polymer (Faure et al., 2021). The similarities between irradiated and cold plasma
ort the view that temperature is not the main physical parameter that controls chemistry. Estimates of the
emperature by the thermal spike model are usually around 2000-3000 K, but they decrease very rapidly
ck. Furthermore, the very short heating duration probably largely inhibits the aromatization process.
breaking and recombination during electronic cascades would dominate irradiation chemistry, which are
that prevail in cold plasmas. Altogether, this suggests that cold plasmamaterials formed in the laboratory
ld be considered as fair analogs of irradiated solid materials.
ption properties of the organic material are controlled by conjugated olefinic groups. They are responsible
ctronic transitions that control absorption at short wavelength in the visible, thereby providing a reddish
ndance of conjugated bonds could not be determined, due to the spectral congestion of the BC=O,C band.
ided by HRMS analysis provides insights into saturation, but includes ring with no unsaturated bonds.
l.: Preprint submitted to Elsevier Page 11 of 19
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ly conjugated olefinic bonds lead to visible absorption. In this respect, linking the chemical composition
ion properties is not suitable with our set of data.
ce to planetary conditions

iation experiment E1was run with a 136Xe19+ ion, while calculations show that H and He are the
tor of the dose deposited in Arrokoth’s surface. According to de Barros et al. (2011), the destruction
of methanol ice is written as ASne , with A is a pre-exponential factor and n ranges between 1
reevaluation of this cross section leads to an exponent n between 0.98 and 1.14. Because n ≠ 1,
ieve faster methanol ice destruction than H at the same equivalent dose, and we overestimate the
cal evolution in planetary conditions. Taking electronic stopping powers at 0.55 MeV/u, the ratio of
Sne (H)]∕[Se(136Xe)∕Se(H)] is equal to 2.1, 4 and 525 for n = 1.14, 1.25 and 1.5, respectively. These
road range and show that the exponent is a critical parameter. But with an upper value of 1.14, the impact
d. H irradiation of methanol ice and methanol:water mixtures by Moore et al. (1996) were achieved with
/molecule (against∼ 36 eV/molecule in our experiment). The organic residue from that study measured

ctrum (a) in Fig. 4) displays the same bands BOH , BsCHx
, BC=O,C and BbCHx

displayed by our sample
mperature, pointing to similarities in the chemical routes. The shape of BC=O,C appears however more
t in our low energy experiments E3 and E4. We also note the presence of the 1041 cm−1band, due to
, which may be more difficult to break with protons. In the case of He, the second contributor to the
e in Arrokoth’s subsurface, the ratio [Sne (136Xe)∕Sne (He)]∕[Se(136Xe)∕Se(He)] is equal to 1.7, 2.5
= 1.14, 2.5 and 6.5, respectively. In this respect, the 136Xe19+ ion fits better the contribution of He, but
ments are necessary to get an appraisal of chemical similarities and differences of the final by-product.
g, Si and Fe, which probe the depth 1-1000 mm, we infer that the 136Xe19+ ion experiments are more
of the planetary conditions. Another point to address is the presence of a thermally-activated chemistry
Molecular diffusion, radical recombination and other chemical reactions happen in the sample during
However, these chemical reactions do not lead to a major evolution of the organics. The characteristic
,C and BbCHx

are present from 10 K to room temperature, showing that aliphatic, olefinic and carbonyl
main chemical groups composing the organics.
rface of Arrokoth, CH3OH may be, or may have been mixed with other molecules, e.g. H2O. Aeffect can then be expected. Moore et al. (1996) have investigated mixtures with the H2O:CH3OH=1:0.6
and mixtures dominated by methanol. For these concentrations, any methanol molecules is surrounded
anol molecules, therefore polymerization and chemical growth are expected. Their spectra collected at
imilar organic features. At 10% concentration, calculations of Behringer (1958) run for crystalline cubic
hat 30-50% of molecules should be present as monomer, 20% as dimers, and the rest as multimers. At
tion, the abundance of monomers is around 90%, which decreases the abundance of chromophores by
agnitude. This conclusion holds if the surrounding matrix is devoid of C atoms, not in the case of other
2CO, CO2 or CH4, which would react with methanol.
actual conditions in the subsurface may lead to hypervolatile (H2 or CO) trapping at some depth,
ater lattice or as bubble. In thin films experiments, volatiles can escape more easily. These trapped

uld react further, changing the chemistry, for instance through mitigating dehydrogenation. In addition,
ns do not include secondary reactions at high energy that generate gamma radiation, and contribute to
. To get an appraisal of this contribution, we have run simulations on a crystalline water ice surface in
ical conditions as Loeffler et al. (2020), who considered these secondary reactions using the GEANT4
paring our results with theirs shows that our calculation underestimates the dose by a factor ranging 2-7
ter of the subsurface.
ening scenario for Arrokoth’s surface
ng scenario of Arrokoth’s surface is taking place based on the above results (Fig. 15). Our calculations
ttering is essentially controlled by SW and SEPs (Tab. 2). The erosion of organics (formed by radiolysis)
ver 4.55 Gyr, compared to ices. Above ∼ 10 mm, the effect of sputtering disappears. Because materials
ifferent responses to sputtering, a chemical fractionation is expected in the first millimeters of the surface,
onds to the depth probed by the MVIC and LEISA spectrometers. Hyper-volatiles (e.g. CO) and volatiles
2CO) will get less and less abundant, and even water ice may become a weak component with respect to

s. We may infer that eventually sputtering could generate an organic crust, covering a more icy material.
l.: Preprint submitted to Elsevier Page 12 of 19



Journal Pre-proof

Accordingly,540

of Arrokoth a541

than that of w542

TNO (120348543

The contri544

organics form545

its presence a546

by regolith ga547

on polymers s548

consists in sc549

depend on the550

monomers. P551

sputtering yie552

PMMA (Poly(553

between (Calc554

extensive deh555

carbons. Acco556

are irrespectiv557

the nature of t558

even at low ele559

aromatic spec560

et al., 2002, 2561

electronic dos562

sp2/sp3 increa563

Experiments r564

familly of hyd565

In contras566

Arrokoth’s su567

abundance of568

lower by ∼ on569

destruction cr570

44 au, a destru571

tends to lower572

However,573

Arrokoth has574

surface ablati575

mass ejecta r576

determined fr577

vary during th578

the data colle579

and 300 �m.M580

experimental581

K against 40582

materials are583

are carbonize584

impacting par585

of Arrokoth’s586

Other pro587

triggered by (588

2003). Crossin589

rate of ice. It590

Heating by pa591

formation, bu592

E. Quirico et a
Jo
ur

na
l P

re
-p

ro
of

Reddish Organics at Arrokoth’s surface

the detection of buried icy species would be difficult. However, the detection of methanol at the surface
long with the non detection of water ice raises questions, as the sputtering yield of methanol is higher
ater ice. In the case of Centaur Pholus (Cruikshank et al., 1998), TNO (55638), TNO 2002 VE95 and) 2004 TY364, water ice could be present as mixed with methanol (Merlin et al., 2012).
bution of SW to ice radiolysis is weak. The nuclear dose lies above 10 eV.atom−1 in the first 30 nm, and
ed from ice radiolysis should be transformed into dark amorphous carbons (Faure et al., 2021). However,
t the very top of the surface during 4.55 Gyr is unlikely, due to burying and mixing processes triggered
rdening. GCRs leave high electronic doses in the range 50-200 eV/atom in the first 100 �m. Experiments
how that their evolution upon increasing doses includes two stages (Calcagno et al., 1992). The first
ission, cross-linking and bond creation within chains. The respective contribution of these processes
nature of the polymer, i.e. linear or reticulated structure, molecular weigh of chains, composition of

TFE (Polytetrafluoroethylene) is for instance very sensitive to chain scission and show a significant
ld, while PE (polyethylene) or PS (polystyrene) are very resistant and promote instead cross-linking.
methyl methacrylate)) and PEG (polyethylene glycol) that contain tetrahedral carbons are somewhere in-
agno et al., 1992; Balanzat et al., 1995; Faure et al., 2021). In a second stage, further irradiation promotes
ydrogenation and sp2 carbon, forming material that share similarities with hydrogenated amorphous
rding to (Calcagno et al., 1992), the end of the first stage is a material whose composition and structure
e of the starting polymer, and whose subsequent evolution is essentially controlled by the dose. However,
he dose (elastic versus electronic) is a key factor and several precursors evolve towards amorphous carbon
ctronic dose, if the elastic dose is higher than 10+10−7 eV.atom−1. In addition, the presence of radio-resistant
ies in the polymer tend to form polyaromatic by-products after extensive electronic irradiation (Costantini
005). In the case of methanol ice, a cross-linked organic macromolecular compound is achieved at
es in the range 5-20 eV.atom−1. Following Calcagno et al. (1992), we expect a progressive H loss and
se, and finally a range of hydrogenated amorphous carbonswith varying Tauc gap and optical absorptions.
un until a 200 eV.atom−1 electronic dose are here necessary to quantify the absorption properties of this
rogenated amorphous carbons.
t to Solar ions, Galactic cosmic-rays control methanol ice radiolysis as deep as several meters in
bsurface. The electronic dose is significant in the first meter (> 1 eV/atom), and we expect a signficant
reddish organics. The main contributing ions to radiolysis are H and He. Other ions provide a dose
e order of magnitude and only within the first meter. The destruction yield calculated with a revised
oss-section from de Barros et al. (2011) also meets this conclusion (Fig. 3), as we obtain, for protons at
ction yield > 10%. The deep penetration of H and He ions mitigate the effect of regolithic turn-over that
the actual irradiation time.
other processes control the surface evolution of Kuiper Belt objects (Stern, 2003). The surface of
been exposed to interplanetary dust particles (IDPs) and interstellar grains (ISG) fluxes, leading to
on and regolith gardening (Poppe, 2015, 2016; Szalay et al., 2018). Poppe (2015) has estimated the
ate at the Pluto system using the IDP and ISG fluxes derived from dust models and the crater yield
om laboratory simulations (Koschny & Grun, 2001). If we take the average value of these estimates that
e Pluto year, we obtain an ablation rate of ∼ 30 �m.Myr−1 for water ice, i.e. ∼ 14 cm. The analysis of
cted by the Student Dust Counter aboard New Horizons spacecraft led to higher estimates between 30
yr−1 (Bernardoni et al., 2022). However, these values are likely overestimated, in particular because the
conditions of Koschny & Grun (2001) do not strictly fit planetary conditions (ice temperature was 250
K, projectiles were glass particles against fragile chondritic porous assemblages). In addition, organic
more resistant to hypervelocity impact. Shock experiments in the laboratory show that Titan’s tholins
d and transformed into a polyaromatic residue, with a moderate mass loss (Quirico et al., 2019). Last,
ticles or their fragments may remain stuck at the surface, thereby contributing to the spectral properties
surface.
cesses that possibly mitigate a radiolytic origin of red organics are catastrophic surface ablation events
i) crossing Giant Molecular Clouds, (ii) passing stars or supernovae heating and (iii) collisions (Stern,
g giant molecular clouds would enhance the flux of ISGs at the surface, thereby increasing the ablation
is however difficult to constrain the frequency and intensity dust surges that happened in the past.
ssing stars or supernovae may have been significant in the Kuiper belt at the early stages of Solar System
t no later than 2 Myr, which means a lack of thermal destabilisation during almost 4.55 Gyr (Pfalzner,
l.: Preprint submitted to Elsevier Page 13 of 19
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ons between KBOs are in contrast a frequent process that shaped the present size distribution of KBOs
, 2021). Low-sized KBOs (< 10-20 km) would be collisionally evolved, and most collisions would have
ed within the main classical belt at low collisional speed (< km.s−1). Recent fragmentation would have
ments with fresh and weakly irradiated surface. It is however unclear whether Arrokoth has experienced
ion. In the case of small impactors, the physics of collision of icy porous bodies, and consequently effects
chemical properties of an impacted surface remain poorly known (Leinhardt et al., 2007).
e formation of reddish organic materials is supported by calculations and experimental simulations.
etration of GCRs generate organics deep enough to escape ablation processes such as sputtering and
ment. This provides evidence that Arrokoth’s red surface has not a primordial origin, but is a direct
of space weathering. Future studies should focus on the optical properties of the radiolytic organic
there is yet no direct evidence that these materials fit MVIC and LEISA observations. The determination
tion properties of irradiated methanol is tricky due to the contribution of scattering, but a way to
is problem could be to produce analogs in cold plasma reactors. The room-temperature residue could
ively characterized by combined FTIR and VUV measurements after dissolution in different solvents,
both spectral ranges.

ions
conclusions of this study are the following:
trol the sputtering rate of Arrokoth’s surface.This erosion thickness is estimated at ∼ 240 �m in the case
r ice, and at a few �m for organic materials. Sputtering tends to favor the formation of a pure organic
the surface.
nerate a nuclear dose greater than the critical dose 10+10−7 eV/atom and a significant electronic dose (until
atom−1) in the first tens of nm of the surface. A range of hydrogenated amorphous carbons may form
ith varying optical properties depending on the dose.
lating the differential flux of SW and SEPs measured at 1 au at high heliocentric distance leads to an
mate of sputtering yields by one order of magnitude. Dedicated models need to be used.
ominate radiolysis in the first meter of the subsurface, and generate macromolecular reddish organic
nds. This deep chemistry mitigates the effect of regolithic turnover that tends to limit the actual
ion time of grains.
olecular organics formed from pure methanol ice are a complex mixture of tens or hundreds thousands
ounds. The main functional groups are CHx, carbonyl C=O, olefinic C=C and -OH. Optical absorption
� → �∗ is controlled by conjugated C=C bonds.
, which are polymeric amorphous macromolecular solids formed in cold plasma reactors, appear as fair
es of irradiation by-products, and could be helpful to determine their optical properties.
ing to these numerical and experimental results, the formation of reddish organics at Arrokoth’s surface
ethanol-rich ices by GCRs radiolysis (and to a lesser extent SEPs) appears plausible. This holds in the
ancient events (interplanetary and interstellar dust impacts, collisions) that would have ablated several
of the surface.
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s of CD3OD.

e Band strength Integration range
(cm/molec) (cm−1)

4.0 ± 0.2 x 10−19 889-913
1.5 ± 0.1 x 10−18 1050-1075
7.2 ± 0.4 x 10−18 1079-1166
7.5 ± 0.4 x 10−18 2196-2263
4.4 ± 0.3 x 10−18 2054-2104
8.3 ± 0.5 x 10−18 941-1005

metric. s=symmetric.

ements of the band strengths of CD3OD ice
nts were run at IPAG with a Bruker Vertex70v spectrometer, equipped with a DTGS detector, a KBr
nd a Globar source. The spectral resolution was 1 cm−1. Thin films were produced in a chamber
der secondary vacuum (typically, 5 x 10−7 mbar), by condensation onto a KBr window at 24 K. The film
onitored with a He-Ne laser at an incidence angle of 45 ◦. Interference fringes were used to determine
ickness, using the refractive index of liquid methanol n=1.33 (Bouilloud et al., 2015). The density of
has not been determined experimentally. We have used the value 0.796 g.cm−3, calculated by scaling
amorphous CH3OH (0.71 g.cm−3) with the density of liquid CH3OH and CD3OD. The band strengths
modes were then determined (Tab. 4).

ements of gaseous products by QMS
oducts produced during irradiation and the Thermally Programmed Desorption (TPD) sequence were
eans of aMKSMicrovision 2 quadrupole mass-spectrometer (QMS).Masses from 1 to 100were scanned
during the experiment (one full scan ∼ 7s). The main volatile by-products were targeted (i.e. CH3OH,O2, CH4, H2 and H). No signal was detected above m/z=45, in particular organic species released after
t detected, while the corresponding IR spectra showed their disappearance from the solid sample. Fig. 16
ass spectrum of pure methanol (during injection) and one spectrum collected during the TPD sequence.
serve an intense peak at m/z=2, due to H2, which points to dehydrogenation. Excesses over the methanol
8, 29 and 31 essentially report the production of CO and H2CO. m/z=18 points to the presence of H2O,3, 14 and 15 point to the presence of CH4. Fig. 17 reports the evolution of the intensity of the peak at
and 32. During irradiation, H2 and CO are the main by-products, while CO2 was hardly detected at

ng TPD (Fig. 18), H2 is essentially expelled at low temperature (<40 K). CO is essentially sublimated
ut sublimation continues until 120 K. At low temperature, H2CO and O2 (contamination from vacuum
from H2O radiolysis) are expelled around 30 K. Methanol is sublimated between 130 and 155 K, and
y sublimated at 210 K. Note that this QMS monitoring is at best semi-quantitative: the data were not
the electron-impact ionization cross-sections of the molecules, and we did not collect at the time of the

e fragmentation pattern of the by-products. In the case of methanol, the fragmentation pattern measured
ent and that provided by the NIST database were significantly different.
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The differential spectra of Solar Wind, Solar Energetic Particles and Galactic Cosmic Ray used in sputtering
ulations. Right: Voyager 1 data compared with the parametric law of Webber and Yushak (2003) calculated
values from Table 1 and the chemical abundances derived from Voyager 1 data at 80 MeV/u.

sputtering yield of water ice calculated from Fama et al. (2008) at 13.6 K, compared with measurements from
1984) and Dartois et al. (2015). Note the mismatch at 50 keV/u, which likely points to an overestimation
rgy range. At 50 keV/u and above, Se >> Sn.
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Electronic dose deposited in Arrokoth’s surface upon depth, for a LISM differential flux (solid lines) and
ntial flux at 40 au (mixed dotted line). (b): Destruction (breaking of the C-O bond) yield of methanol
, number of destroyed molecules divided by the initial number of molecules, multiplied by 100) using a
tion cross-section from de Barros et al. (2011). H and He are the main contributors to the dose, in term of
epth.

tronic and nuclear doses deposited by Solar Wind ions at 44 au. Calculations were run without and with
e dose is significant in the first hundred of nm.
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The evolution of methanol ice in experiment E1. Signatures of organics appear around 1.45 eV.atom−1.

Raw spectra of irradiated methanol film during thermal programmed desorption (experiment E1). (b): zoom
bands with baseline correction.
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Infrared spectra of organics during the Thermally Programmed Desorption sequence between 210 and 300
ith absorbance normalization at 1750 cm−1. (c) Infrared spectra with a baseline correction in the region of
and in the range 2800-3000 cm−1. (d): Same with absorbance normalization at 1750 cm−1.

s assignment of the spectrum of the room temperature residue. (a): Full spectral range. (b): Blow out on
cm−1, which contains signatures of olefinic groups that control the absorption properties in the visible range.
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Figure 9: VUV absorption spectrum of the room temperature residue dissolved in methanol.

mass spectra, with intensity color code in log scale. The right spectrum is a zoom between 200 and 280 Da
een 105 and 106 intensities. The large number of mass peaks at each nominal mass reflects the complexity
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ss defect versus mass diagram with three main directions being represented. The purple data points represent
s assigned a stoichiometric formula. Other points are artifacts, as radiofrequency signals contamination (e.g.
ectronic noise (e.g. light blue area). The contribution of multicharged ions is negligible.

ure 12: O/C and DBE versus mass representations, with the number of oxygens as colour code
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Figure 13: (a)
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: Spectra of methanol films after irradiation for experiments E2, E3 and E4. The Li label refers to the layers
in experiment E4. (b): Blow up in the region of the organic bands. (c): Room temperature residues. *:
window pollution and background subtraction. ♯: incomplete correction of atmospheric CO2.
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e destruction cross-section for CD3OD derived from experiment E2, compared with experimental data of

tribution of organic radiolytic byproducts upon depth. The uppermost region of the surface is an almost
rust, due to volatile removal by sputtering. The first meter region, where electronic dose is > ∼ 2 eV.atom−1,
ificant abundance of organics. GCR protons goes down to several tens of meters, but produce there much
e to the lower dose.
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Figure 16: QMS spectra collected during injection (pure methanol) and during TPD.

Figure 17: Peak intensity at m/z=2, 18, 28 and 32 during injection, irradiation and TPD.
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p: The peak intensity of the main gaseous by-product after correction from CH3OH contribution in the
plotted against temperature. Bottom: same with magnification. No correction of the electron-impact cross
f the fragmentation patterns of the by-products were applied to the data.
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