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ABSTRACT: 14 

Coastal systems are extremely dynamic environments exposed to many hazards, making accurate and regular monitoring a major 15 

challenge, particularly in the context of global change and sea level rise. In this frame of reference, high-frequency, high-resolution 16 

coastal Video Monitoring Systems (VMS) have been installed on three megatidal (tidal amplitude > 9 m) sites of Normandy (France) 17 

including a sandy beach at Villers-sur-Mer, a pebble beach at Etretat and a composite beach at Hautot-sur-Mer. This article proposes 18 

the use of Mask R-CNN to process images acquired at these sites and perform the automatic segmentation of the visible bodies of 19 

water in order to extract the waterline. The extracted waterlines are associated with a measured water level, which makes it possible to 20 

reconstruct the topography of the beaches at the scale of the tidal cycle. After training the neural network on manually labeled data, 21 

the segmentation by Mask R-CNN is very efficient by achieving a satisfactory segmentation on 69.87% of the images of Villers-sur-22 

Mer, on 67.11% at Hautot-sur-Mer, and on 97.33% at Etretat. Once the waterlines have been extracted and georeferenced, the 23 

reproduction of the beaches’ morphology is satisfactory (averaged vertical RMSE = 28 cm). These results confirm that segmentation 24 

by Mask R-CNN is a particularly powerful tool that allows efficient and low-cost monitoring of the evolution of beach morphology, 25 
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particularly in response to marine conditions. Its capabilities to detect and segment bodies of water while not being affected by the 26 

various sources of noise make it a remarkably effective tool for coastal science applications. 27 

KEYWORDS: 28 
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1. INTRODUCTION1 30 

Coastal environments are continuously subjected to the natural processes of weathering, marine erosion and flooding (Nicholls et 31 

al., 2007). The impacts of these processes and events vary depending on the geometric structure of the coastlines, their characteristics, 32 

and their relative exposure to the impacts of waves and tides.  33 

In the context of climate change and the growing environmental strain caused by human activity, coastal communities are 34 

increasingly vulnerable to environmental hazards. Additionally, these communities are facing an intensification of natural hazards 35 

including shoreline change induced by coastal erosion, and changes in nearshore topography (Jongejan et al., 2016; Le Cozannet et 36 

al., 2019; Ranasinghe et al., 2012; Wainwright et al., 2015).  37 

In this frame of reference, beaches provide protection against wave action by dissipating their energy when their sediment is 38 

mobilized, especially during storm event. These systems are subject to multiple maritime forcing whose relative influence determines 39 

the morphological response of the beach. Although the dynamics of these systems are complex, they are not impossible to predict 40 

(Davidson et al., 2017; Esmail et al., 2019; Hanson, 1989; Jara et al., 2015; Montaño et al., 2020; Yates et al., 2009). It is therefore 41 

important to monitor the geomorphology of coastal systems in order to acquire capabilities of prediction. 42 

Among the different methods used for monitoring the coastal morphology, Video Monitoring Systems (VMS) allow the 43 

morphology of a site to be measured thanks to both variations of the water level and the position of the waterline, with a spatial 44 

resolution of a few centimeters, and a temporal resolution of one day or less. 45 

With this in mind, the Normandy coastline has been equipped with VMS on 3 study sites in 2018 and 2019: Etretat, Hautot-sur-Mer 46 

and Villers-sur-Mer. The Normandy coasts are distinguishable among others by three main characteristics: (1) the presence of pebble 47 

ridges, (2) the mega-tidal range (> 9 m), and (3) the presence of wide sandy intertidal area (> 200 m cross-shore). With their high-48 

frequency measurement capabilities and low cost, VMS are ideally suited to monitor these environments in consideration of their tidal 49 

and morphological specificities. 50 

However, extracting the position of the coastline from VMS images remains a long and often tedious task. Historically, it was first 51 

necessary to manually delineate the waterline (Holman et al., 1991), then it was made easier with the development of several detection 52 
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methods (Plant et al., 2007). A large part of these methods is inherited from the SLIM (ShoreLine Intensity Maximum) model of Plant 53 

and Holman (1997), based on the presence of a wave breaking zone with a visible high light intensity near the waterline. Examples 54 

include the PIC (Pixel Intensity Clustering) or the method of Aarninkhof et al., (2003) also known as BIM (Intertidal Beach Mapper), 55 

the ANN (Artificial Neural Network) model of (Kingston, 2003), and the CCD (Color Channel Divergence) model of (Turner et al., 56 

2001). 57 

Although these methods have greatly improved data processing time, their application is limited by variability in data quality and 58 

requires extensive expertise (Osorio et al., 2012). More recently, new approaches have been developed in order to address these 59 

constraints and move closer to a fully automatic detection. For instance, Osorio et al. (2012) developed the Physical and Statistical 60 

Detection Model (PSDM) based on edge detection algorithms. Another example is the SDM (Shoreline Detection Model) of Valentini 61 

et al. (2017) which proposes to perform the semantic segmentation of the image pixels in order to determine the land/water interface 62 

by processing the histogram of RGB channels. Nevertheless, most of these algorithms remain strongly constrained by the multiple 63 

environmental variabilities (luminosity, contrast, rain, fog, presence of users, boats, dirty lenses, etc.) and therefore require the action 64 

of a human operator to fine-tune the parameters before being applied to a new site. 65 

To overcome such limitations, the present research proposes the use of deep learning techniques to be applied to a large dataset of 66 

remote sensing images from coastal VMS for mapping nearshore intertidal topography. Many advances have been made in the field of 67 

image classification, notably with the rise of the use of convolutional neural networks (CNN) as reported in various academic articles 68 

(Chen et al., 2020, 2019; He et al., 2017; Huang et al., 2019; Kirillov et al., 2020; Wang et al., 2020).  69 

More specifically, if trained using enough data, the algorithm called Mask R-CNN (He et al., 2017) can detect and delineate 70 

concepts as abstract as coastline delimited bodies of water on images under various conditions, unaffected by the presence of objects 71 

and people. During this study, Mask R-CNN was used for mapping the nearshore topography in three megatidal coastal areas 72 

characterized by different morphological properties with the aim to propose a fully automated method for monitoring coastal 73 

morphology using VMS. 74 

This paper is structured as follows: following this introduction, section 2 describes the 3 study sites, the dataset and presents the 75 

new methodological approach used to determine the nearshore intertidal topography. The methodology results are validated and 76 

discussed in section 3. Finally, concluding remarks and further works related to coastal applications are suggested in section 4. 77 

2. DATASETS AND METHODOLOGICAL APPROACH  78 

2.1. Study sites and monitoring systems 79 

The monitored sites are located in France, on the Normand side of the English Channel (Figure 1). These coastal locations are 80 

facing some of the largest macrotidal ranges in the world, with an average range of 9.5 m observed on the study sites, and a record of 81 



15 m observed at Mont Saint Michel (Bonnefille, 1968; Chabert D’Hières and Le Provost, 1978; SHOM, 1953), further west. As 4 m 82 

is the threshold above which tidal ranges are classified as macrotidal in the Davies (1964) classification, greater ranges are poorly 83 

represented by this scale. Because of this, Levoy et al. (2000) proposed to add the megatidal category for amplitudes greater than 8 m 84 

into this classification, thus better representing the extreme ranges observed in Normandy. According to this classification, the study 85 

sites’ shorelines, with more than 9 m amplitude, fall into this category. 86 

The Normand seaboards are also heavily man-influenced, with the presence of engineering structures (dikes, groins, breakwaters, 87 

ports...), and numerous users and usages (tourism, fishing, navigation...). Therefore, it is useful and relatively cost-efficient to install 88 

VMS on existing buildings in order to survey how these structures and users influence the shoreline dynamics. 89 

The three study sites covered in this paper have been chosen to represent the wide variability of coastal systems present in 90 

Normandy. They are located in Villers-sur-Mer, Etretat, and Hautot-sur-Mer (Figure 1). Tidal dimensions of each site are given in 91 

Table 1.  92 

 93 

Figure 1 - Location map of Villers-sur-Mer, Etretat and Hautot-sur-Mer, in Normandy, France 94 
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Table 1 – Tidal and intertidal dimensions of the Normandy beaches of Villers-sur-Mer, Etretat and Hautot-sur-Mer 95 

Sites 
Vill

ers-sur-
Mer 

Etr
etat 

Hau
tot-sur-

Mer 
Aver

age 
tidal 
range 

5.11 
m 

6.0
8 m 

6.79 
m 

Max 
tidal 
range 

9.60 
m 

9.1
3 m 

9.86 
m 

Min 
tidal 
range 

0.16 
m 

3.2
0 m 

2.96 
m 

Low
est 

Water 
Level 

(LWL) 
(datum: 
IGN69) 

-
3.81 m 

-
4.80 
m 

-
4.45 m 

Beac
h width 
at LWL 

310 
m 

15
0 m 

210 
m 

 96 

2.2. Methodological approach 97 

The methodology for building intertidal topography from VMS is a multi-step process that was described by Aarninkhof et al. 98 

(2003). It was applied to the newly installed coastal VMS in Normandy, which is original in that it implements the use of the Mask R-99 

CNN as the waterline classification model. As presented in Figure 3, the method includes two branches. 100 

The first branch represents the series of steps that are necessary to implement a model able to detect bodies of water, in the event 101 

that there is no existing model already trained leading to satisfying results. Training the neural network requires manually labeled 102 

image data, as explained in section 2.2.3 in more detail. This series of steps can be repeated to increase the detection performances of 103 

a previously trained neural network, using new labeled data. 104 

The second branch is the operational stage. Once the model is trained and shows satisfying results, the neural network can delineate 105 

waterlines without further human labeling, allowing the methodology described in section 2.2.4 to efficiently produce intertidal 106 

Digital Elevation Models (DEMs). 107 



 108 

Figure 2 - Algorithm for the intertidal topography reconstruction process: First an image is analyzed by the Mask R-CNN 109 

model to be segmented, either for training or operational purpose. Then the shoreline is extracted and stacked with other 110 

shorelines belonging to the same tidal cycle. Intersecting waterlines are removed before interpolating the point cloud. 111 

2.2.1. Data acquisition 112 

All three VMS are composed of three cameras with different fields of view, each of which records 6 images per hour during 113 

daylight. This produces a total of 18 images per hour per study site, covering the entire beach (Figure 4). These so-called "timex" 114 

images are recorded with an exposure time of 10 minutes. Without considering possible losses likely due to malfunctions and bad 115 

imaging conditions (dirty lenses, foggy weather, rain drops, etc.), the expected data set for one year includes about 78000 images, 116 

with a resolution of 1936x1216 px at Hautot-sur-Mer, 3264x1856 px at Villers-sur-Mer and 3840x2160 px at Etretat.  117 

 118 

Figure 3 - Example of timex panoramas at Hautot-sur-Mer (top), Villers-sur-Mer (center) and Etretat (bottom) 119 
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2.2.2. Shoreline definition and manual delineation 120 

Besides Dolan's et al. (1980) definition stating that the shoreline represents the interface between land and sea, there is currently no 121 

real consensus on a more accurate definition for a shoreline. However, Mask R-CNN's output fully relies on the way that the human 122 

operator providing the model's training data will understand this definition and eventually delineate the shoreline accordingly by hand. 123 

Clearly defining the object of our interest is therefore an important step in this methodology. 124 

In previous video-based monitoring studies, the shoreline has often been defined as a visible component of the wave breaking zone 125 

that can be identified thanks to the SLIM (ShoreLine Intensity Maximum) introduced by Plant and Holman (1997). As the objective is 126 

to measure the intertidal topography using the waterline as an indicator associated with a previously known water level, these 127 

indicators remain reliable. Nevertheless, they strongly depend on the presence of a foamy wave breaking zone, which is likely to 128 

constrain the shoreline detection capabilities to wavy conditions, while calmer and waveless ones wouldn’t be processable despite 129 

their likely better accuracy.  130 

In this study, it was decided to define the shoreline as the line that a human operator is able to detect as the separation between land 131 

and water on timex images, regardless to the presence of wave breaking conditions. This definition is closer to the approaches adopted 132 

by Aarninkhof et al. (2003), Kingston (2003), Osorio et al. (2012) and Turner et al. (2001), considering the shoreline as the interface 133 

between a wet and a dry domains, but remains more open to interpretation as it allows the operator to include or exclude elements to 134 

either domains depending on the context (e.g. a floating boat can be considered wet, an object occulting the shoreline can be ignored). 135 

With this in mind, an operator could manually delineate the body of water that represents the sea on a timex image. The polygon thus 136 

digitized will be limited by the sides of the image, the horizon and the defined shoreline (Figure 6). In order to avoid the ambiguity 137 

implied by the multiple meanings of the word “shoreline”, the detected lines will be called “waterlines” in the rest of this paper. 138 

2.2.3. Mask-RCNN description, parametrization and training 139 

The first objective of the present study is to detect the waterline on shoreline images. In order to carry out this work in an 140 

automatable way that would be adaptable to the many sources of noise specific to coastal VMS data, a deep learning algorithm was 141 

trained using a bank of previously labeled images. 142 

The algorithm that was chosen to achieve this task is called Mask Regional Convolutional Neural Network (Mask R-CNN). This 143 

meta-algorithm developed by He et al. (2017) combines the proven object detection algorithms Faster R-CNN (Ren et al., 2016), that 144 

allows the identification of the nature and position of objects by bounding boxes, and Fully Convolutional Network (FCN) (Long et 145 

al., 2015), allowing semantic segmentation, i.e. classification at the pixel scale. 146 

The Mask R-CNN working process can be broken down into two stages (Figure 5). The first stage scans the image and generates 147 

anchors (areas likely to contain an object). To do this, a backbone consisting of a Residual Neural Network 101 (ResNet101, a 148 

convolutional neural network architecture of 101 layers deepness) and a Feature Pyramid Network (FPN, a succession of features 149 



maps with an increasing level of abstraction) first extracts the spatial information. Next, a Region Proposal Network (RPN) is 150 

responsible for generating random areas of interest, and then classifies their relevance according to the output of the backbone.  151 

The second stage classifies the proposals from the first stage and generates bounding boxes and masks in parallel. This is made 152 

possible by a Regions Of Interest (ROI) classifier that performs object detection (nature and bounding box) on the anchors, in order to 153 

extract the ROI. These are then homogenized by ROI pooling at a scale of 28 by 28 pixels, in order to perform a semantic 154 

segmentation on each of them and to obtain a mask. Finally, the mask is resized to the initial scale, and repositioned in the image.  155 

 156 

Figure 4 - The Pipeline of Mask R-CNN (Zhang et al., 2020) 157 

The neural network was trained on a total of 1062 manually labelled images from the study sites’ VMS. The images cover as wide 158 

a set of situations as possible, including sunny weather, storms, rain, fog, backlight sun, sunrise and sunset, presence of people and 159 

objects on the beach (tourists, boats), in the water and in front of the waterline, presence of insects on the camera lens, and so on. A 160 

total of 95 epochs each including 1000 steps with various augmentation operations (rotations, crop, addition of noise) were necessary 161 

to obtain a satisfactory detection quality. 162 

The algorithm learning performance is evaluated during learning steps by comparing the detected masks to the manually digitized 163 

ones. This is done using a set of metrics including class loss, mask loss and boundary box loss, each of which is calculated separately 164 

for both the training and the validation datasets. The evolution of these metrics helps to prevent the model from overfitting. The 165 

detection is considered satisfactory when the algorithm plateaus at a minimum value of loss. 166 

The influence of the human labeling bias on the algorithm’s results is considered negligible as the mask output provided by Mask 167 

R-CNN will mandatorily be 28 x 28 pixels in size, as constrained by the neural network’s architecture, before being upscaled to the 168 

image original size. Therefore, an aliasing effect can sometimes be visible (Figure 6). As a consequence, the maximal resolution of 169 

detectable morphological structures on a specific object is equal to 1/28 of the total size of the object. On shoreline images for 170 

instance, some structures called cusps sometimes appear as a series of oscillations of the waterline along the beach. In this case, only 171 

cusps with a wavelength appearing larger than 3/28 of the body of water’s width in pixels (often equivalent to the width of the image) 172 



 9

will be detectable. For the same reasons, the pixel uncertainty range of the detected mask edge will be relative to the object itself, 173 

equaling 1/28 of the detected object’s bounding box dimensions. Thus, the metric accuracy is not consistent as it is always relative to 174 

the detected object size, which changes from one image to another, and is expected to decrease with the distance to the camera, as 175 

pixels cover wider surfaces. In addition, it is interesting to note that as the body of water’s apparent size may depend on the state of 176 

the tide – especially in images from cameras pointing towards the alongshore direction - the detection accuracy is expected to increase 177 

at low tide as the body of water becomes smaller, as compared to high tide. 178 

 179 

Figure 5 - Example of body of water detection using Mask R-CNN at Hautot-sur-Mer (top), Etretat (center) and Villers-180 

sur-Mer (bottom), during various filming conditions 181 

As shown on Figure 6 the algorithm performs well in most cases even when conditions are not optimal such as during rain, storms, 182 

presence of users, presence of channels and ponds at low tide, etc. However, these conditions are also likely to confuse the model 183 

(Figure 9) and therefore can represent a limit to detection. The strongest advantage of the Mask R-CNN lies in the generalization and 184 

abstraction capabilities inherent in convolutional neural networks, which makes it possible to train a model only once, and then use it 185 

on various types of sites, orientations and conditions. Moreover, it is always possible to improve it by completing or even 186 

complexifying the training dataset in order to reduce the number of errors and open the detection capabilities to new object classes. 187 

2.2.4. Intertidal topography reconstruction 188 

The first step of the operational branch is the Mask R-CNN segmentation. Each timex image is subjected to detection by the trained 189 

neural network, which will delineate the edges of the visible body of water. 190 



Then, the waterline is extracted by a ROI mask that also excludes the groins from the detected polygon (Figure 7). and is associated 191 

to its respective water level. This water level allows georeferencing, i.e. the transformation of image coordinates into geographical 192 

XYZ coordinates by projecting the waterline on the plane of the water surface. 193 

 194 

Figure 6 - Example detected waterlines on the 3 cameras of the Hautot-sur-Mer’s VMS 195 

Once georeferenced, waterlines belonging to the same half semi-diurnal tidal cycle (i.e over about 6h12) are clustered together, thus 196 

creating XYZ intertidal point clouds (Figure 8a). This allows the identification of the potentially miss delineated waterlines which are 197 

likely to cross one other waterline or more. To do so, the number of intersections is calculated for each waterline, and the waterline 198 

that crosses the highest number of different other ones is removed. This operation is iteratively performed until the total number of 199 

intersections goes down to zero.  200 

Finally, the point cloud is converted into a raster with normalized coordinates (Figure 8b) using a 2D linear interpolation. The raster 201 

is then cropped to the surface covered by the waterlines in order to remove the irrelevant extrapolated information, thus allowing the 202 

tide-to-tide comparison of the beach intertidal morphology. 203 

  204 

a b 

Figure 7 - XYZ point cloud (a) formed by the georeferenced waterlines detected using Mask R-CNN during a complete tidal 205 

cycle at Etretat and (b) interpolated DEM. Dotted lines show the surface covered by each camera of the VMS. 206 

Although the Mask R-CNN algorithm works in the vast majority of cases (Table 2) it sometimes misidentifies the waterline, 207 

usually due to factors of confusion such as low light, presence of fog, presence of obstructions on the camera lens (water droplets or 208 

insects), or unclear waterline (too smooth transition from dry to wet sand) (Figure 9). In order to limit detection errors, it is possible to 209 
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filter out ambiguous data prior to detection. The filtering applied in this study uses an established threshold for both brightness and 210 

blur metrics to separate the good quality images from the darker and blurrier ones. For each camera, these metrics are calculated over 211 

an appropriate section of the image, in this case the sea, and objects with visible and contrasted edges respectively. Brightness is 212 

measured by adding the averaged red, green and blue channels of the image, and the blurriness index has been outlined by Crété-213 

Roffet et al. (2007). After calculating both metrics on the whole dataset, thresholds are empirically selected from their respective 214 

histogram for each camera in order to determine the combination that allows the best filtering possible.   215 

 216 

Figure 8 - Example of unsatisfactory detections using Mask R-CNN at Hautot-sur-Mer (top), Etretat (center) and Villers-217 

sur-Mer (bottom) 218 

In addition, it is important to mention that on images showing alongshore perspectives, the water mask resolution remains 219 

28 x 28 pixels although the mask is then being scaled up to the body of water’s actual size. Therefore, because of both the limited 220 

accuracy of 1/28 of the body of water’s size and the smoothing effect due to the mask resizing process, closed angles may appear 221 

rounder, and impose a horizontal offset that can become significant for long distances to the camera (e.g. the extremity of the beach 222 

on Figure 10) . Consequently, care should be given to the selection of the ROI’s size being used for extracting the waterline to a 223 

reasonable extent. 224 



 225 

Figure 9 - Example of body of water detected by Mask R-CNN on a lateral perspective. 226 

3. RESULTS AND DISCUSSIONS 227 

3.1. Ground truth validation 228 

3.1.1. Detection validation 229 

For the purpose of estimating Mask R-CNN’s capabilities to delineate the waterline, the methodology was applied to the data 230 

acquired by the central camera of each site, covering periods of 9, 20 and 11 months, between 2018 and 2020 at Villers-sur-Mer, 231 

Etretat and Hautot-sur-Mer respectively (Table 2).  232 

After stacking the extracted waterlines on their respective images, each detection was individually and manually analyzed by a 233 

human operator in order to empirically classify the detected waterlines’ quality as satisfactory or unsatisfactory. It was then possible 234 

to calculate a satisfactory detection performance value by comparing the number of images classified as satisfactory to the number of 235 

images leftover after the parametric filtering. 236 

At Etretat, the detection by Mask R-CNN followed by parametric filtering is successful in 97.33% of the data, i.e. the manual 237 

operation will have classified only 2.67% of the detections as unsatisfactory. With 69.87% and 67.11% success respectively, Villers-238 

sur-Mer and Hautot-sur-Mer also show very satisfactory performances, although slightly lower. This difference between Etretat, 239 

Villers-sur-Mer and Hautot-sur-Mer beaches can be explained by the texture contrasts, the slope, and the morphological complexity of 240 

the beach. At Villers-sur-Mer, the association between the gentle slope and the megatidal ranges makes the interface between the dry 241 

and the wet sand move very fast which tends to blur the intertidal area whose sand already smooths the texture of, and thus makes the 242 

identification of a clear shoreline particularly difficult on timex images, even for a human eye. In addition, the complex topography 243 

sandy dissipative beaches (bars, ponds, channel networks…) is hard to catch for the mask resolution that can’t store more complex 244 

structures than 1/28 of its own size. The issue is even stronger at Hautot-sur-Mer and seem to be making the waterlines over the site’s 245 

sandy area even more difficult to detect for unidentified reasons. However, the steep slope and contrasted texture of the pebble ridges 246 

makes the waterline clearly identifiable in almost all cases at Etretat and Hautot-sur-Mer, which compensates the poorer sampling 247 
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capabilities over the sandy area for the last site in the presented detection performance value. 248 

It is important to mention that these misdetections are in the vast majority of the cases possible to automatically identify and 249 

remove during the intersecting waterline removal part of this methodology (Figure 3). 250 

Table 2 – Mask R-CNN detection validation results 251 

Sites 
Villers-

sur-Mer 
Etretat 

Hautot-
sur-Mer 

Image 
dataset start 

11/03/2
019 

28/06/2
018 

11/12/2
019 

Image 
dataset end 

31/12/2
019 

13/02/2
020 

04/01/2
020 

Total 
number of 

images 
23579 11720 27532 

Images 
after 

parametric 
filtering 

17373 10000 18490 

Images 
manually 

classified as 
satisfactory 

12138 9733 12409 

Detectio
n 

performance
69.87% 97.33% 67.11% 

 252 

3.1.2. DEM Validation 253 

For each study site, a validation geodesy campaign was carried out using a differential Global Navigation Satellite System 254 

(dGNSS) in order to measure the ground truth topography. Measurements have been carried out with a non-gridded uniform spread of 255 

the sampling points over the video recorded area, covering the beach from the highest point of its top part to the low tide waterline, 256 

with number of points ranging from 100 to 150 per site in total, measured on both slope breaks and centers. 257 

The intertidal topography was reconstructed at the geodesy campaign dates using the methodology described 2.2.4 and then 258 

compared to the dGNSS data for validation. Comparisons are evaluated using the Root Mean Squared Error (RMSE) calculated 259 

between the dGNSS points’ elevation and the DEM’s elevation at the same XY locations, thus corresponding to an average vertical 260 

offset. As some of the dGNSS points were out of the DEM coverage, these points were excluded from the calculation, resulting in the 261 

counts visible in Table 3. 262 

Table 3 shows the vertical RMSE values calculated for all sites, with 22 cm at Etretat, 29 cm at Hautot-sur-Mer and 33 cm at 263 

Villers-sur-Mer, which correspond to ranges found by previous studies (Uunk et al., 2010). R² are also provided with values ranging 264 

from 0.93 to 0.99, which confirms method’s ability to provide reliable beach morphology estimations on all sites.  265 



Table 3 - DEM validation results 266 

 
Villers-

sur-Mer 
Etretat 

Hautot-
sur-Mer 

DEM 
date 

31/12/2
019 

10/01/2
020 

14/02/2
020 

GNSS 
campaign 

date 

08/01/2
020 

10/01/2
020 

14/02/2
020 

GNSS 
points 
count 

59 48 54 

Vertic
al RMSE 

(m) 
0.33 0.22 0.29 

R² 0.95 0.99 0.93 

 267 

In addition, the evolution of the vertical offset with the omnidirectional distance to the camera was analyzed using a Mann Kendall 268 

statistical test. Results presented in Table 4 show that although the error tends to increase with the distance in all cases, the only found 269 

significant p-value at the 0.05 threshold is seen at Hautot-sur-Mer. For this site, the trend remains under 2.4 vertical mm / per 270 

horizontal meters. However, on this site the low tide shoreline can go as far as 210 m in the cross-shore direction (Table 1), therefore 271 

the vertical error can be increased by an order of 50 cm at this distance and is thus important to consider. Similar calculations would 272 

show an increase of about 20 cm and 4 cm at Villers-sur-Mer and Etretat respectively, for low tide vertical uncertainties. This error 273 

increasement is due to a combination between the lower resolution for longer distance to the camera and the Mask R-CNN intrinsic 274 

uncertainty. Nevertheless, these values should be considered as orders of magnitude as the vertical error doesn’t properly fit to a linear 275 

trend, as showed by the low R² values in Table 4.   276 

Table 4 - Sensitivity analysis results of the vertical error to the distance from the camera 277 

 
Vill

ers-sur-
Mer 

Etr
etat 

Hau
tot-sur-

Mer 

RSE/
Dist  

R² 
0.04 

0.0
1 

0.06 

RSE/
Dist  
Mann 

Kendall 
Tau 

0.05 
0.0

2 
0.20 

RSE/
Dist  
Mann 

Kendall 
p-value 

0.58 
0.8

2 
0.04 

RSE/
Dist  
Slope 

6.35
E-04 

3.2
1E-04 

2.39
E-03 
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(m/m) 

 278 

3.2. Discussions 279 

The task of extracting the shoreline position from camera images to reproduce the intertidal bathymetry has been realized with an 280 

increasing efficiency over the last decades. In most cases, authors’ methodology implied the classification of pixels based on their 281 

individual intensities in order to to identify either the swash zone (Plant and Holman, 1997) or the wet and dry pixels (Aarninkhof et 282 

al., 2003; Kingston, 2003; Turner et al., 2001; Valentini et al., 2017).  283 

The SLIM model (ShoreLine Intensity Maximum) of Plant and Holman (1997) locates the waterline along pre-defined cross-shore 284 

transects by thresholding pixel intensities in order to parametrically extract the pixels that are considered belonging to the swash zone. 285 

The edge of swash zone is a good proxy of the shoreline, but its inconsistent presence makes the technique unreliable in a lot of cases, 286 

such as dissipative beaches, intertidal zones with complex morphologies (bars, channels…), and waveless weathers.  287 

The CDD (Color Channel Divergence) model of Turner et al. (2001) and the PIC model (Pixel Intensity Clustering) developed by 288 

Aarninkhof et al. (2003) were both created to overcome some of the issues of the SLIM model. CDD uses the expected difference 289 

between sand and water colors to find their interface point along pre-defined cross-shore transects. PIC identifies wet and dry pixels 290 

within a pre-defined ROI on images. This classification is possible using two discriminator functions that consider the hue, saturation, 291 

and grayscale values applied on each pixel. The classification of each individual pixel is then performed by thresholding the 292 

function’s results. Contrary to SLIM, these two models don’t rely on the presence of a swash zone, although they require a fine 293 

calibration to the site to which it is applied, as well as a significant contrast between the two domains of interest. 294 

Both the ANN (Artificial Neural Network) and SDM (Shoreline Detection Model) models from Kingston (2003) and Valentini et al. 295 

(2017) respectively are a semantic segmentation algorithms that produce a classification of each pixel in an image as water and sand, 296 

the interface of which is the waterline. Models require to be trained on manually labeled images and the misclassified pixels need to 297 

be manually filtered. 298 

While these methods remain efficient, they require case-specific calibration processes, rely on the concomitance of a wide range of 299 

conditions (presence of a single swash zone, absence of users/obstructions, specific difference in color between wet and dry pixels) 300 

and require a significant amount of manual work in order to be successfully deployed. 301 

The present study overcame some of these difficulties thanks to the use of instance segmentation, in particular Mask R-CNN, with 302 

the aim of building an automatically working algorithm. Mask R-CNN is a deep learning algorithm that performs instance 303 

segmentation on RGB images, which has been used for a wide variety of applications such as measuring snow depth (Kopp et al., 304 

2019), counting the number of cows present in a farm corridor (Qiao et al., 2019), mapping the grain size of pebbles (Soloy et al., 305 

2020), and determining the shape of molds present on the walls of a tunnel (Zhao et al., 2020).  306 



Mask R-CNN allowed more characteristics to be additively taken into account when identifying a body of water than parametric 307 

solutions would (textures, shapes, presence/absence of a swash zone, variabilities in brightness, colors, weather, human activity, 308 

sediment types…) thus increasing the range of satisfactory identifications while significantly lightening the need for calibration and 309 

thresholding steps. In addition, using a modular algorithm that is not specific to the coastal field such as Mask R-CNN and training 310 

the model including multiple sources data tends to optimize the generalization capabilities of this methodology, thus allowing it to be 311 

applied on new sites with limited parametrization work. 312 

This method has proven to be reliable when detecting contours of bodies of water on shoreline images at Villers-sur-Mer, Etretat 313 

and Hautot-sur-Mer, with a detection performance rate of 69.87%, 97.33% and 67.11% respectively, and considering an accuracy of 314 

1/28 of the detected body of water’s bounding box size in pixels. For comparison, Plant et al. (2007) recorded detection performance 315 

rates ranging from 15% to 50% for SLIM, from 0 to 91% for CDD, from 24 to 78% for PIC and from 32 to 92% for ANN while 316 

comparing different methods applied to four different study sites. Rates obtained with Mask R-CNN therefore surpasses the other 317 

detection models with higher average detection rates and less difference from site to site. The exceptional rates are made possible 318 

thanks to the adaptability of Mask R-CNN and its ability to detect abstract concepts, such as a body of water, unaffected by the many 319 

sources of image variability (e.g. weather conditions, waterline obstruction, etc.), which are difficult to take into account using a 320 

parametric detection model. 321 

Extracting and georeferencing multiple waterlines along tidal cycles allows the reconstruction of good intertidal topographies at 322 

Villers-sur-Mer, Hautot-sur-Mer and Etretat, with RMSE values of 33 cm, 29 cm and 22 cm respectively. It is important to mention 323 

that at Villers-sur-Mer the RMSE value was calculated using a DEM from a week before the geodesy campaign due to a malfunction 324 

of the VMS during this period. The value is therefore likely to be overestimated. With on average 10 cm for SLIM, 20 for CDD, and 325 

20 to 34 cm for PIC (Plant et al., 2007; Uunk et al., 2010), vertical biased calculated for this methodology remain of the same order of 326 

magnitude as other intertidal DEM building strategies from video monitoring techniques.  327 

However, the methodology remains sensitive to the distance of the waterline and faces difficulties to correctly identify the proper 328 

waterline in the context of a megatidal and gently sloped beach. Additionally, the neural network has troubles classifying large, 329 

complex geometries, including the presence of ponds and channels due to sand bars, which therefore represent a limit to its use. 330 

Nevertheless, misidentified waterlines can be parametrically detected and cleared out. It is therefore possible to use this new 331 

methodology for monitoring the daily intertidal topography in a fully automated way. 332 

More generally, the model’s resilience and abstraction abilities could make Mask R-CNN a powerful asset to the coastal science 333 

field, as it already is for other remote sensing applications (Maxwell et al., 2020; Nie et al., 2018; Soloy et al., 2020; Yang et al., 334 

2020; Zhao et al., 2018). Moreover, coastal VMS are relatively efficient, high resolution and low priced in comparison to aerial and 335 

satellite technologies, especially when associated with Mask R-CNN for measuring multi-scale variables. 336 
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The Mask R-CNN method has been successfully used for other scientific and societal applications (Kopp et al., 2019; Qiao et al., 337 

2019; Soloy et al., 2020; Zhao et al., 2020), and is now proven to be useful for coastal science applications despite its current 338 

limitations. Recently, major progress have been made in the instance segmentation field and new tools are now available with better 339 

capabilities such as BlendMask (Chen et al., 2020), TensorMask (Chen et al., 2019), Mask Scoring R-CNN (Huang et al., 2019), 340 

PointRend (Kirillov et al., 2020), SOLOv2 (Wang et al., 2020), and even more. One can expect that these tools, freely accessible for 341 

the most part, will become a standard in further coastal applications. 342 

4. CONCLUSION 343 

Monitoring the evolution of coastline morphology is a key challenge in the context of global change. Using coastal VMS addresses 344 

this problem with a high frequency, high resolution and low price that enables the surveillance of the waterline’s position. The 345 

multiscale changes of the waterline’s position are very important and depend on the physical characteristics of sediment, the 346 

topography and the local hydrodynamic conditions of waves and tides. The large variability of these influential factors complexifies 347 

the assessment of the shoreline and the study of its evolution at different timescales, from storm events to seasonal and interannual 348 

variations, with the aim of quantifying the long-term coastal erosion due to climate change. In this frame of reference, coastal VMS 349 

have been installed to survey the morphodynamics of 3 megatidal coastal systems of Normandy (France) including a sandy beach at 350 

Villers-sur-Mer, a pebble beach at Etretat, and a composite beach at Hautot-sur-Mer. 351 

Extracting the waterline from the images provided by coastal VMS can be a complicated and time-consuming task because of the 352 

many sources of noise specific to this type of data (e.g. weather, sun angle, brightness, sea state variabilities, presence of obstructing 353 

objects, people etc.). In recent years, the development of convolutional neural network methods, including Mask R-CNN to process 354 

instance segmentations, made it possible to automatically extract detailed information from images and identify complex and abstract 355 

concepts in a wide variety of contexts.  356 

The methodology presented in this research proposes the use of Mask R-CNN as a tool to classify bodies of water, with the aim of 357 

extracting the waterline from a large dataset of VMS images. This approach provides a robust technique to automatically identify the 358 

waterline of the Normandy beaches on RGB images provided by VMS, as Mask R-CNN is able to perform segmentation over 67% to 359 

97% of the provided datasets. The waterlines can then be georeferenced with low uncertainty estimates, with vertical RMSEs of 360 

33 cm, 29 cm and 22 cm at Villers-sur-Mer, Hautot-sur-Mer and Etretat respectively. Some limitations remain on sandy and gently 361 

sloped areas such as Villers-sur-Mer and Hautot-sur-Mer due to the very specific conditions of the Normandy sandy beaches 362 

(complex morphology, low slope, very wide intertidal zone, and unclear water-land delimitation). These conditions tend to increase 363 

the cumulative uncertainty of both segmentation and georeferencing as they make it a complicated task to identify the waterline, even 364 

for the human eye. Despite these limitations, this methodology was successfully and satisfactory deployed at the three monitored 365 



study sites of this research: Etretat, Villers-sur-Mer and Hautot-sur-Mer.  366 

In addition to being freely available, Mask R-CNN applications can be extended to a wide spectrum of scientific questions due to 367 

its adaptability and its abstraction abilities and can therefore be a very interesting tool for coastal science. The recent major advances 368 

made in the field of instance segmentation could extensively open the possibilities for the coastal science studies. 369 
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