## Contrasts in turbulent vertical fluxes of nutrients across the permanent Lofoten Basin Eddy in the Nordic Seas

EGU - General Assembly Session OS1.3 - The ocean surface mixed layer: multi-scale dynamics and ecosystems in a changing climate

#### Anthony Bosse and Ilker Fer

anthony.bosse@mio.osupytheas.fr Aix-Marseille Univ., Mediterranean Inst. of Oceanography, Marseille, FR Univ. of Bergen, Geophysical Inst., Bergen, NO

26 May 2022



#### The Lofoten Basin of the Nordic Seas



- → Permanent anticyclone (LBE) Yu et al (2017), Fer et al (2018), Bosse et al, Sci Rep (2019)
- $\rightarrow\,$  Strong interaction between LBE and mesoscale eddies
- $\rightarrow$  LBE traps NIW : enhance mixing at the bottom Fer et al, 2018

 $\Rightarrow$  How does the LBE influence turbulence near the surface?

### Measuring turbulence: how to and what for?

#### From McKinnon et al, BAMS (2017)





#### Energy cascade in the ocean:

Dissipation at centimetric scale, where viscous effects transforms KE into heat.

### Measuring turbulence: how to and what for?

#### From McKinnon et al, BAMS (2017) Internal Wave Driven Mixing Storm Winds Mixed Laver Mesoscale Eddies + Fronts Inertial Oscillation Wave-Wave Interactions Low + Hig Mode Generation Low Modes Shelf Amplification Lee Waves 💮 , Slope, Shelf + Topographic Currents Low Scattering Hiah Topograph Mode Generation Scattering Generation 🔪 Internal Wave Ray Paths 🗧 Currents 🍳 Internal Wave Breaking Modal Propagation





#### Energy cascade in the ocean:

Dissipation at centimetric scale, where viscous effects transforms KE into heat.

#### Oxborn-Cox model:

Measure of dissipation rate  $\epsilon$  allows to quantify vertical diffusivity:  $K_z = \epsilon N^{-2}$ .

[The mixing efficiency  $\Gamma$  is classically considered as 0.2

Parametrization by Bouffard and Boegman, DAO (2013) is here used]

#### Disspiation of energy at microscale

#### Microstructure turbulence

Quantify the role of smallscale mixing to vertical transfers (nutrients, heat, ...) and its modulation by mesoscale structures.



Microrider mounted on Slocum glider



5-day, 212 profiles 0-300m (with Microrider) + CTD/VMP/LADCP ("nutrients)

#### Slocum glider mission



#### Dissipation rate of TKE



#### Dissipation rate of TKE



#### Turbulence : Microrider vs VMP



## Dissipation rate of TKE (surface zoom)



Important variability of  $\epsilon$  in the surface layer Isopycnal outcropping at the rim, large displacements in the core

### Dissipation rate of TKE (surface zoom)



Important variability of  $\epsilon$  in the surface layer Isopycnal outcropping at the rim, large displacements in the core

## Vertical diffusivity K<sub>z</sub>



Winds : from ~30kn to calm conditions (wind from ERA5 re-analysis) Mixing regimes defined from Bouffard and Boegman (2013) more turbulence below <100 m in LBE

#### Vertical diffusivity K<sub>z</sub> (surface zoom)



Mixed layer does not match layer of active mixing under calm conditions. (MLD from 0.03 kg m<sup>-3</sup> density criterion, XLD where  $\epsilon < 3.10^{-9}$ W kg<sup>-1</sup>)

### Vertical diffusivity K<sub>z</sub> (surface zoom)



Mixed layer does not match layer of active mixing under calm conditions. (MLD from 0.03 kg m<sup>-3</sup> density criterion, XLD where  $\epsilon < 3 \cdot 10^{-9} W kg^{-1}$ )

Turbulent vertical fluxes of nutrients:  $F = K_z \partial_z C$ 

#### Nutrients sampling across the LBE



→ Nutrients (Nitrate, Phosphate, Silicate) @ stations across the LBE

 $\rightarrow$  Samples every 25m in the top 100m to resolve the nutriclines

#### Nutrients samples



Lower concentration at depth and shallower nutriclines in the LBE core.

### Reconstruction of nutrient distribution



 $\rightarrow$  Optimal interpolation of nutrients samples on  $\sigma$  levels

$$\rightarrow$$
 [C] = f( $\sigma_0$ ,r)

C inferred from  $\sigma_0$  and r

#### Nutrient distribution



## Diffusivity, gradients and fluxes



- $\rightarrow$  Near-surface  $k_z$  enhanced during strong winds (r > 50km)
- ightarrow XLD and MLD different during calm periods, except in LBE
- $\rightarrow k_z$  varies sharply outside LBE, higher values inside LBE at depth
  - Nutriclines sharper outside LBE
  - Nutriclines more diffuse and closer to surface in LBE

### Turbulent fluxes into the mixed layer



- → Fluxes are of same order of magnitude, but in different layers (closer to surface inside LBE)
- ⇒ Vertical turbulent nutrient fluxes across the ML (core and rim) = O(10 ×) outside during calm period (wind < 10 m/s)</p>

## Conclusion and perspectives

#### Take home:

- Turbulent nutrients fluxes are one order of magnitude higher in the LBE (after a wind event)
- The response of turbulent mixing to wind is strongly impacted by the mesoscale

#### Further analysis:

- ► Assess other sources of nutrients fluxes in the LBE (vertical velocities, ...) and implications for primary production.
- ► Ship and L-ADCP to infer source of high dissipation.



# Thanks for your attention! Questions?