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Abstract
Nitrous oxide (N2O), a major greenhouse gas and ozone-depleting agent, is generated over land
mostly from two key biochemical processes—nitrification and denitrification. Nitrifying and
denitrifying N2O production occurs preferably under alternative oxic and anoxic conditions, which
are closely linked with variations in water filled soil pores, and thus indirectly with precipitation.
We show here that the interannual anomalies in the annual growth rate of the global land N2O
emissions are significantly (P < 0.001) correlated with precipitation anomalies, with an overall
sensitivity (αPRE, changes of land N2O emission variations per precipitation anomalies) of
2.50± 0.98 Tg N2O–N per 100 mm of precipitation across the global land (1998–2016). The
sensitivity (αPRE) and precipitation-driven N2O anomalies increased during 1998–2016, partly due
to increased nitrogen inputs to agricultural lands and enhanced precipitation anomalies. Spatially,
we find that the αPRE increases with aridity. We predict a larger αPRE under future climate
conditions (with radiative forcing levels of 4.5, 7.0 and 8.5 Wm−2) by the year 2100 if nitrogen
fertilization follows the present practice.

1. Introduction

Nitrous oxide (N2O) is a major long-lived greenhouse gas and ozone-depleting substance, whose
atmospheric concentration has been increasing since the mid-eighteenth century. Human induced surplus
(i.e. beyond biological demands) of reactive nitrogen, through, for example, the Haber-Bosch process (the
main industrial procedure to produce synthetic nitrogen fertilizers) and expansion of nitrogen-fixing crops,
is one of the major drivers of the increasing trend. This trend is expected to continue into the future due to
the growing demand for food, feed, fuel and fibre [1]. While there is a strong scientific consensus on the
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increasing trend of land N2O emissions and its origin, the year-to-year variations in the growth rate of
emissions and their drivers at the global scale remain largely unknown.

Nitrification and denitrification are the two major biochemical processes (mostly controlled by
microorganisms) that produce N2O in terrestrial and aquatic ecosystems. Nitrification is an aerobic process
from which ammonium is oxidized to form nitrate. N2O is produced as a by-product during this process.
Denitrification, which includes heterotrophic denitrification, nitrifier denitrification, chemodenitrification
(abiotic) and codenitrification (biotic) [2], reduces oxidized forms of nitrogen (e.g. nitrate) to produce a
series of gaseous nitrogen species, including N2O, and requires low oxygen conditions. Nitrification and
denitrification, as well as their associated gaseous N2O emissions, are sensitive to multiple environmental
drivers. Temperature, soil water, redox potential (or oxygen levels), nitrogen availability (therefore nitrogen
fertilizer input), carbon supply and soil pH are common regulators of land N2O emissions documented
across laboratory, field and modelling studies [2–5]. How those abiotic and biotic, human induced and
natural factors control land N2O emissions are complex. N2O fluxes are highly heterogeneous in space and
time [3, 6]. The water filled pore space, sometimes represented by soil moisture, plays a particularly
important role as it controls nitrification and denitrification rates through regulating the substrate
availability and soil redox potential (oxygen diffusion rates are much slower in water-filled than air-filled
pore space), and also alters the partitioning among gaseous nitrification and denitrification products (e.g.
NO, N2O and N2) [5, 7]. Most well-known hot (with disproportionately high intensity) spots and moments
of emissions, such as those at the terrestrial-aquatic interface, riparian zones, oxic–anoxic interfaces of
drained organic soils, or/and triggered by rainfall and freeze-thaw events, are related to water availability [8].

Recent climate change has altered precipitation regimes across large areas of the global land, resulting in
an increasing frequency of both dry and wet spells, as reflected in soil moisture anomalies [9, 10]. Field
observations show relatively low N2O flux under dry conditions and high emissions following rewetting,
partly due to the accumulation of organic nitrogen or/and nitrate during the preceding dry periods that
favour denitrifying N2O productions under wet conditions [11, 12]. Using an inverse procedure combining
flux tower measurements, Griffis et al [4] showed enhanced N2O emissions during warm and wet periods in
the US Corn Belt. The notorious heterogeneity of land N2O emissions in space and time makes it difficult to
upscale sparse local observations to derive global patterns and drivers. Regional and global studies on the
response of land N2O emissions to precipitation are scarce. From the N2OModel Intercomparison Project
(NMIP) [13], under idealized simulations where only climate was varied temporally, the anomaly (difference
compared to the emission in 1901) of global land N2O emissions were simulated to increase with time
(Extended Data figure 8 of [14]) in association with warming since the industrial revolution. It remains
unclear from this correlation with temperature trends whether the imprint of precipitation on global land
N2O emissions is muted due to averaging of different trends across space, or whether the signal has yet to be
detected.

We hypothesize that the interannual anomalies in the growth rate of the global land N2O emissions are
correlated with precipitation anomalies. At least two lines of arguments support our hypothesis.
Theoretically, nitrifying-denitrifying N2O production is favoured under alternative aerobic and anaerobic
conditions, which could be mediated by precipitation [3, 15–17]. Empirically, laboratory and field
observations have revealed the strong linkages between water availability and N2O production processes
[16–18]. Here and afterwards, we use N2OEA (nitrous oxide emission anomalies) to refer to the interannual
anomalies in the growth rate of land N2O emissions, calculated through a 12 month moving sum window
over the detrended (linear least-squares fitting) monthly growth rate of emissions [19]. The growth rate of a
specific month is the difference between the N2O flux in that month and in the same month of the previous
year (see Methods) [20]. Climate anomalies (PRE: precipitation; TEMP: temperature; RAD: solar radiation)
were calculated using the same procedure.

2. Methods

2.1. Land N2O emissions
Land N2O emissions were derived from three independent atmospheric inversion systems, i.e. TOMCAT
(1998–2014), LMDz (1998–2016) and MIROC4-ACTM (1998–2016) [19]. These systems apply the Bayesian
inversion to optimally combine observed N2Omixing ratios from discrete air samples and in-situ instrument
networks with atmospheric transports, which account for processes such as the loss of N2O in the
stratosphere caused by photolysis and oxidation by O (1D). The inversions generate grid-level land N2O
emissions at a monthly temporal resolution. The land here also includes the inland water bodies due to the
difficulty of separating them with relatively coarse grid cell resolution (>100 km× 100 km). Detailed
information for the inversion products is available in [19]. To quantify the global or regional budgets, we
integrated the gridded emissions through corresponding land areas. To estimate land N2O emissions, we
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removed anthropogenic emissions from the energy, industry and waste sectors using the PRIMAP-hist
historical emission database [21], despite this not having a noticeable effect on the general relationship
between anomalies of N2O emissions and precipitation (supplementary figure 1). Keeping vs. removing
biomass burning emissions using GFED-v4.1 s did not change the global pattern between land N2O
emissions and precipitation anomalies noticeably (supplementary figure 1). For the global budget, we
reported results that exclude biomass burning emissions.

We also analyzed land N2O emissions from process-based land models that participated in the NMIP
project [13]. Three models (namely, ORCHIDEE-CNP, ORCHIDEE and OCN) provided simulations with
the same temporal resolutions as the atmospheric inversions. Model simulations share the same
experimental protocol, e.g. with the same climate drivers Climatic Research Unit-National Centers for
Environmental Prediction (CRU-NCEP), land use (HYDE version 3.2) and anthropogenic nitrogen inputs.
Nitrogen fertilizer input integrates country-level fertilizer statistics (yearly) from the International Fertilizer
Industry Association and the Food and Agriculture Organization, with detailed information from [22]. The
timing and splitting frequency of fertilizer application depend on model assumptions, such as one
application at the beginning of the growing season.

2.2. Climate data
Gridded climate data used in this study includes aridity, monthly mean land surface air temperature,
precipitation and solar radiation. We used the gridded (0.5◦ × 0.5◦) CRU time-series (TS) data version 4.04
(CRU TS4.04)[23], provided by CRU at the University of East Anglia as our climate dataset for temperature,
precipitation and solar radiation. CRU TS4.04 does not include solar radiation, and we therefore used the
cloud cover to approximate variations in solar radiation. We also applied the CRU-NCEP dataset (https://rda.
ucar.edu/datasets/ds314.3/) as an alternative for temperature, precipitation and especially for solar radiation.
CRU-NCEP combines observations from CRU with the NCEP-NCAR reanalysis data products, and was
applied as meteorological forcing data in NMIP. Solar radiation in CRU-NCEP was corrected to match
empirically derived monthly solar radiations based on latitude and sunshine hours, which is correlated with
the CRU cloud fraction. To test the robustness of the relationship between precipitation and land N2O
emissions and to quantify the uncertainty, we included 3 other precipitation datasets that combine different
sources of rain gauge stations, satellites, sounding observations and reanalyses. The Global Precipitation
Climatology Centre (GPCC) provides quality-controlled monthly data from 7,000–9,000 stations (www.
dwd.de/EN/ourservices/gpcc/gpcc.html). GPCC v2018 was obtained from (https://psl.noaa.gov/data/
gridded/data.gpcc.html) (assessed Jan 2021). GPCPv2.3 (https://climatedataguide.ucar.edu/climate-data/
gpcp-monthly-global-precipitation-climatology-project, assessed Jan 2021) is the Global Precipitation
Climatology Project monthly precipitation dataset from 1979-present that combines observations and
satellite precipitation data into 2.5◦ × 2.5◦ global grids. NOAA’s Precipitation Reconstruction over Land
(NOAA, https://psl.noaa.gov/data/gridded/data.precl.html, assessed Jan 2021) provides 1◦ × 1◦ global grids
of monthly precipitation reconstructed from observations over 17 000 gauge stations.

We separated the global land into hyperarid, arid, semi-arid, dry subhumid and humid regions based on
the aridity index. Aridity index here is defined as the ratio between precipitation and the reference
evapotranspiration, provided by [24]. Hyperarid region is classified as the land with the smallest aridity
index (AI < 0.03) and covers 7.5% of the total global land area according to the United Nations Environment
Programme [25]. The class with the second smallest aridity index (AI: 0.03–0.2) is the arid region, which
covers 12.1% of the global land, followed by semi-arid (17.7% of land area, AI: 0.2–0.5), dry subhumid
(9.9%, AI: 0.5–0.65) and humid regions (52.8%, AI > 0.65). All gridded datasets (climate and N2O) were
regridded to 1◦ × 1◦ using the nearest neighbourhood method for consistency.

Projections of 5 Earth system models (CESM2-WACCM, ACCESS-CM2, GFDL-ESM4, IPSL-CM6A-LR,
MIROC6) under SSP5-85, SSP3-70, SSP2-45 and SSP1-26 from the ScenarioMIP [26] serve to quantify
future changes in precipitation anomalies.

2.3. Anomalies, sensitivities and decompositions
The growth rate of land N2O emissions of a specific month was calculated as the difference between N2O
emissions from that specific month and the month in the previous year. The monthly growth rates were
detrended (linear least-squares fitting) and summed every 12 months to estimate the interannual anomalies
(N2OEA) similarly as in [20]. Interannual anomalies of climate variables (PRE: precipitation; TEMP:
temperature; RAD: solar radiation) were calculated in a similar way. Current available global datasets of
anthropogenic nitrogen inputs are coarse in temporal resolution (yearly), with the signal dominated by the
increasing trend in the past several decades. The direct impact of the anomaly of nitrogen inputs alone is less
likely to be the major driver of N2OEA as the anomaly signal of nitrogen inputs is small after detrending.
Instead, N2OEA are more likely to be driven by anomalies in climate or/and its interactions with
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anthropogenic nitrogen inputs. We calculated the time-lag (within 12 months) in which the highest Pearson
correlation coefficient between N2OEA and PRE was obtained. We reported results with optimum time-lags.
Calculations with vs. without time-lags yield similar results (αPRE and N2OEA_PRE) and patterns discovered
in this study are robust.

The sensitivity (αPRE) of N2OEA to PRE was quantified as the slope of PRE in the multiple regression of
N2OEA against anomalies of precipitation, temperature and radiation. The significance of the regression
slope was analyzed through the t-test. For the global total N2OEA, we tested incorporating total nitrogen
fertilizer (both detrended and not detrended) as an independent predictor, or/and as a predictor interacting
with different combinations of climate variables. In the tests, we assumed an equal application rate of
nitrogen fertilizer each month with only annual nitrogen fertilization statistics and no comprehensive
information on the timing of applications at the global scale. We did not find a noticeable improvement in
the performance of the regression (R2 did not increase) and precipitation remained as the dominant
predictor. We therefore focused on the first order effects and reported results on the partial linear regression
with only precipitation, temperature and radiation as predictors (supplementary figure 2). We calculated
αPRE over a moving time window of 96 months and tested the significance of the trends through the
Mann–Kendall method. To verify that the trends are not specific to the moving window length, we varied the
window length from 48 to 144 months. And we found similar trends. N2OEA has an autocorrelation of
around 6 months. To test whether our analyses were impacted by the autocorrelation, we calculated αPRE

through the generalized linear mixed model (GLMM: allow for flexible nonnormal distributions of data) that
explicitly considers the temporal autocorrelation utilizing the first-order autocorrelation function
(i.e. accounts for correlations among the consecutive data points.)

Considering autocorrelation had a minor impact on αPRE (supplementary figure 3). In addition, to test
whether our results are specific to the detrending method, we applied the singular spectrum analysis, a
nonparametric spectral estimation method for TS analysis, and found a similar increase in αPRE

(supplementary figure 4).
For the contributions of precipitation to N2OEA, in addition to αPRE, variations in precipitation also play

a role. We decomposed variations of climate-driven N2OEA into contributions from precipitation
(N2OEA_PRE ), temperature (N2OEA_TEMP) and radiation (N2OEA_RAD) similarly as in [27]:

N2OEAd, t = αPRE
d ×PREd,t + αTEMP

d ×TEMPd,t + αRAD
d ×RADd,t + εd,t (1)

N2OEAd, t ≈N2OEA_PREd,t +N2OEA_TEMPd,t +N2OEA_RADd,t (2)

where αd with the superscript is the sensitivity of N2OEA to the corresponding climate anomalies
(PRE,TEMP and RAD). d indicates one set of climate and N2O data. t indicates time. εd,t is the residue term.
The product of the sensitivity and the corresponding climate anomaly gives the N2O anomaly component
driven by that climate anomaly. For example, N2OEA_PREd,t= αPRE

d ×PREd,t , which quantifies the
contribution of precipitation anomaly to N2O flux anomaly. We estimated contributions of each climate
driver both at the global scale through globally integrated fluxes and individually for each grid cell. To
compare the magnitude of anomalies among locations or time-windows, we calculated the standard
deviation of each anomaly TS. We used N2OEA_PRE

STD
d , N2OEA_TEMPSTDd and N2OEA_RAD

STD
d to denote

the standard deviation of N2OEA_PRE
STD
d , N2OEA_TEMPSTDd and N2OEA_RAD

STD
d . For simplicity, we

neglect the subscript d and adopted the notation N2OEA_PRE
STD
d , N2OEA_TEMPSTDd and N2OEA_RAD

STD
d

when we did not refer to a specific climate and N2O dataset.
To estimate the uncertainties in αPRE and climate-driven N2OEA, we applied the bootstrapping method

with 1000 random samples combining different data sources (five precipitation, two radiation and two
temperature datasets) for each of the N2O datasets. Uncertainties were expressed as the standard deviations
of these samples.

To understand the spatial patterns and mechanisms that lead to the enhanced influence of precipitation
on N2OEA, we calculated αPRE and N2OEA_PRE

STD across spatially aggregated groups. We first divided the
global land into five categories by aridity. For each category, we further separated it into two groups by their
magnitude (i.e. standard deviation) of precipitation anomalies (PRE). One group has an enhanced
precipitation anomaly, shown by a higher standard deviation of PRE in the recent time window (2009–2016)
than in the earliest time window (1998–2005). And the other group has reduced precipitation anomalies. We
also looked into contributions from agricultural lands vs. natural lands. The atmospheric inversion estimates
mix agricultural and non-agricultural emissions within a grid cell. As a coarse approximation, we used the
fractional area of cropland [28] as the criterion to separate agricultural and non-agricultural lands. We define
non-agricultural grid cells as locations with cropland area < 1%, whereas agricultural grid cells have
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cropland areas bigger than a threshold value. Agricultural grid cells have an average mineral N input rate of
7 gN (m2 cropland)−1 yr−1 (1998–2013) [22].

We tested the threshold value from 20% to 50%, and found that the results of a generally higher mean
∆αPRE and∆N2OEA_PRE

STD in agricultural than non-agricultural lands are robust
(supplementary figure 5).∆ represents the difference between the recent vs. the earliest time window. For
process-based modelling estimates, agricultural N2O fluxes due to anthropogenic nitrogen inputs were
directly calculated from simulations with vs. without anthropogenic nitrogen inputs.

To derive the scale dependence of the relative importance of different climate components, we define the
relative importance of a climate component as the mean variance (across space) of the anomalies of this
component divided by the mean variance of the climate driven N2OEA, following the method from [27]. For
example, the relative importance of precipitation anomalies (IPRE) is quantified as,

IPRE =
µs

(
σ2
t (N2OEA_PREs,t)

)
µs (σ2

t (N2OEA_PREs,t +N2OEA_TEMPs,t +N2OEA_RADs,t))
(3)

where s is the index for locations (or grid cells), µ stands for the mean and σ represents the standard
deviation. We then integrated N2O and climate variables sequentially to coarser resolutions, starting from 1◦,
to 2◦, 3◦, 4◦, 5◦, 6◦, 7◦, 8◦, 9◦, 10◦, 11◦, 14◦, 18◦, 22◦, 30◦, 60◦, 90◦ and 180◦ until the globe (one grid cell),
and computed the climate-driven components and relative importance for each spatial resolution.

3. Results and discussions

We firstly focus on the top-down estimates of land N2O emissions from three independent atmospheric
inversion systems (TOMCAT, LMDz and MIROC4-ACTM) [19]. These inversion systems integrate
measurements of atmospheric N2O dynamics from global networks with knowledge of the sources, sinks and
atmospheric transport of N2O. Figures 1(a)–(c) shows a positive correlation between the globally integrated
N2OEA derived from atmospheric inversions and PRE (see Methods; r= 0.56, P < 0.001 for TOMCAT;
r= 0.54, P < 0.001 for LMDz; r= 0.58, P < 0.001 for MIROC4-ACTM, 1998–2016), consistent with local
field studies and process-based understandings of the control of water on N2O emissions [3, 15–17].

We then quantified the sensitivity (αPRE) of the globally integrated N2OEA toPRE as the partial derivative
of N2OEA in response to PRE in the multiple regression of N2OEA against climate variables (PRE, TEMP
and RAD). We included radiation as a climate predictor considering especially its role in vegetation
dynamics, which regulates the energy (carbon) and substrate (nitrogen) availability for nitrification and
denitrification. With an ensemble of estimates combining the three N2O inversions and different datasets of
climate variables (Methods; PRE: 5 datasets; TEMP: 2 datasets; RAD: 2 datasets), the overall global αPRE is
2.50± 0.98 (mean± standard deviation) Tg N2O–N (100 mm)−1 during 1998–2016. That is, a 100 mm rise
in precipitation over the global land increases N2O emissions by 2.50± 0.98 (t-test, P < 0.01) Tg N2O–N.

To translate sensitivities to contributions to N2OEA during 1998–2016, we decomposed N2OEA into the
contributions from precipitation (N2OEA_PRE), temperature (N2OEA_TEMP), and radiation
(N2OEA_RAD) (see Methods, equations (1) and (2). Climate anomalies explain up to 59% of the globally
integrated N2OEA. More than 90% of the climate-induced variations in globally integrated N2OEA are
attributable to precipitation (supplementary figure 2). Note here we focus on the anomaly and removed the
trend signal from temperature, which has been hypothesized to be an important regulator of historical land
N2O emissions. Adding nitrogen fertilization rate as a global explanatory variable (with or without
interactions with climate variables) does not improve the regression performance partly due to large
uncertainties in the timing and rate of fertilizer additions at the global scale (methods). To facilitate
comparisons among locations, time-windows and climate variables, we use the standard deviation of
N2OEA_PRE (N2OEA_TEMP and N2OEA_RAD) over specific time periods to indicate the strength of the
climate-driven anomalies, which we denote as N2OEA_PRE

STD (N2OEA_TEMPSTD and N2OEA_RAD
STD)

for simplicity.
Spatially, there was a large variation in αPRE in different places. Roughly, we found that αPRE increases

with aridity (defined as the ratio between precipitation and the reference evapotranspiration [24],
figure 2(b)). Hyperarid regions (e.g. Sahara and Arabian Deserts) have a high αPRE averaged among pixels
falling in this aridity class, but this high sensitivity does not translate into a high mean N2OEA_PRE

STD, due
to small changes in the amount and therefore in the absolute anomalies of precipitation in those regions. The
standard deviation of αPRE is also high in hyperarid regions likely due to limited observations and large
uncertainties in estimating N2O emissions. Humid regions, covering 52.8% of the global land area,
contribute to the largest portion (54.3%) of the globally integrated N2OEA_PRE

STD (sum across land area),
followed by the semi-arid regions (figure 2(d)). Semi-arid regions stand out for their highest
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Figure 1. Relationships between N2OEA and PRE. Panels (a)–(c) show the detrended interannual variations of the growth rate of
land N2O emissions (N2OEA, in purple) from three inversion estimations and precipitation anomalies (PRE, in green). r is the
highest Pearson correlation coefficient between N2OEA and PRE (P < 0.001), with 1 month, 2 month and 4 month lags for panel
a, b and c respectively. Panels (d)–(f) show the sensitivities of N2OEA from three different inversions to PRE, which were
quantified as the partial regression coefficient of N2OEA in response to precipitation, including also covariations of temperature
and radiation anomalies. Shaded areas correspond to the uncertainty quantified as the standard deviation through 1000
bootstrapping samples combining different sources of climate variables.

N2OEA_PRE
STD per unit area (3.33± 0.28 mg N m−2 yr−1, figure 2(c)). The dominant contributions of

humid (45%–48%) and semi-arid (20%–29%) regions to the global correlation between N2OEA and PRE
were also verified by calculating the contribution of each region using the additive properties of covariances
(supplementary table 1).

We also found that the global αPRE has increased with time during the study period from 1998 to 2016.
Combining three datasets of N2O emissions from inversions, αPRE is 0.50± 0.73 (t-test, P > 0.3) in the
earliest time window (first 96 months, 1998–2005), and reaches 3.63± 1.22 (t-test, P < 0.001) Tg N2O–N
(100 mm)−1 in the recent time period (2007–2014). Figures 1(d)–(f) displays changes of αPRE over a moving
time window of 96 months, with a significant (Mann–Kendall trend test, P < 0.001) increasing trend for all
of the three atmospheric N2O inversions. Not only the sensitivity (αPRE) grows over time, but the
contribution of precipitation, quantified as the standard deviation across the corresponding time window
(N2OEA_PRE

STD, Methods), also increases significantly over time, from 0.12± 0.1–1± 0.29 Tg
N2O–N yr−1 (supplementary figures 6(g)–(i)).

We further verified the robustness of the enhanced αPRE in the study period through (a) applying the
nonparametric spectral estimation method (singular spectrum analysis) to separate the trend and other
components instead of the linear least-squares detrending; and (b) varying the moving window length for
calculating αPRE from 48 to 144 months. Note the time-span and testing window length of our study are
limited by use of atmospheric N2Omeasurements from the year 1998 onwards. Earlier atmospheric data
have lower calibration accuracy and measurement precision [19]. We also verified that considering
autocorrelation only had a minor impact on the inferred increase of αPRE (Methods, supplementary figure 3).
Note αPRE at the beginning of the study is not statistically significant, which may be related to a larger
uncertainty before 2000 [19]. After removing data from the first two years, we obtained an initial αPRE

of 2.05± 1.52 Tg N2O–N (100 mm)−1 and N2OEA_PRE
STD of 0.38± 0.25 Tg N2O–N yr−1. The increasing

trend for all of the three atmospheric N2O inversions still holds (Mann–Kendall trend test, P < 0.001).
To understand mechanisms underlying this enhanced αPRE and the contribution of precipitation to N2O

variations, we calculated the difference of these quantities between the most recent and the earliest time
windows (denoted as∆αPRE and∆N2OEA_PRE

STD) by region. Hyperarid, arid, semi-arid, dry subhumid
and humid regions all show positive mean∆αPRE and∆N2OEA_PRE

STD across grid cells (figure 3) despite
large variations in∆αPRE and∆N2OEA_PRE

STD locally (supplementary figure 7). We further separated the
global grid cells into two groups: one group with enhanced variations in precipitation anomalies (∆PRESTD

>0, STD stands for standard deviation,∆ indicates the difference between the recent vs. the initial time
window) and the other with reduced anomalies in precipitation (∆PRESTD <0). In arid, semi-arid and dry
subhumid regions, the grid cells that experienced intensified anomalies of precipitation show a higher mean
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Figure 2. Sensitivities and precipitation-driven N2O variations across the aridity gradient. (a), The distribution of land categories
according to their aridities. (b), The spatial mean sensitivity of N2OEA to PRE (αPRE) in different land categories. (c), The spatial
mean precipitation-driven N2O variations (N2OEA_PRESTD) in different land categories. (d), The total precipitation-driven N2O
variations from each land category. Error bars are standard deviations among different combinations of climate and atmospheric
N2O inversion datasets.

∆αPRE than those with weakened precipitation anomalies (figure 3(b)). In humid regions, although the
mean∆αPRE is smaller, the mean∆N2OEA_PRE

STD is nine times greater in grid cells with∆PRESTD > 0
than those with∆PRESTD < 0 (figure 3(e)). We also found that the standard deviation of the anomalies of the
globally integrated precipitation over land increased over time during our study period (supplementary
figures 6 (d–f)). This increased precipitation variability, driven largely by global warming [10], is one of the
drivers enhancing the response of land N2O emission to precipitation.

In addition, we found that the mean∆N2OEA_PRE
STD is 2 (arid), 6 (semi arid), 4 (dry subhumid) and 3

(humid) times higher in grid cells with croplands (see Methods) compared to those without within each
aridity class (figure 3(f): supplementary figure 5). With intensive nitrogen fertilizer additions, croplands
generally have higher nitrogen substrate that is susceptible to both gaseous and leaching losses. Regions with
high emission rates are thus also likely to have high emission anomalies. We then estimated
∆N2OEA_PRE

STD as a percentage change relative to N2OEA_PRE
STD from the earliest time window. We still

found a higher mean∆N2OEA_PRE
STD from croplands than non-croplands in arid, semi-arid, dry

subhumid and humid regions (supplementary figure 8). This disproportionately higher∆N2OEA_PRE
STD

from croplands (supplementary figure 5) is most likely linked with more nitrogen surplus from croplands
than natural lands. Furthermore, broadly speaking, places with higher cropland fractions or higher
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Figure 3. Differences of the sensitivities of N2OEA to PRE (∆αPRE, (a)–(c)) and the precipitation-driven N2O variations
(N2OEA_PRESTD, (d)–(f)) between the most recent (last 96 months, 2007–2014) and earliest (first 96 months, 1998–2005) time
windows. HA, A, SA, SH and H are abbreviations for hyperarid, arid, semi-arid, dry subhumid and humid regions. Panels (a) and
(d) show the recent period has higher (positive values) overall mean sensitivities and precipitation-driven N2O variations from
different land categories. Panels (b) and (e) display results separating land grid cells into groups with enhanced (blue) vs. reduced
(yellow) precipitation variations (i.e. standard deviations of PRE, PRESTD). Panels (c) and (f) show results separating land grid
cells into the groups with vs. without croplands (see all supplementary figure 5). Error bars are standard deviations.

PRESTD ×Nfert (precipitation anomaly multiplying total mineral nitrogen fertilizer per grid cell) on average
have higher αPRE and especially N2OEA_PRE

STD (supplementary table 2), which indicates that nitrogen
fertilizer additions interact with precipitation in shaping the pattern of N2OEA.

Next we investigated whether process-based land N2Omodels capture the top-down N2O-precipitation
relationship. To tackle this issue, we calculated αPRE from three global land N2Omodels (ORCHIDEE-CNP,
ORCHIDEE and OCN) that participated in NMIP and quantified land N2O emissions with the same
temporal resolution as the inversion estimates (Methods). These models however, are bottom-up
calculations on land fluxes that are different from observed atmospheric growth rate anomalies. The
correlations between globally integrated land N2OEA and PRE are weaker from land models (r= 0.32–0.38,
P < 0.05) than from top-down inversions (supplementary figure 9). αPRE increase with time in 2 out of 3
models, but the magnitude of αPRE and its changes are more than three times smaller than from top-down
inversions (figure 1 vs. supplementary figure 9). Compared to the globally integrated N2OEA, agricultural
N2OEA shows a stronger correlation with PRE (r= 0.42–0.56, P < 0.05) and higher αPRE (in unit of per area)
with the overall increasing trend despite large differences among the three models (supplementary figure 10).
The factorial model simulations from NMIP enable us to separate the effect of nitrogen additions by
comparing simulations with vs. without external nitrogen inputs (e.g. nitrogen fertilizer, manure and
atmospheric nitrogen deposition). Enhanced N2O emissions from agricultural land are driven largely by
external nitrogen inputs, especially nitrogen fertilizer additions [13, 29]. This is supported by process-based
model simulations that show the important contribution of agricultural land and therefore anthropogenic
nitrogen additions to the intensified N2O-precipitation relationship. Both process-based models and
inverse-estimations show the same tendency for N2O-precipitation relationship.

The lower sensitivity of N2OEA to PRE from NMIP models indicates uncertainties in modelling the
impacts of precipitation on N2O emissions, which may stem from difficulties in accurately representing the
hydrological processes (from precipitation to soil moisture and water filled pore space) [30], or the soil
moisture responses of N2O emissions. Process-based models generally represent soil moisture effects on N2O
emissions through empirical soil moisture (or water filled pore space) response functions [3, 5, 13, 31].
These functions are typically derived from limited site-level studies, and may not be universal or adequate in
capturing the multifaceted soil moisture triggered changes, for example, the rapid microbial responses
following rewetting of dry soils [32]. Due to the complexity and relatively high computation requirements,
these global N2Omodels typically do not simulate nitrifying and denitrifying microbial communities
explicitly. Whether the lack of microbial physiology leads to biased simulation of moisture responses remains
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to be explored. Note there are limited numbers of process-based global N2Omodels [29], and a
comprehensive assessment on the capacity to model soil moisture responses requires more effort from both
modelers and data collectors. The average correlation between satellite derived soil moisture anomalies
(ESACCI v05.2, the combined product) and N2OEA from atmospheric inversions is 0.27. Satellite derived
soil moisture datasets normally only capture first top centimetres of soil, which is not adequate in
representing biogeochemical active soil zones. This correlation value reached 0.42 from model estimated soil
moisture (CPC soil moisture, one-layer hydrological model) or 0.40 from a reanalysis dataset (ERA5,
0–28 cm). The global scale soil moisture datasets are likely to be associated with higher uncertainties than
observation-derived precipitation datasets. While water filled pore space (approximated by soil moisture in
models) [5, 13] is a more direct regulator of soil N2O emissions than precipitation, how to realistically
capture its dynamics and impacts on large-scale soil N2O emissions requires more efforts in the future.

The top-down (atmospheric inversion) and process-based modelling estimates are consistent in terms of
the decadal global N2O budget [14], while the climate sensitivities of land N2O emissions may need more
studies considering the uncertainties in both atmospheric inversions and process-based modelling, and
regional scale observations related to this topic are especially in need. N2O emissions from inland water
bodies are not included in NMIP models, but are incorporated in the top-down inversion estimates. We did
not remove N2O emissions from inland water bodies in the top-down estimates due to lack of reliable
observations. Estimations of N2O emissions from inland waters and estuaries remain largely uncertain
(Rivers: 0.03–2; Estuaries: 0.06–5.7 Tg N2O–N yr−1) [33, 34], with one recent modelling study arguing for
an overestimation of previous values (Rivers: 0.05; Estuaries: 0.06–0.15 Tg N2O–N yr−1) [34]. Nitrogen lost
through leaching is one of the major sources that contribute to aquatic N2O emissions [33]. Leaching losses
of agricultural nitrogen inputs are closely linked with precipitation. ORCHIDEE-CNP and ORCHIDEE
show increased sensitivity of anomalies of nitrogen leaching from agricultural nitrogen additions to PRE
(supplementary figure 11), while simulations without agricultural nitrogen additions do not show increasing
trends despite the strong correlation between anomalies in nitrogen leaching and PRE (supplementary figure
12, r= 0.84, ORCHIDEE-CNP; r= 0.58, ORCHIDEE). Agricultural N2O additions that end up in inland
water systems may also play a role in the increasing trend of αPRE and N2O

PRE from atmospheric inversions,
although the magnitude is likely to be small considering the relatively small N2O fluxes from inland
waters.

The lack of temperature signal on the global scale N2O emission anomalies is partly due to spatial
aggregation (supplementary figure 13). At the local scale, from gridded inversions fluxes of N2O, anomalies
in temperature and precipitation play approximately equal roles in N2OEA. The relative importances of
temperature and radiation decrease at large spatial scales, while the importance of precipitation remains
high. Locally, temperature (or radiation) could have both positive and negative impacts on N2O emissions
(supplementary figure 14). For example, high temperature stimulates nitrifiers and denitrifiers that produce
N2O, while exacerbated soil drying under warming decreases N2O emissions [35] despite the effect also
depends on the interaction with precipitation. Warming reduces substrate availability for nitrification and
denitrification through enhancing plant growth and nitrogen uptake, but also boosts nitrogen supply
through increased nitrogen mineralization [35]. These positive and negative effects, typically involving
complex interactions among spatially diverse climatic, biological, edaphic and anthropogenic factors,
compensate in space and result in a small temperature (or radiation) signal at the global scale. In addition,
locations with high temperature anomalies are from the northern high latitudes (especially Siberia). In
Siberia, the N2O emission rate is relatively low and inverse estimations are largely uncertain due to very
sparse observations. Note here we did not quantify precipitation-temperature interactions, which might be
important locally.

Global N2O emissions have been accelerated over the last two decades, largely driven by anthropogenic
activities that intensify the global nitrogen cycle [14, 19]. Interactions between the expedited nitrogen
fertilization and intensified precipitation anomalies (associated with global warming) shift land N2O
emissions. We predict land N2O emissions to be more sensitive to precipitation anomalies in the future
under the business-as-usual fertilization practice and high emission climate scenarios. To support 10 billion
people in 2050, projected nitrogen fertilizer use will have to increase to 141 Tg N yr−1 (from 107 TgN yr−1 in
2015) under the business-as-usual practice [1]. The standard deviation of PRE is 42%, 36% and 26% higher
by the end of 21st century under the SSP5-85 (Shared Socioeconomic Pathways with a radiative forcing of
8.5 Wm−2 in 2100), SSP3-70 (radiative forcing: 7.0 Wm−2) and SSP2-45 (radiative forcing: 4.5 Wm−2),
respectively, from an ensemble of Earth system simulations (supplementary figure 15). Only under the
sustainable pathway, SSP1-26 (radiative forcing: 2.6 Wm−2), the standard deviation of PRE is not increased
by the end of this century. The tendency of global aridification and the expansion of the world’s dryland
under future warming climate [36, 37] also indicate a higher sensitivity of future land N2O emissions to
precipitation. We call for special attention on N2O emissions in farming of the semi-arid land, which
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could contribute to disproportionately high N2O emissions (per unit area) under its precipitation
variabilities.

Despite the robustness of the overall global trends, our understanding of the mechanism(s) driving
enhancements of αPREand N2OEA_PRE is still limited. We demonstrated the intensifying agricultural
nitrogen inputs as an important mechanism, but precise data on large-scale mineral fertilizer and manure
addition (especially the timing of applications) are lacking. Coordinated efforts on monitoring agricultural
nitrogen inputs are in great need. Many factors and types of disturbance, such as crop harvesting, soil tillage
and earthworm activity, could trigger local or temporal nitrogen surplus and N2O emission anomalies.
Whether these factors are regionally or globally important remain to be studied. Here as a first step, we
revealed the general relationship between land N2O emissions and precipitation anomalies, and focused on
the most critical factors at the global scale, while acknowledging many questions (e.g. differences among
countries/biomes/land uses) in this subject remain to be answered. We need more attention and community
efforts dedicated to monitor land N2O emission (with its covariates) and to improve process-based
understanding of N2O dynamics.

4. Conclusions

Through the top-down estimates of land N2O emissions from three independent atmospheric inversion
systems, we found a significant correlation (P < 0.001) between the interannual anomalies in the annual
growth rate of the global land N2O emissions and precipitation anomalies. The average sensitivity (αPRE) was
2.50± 0.98 Tg N2O–N per 100 mm of precipitation across the global land between 1998 and 2016. αPRE

increased with time during during 1998–2016, likely due to enhanced precipitation anomalies interacting
with increased nitrogen inputs to agricultural lands. αPRE generally increases with aridity and under future
climate conditions (with radiative forcing levels of 4.5, 7.0 and 8.5 Wm−2 by the year 2100).
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