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Key points 

 

►The 130-105 Ma syn-tectonic plutons intruded the Changle-Nan’ao Belt in a NW-SE 

shortening regime caused by a microcontinent collision. 

 

►The shortening/extension regimes were coeval with magmatic lull/flare-up in the East 

Asia Continental Margin during the Cretaceous. 

 

►The collision causing break-off can account for the plutonism in the Changle-Nan’ao 

Belt during the magmatic lull of the South China Block. 

  

 A
cc

ep
te

d
 A

rt
ic

le
 

 

 

 

 

 

 

This article has been accepted for publication and undergone full peer review but has not been through
the copyediting, typesetting, pagination and proofreading process, which may lead to differences between
this version and the Version of Record. Please cite this article as doi: 10.1029/2022JB025973.

This article is protected by copyright. All rights reserved.

 21699356, ja, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JB

025973 by Portail B
ibC

N
R

S IN
SU

, W
iley O

nline L
ibrary on [08/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1029/2022JB025973
https://doi.org/10.1029/2022JB025973
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2022JB025973&domain=pdf&date_stamp=2023-02-03


A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

Abstract: 

The cause of magmatic tempo in an active plate margin remains controversial, partly 

due to lack of structural analysis. During 130-105 Ma, the magmatism in the South 

China Block (SCB) was significantly reduced (lull) and restricted around the Changle-

Nan’ao Belt (CNB) while the magmatism was highly active (flare-up) in North China. 

For unveiling the tectonic role on magmatism, a multidisciplinary study including field 

and microscopic structural observations, magnetic fabric measurement (AMS), and 

zircon/monazite dating was conducted on the plutons with oriented minerals in the CNB. 

Structural analysis and AMS results show a highly clustered NE-striking vertical 

foliation developed during the emplacement indicating a syn-emplacement NW-SE 

shortening regime. The geochronology results confirm that the emplacement occurred 

during 130-105 Ma. Regional geologic correlation indicates that the collision between 

the Dangerous Grounds-West Philippines Block and SCB was responsible for this 

shortening regime. The collected depleted zirconεHf(t) data suggest that a possible 

collision-triggered slab break-off caused the syn-collisional magmatic activity around 

the CNB. This study shows that the magmatic lull in the SCB was coeval with a crustal 

shortening regime due to the arrival of a microcontinent carried by the subduction slab, 

while the magmatic flare-up was coeval with an extensional regime due to the 

subduction roll-back and retreat as evidenced by the Cretaceous evolution of the SCB 

before and after the collision and that of North China which is unaffected by the 

collision. The cause of magmatic tempo in the continental margin is largely due to the 

tectonic evolution of underlain subduction slabs. 

 

Plain Language Summary 

Magmatic activity is closely connected to human life as it provides us with useful 

metals, releases greenhouse gases, triggers natural hazards. It is necessary to explore 

what controls a magmatic activity. Several previous studies considered that a shortening 

regime with thickened crust causes strong magmatism (flare-up). The South China 

Block (SCB) featured by alternating magmatic flare-up and lulls, provides an 
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appropriate research target to test this hypothesis. During the Cretaceous, the SCB was 

dominated by an extensional regime caused by the Paleo-Pacific oceanic slab 

subduction. However, our structural analyses on the SCB document a shortening regime 

caused by the collision between the SCB and a microcontinent carried by the Paleo-

Pacific oceanic slab in the period of the Cretaceous. During the collision, the SCB was 

generally featured by a magmatic lull, although magmatic activity was only observed 

around the Changle-Nan’ao Belt, probably caused by the break-off of the subducted 

Paleo-Pacific oceanic slab. Before and after the collision, the extensional regime caused 

by Paleo-Pacific oceanic slab subduction was coeval with magmatic flare-up. This 

study questions the previous claims and proposes that the tectonic evolution of the 

subducting slab may control the magmatic flare-up and lull in the overlain active 

continental margin.  

  

Keywords:  

AMS of syn-tectonic pluton, magmatic flare-up and lull, East Asia Continental Margin, 

South China Block, Dangerous Grounds-West Philippines Block, Changle-Nan’ao Belt  

 

1. Introduction 

The arc magmatism in the convergent plate margin plays an important role in the 

plate tectonic evolution, the continental growth and even the Earth chemical 

differentiation (Paterson & Ducea, 2015). Statistics on the convergent plate margins 

distributed worldwide indicates that there are significant periodic variations of 

magmatism intensity (magmatic tempo), in which high and low volume magmatic 

events are referred to as magmatic flare-up and lull, respectively (Armstrong, 1988; 

Ducea et al., 2015; Zhang et al., 2019). The cause of magmatic tempo has long been 

debated and remained inconclusive partly due to a lack of structural analysis (Paterson 

& Ducea, 2015). In this regard, previous research provided diversified arguments on 

the roles of subducting slab in magmatic activity. Some studies take into account the 
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variation of the plate convergence rate, and subduction retreating/advancing (e.g., 

Huang & Lundstrom, 2007; Shellnutt et al., 2014; Zhang et al., 2019), while others tend 

to consider that the magmatic flare-up is rather related to crustal shortening events in 

the active continental margin where fold and thrust belts lead to a thickened crust 

(Ducea & Barton, 2007; Ducea et al., 2015; Paterson & Ducea, 2015). 

As an active continental margin during the Late Mesozoic, the East Asia 

Continental Margin (EACM) was significantly affected by the Paleo-Pacific slab 

subduction, and also featured by alternations of magmatic flare-ups and lulls (Figures 

1a, 1b and 1c; Li & Li, 2007; Li, Zhang et al., 2014; Lin & Wei, 2018; Wu et al., 2019; 

Lin et al., 2021). The widely distributed Late Mesozoic structures, such as crustal-scale 

faulting system, make the EACM a favorable target to conduct an analysis on the 

relationship between the tectonics and magmatic tempo. In the long evolution of the 

EACM during the Late Mesozoic, the Cretaceous was an important period, during 

which the magmatism in the South China Block (SCB; the southern part of the EACM) 

shows a coastal-ward migration trend (Li & Li, 2007), and is featured by a 140-130 Ma 

flare-up, a 130-105 Ma lull and a 105-80 Ma flare-up (Figures 1a, 1c and 2a; Jiang et 

al., 2015). In the 130-105 Ma lull period, the magmatic activity was restricted around 

the narrow Changle-Nan’ao Belt (CNB; Figure 2). While in the northern part of the 

EACM, the magmatism was active in the North China Craton (NCC), Korean 

Peninsular and Japanese Islands, and it also shows a coastal-ward migration trend with 

a 130-120 Ma magmatic flare-up in the NCC (Sagong et al., 2005; Wu et al., 2007; Lin 

et al., 2021). Thus, in the same coastward migration setting in both the South China 

Block and North China Craton during the Early Cretaceous (K1), however, a 130-105 

Ma lull developed in the SCB while the flare-up continued in the NCC. 

As the Paleo-Pacific Slab has entirely subducted, its subduction history can only 

be traced by its footprints recorded in the EACM. Located at the southeastern-most part 

of the EACM, the Changle-Nan’ao Belt (CNB) is one of most suitable study targets for 

reconstructing the Early Cretaceous (K1) tectonic evolution of the Paleo-Pacific slab 

subduction for the following two reasons: first, it is the nearest to the subduction zone, 

and can thus provide direct constraints on the plate boundary activity; second, there are 
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developed continuous plutonism during the Early Cretaceous (K1), while the plutonism 

is lacking elsewhere in the SCB owing to the 130-105 Ma magmatic lull. 

In this study, in order to clarify the cause of the Cretaceous magmatic lull in the 

SCB and further explore the potential controls on general magmatic tempo, a 

multidisciplinary approach, including AMS, field and microscopic observations, zircon 

LA-ICPMS and monazite EPMA chemical dating, has been conducted on the K1 syn-

tectonic plutons in the CNB. Together with regional geologic correlation, and Hf 

isotope statistics in the CNB and its adjacent areas, three questions are intended to be 

addressed: 1) What was the tectonic evolution of the CNB and SCB during the K1? 2) 

What was the geodynamic background of the K1 tectonics of SCB? 3) How can the 

magmatism be linked to the tectonic and geodynamic contexts?  

 

2. Geological setting 

2.1. The South China Block and its adjacent blocks 

Located in the EACM, the SCB is a continental block formed in the 

Neoproterozoic (e.g., Charvet et al., 1996; Shu et al., 2021). It collided with the NCC 

located to its north during the Paleozoic along the Qinling-Dabie orogen (e.g., Mattauer 

et al., 1985), and merged with the Indochina Block located to its south during the Early 

Triassic along the Indochina orogen (e.g., Faure et al., 2014). During the Mesozoic, a 

1300 km wide NW-directed fold-and-thrust belt was formed in the Triassic, which was 

interpreted as the result of the Paleo-Pacific slab subduction while its roll-back in the 

Cretaceous may account for the large extension in the SCB (Li & Li, 2007; Li, Zhang 

et al., 2014). Marine investigations revealed a widespread Cretaceous magmatism 

extending from the SE coastal area of the SCB, the northern part of the South China 

Sea, to South Vietnam, forming a huge magmatic belt in the EACM (Figure 1a; Fyhn 

et al., 2010; Morley, 2012; Hennig-Breitfeld et al., 2021). 

The Dangerous Grounds-West Philippines Block (DGWP) is a continental block 

separated by the Oligocene opening of the South China Sea from the SCB to its north 

(Figure 1a; Faure et al., 1989; Fyhn et al., 2010; Hall, 2012). It collided with the East 
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Philippine Mobile Zone to its east and the Borneo Continental Block to its south during 

the Miocene (Hall, 2013; Yumul et al., 2009). The origin of this block is still in dispute, 

either an Asian origin, or as a former part of Sundaland (Hutchison & Vijayan, 2010; 

Zhou et al., 2008; Hall, 2012). The paleogeographic location of this block in the Paleo-

Pacific Ocean during the Mesozoic was uncertain (Hall, 2012). In the West Philippines 

Islands, ophiolites crop out in several places. In the NE end of the DGWP, the Early 

Cretaceous ophiolites outcropped in the Mindoro Island (Figure 1d; Yumul et al., 2007) 

and were involved in a S-directed thrust. These ophiolites were interpreted as a part of 

the vanished ocean located between the DGWP and SCB (Faure et al., 1989). To the 

north of this suture zone, the Permian granite in the Mindoro Island was correlated to 

those Permian granites in the SCB (Figures 1a and 1d; Knittel et al., 2010). The 

Oligocene ophiolites in the Mindoro Island were considered as the suture zone between 

the DGWP and East Philippine Mobile Zone (Yumul et al., 2009). The Late Cretaceous 

to Eocene ophiolites in the South Palawan Island were interpreted as the suture zone 

between the DGWP and Borneo (Figure 1a; Hall, 2013). The boundary between the 

DGWP and Sunda Shelf is underneath the South China Sea, however, this boundary 

continued to the Lupar line in inland of Borneo (Figure 1a; Fyhn et al., 2010). 

 

2.2. Litho-tectonic units of the Changle-Nan’ao Belt 

The Changle-Nan’ao Belt (CNB) is a NE-SW striking ca. 400 km long and 40-60 

km wide ductile shear zone located at the southeast coast of the SCB (Figures 1a and 

2a; Cui et al., 2013; Wei et al., 2015). On the basis of lithology and structure, the CNB 

can be divided into five litho-tectonic units (Figure 2a), namely (1) the pervasively 

deformed gneiss unit, located in the SE part of CNB, consisting of migmatite, 

orthogneiss and micaschist with amphibolite or granulite metamorphic facies (Chen, 

1997; Cui et al., 2013; Liu et al., 2012; Tong & Tobisch, 1996); (2) the Late Jurassic 

(J3) and Early Cretaceous (K1) deformed volcanic rocks unit (Douling Formation and 

Nanyuan Formation, respectively), located in the NW side of the CNB, metamorphozed 

under green schist facies (Chen, 1997; Tong & Tobisch, 1996); (3) the plutons with 

oriented minerals, including gabbro, diorite, granodiorite, monzogranite and two-mica 
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granite, intruding into the former two units (Wei et al., 2015). These plutons were also 

described as weakly deformed plutons (Cui et al., 2013) or syn-tectonic plutons on the 

basis of their preferred orientation of minerals and microgranular mafic enclaves 

without sub-solidus deformation, moreover, this orientation is concordant with regional 

ductile fabrics reported (Li et al., 2003; Tong & Tobisch, 1996; Wei et al., 2015); (4) 

the undeformed isotropic plutons intruding into the previous rocks. These plutons were 

featured by a magmatic texture and isotropic structure, among which numerous plutons 

are of A-type granite with miarolitic texture (Zhao et al., 2016; Zhou et al., 2006); (5) 

the Late Cretaceous undeformed volcanic rocks unit (Shimaoshan Formation), 

unconformably overlying the deformed rocks. The undeformed volcanic rocks consist 

of rhyolite and basalt as bimodal volcanic series, in which there also developed andesite 

(Qiu et al., 1999; Guo et al., 2012; Li, Li et al., 2018). The volcanic rocks in the CNB, 

regardless of deformed or not, have magmatic arc affinities (Guo et al., 2012). Besides, 

the rocks in the CNB were intruded by NE-SW striking mafic dyke swarms coeval with 

the undeformed volcanic rocks (Dong et al., 2006). 

 

2.3. The geochronological framework of the CNB 

 Hundreds of zircon U-Pb dating on igneous rocks (volcanic rocks, plutons and 

orthogneiss) and 40Ar-39Ar dating on whole rock, amphibole, muscovite, biotite and k-

feldspar from deformed rocks (deformed volcanic rocks and orthogneiss) have allowed 

to establish the magmatic activity and cooling age of the CNB (Figures 2a-d; Appendix 

Table S1). The oldest zircon U-Pb age for the orthogneiss of the CNB was dated at 187

±1Ma (Liu et al., 2011), while the youngest one yielded U-Pb age of 130±1 Ma (Liu 

et al., 2012). The oldest pluton with oriented minerals was dated at 132±3 Ma (Zhou 

et al., 2016), while the youngest one was dated at 105±2 Ma (Xu, 2019). The age of 

undeformed isotropic granite ranges from 105±1 Ma (Ding et al., 2015) to 82±1 Ma 

(Huang & Lin, 2019). Contrary to the consistent plutonism without obvious stop, the 

volcanism is rather episodic (Figures 2b-d). The Nanyuan Formation of the deformed 

volcanic rocks unit was of 143-130 Ma in age, the undeformed volcanic rocks unit (the 

Shimaoshan Formation) was of 104-95 Ma in age, therefore there was a volcanic 
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quiescence between these two volcanic units (Guo et al., 2012). The cooling ages of the 

deformed rocks by 40Ar-39Ar dating range from 133 Ma to 84 Ma (Wang & Lu, 2000; 

Chen et al., 2002). 

 

3. Field observation 

In the CNB, the plutons with oriented minerals have often a cartographically 

spindle shape with a NE-SW striking long axis (Figure 2a). Although distributed in a 

400 km long belt, these plutons share the similar structural features. In the field, a NE-

SW striking highly inclined magmatic foliation has been observed and defined by 

oriented minerals (Figure 3a), microgranitoid enclaves and schlieren (Figures 3b and 

c). In the case that the granitoids intruded as dykes, the planar mineral orientation in 

granitoid dykes, the foliation of the K1 deformed volcanic rocks, the wavy contacting 

boundary between the two rocks are parallel with each other (Figure 3d). In the presence 

of K1 deformed volcanic rock xenolith, the magmatic foliation surrounds but does not 

penetrate the xenolith (Figure 3e). In the case that the granitoids intruded as pluton, it 

could develop a zonal structure characterized by a mylonitic boundary with country 

rocks (Figure 3f), a rim with magmatic foliation and an isotropic core (Figures 3c and 

3g). On the country rock side, the volcanic rocks of the K1 Nanyuan formation was 

metamorphozed into hornfels (Figure 3h). The detailed description of field observation 

on each pluton can be found in supplementary materials (Appendix Table S2). 

4. Sampling and analytic method 

4.1. Sampling and measurement of AMS 

In order to determine the regional tectonic regime during the emplacement of the 

plutons with oriented minerals in the CNB, AMS sampling has been carried out with 

gasoline driller. In spite of strong weathering and large urbanization, the sampling was 

conducted in 39 sites with high outcrop quality from 9 individual plutons covering the 

whole length of the CNB. For each pluton, efforts were made to ensure the regular 

distribution of sites with an interval of about 2 km. In each site, 5-6 cores of 2.5 cm in 
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diameter were acquired and oriented by magnetic compass. When weather permitted, 

the solar orientation was taken as well to correct geomagnetic declination. In laboratory, 

the cores were cut into standard cylinder specimen of 2.2 cm in height. Finally, 321 

standard cylinder specimens were prepared. 

Isothermal Remanent Magnetization (IRM), thermal-susceptibility experiments 

and AMS were conducted in the Institut des Sciences de la Terre d'Orléans (ISTO; 

France). The AMS were measured with KLY3 kappabridge. Sample FJ02, FJ24, FJ42, 

FJ45 and FJ64 were magnetized with IM30 pulse magnetizer at steps of 10 mT, 20 mT, 

40 mT, 60 mT, 90 mT, 120 mT, 150 mT, 200 mT, 300 mT, 450 mT, 600 mT, 800 mT 

and 1000 mT, and measured by JR5 magnetometer after each step of magnetization. 

The powders of the same samples were heated to 700°C and subsequently cooled to 

room temperature by CS3 furnace in air, and the susceptibilities were measured with 

KLY3 kappabridge simultaneously. Hysteresis loops were measured in the 

Paleomagnetic laboratory of Institut de Physique du Globe de Paris with 1000 mT 

maximum exerted magnetic field.  

4.2. Zircon La-ICP-MS U-Pb dating 

In order to acquire the ages of representative plutons with oriented minerals, 4 

samples were collected from 4 plutons: FJ08 (Dongzhuang pluton), FJ52 (Suao pluton), 

FJ53 (Matui stock) and FJ54 (Gaoshan pluton) were dated with zircon by an Aglient 

7500a ICP-MS equipped with a 193 nm laser ablation system at the Institute of Geology 

and Geophysics, Chinese Academy of Sciences (IGGCAS; Beijing). The analytical 

procedures followed Xie et al. (2008).  

Under the microscope, the zircons from four sampled granitoids are transparent, 

euhedral and prismatic with long axes of crystals ranging between 100 and 150 μm. In 

the cathodoluminescence (CL) image, the zircons developed oscillatory zoning 

(Appendix Figure S1a). Twenty-five grains for each sample have been analyzed. 

“IsoplotR” was used to process U-Pb data (Vermeesch, 2018). During processing, the 

data with difference between Pb207/U235 and Pb206/U238 ages larger than 10% are 

excluded from the calculation of the concordant age. Some data were also rejected by 
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“IsoplotR” from calculation owing to their large differences with other data.  

4.3. Monazite U-Th-Pb microprobe dating 

Monazite can crystallize in an Al-rich melt and represent its crystallization age 

(e.g., Parrish, 1990; Ji et al., 2018). Sample SC236 (two mica granite of the Huian 

pluton) was chosen for monazite finding and U-Th-Pb microprobe dating in ISTO with 

Scanning Electricity Microscope (SEM) and Electron Probe Micro Analyzer (EPMA), 

respectively. The analytical procedure followed Cocherie et al. (1998). 

In order to ensure the quality of measurement, all the analyzed monazites were 

larger than 20 μm. As a result, 17 monazite grains of 30-50 μm in diameter without 

zonation have been found and measured in SC236 (Appendix Figure S1b). During the 

measurement, attention was paid to keeping monazite edge away. Individual grain age 

calculation and data sorting were realized by using an Excel macro of “Macro Monazite” 

written by Pommier et al. (2003) to get an apparent age of each measurement. With 

Excel macro of “Isoplot” (Ludwig, 2003), the mean age for the processed sample was 

reached. 

4.4. Zircon Hf isotopic data statistics 

From the published articles in English and Chinese literature, zircon Hf isotopic 

data of the CNB and its adjacent areas (Figure 1) have been collected. Owing to the 

isobaric interferences of 176Yb on 176Hf, the precise determination of the 176Hf/177Hf 

ratio was hampered during mass spectrometry analysis (Wu et al., 2006). In order to 

construct a better magmatic provenance evolution history, zircon Hf isotopic data 

reported in previous studies were carefully examined and filtered. Those data with 

linear relationship between εHf(t) and 176Yb/177Hf indicate that the Hf isotopic 

measurement is determined by 176Yb content in the sample, therefore these data were 

not included in the statistics. Finally, 532 pieces of data in the interior Fujian area and 

1787 pieces of data in its coastal Fujian areas were obtained (Appendix Table S3). 
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5. Result of AMS measurement 

5.1 Magnetic carrier 

The bulk susceptibilities of the studied granitoids range from 2 to 329×10-4 SI 

(Figure 4a and Appendix Table S4). Thermal-susceptibility curves reveal a rapid 

decrease at 580°C, and a slow decrease to zero between 600°C to 700°C (Figures 5a-

e). Hysteresis loops are sigmoid in shape with weak coercivity, featured by saturation 

magnetization nearly 1000 mT, and the weakly linear increase of magnetic moment 

with respect to exerted magnetic field can be neglected (Figures 5f-j). IRM curves 

rapidly increase to near saturation in the exerted field under 100mT (Figures 5k-o). 

These phenomena suggest that magnetite is the predominant magnetic carrier, and the 

contribution of paramagnetic minerals can be neglected. It should be noted that in the 

thermal-susceptibility experiment, the susceptibility continues to decrease till 680°C 

after the rapid drop near 580°C. There was a weak coercivity illustrated by hysteresis 

loop, and a rapid saturation of magnetization in hysteresis loop as well as IRM 

experiments. All reveal that, in addition to the predominant magnetite, a trivial content 

of hematite existed in the studied samples. 

In the Day-plot diagram, all specimens plot into pseudo-single domain (Figure 4b), 

suggesting a normal magnetic fabric (Tarling & Hrouda, 1993). Therefore, the magnetic 

fabrics are comparable with the mineral shape preferred orientation and can be directly 

used for the petrographic and structural interpretations. 

5.2. AMS fabrics 

The Corrected Anisotropy Degree (PJ) was used to constrain the anisotropy 

intensity of AMS (Jelinek, 1981). In the CNB, the site-mean PJ values range from 1.062 

(two-mica granite) to 1.624 (granodiorite), and 56% sites have PJ values higher than 

1.2 (Appendix Table S4). The PJ value linearly varies with the mean magnetic 

susceptibility (Km) (Figure 4c). The site-mean shape parameter of AMS ellipsoid (T; 

Jelinek, 1981) ranges from -0.180 to 0.687, and 90% sites present their T values above 

zero, indicating that the AMS ellipsoids are predominated by oblate shape. 

  The AMS data quality can be determined by the radius of the confidence ellipse at 
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95% probability level as expressed by α95max and α95min (long and short radius of the 

confidence ellipse for a site-mean statistics of AMS data). For a practical estimation, 

the mean value of α95max and α95min can be used to distinguish the high quality data 

(concentrated within a site) with an average α95 smaller than 20° from low quality data 

(scattered within a site; e.g., Charles et al., 2012). Based on this criterion, for the site-

mean K1 data (magnetic lineation), 92% sites were in good quality; while for K3 data 

(pole of magnetic foliation), 97% sites were in good quality (Appendix Table S4 and 

Figure 6). Therefore, the structural analysis can be confidently conducted with these 

AMS data. Generally speaking, in the whole CNB, regardless of the location, lithology, 

emplacement time or size of the plutons, the magnetic lineations of studied granitoids 

are clustered within one site, and scattered at the pluton scale; while their magnetic 

foliations are clustered, highly inclined, and NE-SW striking both in site and pluton 

scales (Figure 6). The distribution pattern of magnetic foliation is consistent with the 

observable magmatic foliation of the pluton and the ductile foliation of the country 

rocks nearby (Figures 2, 3 and 6). For example, in the Su’ao (Fj52, Figure 6), Matui 

(Fj53, Figure 6), Gaoshan (Fj54, Figure 6), Dongzhuang (Fj05-Fj08, Figure 6), Huian 

(FJ21, FJ65-67, Figure 6) plutons and the Longshoushan stock (Fj84, Figure 6), the 

magnetic foliation is parallel to the orientation of the rock-forming minerals, 

microgranitic enclaves and schlieren (Figures 3a-c and 6). On the southern boundary of 

the Hui’an granite, the magnetic foliation is parallel to the orientation of rock-forming 

minerals, microgranitic enclaves, schlieren (Figure 3c) and ductile foliation (Figure 3f). 

In its center, although no magmatic fabrics are observable by eyes in the field, the 

magnetic foliations are still clustered in the NE strike with steep inclinations (e.g., FJ43, 

FJ57 and FJ62 in Figure 6).  

 

6. Microscopic observations 

In order to determine the acquisition mechanism of the AMS and observe the 

microscopic response to the regional tectonic events during the emplacement of the 

studied plutons, oriented thin-sections have been made along the direction parallel to 
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the magnetic lineation and perpendicular to the magnetic foliation (XZ section) from 

the AMS standard cylinder specimens. Moreover, for those specimens in which the NE-

SW shallow inclined magnetic lineation developed, the oriented thin-sections 

perpendicular to the magnetic lineation and perpendicular to the magnetic foliation (YZ 

section) were also made. Finally, two kinds of thin section were acquired, namely, a 

NW-SE-striking vertical plane and a horizontal plane. 

Microscopic features of the studied plutons are highly consistent. All of them 

present rock-forming minerals with their long axes parallel to the strike of magnetic 

foliation (Figure 7). Along the feldspar boundary, myrmekite is frequently developed 

(Figures 7a and g). The feldspar grains present sutured boundaries with each other or 

with quartz grains (Figures 7b, c, d, f, h), indicating a grain boundary migration 

recovery (Passchier & Throw, 2005). The completed and uncompleted transected cracks 

developed in feldspars were filled with quartz and muscovite, representing the residual 

melt (Figures 7d and e). Quartz grains developed wavy extinction, subgrains, 

chessboard structure, rectangular shape or suture-shaped boundary with each other 

(Figure 7). The biotite was bent (Figure 7d), and, sometimes developed as feldspar 

pressure shadows around feldspar containing tiny quartz grain inclusions (Figure 7b). 

 

7. Geochronology results 

For zircon U-Pb La-ICPMS dating, as a result, 25, 16, 13 and 20 measurements 

were adopted to calculate ages for FJ08, FJ52, FJ53, FJ54, respectively (Figures 8a-d). 

All the measurements were featured by Th/U ratio larger than 0.1 that agrees with the 

magmatic crystallization origin of zircon grains (Appendix Table S5; Rubatto, 2002). 

The magma crystallization ages were determined at 118Ma, 122Ma, 127Ma and 118Ma 

for samples FJ08 (granodiorite of the Dongzhuang composite pluton), FJ52 (biotite 

monzogranite of the Su’ao pluton), FJ53 (biotite monzogranite of the Matui stock) and 

FJ54 (biotite monzogranite of the Gaoshan pluton), respectively (Figures 8a-d) with 

MSWD values less than 1.8 and errors less than 1.57 Ma. 

Finally, 265 monazite apparent ages were calculated based on the measurement 
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results (Fig. 8e). The average age of the magma crystallized monazite from sample 

SC236 (two mica granite of the Huian composite pluton) was calculated at 119.6±2.1 

Ma with a MSWD value of 1.07 (Figure 8e; Appendix Table S6).    

 

 8. Discussion  

8.1. Origin and bearing of fabrics of the studied plutons  

Primary fabrics of igneous rocks are those associated with the emplacement before 

the final crystallization of a pluton and secondary fabrics refer to those acquired 

posterior to the final crystallization. However, to distinguish these two kinds of fabrics 

is sometimes difficult, especially in the condition of emplacement under a stressed 

environment (Tarling & Hrouda, 1993). Nevertheless, the AMS data with low PJ values 

are often considered to be acquired during the magmatic intrusion rather than posterior 

deformation (Tarling & Hrouda, 1993). Studies also indicated that PJ value can be used 

as strain intensity gauge in the finite-strain zone and ferromagnetic granites since it is 

increased with deformation/strain degree in a precondition of no relationship between 

PJ value and Km (Tarling & Hrouda, 1993; Sen et al., 2005; Tripathy, 2009). Although 

the PJ value of the studied granites is high (e.g., Lyra et al., 2018), considering that it 

varies with Km in this study (Figure 4c), the high PJ value indicates higher 

concentration of magnetite in measured samples rather than evidence of posterior 

deformation superimposition (e.g., Rochette et al., 1992; Wei et al., 2014). According 

to the discrimination criteria established by previous studies (e.g., Bouchez & Gleizes, 

1995; Paterson et al., 1998; Vernon, 2000), the fabrics of the studied plutons in the CNB 

can be considered as primary ones acquired before their melt final crystallization, with 

the following field evidences: (1) widely distributed mineral orientations and schlieren 

without plastic deformation (Figures 3a-c); (2) magmatic flow foliations deflected 

around xenoliths indicating that magma flowed around solid objects (Figure 3e); (3) 

widely distributed oriented microgranitoid enclaves without plastic deformation of 

crystals indicating that they flowed as magma globules (Figures 3b and c). 

Microscopically, numerous observations indicate that the fabrics of the studied 
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granites developed in supra/near-solidus conditions with the presence of residual melt, 

meaning that the fabrics are primary: (1) a high temperature recovery (Grain Boundary 

Migration) near solidus condition including suture shaped boundaries between quartz 

and feldspar grains (Figure 7; Passchier & Throw, 2005); (2) a chessboard structure and 

rectangular shape of quartz indicating a high temperature plastic deformation (Figures 

7c and h; Passchier & Throw, 2005); (3) well-oriented feldspars with widely developed 

wedge-shaped and uncompleted transected cracks infilled with late stage crystallized 

minerals, such as quartz and muscovite (Figures 7d and e; Bouchez et al., 1992); (4) 

late stage magmatic minerals such as quartz developed in biotite as "pressure shadows" 

on the end of plagioclase. In this structure, biotite “pressure shadow” and plagioclase 

define the fabric (Figure 7b; Vernon et al., 2000 and enclosed references). 

The primary fabrics can be originated from thermal convection of magma or 

regional tectonic impact (Tarling & Hrouda, 1993). The magma can develop a 

convection fabric by intrusion without disturbing from the regional stress (tectonic 

quiescence setting; e.g., De Oliveira et al., 2010); or in a fast intrusion and cooling in 

which the regional stress has not enough time to accumulate its effect on strain 

(intrusion of dyke, pluton construction by means of coalescence of acidic dykes or 

pluton emplacement in shallow depth; e.g., Raposo & Ernesto, 1995; Turrillot et al., 

2011; Wei et al., 2014). However, several facts indicate that the influence from the 

regional stress on the studied plutons during their emplacement cannot be ruled out: the 

contemporaneous regional deformation in the CNB, the important intrusion depth of 

the studied plutons and no evident structure showing a coalescence of dykes (Tong & 

Tobisch, 1996; Wei et al., 2015). Furthermore, the following observations argue for the 

view that the fabrics are results of regional stress, in other words, the studied granitoids 

are syn-tectonic plutons: (1) the good consistency between the magmatic foliations of 

granitic dykes, the ductile foliation of the deformed volcanic rocks, and the smooth and 

concordant wavy boundary between these two rocks indicate that the viscosity contrast 

between these two rocks was weak, and granitic dyke intruded coevally with the 

deformation of volcanic rocks (Figure 3a; Paterson et al., 1998; Pitcher, 1979); (2) the 

high consistency between the magmatic/magnetic fabrics from numerous plutons along 
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the 400-km-long Channgle-Nan’ao belt and the regional ductile foliation recorded in 

the country rocks indicates that the former is most likely caused by a regional tectonic 

event (Figures 2 and 6; Paterson et al., 1998); (3) typical structures of syn-tectonic 

plutons are observed in the studied plutons (e.g., Zak et al., 2005). For instance, the 

Hui’an pluton (Location 7 in Figure 2) with an isotropic core (Figure 3g), an 

undeformed rim with oriented minerals (Figure 3c), and a mylonitic boundary with host 

rocks (Figure 3f). The rim of oriented minerals and the isotropic core in the Damaoshan 

(Location 10 in Figure 2) and Duxun (Location 13 in Figure 2) plutons imply that the 

melt crystallization was influenced by the regional-scaled tectonics; (4) The high 

temperature ductile deformation/recovery and cracks with presence of residual melt, as 

discussed above, suggest a crystallization under near solidus stress (Bouchez et al., 

1992; Hibbard, 1987; Passchier & Throw, 2005; Paterson et al., 1998).  

In summary, the fabrics developed in the studied plutons were acquired in the sub-

magmatic condition near solidus under a regional tectonic control. Therefore, they can 

be considered as syn-tectonic granitoids and will shed light on the regional tectonic 

regime during their emplacement.   

 

8.2. Strain and stress field implications for the CNBThe tectonic regime of the CNB 

has long been debated, although it is crucial to understand the geodynamic background 

of the EACM during the Late Mesozoic. The CNB was considered as a continental-

scaled sinistral strike-slip fault produced by the northward drifting of the Paleo-Pacific 

plate (Charvet et al., 1990; Xu et al., 1987). Structural analyses indicated that there was 

a kinematic change from sinistral to dextral due to the drift direction change of the Min-

Tai microcontinent (the Gneiss Unit in this study) that collided with the Min-Zhe 

volcanic arc (the Deformed Volcanic Rocks Unit in this study) during the Early 

Cretaceous (Wang & Lu, 1997). Paleomagnetic results from dykes in Hong Kong 

indicated that there was a clockwise rotation of the SE coast area of the SCB with 

respect to the SCB, therefore this argued for a dextral strike-slip movement along the 

CNB (Li et al., 2005). In recent years, structural analyses on ductile deformation with 

large covering on the CNB emphasized that the Gneiss Unit thrusted to the NW above 
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the Deformed Volcanic Rocks Unit (Wei et al., 2015). 

In this study, a regional tectonic evolution is reconstructed by an integrated AMS 

and macro-micro deformation analysis on the syn-tectonic plutons.  

In the entire CNB, the magmatic/magnetic foliations of the syn-tectonic granitoids 

are highly clustered with the NE striking and steep inclination (Figures 2 and 6), 

suggesting a NW-SE shortening (e.g., Roman-Berdiel et al., 1998; Zak et al., 2009), in 

agreement with the predominant oblate AMS ellipsoid shape illustrated by positive T 

values. 

Owing to the fact that the magmatic/magnetic fabrics of syn-tectonic pluton were 

formed in the near-solidus status, the crystal content in magma is high enough to 

directly contact each other and, therefore, can transmit stress (Paterson et al., 1998 and 

enclosed references). In this case, a stressed crystal in a magma mush will tend to rotate 

to have its flattest face perpendicular to the maximum shortening direction (Z axis) 

interpreted as the maximum principal stress vector (1; e.g., DeVore, 1969; Paterson et 

al., 1998). Therefore, the dominant NE-striking and deeply inclined magmatic/primary 

magnetic foliation suggest a NW-SE shortening. The myrmekite structure developed 

along the NE-SW striking and the vertically arranged feldspars also support a NW-SE 

shortening direction (Figures 7a and g; Simpson & Wintsch, 1989). This analysis of the 

strain and stress fields is further supported by the horizontal cracks developed 

perpendicularly to the maximum stretching direction (X axis), interpreted as the 

minimum principal stress axis (3; Figure 7a, e-f; Bouchez et al., 1992). 

The NW-SE shortening regime deduced from these field observations and 

petro/magnetic fabrics is consistent with the NW-directed thrusting event revealed by 

the regional-scaled ductile deformation (Wei et al., 2015).  

 

8.3. Timing of the NW-SE shortening event in the CNB 

The deformation time of the CNB has long been debated. In order to constrain the 

deformation age of the CNB, numerous Ar40-Ar39 dating on whole rock, amphibole, 

biotite, muscovite and K-feldspar have been carried out with a range from 132 to 84 

Ma (e.g., Wang & Lu, 2000; Chen et al., 2002). However, some scholars argued that 
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Ar40-Ar39 ages could have been reset by the extensive posterior magmatism and, 

therefore, suggested that the emplacement age of syn-tectonic granites would be more 

suitable for representing the deformation age of the CNB (Li et al., 2003). The statistics 

of zircon U-Pb ages of plutons and Ar40-Ar39 ages reveal that the peak of Ar40-Ar39 ages 

is coincident with the peak of the magmatic ages at around 100 Ma confirming the reset 

of Ar40-Ar39 timer (Li et al., 2015). Moreover, the similarity between the Ar40-Ar39 ages 

of gneiss and those of the nearby plutons favors this argument (e.g., Location 12 in 

Figure 2).  

In this study, zircon and monazite dating have been conducted on the syn-tectonic 

granitoids documented by our structural analyses. The correlation of dating between 

the previous study and this study suggests that the time interval between the oldest and 

youngest ages of the syn-tectonic plutons ranges from 131Ma to 105 Ma (Figure 2; Li 

et al., 2003; Xu, 2019). Taking the dating error into consideration, this time window is 

comparable to the age of the youngest deformed volcanic rocks and the age of the oldest 

undeformed volcanic ones at 130 Ma and 104 Ma respectively (Guo et al., 2012). 

Therefore, the Cretaceous NW-SE compressional regime in the CNB lasted from 130 

to 105 Ma. 

 

8.4. Geodynamic implications 

8.4.1 Collision between the SCB and DGWP 

The magmatism and deformation in the CNB were once considered to be response 

to the Paleo-Pacific slab subduction (Chen et al., 2002; Xu et al., 1987). Furthermore, 

the chaotic clastic sequence with Middle, Late Jurassic and Early Cretaceous exotic 

blocks recognized in the Calamian and NE Palawan islands of West Philippines area 

was interpreted as the accretionary prism of the Cretaceous Paleo-Pacific slab 

subduction (Figure 1b; Faure & Ishida, 1990; Zamoras & Matsuoka, 2004). However, 

several lines of evidence indicate that this chaotic clastic sequence with exotic blocks 

was formed in a collision-involved setting: (1) in the Mindoro Island located in the 

northern part of DGWP, K1 ophiolites were developed and overlain by the chaotic 

sequence (Faure et al., 1989; Yumul et al., 2007). To the north, geometrically above this 
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ophiolite, crops out a Permian pluton that can be correlated with the Permian ones in 

the SCB (Knittel et al., 2010). While to its south, geometrically below this ophiolite, 

gneisses representing the continental basement of the DGWP are exposed (Faure et al., 

1989). It should be noted that there also developed Cenozoic ophiolite in this island 

(Figure 2d; Yumul et al., 2007). The eastern part of the Mindoro Island belongs to the 

East Philippine Mobile Zone in which accretionary complex with several ophiolitic 

belts developed (Yumul et al., 2007). These ophiolitic belts are featured by a west-

younging age trend with the Jurassic one in the east and the Cenozoic one in the west 

(Yumul et al., 2007). This trend suggests that in the Mindoro Island, the ophiolitic belt 

with the Cenozoic age is the suture zone between the DGWP and East Philippine 

Mobile Zone, while it is better to interpret the K1 ophiolitic zone as a nappe rooted in 

the suture zone located between the SCB and DGWP; (2) Considering the clockwise 

rotation of the DGWP due to the opening of the South China Sea (Figure 1), the 130-

105Ma NW-directed thrusting in the CNB in the SCB (Wei et al., 2015) can be 

correlated with the S-directed thrusting in West Philippines (Faure et al., 1989) and the 

123-104 Ma S-directed thrusting deformation documented by the geometry/kinematic 

data from seismic imaging and geochronology/petrology data from dragged ductily 

sheared samples of amphibolite, paragneiss, garnet-mica schist in the Reed Bank 

(Kudrass et al., 1986; Liang et al., 2019); (3) Seismic imaging of high resolution across 

the southern flank of the South China Sea spreading center reveals a northward increase 

of shortening ratio of the Mesozoic strata from the NW Borneo trough (Nansha trough) 

to the area near the spreading center zone, from about 3% to 9% respectively (Figure 

1a; Zhu et al., 2018). This indicates that the major deformation is located along the 

nowadays South China Sea spreading center and the Mindoro K1 ophiolitic zone 

between the SCB and DGWP, compatible with the collision that occurred here (Faure 

et al., 1989; Hall, 2009, 2012), rather than the accretionary process that occurred on 

southern flank of the DGWP (Zamoras & Matsuoka, 2004).  

8.4.2 Collision time 

The collision time between the SCB and DGWP is inconclusive yet. Due to that 

the arc-related magmatism was ended ~80 Ma, it was proposed that the collision 
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between the SCB and DGWP occurred during the K2 along the suture line located in 

the nowadays South China Sea spreading center (Hall, 2009, 2012). This hypothesis 

was questioned since the Late Cretaceous deformation and metamorphism have not 

been observed in this zone (Morley, 2012). Based on our observations, a K1 collision 

occurring during 130-105 Ma is suggested by the following arguments: (1) the K1 age 

of ophiolite marks the lower time limit of the collision. The chaotic clastic sequence 

with exotic blocks ended at the K2 and then terrigenous formations were developed with 

clast supply from the SCB, showing that the SCB and DGWP blocks were already close 

to each other at that time (Suggate, 2014). Their close paleogeographic positions during 

the Cretaceous were also revealed by paleomagnetic records (Almasco et al., 2000); (2) 

the 130-105 Ma NW-SE shortening regime in the CNB evidenced by the development 

of NW-thrust (Wei et al., 2015) and emplacement of syn-tectonic granitoids revealed in 

this study account for the K1 time of the collision; (3) widely distributed K1/K2 

unconformity in the eastern SCB, northern and southern banks of the South China Sea 

also support a K1 time for the collision (Shu et al., 2009; Yan & Liu, 2004; Yao et al., 

2011; Zhang et al., 2015).  

 

8.4.3 Syn-collisional plutonism in the CNB 

It should be noted that the SCB was generally characterized by a 130-105 Ma 

magmatic lull during the K1 collision period (Figure 1c). On the contrary to this general 

feature of magmatic quiescence, there still developed plutonism in the CNB (Figures 

2b and 9a). During this time span, the CNB was largely affected by mantle activities 

evidenced by mafic gabbro pluton emplacements (Figures 2a and d), injections of mafic 

magma into acidic-intermediate granitoids (micro-granitoids enclave, schlieren; Figure 

3) and positive zircon εHf(t) of granitoids (Figure 9a; e.g., Kemp et al., 2009). The 

compiled Late Mesozoic zirconεHf(t) data from the CNB and its adjacent areas 

indicated a 3-stage Hf isotropic evolution for the coastal Fujian area (Figure 9a; 

Appendix Table S3), namely, Stage 1 (pre-collision to 125 Ma): the εHf(t) values 

were predominantly negative; Stage 2 (125-105 Ma): the εHf(t) values abruptly 

 21699356, ja, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JB

025973 by Portail B
ibC

N
R

S IN
SU

, W
iley O

nline L
ibrary on [08/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

increased and became highly positive; Stage 3 (105-80 Ma): the εHf(t) values showed 

a decrease trend. In contrast, the plutonic rocks in the interior Fujian area always 

showed negative εHf(t) values, and during 125-110 Ma, there was a magmatic gap, 

probably corresponding to the collision (Fig. 9b). 

In an active continental margin, after the complete subduction of an oceanic slab, 

the arrival of a (micro)continent in the subduction zone will lead to slab break-off due 

to the tensional stress caused by the dense subducted oceanic slab and the buoyancy of 

less dense continental block (Magni et al., 2013). Numerical modeling indicated that 

the slab necking and break-off began to occur usually 2-20 Ma after the initial collision 

(van Hunen & Miller, 2011 and references enclosed). Owing to the foundering of the 

detached slab, the mantle convection was disturbed, leading to mantle upwelling, 

heating of continental lithosphere, and magmatic activity with mantle material 

signature (e.g., Ji et al., 2016). 

In the Late Mesozoic period, from ~130 to 105 Ma, the mantle derived magma 

intrusion documented by gabbro, mafic enclave and schlieren in the studied plutons was 

coincident with the collision (Figures 2a and d). Moreover, the 5 Ma delay of abrupt 

increase of εHf(t) values with respect to the initial collision suggests a possible causal 

relationship between the mantle upwelling and collision. Furthermore, this syn-

collision magmatism is restricted around the narrow CNB belt whereas in the interior 

Fujian area the contemporaneous magmatism was absent (Figures 1a, 9b), suggesting a 

linear distribution of magmatism after the initial collision. The slab break-off 

subsequent to the collision may be a reasonable controlling factor. It is interesting to 

note that coeval with the syn-collision plutonism, the volcanic activity ceased (Figures 

2b and 2c). Probably it was due to the fact that a volcanic eruption requires the opening 

of magma conduits connecting magma chamber to the surface. Such a conduit is easily 

opened in an extensional regime (Nédélec et al., 2015). It is therefore suggested that 

the 130-105 Ma NW-SE collision-related shortening regime is responsible for the 

absence of magmatic conduits and related volcanic eruption. Previous geochemical 

studies argued for the 120-110 Ma mafic magmatism with an arc affinity in an 

advancing subduction setting (Guo et al., 2021). Their arguments seemed to be in 
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agreement with the high water content for this amphibole-bearing gabbro (e.g., Griffin 

et al., 2002; Li, Wang et al., 2018). However, the continuous single subduction all 

through the Late Mesozoic without collision and subsequent slab break-off cannot 

explain the magmatic provenance change before and after 125 Ma revealed by gabbro 

intrusion, abruptεHf(t) value increase in the coastal Fujian area (Figures 2d and 9a) 

and the lines of evidence for the above discussed collisional model. Considering that 

the collision of two continental blocks will significantly decrease the inter-plate 

convergent velocity, a newly formed subduction could be triggered on the rear of the 

arriving subducted continent block (Figure 10; e.g., Li and Li, 2007). During the 130-

105 Ma collision, the water-rich environment could be maintained by the newly formed 

NW-directed Paleo-Pacific slab subduction on the southeastern flank of the DGWP 

(subduction jump). 

 

8.4.4 Cretaceous tectonic evolution model of the SCB 

Integrating the structural analyses, geochronologic results, petro/AMS patterns 

and geochemical data, a 3-stage tectonic evolution model can be proposed to 

reconstruct the history of the Paleo-Pacific slab subduction and the tectonic 

consequence in the CNB, SCB and their adjacent areas during the Cretaceous.  

Stage 1. From the beginning of the Cretaceous to 130Ma (Figure 10a), the Paleo-

Pacific slab subducted beneath the EACM leading to the back-arc magmatism 

represented by igneous rocks of the Deformed Volcanic Rocks Unit and the Gneiss Unit 

in the CNB. The negative εHf(t) values suggest that continental sediments were 

subducted from the oceanic trench to the mantle (Kemp et al., 2009; Figures 9a and 

10a). Although no extensional structures were reported in the CNB by previous studies, 

possibly due to the important tectonic reworking of Stage 2, the bimodal volcanic series 

(Li et al., 2009), the widely distributed Early Cretaceous graben and half graben basins 

(e.g., Shu et al., 2009; Wei et al., 2016 and 2018), and normal faults (Wei et al., 2016 

and 2018; Chu et al., 2019) in the SCB argue for an extensional regime. 

Stage 2. From 130 to 105Ma (Figure 10b), the DGWP collided with the SCB along 

the suture zone outcropped in North Mindoro (Figure 1a). Consequently, in the CNB as 
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the upper plate, there developed a back-thrust-fault system (Wei et al., 2015). The 

plutons and volcanic rocks previously developed in Stage 1 were pervasively deformed 

and metamorphized to form the Gneiss Unit and Deformed Volcanic Rocks Unit, and 

the NE-striking foliation and NW-SE lineation with top-to-the NW shear sense 

developed during this time. Five Ma after the initial collision, the subducted (Paleo-

Pacific) plate experienced a break-off leading to the opening of slab window (e.g., 

Magni et al., 2013). The asthenosphere up-welling through the slab window allowed 

mantle melting, and the supply of juvenile materials adds into the upper continental 

(SCB) crust, as suggested by the rapidly increased positive εHf(t) values (Figures 9a 

and 10b). Moreover, the mantle heat convection raised the temperature of the CNB crust, 

and caused its partial melting. The newly generated melts were emplaced at depth to 

form syn-tectonic granitoids in the CNB. On the SE flank of the DGWP, a newly formed 

Paleo-Pacific slab subduction may provide water to the mantle beneath the CNB, which 

may also reinforce the syn-collision magmatism. This subduction may have continued 

till the arrival of the mid-ocean ridge between the Paleo-Pacific slab and the Pacific 

slab at ~50 Ma (Kimura et al., 2019) and play an important role in the succeeding stage 

of the tectonic evolution of the CNB and SCB. 

Stage 3. During the period of 105-80 Ma, the regional tectonic regime became a 

NW-SE extension evidenced by the NE-SW striking mafic dyke swarms (Dong et al., 

2006), the K2 half graben basins in the East and South China Sea and SCB with related 

NE-SW striking boundary normal faults (Shu et al., 2009; Cukur et al., 2011), the 

bimodal volcanic eruption and A-type granite emplacement in the CNB (Qiu et al., 1999; 

Zhou et al., 2006; Zhao et al., 2015 and 2016; Li, Li et al., 2018). Given the arc-affinity 

of mafic rocks during this time, this extension may have been produced by the roll-back 

and retreat of the newly formed Paleo-Pacific slab subduction on the SE flank of the 

DGWP. The arrival of this new subduction might shelter the slab window, and 

consequently, the asthenosphere upwelling was weakened as indicated by the 

decreasing trend in εHf(t) values (Figures 9a and 10c). 

 

8.5. Implications for magmatic tempoThe cause of the magmatic tempo has long been 
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discussed, emphasizing either the tectonic control of overriding plate (Armstrong, 1988; 

Ducea et al., 2015) or the subduction of underlying plate (Huang & Lundstrom, 2007; 

Zhang et al., 2019). The former thought is based on the coincidence of magmatic flare-

up and shortening regime with thickened crust as shown in the Gangdese batholith, 

Sierra Nevada batholith and Andes cordillera (Ducea et al., 2015; Paterson & Ducea, 

2015). The latter proposed that the high subduction velocity and the subduction roll-

back and retreat caused the magmatic flare-up (Huang & Lundstrom, 2007; Zhang et 

al., 2019). The Cretaceous tectonic evolution of the East Asia Continental Margin 

provides a test of these claims.  

As discussed above, during the Cretaceous, the SE-ward roll back and retreat of 

the Paleo-Pacific slab subduction caused a general extension and coeval magmatism 

along the EACM (Sagong et al., 2005; Li & Li, 2007; Wu et al., 2007 and 2019). 

Probably due to the collision of the DGWP with the SCB, this extension was interrupted 

in the SCB. Moreover, due to the limited size of the DGWP, when the collision occurred 

only in the active continental margin of the SCB, the northern segment of the EACM 

was still featured by extension and 130-120 Ma magmatic flare-up in North China, 

Korean Peninsula and Japanese Islands (Fig. 1b; Sagong et al., 2005; Li & Li, 2007; 

Wu et al., 2007 and 2019). The 3-stage tectonic evolution of the SCB, including the 

145-130 Ma extension, the 130-105 Ma shortening and the 105-80 Ma extension, 

corresponds respectively to the flare-up, the lull and the flare-up magmatic activities in 

this area (Figure 2c). During the collision, the fold and thrust belt developed (Wei et al., 

2015) and the crust was thickened to ~42 km (Guan & Wang, 2017). Therefore, this 

study seems to have provided a counter case for the claims of shortening regime as the 

first order cause for magmatic flare-up. Instead, in the case of the EACM, the roll back 

and retreat of underlying subduction slab probably is the major cause for the flare-up 

during the Cretaceous while the shortening event leads to the magmatic lull. 

   

9. Conclusions 

Analyses of data from the present multidisciplinary study, encompassing field 

observation, AMS measurement, microscopic textural observation, geochronological 
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study, regional geologic correlation, and zircon εHf(t) evolution, have provided 

answers concerning the magma genesis, tectonic and geodynamic settings of 

emplacement of syn-tectonic plutons in the CNB. We therefore can reach the following 

conclusions. 

1, The plutons with oriented minerals are syn-tectonic and emplaced under a NW-

SE shortening tectonic regime due to the collision between the SCB and DGWP; 2, 

This collision was geochronologically constrained between 130 and 105 Ma as 

documented by the emplacement timing of these syn-tectonic plutons; 

3, Accommodating with this collision, a slab-break off and a slab window opening 

might occur, and an asthenospheric upwelling was probably generated below the CNB. 

This supplied heat in the upper plate, causing partial melting and granitoids 

emplacement under a shortening regime in the CNB. This may explain why the 

contemporary magmatism was less developed quasi in the whole SCB due to the limited 

distribution of the slab window; 

4, The tectonic evolution and coeval magmatic activities of the SCB indicated that 

the shortening regime and thickened crust of the overriding plate may not be the major 

cause of the magmatic flare-up. Instead, this study has lent support to the view that the 

roll back and retreat of the underlying subduction slab may cause the magmatic flare-

up of the EACM during the Cretaceous. 
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The supporting information of Table S1-S6, Figure S1 and Excel Macro “Isoplot” 

using for monazite age calculating can be found in the webpage of 

https://doi.org/10.6084/m9.figshare.21455865. The tool of “IsoplotR” with which the 

zircon U-Pb data was processed can be found in the webpage of  

http://www.isoplotr.com/isoplotr/. 
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Figure captions 

 

Figure 1. The schematic tectonic map of the East Asia Continental Margin. (a) South 

China block and Dangerous Grounds-West Philippine microcontinental Block; the 

compression direction and shortening ratio are after Zhu et al., 2018; (b) the igneous 

age distribution of the NCC (Wu et al., 2019); (c) the igneous age distribution of the 

SCB (Jiang et al., 2015); (d) suture zone between the South China Block and the 

Dangerous Grounds-West Philippines microcontinental Block recorded in the West 

Philippines islands; the geologic map was modified after Faure and Ishida, 1990; 

Zamoras and Matsuoka, 2004. 
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Figure 2. The simplified geologic map and geochronologic data of the Changle-Nan’ao 

belt (CNB). (a) the structural map; b, the age distribution of zircons of volcanic rocks 

in the CNB, modified after Guo et al., 2012; (b) and (c) Age distribution of plutons in 

the CNB, the data and citations of previous chronological studies refer to Appendix 

Table S1; (e)-(h) visible fabrics of different lithologies in the CNB (modified after Wei 

et al., 2015), the A-type lineation will clustered in the shaded area (NW-SE direction) 

in (g) and (h) after correction of foliation to flat, details refer to Wei et al., 2015; K2sh: 

Upper Cretaceous undeformed volcanic rocks of the Shimaoshan Formation; K1n: the 

Lower Cretaceous deformed volcanic rocks of the Nanyuan Formation; J3dl: the Upper 

Jurassic deformed volcanic rocks of the Douling Formation. 

 

Figure 3. Field observations on the plutons and their country rocks in the CNB. (a) 

magmatic foliation defined by the biotite and feldspars preferred orientation in the 

Dongzhuang granodiorite (refer to FJ05 in Fig. 6 for the location). (b) microgranite 

mafic enclaves in the Gaoshan pluton (refer to FJ54 in Fig. 6 for the location), the 

orientation of the enclaves is NE-striking with steep inclination to the NW and parallel 

with magmatic foliation as well as the host granite. (c) microgranitoid enclaves and 

schlierens in the Hui’an pluton (refer to FJ55 in Fig. 6 for the location). The enclaves 

developed tails or even evolved into schlieren indicating that the convection of the host 

Hui’an granite was still active during the intrusion of the mafic melts. (d) granitic dyke 

of the Matui stock intruded into the Early Cretaceous deformed volcanic rocks (refer to 

FJ53 in Fig. 6 for the location), the contact boundary is wavy, and the magmatic 

foliation is parallel to the boundary and the foliation of the deformed volcanic rocks. (e) 

xenolith of deformed volcanic rocks in the granite of Matui stock (refer to FJ53 in Fig. 

6 for the location), the boundary of the xenolith is wavy and the magmatic foliation of 

the granite surrounds the xenolith. (f) ductile deformation of the boundary of the Hui’an 

pluton (refer to FJ65 in Fig. 6 for the location). (g) the isotropic structure of the core of 

the Hui’an pluton (refer to FJ62 in Fig. 6 for the location). (h) Country rock (hornfels 

sandstone) of the Hui’an pluton, showing contact metamorphism (refer to FJ59 in Fig. 

6 for the location).  

 

 

Figure 4. magnetic characters of syn-tectonic granitoids in CNB. (a) Histogram of bulk 

magnetic susceptibility, N=39. (b) Day-Plot diagram to define the magnetite size, Mrs: 

remanence, Ms: saturation remanence, Hcr: coercivity of remanence, Hc: coercivity, 

SD: single domain, PSD: pseu-single domain, MD: multi-domain, respectively. (c) PJ 

(corrected anisotropy degree) vs. Km (mean bulk magnetic susceptibility) , (d) T (shape 

parameter) vs. PJ. The calculation formulas of T and PJ can be found in Jelinek (1981). 

 

Figure 5. Representative thermal-Susceptibility, hysteresis loop diagrams, Isothermal 

Remanent Magnetization (IRM) of CNB granitoids.  

 

Figure 6. Equal-area lower hemisphere projection of AMS results of each site and 

whole individual plutons in the CNB. Squares and circles stand for K1 (magnetic 
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lineation) and K3 (pole of magnetic foliation), respectively. Small and large squares or 

circles represent individual specimen and site-mean direction with their confidence 

ellipses at 95% level, respectively. The yellow great circle in the stereo-projection 

represents the magmatic foliation measured in field. 

 

Figure 7. Representative microscopic features of the plutons with oriented minerals in 

the CNB.  

(a) In the Su’ao pluton (refer to FJ52 in Fig. 6 for the location), the biotite and feldspar 

were oriented along the magnetic foliation, myrmekite developed along the feldspar 

boundary which is parallel with the magnetic foliation, the boundary of quartz is suture 

shaped indicating a Grain Boundary Migration recovery. (b) In the granodiorite of the 

Dongzhuang Pluton (refer to FJ08 in Fig. 6 for the location), the amphibole and 

plagioclase were oriented along the vertical magnetic foliation, the plagioclase 

developed pressure shadow made by biotite in which the tiny quartz grain inclusions 

were present, the boundary between grains of feldspars and quartz were featured by 

suture shape. (c) in the Hui’an pluton (location refer to FJ57 in Fig. 6 for the location), 

quartz developed chessboard structure, the feldspar were cracked. (d) In the Damaoshan 

pluton (refer to FJ46 in Fig. 6), the feldspar is oriented along the vertical magnetic 

foliation, the feldspars were cracked and infilled with muscovite and quartz, the grain 

boundary between feldspars and between quartz were in suture shape, the biotite was 

bend. (e) In the diorite of the Tong’an pluton (refer to FJ24 in Fig. 6 for the location), 

the amphibole, biotite and feldspar were oriented along the vertical magnetic foliation, 

the feldspars were cracked and infilled with quartz, the boundary between grains of 

feldspars and quartz were in suture shape. (f) In the Longshoushan stock (refer to FJ84 

in Fig. 6 for the location), the quartz and feldspar were oriented along the magnetic 

foliation, the quartz developed chessboard structure, the grain boundary between quartz 

was in suture shape. (g) Along the NE-SW horizontal thin section of the Longshoushan 

stock (refer to FJ84 in Fig. 6 for the location), the feldspar was oriented along the NE-

SW striking mangetic foliation, the grain boudnary between feldspar, between quartz, 

and between quartz and feldspar were in suture shape. (h) In the Duxun pluton (location 

13 in Fig. 2), the quartz grains show rectangular shape.  

 

Figure 8. Zircon U-Pb isotropic dating (a-d) and Monazite U-Th-Pb chemical dating 

(e) results of the syn-tectonic granitoids in the CNB. 

 

 

Figure 9. Zircon Hf isotropic statistics from different lithologies of the CNB and its 

adjacent area. (a) data from coastal Fujian area (an area locating to the east of the 

dashed rectangle marked by Fig. 9b in Fig. 1a, among these data, most are from CNB 

as marked by the yellow solid rectangle in Fig. 1a); (b) data form the interior Fujian 

area (location refer to the dashed rectangle marked by Fig. 9b in Fig. 1a). 

 

 

Figure 10.  A possible evolution model for the EACM during the Cretaceous. (a) In 
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the stage 1, the subduction of the Paleo-Pacific Slab led to a back-arc extension in the 

SCB and the magmatism in the Changle-Nan’ao belt while the DGWP Block carried 

by the Paleo-Pacific Slab was closing to the SCB; (b) In the stage 2, the DGWP Block 

collided with the SCB, leading to the development of fold and thrust belt of the CNB, 

the magmatic lull in the whole SCB, while the the slab window opened by the collision 

caused break-off of the subducted slab, led to the athenosphere upwelling and 

emplacement of syn-tectonic plutons with positive Hf isotropic feature in the CNB, 

owing to the shortening regime, the volcanic eruption ceased in the CNB; (3) In the 

stage 3, the newly formed subduction on the rear of the DGWP Block led to a back-arc 

extension in the SCB, and the post-orogenic magmatism in the CNB. 
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