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RESEARCH ARTICLE
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Over the past 2 to 3 decades, Chinese forests are estimated to act as a large carbon sink, yet the 
magnitude and spatial patterns of this sink differ considerably among studies. Using 3 microwave (L- and 
X-band vegetation optical depth [VOD]) and 3 optical (normalized difference vegetation index, leaf area 
index, and tree cover) remote-sensing vegetation products, this study compared the estimated live woody 
aboveground biomass carbon (AGC) dynamics over China between 2013 and 2019. Our results showed 
that tree cover has the highest spatial consistency with 3 published AGC maps (mean correlation value 
R = 0.84), followed by L-VOD (R = 0.83), which outperform the other VODs. An AGC estimation model 
was proposed to combine all indices to estimate the annual AGC dynamics in China during 2013 to 2019. The 
performance of the AGC estimation model was good (root mean square error = 0.05 Pg C and R2 = 0.90 
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with a mean relative uncertainty of 9.8% at pixel scale [0.25°]). Results of the AGC estimation model showed 
that carbon uptake by the forests in China was about +0.17 Pg C year−1 from 2013 to 2019. At the regional 
level, provinces in southwest China including Guizhou (+22.35 Tg C year−1), Sichuan (+14.49 Tg C year−1), 
and Hunan (+11.42 Tg C year−1) provinces had the highest carbon sink rates during 2013 to 2019. Most of 
the carbon-sink regions have been afforested recently, implying that afforestation and ecological engineering 
projects have been effective means for carbon sequestration in these regions.

Introduction
China’s forested areas represent a carbon sink that contributes 
substantially to regional and global carbon storage [1,2]. However, 
both the magnitude and spatial patterns of the carbon changes 
in China differ across published reports. A precise quantification 
of the annual aboveground biomass carbon (AGC) dynamics is 
therefore important for understanding how China’s forests con-
tribute to the global carbon balance [3,4]. Satellite records offer 
the potential to monitor AGC changes by combining diverse 
remote-sensing sources including optical, synthetic aperture radar 
(SAR), light detection and ranging (LiDAR), and microwave sen-
sors [5–10]. Yet, current assessments of the AGC dynamics in 
China using satellite records remain highly uncertain [11,12].

Optical vegetation indices (VIs) are related to the greenness 
components of the vegetation and thus indirectly to AGC [13]. 
VIs could provide better spatial coverage with high resolution 
and are available for long-term time series, which can provide 
effective global monitoring of vegetation trends [14]. Previous 
studies have used optical VIs for AGC estimation in different 
regions, e.g., tropical regions [5,7,15], in the USA [16,17], and in 
China [9,18–20]. Xu et al. [21] developed globally estimates of 
carbon stock changes of live woody biomass using measurements 
from ground, air, and space. These AGC maps were produced by 
integrating remote-sensing data (e.g., optical, SAR, and LiDAR) 
and field measurements using the machine learning methods 
[22,23]. They constituted the best benchmarks to date for car-
bon stored in living woody vegetation and have been used as 
benchmark maps for monitoring the AGC dynamics over the 
global and tropical regions [6,10,24,25]. However, optical VI sig-
nals are known to be affected by clouds and aerosols and suffer 
from the saturation problem in densely vegetated areas [26,27]. 
Moreover, the retrieved AGC values using these approaches dif-
fer in both magnitude and spatial patterns among the different 
studies and are available for only a single epoch, and therefore 
cannot be used to monitor the temporal dynamics of carbon 
stocks [24,28]. Although LiDAR is considered as the most prom-
ising method for estimating AGC, there was no dedicated space-
borne LiDAR designed specifically to estimate vegetation AGC 
until the launch of Global Ecosystem Dynamics Investigation 
(GEDI) in 2019 [29].

Vegetation optical depth (VOD) retrieved from microwave 
sensors measures the vegetation water content, thus providing 
a useful proxy for monitoring AGC dynamics [6,10,30–32]. 
Compared to optical VIs, VOD products are sensitive to both 
leafy and woody vegetation components and are mostly insen-
sitive to atmospheric and cloud effects [33,34]. Changes in 
AGC stocks have been inferred using VOD products from 
multiple microwave sensors, including VOD products at high 
frequency (C-, X-, and K-bands, 6.9 to 18.7 GHz) [32,35–40], 
and at low frequency (L-band, 1.4 GHz) [41,42]. Low-frequency 
VOD has been shown to have better capabilities to monitor the 
AGC dynamics due to the higher penetration capacity of the 

microwave observations at large wavelengths (~20 cm at L-band) 
[6,10,24,25,43]. Therefore, L-band VOD (L-VOD) is less sen-
sitive to saturation effects and more sensitive to AGC held in 
stems and branches than high-frequency VOD products [44,45]. 
Yet, radio frequency interference (RFI) at L-band degrades locally 
the performance of L-VOD for monitoring of AGC [46,47], 
especially over some regions in China. High-frequency VOD 
products are less affected by RFI but can suffer from saturation 
in dense forests [48].

Given the respective weaknesses and advantages of VODs 
and VIs, combining the 2 types of data could be a potential way 
to improve the quantification of the AGC dynamics [45,49–51]. 
Assessing the sensitivity of VODs and VIs to AGC is, however, an 
essential preliminary step in any attempt to monitor AGC dynam-
ics from remote-sensing. The performance of VODs for AGC 
monitoring has been evaluated at global [48,52,53] or regional 
scales, for example, in tropical regions [54–56], Australia [57,58], 
and the USA [59]. However, there is a lack of studies in China, 
especially considering the strong influence of RFI on L-VOD 
over China [47].

Several empirical functions have been proposed to spatially 
regress AGC against VOD at large scales, e.g., linear regressions 
[24], arctangent regressions [6,32,43], and logistic regressions 
[48,55]. However, the relationships between AGC and VODs/
VIs are quite complex and may not be well captured by these 
regression functions [48,54]. As an effective tool to fit complex 
data with nonlinear partial relations, machine learning approaches 
have been increasingly used for forest structure and AGC map-
ping [21,60]. Among all machine learning approaches, random 
forest (RF) models [61] show excellent performance in mode-
ling the complex relationships between different land surface 
variables and AGC [62]. An advantage of RF is that multiple pre-
dictors can be incorporated without making further assump-
tions about their covariance structure, which makes RF models 
suitable for describing nonlinear relationships between AGC 
and VODs/VIs.

The objectives of this study are as follows: (a) to assess the 
performances of 3 VODs (e.g., L-VOD, IB-VOD, and LPDR-
VOD) and 3 optical VIs (e.g., normalized difference vegetation 
index [NDVI], leaf area index [LAI], and tree cover [TC]) in pre-
dicting AGC across China using 3 AGC benchmark maps; (b) to 
produce AGC products from the combination of VODs and VIs 
using a RF model; and (c) to quantify the interannual dynamics 
of AGC stocks across China for the period 2013 to 2019.

Materials
Forests, which cover more than 20% of mainland China [3], are 
mainly located in the northeastern, southern, and southwestern 
regions. Over the past 2 decades, ecological restoration projects 
were implemented in several regions (Fig. 1), including: Three-
North Shelter Forest Program, Tibetan Plateau, Loess Plateau, 
and Southern China [63].
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Microwave VOD products
L-VOD
L-VOD was retrieved from the Soil Moisture and Ocean 
Salinity (SMOS) satellite using the SMOS-IC algorithm (ver-
sion 2) [41,42]. Version 2 of the L-VOD product provides daily 
global L-VOD and soil moisture (SM) retrieved from the 
ascending and descending data at 0.25° resolution for 2010 to 
2020. The L-VOD product was retrieved by the L-band (1.4 GHz) 
microwave emission of the biosphere model, without any 
auxiliary hydrology or vegetation products as inputs [64]. In 
this study, the observations affected by RFI for which root mean 
square error (RMSE) associated with the L-VOD product is 
larger than 8 K were filtered out. In addition, observations 
affected by strong topography, frozen conditions, and the sum 
of urban, water and ice fractions higher than 10% were excluded 
[41]. The yearly L-VOD values for a given pixel were calculated 
as the medians of all available ascending and descending retrievals 
in the year. The SMOS-IC L-VOD product was selected here as 
it has been shown to exhibit a stronger relationship with AGC 
than other SMOS products [55].

IB-VOD
The IB-VOD product was retrieved by the X-band microwave 
emission of the biosphere model [39]. IB-VOD was retrieved from 

the Advanced Microwave Scanning Radiometer 2 (AMSR2) X-band 
(10.7 GHz, with a spatial resolution of 0.25°) descending data 
(local time = 1:30 AM) considering proximal conditions of the air, 
canopy, and soil at night. To avoid the ill-posed issue caused by 
retrieving both SM and VOD from mono-angular and dual-
polarized observations (AMSR2), the X-band microwave emission 
of the biosphere model uses the ERA5 SM product [65] as input.

LPDR-VOD
LPDR-VOD was derived from the land parameter data record 
(LPDR, version 2) [35]. LPDR provides a long-term (2002 to 
2020) global record of the daily X-VOD products at 0.25° resolu-
tion. It is retrieved from the AMSR for Earth Observing System 
(AMSR-E) and AMSR2 sensors at 10.7 GHz based on both 
ascending (13.30) and descending (01.30) data. Grid cells affected 
by frost conditions, large water bodies, strong precipitation, 
or RFI were excluded using the quality assessment files [66].

Optical VIs
We applied 3 optical VIs in this study that are commonly used to 
estimate AGC in previous studies (Table 1) [22,67], including:

1. � NDVI, provided by the monthly MODIS product 
(MOD13A3) at 1-km spatial resolution [68]. NDVI is 
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Fig. 1. Location of the provinces and 4 main ecological restoration regions (the Three-North Shelter, Tibetan Plateau, Loess Plateau, and Southern China) in China.
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widely used to monitor vegetation cover [69,70] and 
biomass [13,16].

2. � LAI, derived from the 8-day MODIS product (MOD15A2) 
at 500-m spatial resolution [71]. LAI is an important indi-
cator of plant growth and radiation use efficiency [72].

3. � TC, derived from the yearly MODIS product (MOD44B) 
at 250-m spatial resolution [73], represents the percent 
tree canopy (≥5 m) cover [74].

In this study, the pixels with snow or cloud were filtered out 
using the quality assessment data accompanying the product. 
Usually, only NDVI and EVI are referred to as vegetation indices. 
But for convenience, NDVI, EVI, LAI and TC products were 
referred to as vegetation indices as in previous studies [52]. All 
VI products were aggregated to 0.25° through simple averaging 
to match the spatial resolution of VODs.

AGC benchmark maps
This study used 3 AGC benchmark maps to assess the perfor-
mances of VIs and VODs to AGC (Table 1), including:

1. � Saatchi map, estimating AGC in the pan-tropics at 1-km 
resolution by merging data from field measurements, 
GLAS LiDAR, MODIS, and Quick Scatterometer [7]. 
The Saatchi map used here is an updated version that 
represents global AGC for 2015 by combining data from 
the SRTM, Landsat, and Advanced Land Observing 
Satellite (ALOS) [75].

2. � Climate Change Initiative (CCI) map, a global map of AGC at 
100-m resolution for 2017 using multiple remote-sensing  
observations [76]. The CCI map was produced by com-
bining data from the SAR C-band Sentinel-1 and L-band 
ALOS-2 Phased Array L-band SAR (PALSAR-2).

3. � Saatchi-WT map, produced by merging the forest AGC 
map and nonforest AGC map [77]. The forest and non-
forest regions were identified using the Liu et al. [78] 
land cover map [78]. The forest AGC map was estimated 
using a weighting technique (WT) method to merge the 
5 published AGC products [5,7–9,19]. The WT method 
was trained using independent field observations across 

China [79] (Supplementary Text). The nonforest AGC map 
was computed from the Saatchi map over nonforest regions.

The spatial resolution of all AGC maps was aggregated to 
0.25° by simple averaging. The units of biomass density (Mg/ha) 
were converted to carbon density (Mg C/ha) by multiplying the 
original values by 0.5 [5].

Methods
In this study, we focused on aboveground carbon stocks for live 
woody vegetation and masked the nonvegetated pixels domi-
nated by the following land-cover classes: “settlement”, “water”, 
“bare and sparse vegetation”, and “wetland” using the CCI land 
cover dataset [80].

Considering the availability of the products, only L-VOD, 
LPDR-VOD, NDVI, LAI, and TC were used for estimating AGC. 
The VODs and VIs in the same year 2015 were chosen as the 
baseline for model calibration. We then estimated the yearly AGC 
dynamics across China for the period 2013 to 2019.

Comparison of VIs and VODs to benchmark  
AGC maps
The relationship of VIs and VODs to AGC was indicated by the 
Pearson correlation coefficient R [81] (Eq. 1) by comparing the 
AGC datasets with VIs and VODs, as defined below:

where VOD and AGC are the values of VOD and benchmark 
AGC, respectively. VOD and AGC are the average values of VOD 
and benchmark AGC, respectively. We used P value (P < 0.05) 
to define the significance level of the correlation.

Estimation of AGC using RF
The yearly AGC stocks were estimated by combining VODs 
and VIs with RF models [61]. Firstly, an AGC model hereafter 
AGCmain given by Eq. 2 was trained using all 5 predictors in 2015 

(1)R =

∑
�

VOD − VOD
��

AGC − AGC
�

�

∑
�

VOD−VOD
�2 ∑�

AGC−AGC
�2

Table 1. Overview of the VODs, VIs, and benchmark AGC datasets used in this study.

Dataset Products/Sensor Period Resolution Temporal Reference

L-VOD SMOS-IC V2 2013–2019 0.25° Daily Fan et al. [6]

IB-VOD AMSR2 2013–2019 0.25° Daily Wang et al. [12]

LPDR-VOD AMSE-E and AMSE2 2013–2019 0.25° Daily Du et al. [35]

NDVI MOD13A3 2013–2019 1 km Monthly Didan. [68]

LAI MOD15A2 2013–2019 500 m 8 d Myneni et al. [71]

TC MOD44B 2013–2019 250 m Yearly Dimiceli et al. [73]

Saatchi GLAS LiDAR, QSCAT radar, 
field data, NDVI, LAI, and SRTM

2015 1 km Yearly Saatchi et al. [7]

CCI Sentinel-1, ALOS-2 PALSAR-2, 
field data, canopy height, and SRTM

2017 100 m Yearly Santoro and Cartus. [76]

Saatchi-WT Data fusion 2010s 1 km Yearly Supplementary Text
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(L-VOD (VODL), LPDR-VOD (VODLPDR), NDVI, LAI, and TC), 
and the benchmark AGC maps were the response variables. The 
AGCmain model was expressed as the linking model (f) between 
benchmark AGC and the predictors in the framework of RF:

where AGCmain is the retrieved AGC value.
As there were missing values in the AGCmain estimates caused 

by the missing observations of L-VOD affected by RFI [41,47], 
an alternative AGC model (AGCnoLVOD, Eq. 3), as a supplemen-
tary model to AGCmain, was trained using the same predictors 
but without L-VOD. The supplementary AGC model (hereafter 
AGCnoLVOD) was defined as:

AGCnoLVOD was used to predict AGC estimates for pixels with miss-
ing estimates from AGCmain. In a final step a model (AGCmerge, 
Eq. 4) was defined to merge AGCmain and AGCnoLVOD to estimate 
the annual AGC density from 2013 to 2019.

The AGCmerge model was then applied to the data for each year 
to derive maps of annual AGC density for 2013 to 2019.

To account for the uncertainties in the benchmark AGC 
maps, we used all 3 AGC maps to train the AGC model. Thus, 
3 calibrated AGC models were obtained. Following Fan et al. 
[6], assuming that a good calibration result could be obtained, 
the AGC model adds a temporal dimension to static maps and 
provides a “space for time” replacement. The mean of these 
3 AGC values was calculated to estimate the yearly AGC maps 
during 2013 to 2019 across China. The range (i.e., minima and 
maxima) of the 3 AGC values were also calculated, as they pro-
vide the uncertainty for the retrieved AGC estimates.

Validation of AGC estimates
We used a bootstrap and cross-validation method to evaluate 
the performance of AGCmain, AGCnoLVOD, and AGCmerge. Three 
sets of bootstrapped AGC estimates were computed on the basis 
of 3 calibrations of the AGC model. A bootstrap sampling 
method (sampling rate = 80%, iterations = 1000) was used 
to calibrate each AGC model (e.g., AGCmain, AGCnoLVOD, and 
AGCmerge); the remaining (20%) was used for the validation of 
the AGC estimates. The uncertainties associated with the AGC 
estimates were evaluated using 2 metrics, including the adjusted 
coefficient of determination (R2) and RMSE between the bench-
mark AGC maps and the RF-derived AGC estimates. Also, 
the trends and the changes of AGCmain were compared with 
AGCnoLVOD for their overlap pixels, to confirm that AGCnoLVOD 
provide similar results to AGCmain.

The uncertainties in the AGCmerge estimates at pixel scale 
(Uncertaintiespixel(%)) were defined as the RMSE of the AGCmerge 
model (RMSEAGCmerge) relative to the AGC density from the 
corresponding benchmark maps (AGC ⋅ densitybenchmark ⋅ map), 
expressed as Eq. 5. RMSEAGCmerge at the pixel scale was estimated 
using the bootstrap approach mentioned above.

Results

Comparison of VIs and VODs to the AGC  
benchmark maps
All VOD products showed similar spatial patterns with VIs and 
benchmark AGC maps (Fig. 2A to C): high VODs/VIs/AGC 
values can be observed in the forests of southern and northeast-
ern China, and low VODs/VIs/AGC values can be observed in 
the temperate steppe and Qinghai-Tibet plateau alpine. However, 
large differences can be observed among the 3 benchmark AGC 
estimates (Fig. 2G to I). In consideration of the total carbon 
stock in the 3 benchmark AGC maps (Table S1), the values range 
from 10.23 Pg C (CCI), 12.57 Pg C (Saatchi-WT), to 14.61 Pg C 
(Saatchi). These differences in AGC stocks can be partly explained 
by the fact that these benchmark maps have different coverage, 
which were limited by the different AGC retrieval methods [67]. 
Another potential reason is that all AGC benchmark maps con-
tain uncertainties and biases [18]. Thus, we used all the different 
maps to construct the RF model estimating the AGC dynamics 
over China in this study.

Before carrying out the retrievals of AGC, we firstly compared 
the VIs/VODs indices against the 3 benchmark AGC maps and 
found nonlinear relationships (Fig. 3 and Figs. S1 to S2). The 
highest correlation between the VIs and the benchmark AGC 
products was obtained for the TC product (R = 0.80 to 0.88), 
followed by NDVI (R = 0.65 to 0.75), while the lowest correlations 
were found for LAI (R = 0.60 to 0.68) (Table 2). As an example, 
it can be seen that NDVI and LAI quickly saturate for Saatchi 
AGC values above 25 Mg C/ha (Fig. 3D and E). Similar results 
can be found for the comparison between VIs and other bench-
mark maps, e.g., CCI (Fig. S1) and Saatchi-WT maps (Fig. S2).

With respect to VODs, L-VOD showed the highest corre-
lation with benchmark AGC maps (R = 0.80 to 0.85), followed 
by LPDR-VOD (R = 0.72 to 0.80) and IB-VOD (R = 0.67 to 
0.74) (Table 2). As an example, the scatterplots between L-VOD 
and Saatchi AGC showed noticeable variation when AGC > 
75 Mg C/ha (Fig. 3A). For IB-VOD and LPDR-VOD, both of 
them tended to saturate with AGC values greater than 50 Mg 
C/ha (Fig. 3B and C). Similar results can be seen for the compar-
ison of VODs against the CCI (Fig. S1) and Saatchi-WT (Fig. S2) 
maps. In summary, IB-VOD and LPDR-VOD all display satu-
rated signals when AGC values are greater than 50 Mg C/ha, 
whereas L-VOD shows a higher spatial correlation to AGC with-
out strong signs of saturation.

The intercomparisons between VIs/VODs and benchmark 
AGCs were made to evaluate their expected performance for 
monitoring AGC, using the mean values of R as an indicator 
(Table 2). In summary, we found the highest correlation values 
were obtained by TC (with a mean value of R of 0.84), followed 
by L-VOD (R = 0.83), LPDR-VOD (R = 0.76), IB-VOD (R = 
0.71), NDVI (R = 0.70), and LAI (R = 0.65).

Calibration and evaluation of the AGC  
estimation models
The AGCmain model was produced by merging optical and micro-
wave indices with a RF algorithm. However, the missing estimates 
of the AGCmain model are found over southern and eastern China, 
limited by the availability of L-VOD data (Fig. 4A). As a sup-
plement model, AGCnoLVOD was used to provide AGC estimates 
for pixels with missing estimates from the AGCmain model. The 
AGCnoLVOD estimates almost covered the whole study region; 

(2)AGCmain = f
(

VODL,VODLPDR,NDVI,LAI,TC
)

(3)AGCnoLVOD = f
(

VODLPDR,NDVI,LAI,TC
)

(4)AGCmerge = merging
(

AGCmain,AGCnoLVOD

)

(5)Uncertaintiespixel(%) =
RMSEAGCmerge

AGC ⋅ densitybenchmark⋅map
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thus, combining AGCmain and AGCnoLVOD provided a higher 
spatial coverage (81%) of China, relative to that obtained from 
the AGCmain estimates (63%) (Fig. 4B and C). The percentage 
increase of mean-squared error (%IncMSE) was calculated to 
evaluate the importance of each variable in RF model. As can 
be seen from Fig. S4, TC and L-VOD products were found the 
most important predictors in the RF model.

Both the AGCmain and AGCnoLVOD models nicely fit the spatial 
pattern of benchmark AGC, as indicated by the high R2 (0.90, 
0.89 for AGCmain and AGCnoLVOD models) and low RMSE values 
(8.6 Mg C/ha and 9.3 Mg C/ha for AGCmain and AGCnoLVOD 
models) (Fig. 5). Taking the Saatchi map as an example, both 
AGCmain and AGCnoLVOD have overcome the saturations issues 
observed in relationships derived from single index: AGCmain 
and AGCnoLVOD can fit the spatial changes for AGC stocks larger 
than 100 Mg C/ha. A similar ability of AGCmain and AGCnoLVOD 
can be observed for low carbon density, while single index gen-
erally showed a high dispersion (e.g., L-VOD, Fig. 3A).

In the regions of overlap between the AGCmain and AGCnoLVOD 
estimates, the general trends and the magnitude of the changes 
in AGCmain are very similar to those in AGCnoLVOD (Fig. 6). For 
example, both the AGCmain and AGCnoLVOD estimates calibrated 
with the Saatchi map (Fig. 6A) showed generally a net increase 
in AGC stocks during 2013 to 2017 and an AGC decrease in 

2017, in line with the AGC dynamics from the estimates cali-
brated by the other benchmark maps (Fig.6B and C).

In terms of magnitude of AGC changes, the net AGC changes 
estimated from AGCnoLVOD are 12% to 16% higher than those 
estimated from AGCmain over the study period (Fig. 6). As the 
AGCnoLVOD model was only used over 26% of the study region, 
this difference will contribute to only a difference of 3% to 5% 
of the net AGC changes over China during 2013 to 2019. This 
suggests that the slight differences in the AGC estimates from 
the AGCnoLVOD and AGCmain models can be neglected when we 
consider the whole study period/area. In the following, we will 
focus on AGC estimates obtained from the model (AGCmerge) 
merging the AGCnoLVOD and AGCmain models. The general trends 
and the magnitude of the AGCmerge dynamics using 3 sets of 
calibrated parameters are very similar for the 3 estimates (Fig. 7). 
The general trends of the changes from each variable are very 
similar to those from AGC (Fig. S5).

Furthermore, the cross-validation using a bootstrap method 
showed that the AGC stocks estimated by AGCmerge combining 
AGCmain and AGCnoLVOD have a high accuracy, as indicated by 
a RMSE of 0.05 Pg C. The good performance of AGCmerge is also 
indicated by the high R2 of 0.90 and low relative uncertainties 
(9.8%) in the pixel-scale AGC density estimates. Moreover, a 
better performance of AGCmerge can be observed at AGC density 
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larger than 40 Mg C/ha (with relative uncertainties lower than 
10%), relative to low AGC density (lower than 40 Mg C/ha) 
where the relative uncertainties are larger than 10% (Fig. 8B). 
The latter mainly correspond to the areas distributed across 
northern China (Fig. 8A). These results showed that the AGCmerge 
model has a satisfactory accuracy for estimating AGC stocks 
over China.

AGC dynamics over the study period
The yearly AGC across China estimated by the AGCmerge model 
showed a net AGC sink of +0.17 Pg C year−1 during 2013 to 2019 
(the value is a mean estimated from 3 calibrations; a positive 
value indicates a net sink of carbon in aboveground biomes; 
Fig. 9A). Rapid AGC increases can be observed in 2014 to 2016 
(+0.26 Pg C year−1) and 2018 to 2019 (+0.15 Pg C year−1), 

Fig. 3. The spatial relationship (R) between Saatchi AGC and VIs/VODs from (A) L-VOD, (B) IB-VOD, (C) LPDR-VOD, (D) NDVI, (E) LAI, and (F) TC. Solid blue lines are the fits by 
a logistic function following Rodríguez-Fernández et al. [55] with the parameters given in Table S1.

Table 2. Spatial correlation (R) between VIs/VODs and benchmark AGCs using Eq. 1.

Products L-VOD IB-VOD LPDR-VOD NDVI LAI TC Mean

Saatchi 0.83 0.71 0.77 0.70 0.66 0.85 0.75

CCI 0.80 0.67 0.72 0.65 0.60 0.80 0.71

Saatchi-WT 0.85 0.74 0.80 0.75 0.68 0.88 0.78

Mean 0.83 0.71 0.76 0.70 0.65 0.84 --

Note: All the correlations are significant considering the criteria P < 0.05.
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albeit with AGC losses of −0.14 Pg C in 2017. Carbon losses 
(−0.02 Pg C year−1) from areas between 40°N to 50°N of China 
(Northeast China) were offset by a carbon sink (+0.19 Pg C year−1) 
in the rest of the regions. The largest carbon sink (+0.10 Pg C year−1) 
was found around 20°N to 35°N of southern China (Fig. 10), 
which accounts for 56% of the total carbon sink in China. The 
carbon sink of southern China is mainly attributed to the Guizhou 
(+22.35 Tg C year−1) and Sichuan (+14.49 Tg C year−1), followed 
by the Hunan (+11.42 Tg C year−1), Yunnan (+8.11 Tg C year−1), 
Guangdong (+7.37 Tg C year−1), and Guangxi (+5.22 Tg C year−1) 
provinces. Guizhou is also the province having the largest car-
bon sink over China in the study period. The carbon sink of the 
Qinghai and Tibet provinces, as referred to as the “Tibetan Plateau”, 
ranked 4th (+9.79 Tg C year−1) and 5th (+9.33 Tg C year−1) 
among all provinces. Other regions supported by ecological res-
toration projects also showed a carbon uptake (Figs. 9 and 10): 
Loess Plateau (including the Shaanxi, Ningxia, and Shanxi 
provinces) has a net carbon sink of +0.03 Pg C year−1, and North 

Shelter Forest (e.g., Xinjiang, Gansu, and Neimongol provinces) 
has a carbon increase of +0.01 Pg C year−1. It is worth noting that 
Northeast China (e.g., Heilongjiang, Jilin, and Liaoning provinces) 
showed a carbon losses of −0.02 Pg C year−1 during 2013 to 2019.

Discussion
Intercomparison between VIs/VODs and benchmark 
AGC maps
The highest correlation between VIs and AGC benchmark maps 
were found for the MODIS TC products (Fig. 3). The possible 
reasons could be that the TC product is not fully independent 
from the benchmark AGCs, given that the VIs such as NDVI 
and TC were used as inputs for the retrieval of benchmark AGCs 
[5,7,9], and these VIs are all derived from MODIS reflectance 
bands. Moreover, previous independent evaluations found errors 
in the MODIS TC product, such as overestimation in sparsely 
vegetated areas and underestimation in densely vegetated areas 

Fig. 5. Performance of the 2 RF models using different predictors based on the Saatchi map, calculated using a bootstrap cross-validation method (sampling rate = 80%, 
iterations = 1000). (A) AGCmain using VODL, VODLPDR, NDVI, LAI, and TC. (B) AGCnoLVOD using VODLPDR, NDVI, LAI, and TC. The colors show the density of scatter plots.
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Fig. 4. The AGC estimates from (A) AGCmain, (B) AGCnoLVOD, and (C) AGCmerge models in 2015. The AGC estimates were computed as the median AGC values obtained from the 
3 calibrated AGC models.
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[82,83]. Compared to ground reference data, previous studies 
showed that the MODIS TC product was affected by overesti-
mations in croplands in regions such as South America and 
Southeast Asia [84] and was affected by severe underestima-
tions in semiarid drylands [85].

Our results indicated that optical VIs such as NDVI and LAI 
have low correlations with benchmark AGCs and are saturated 
over dense vegetation with AGC values higher than 25 Mg C/ha 
(Figs. S1 and S2), in agreement with previous studies [52,55]. To 
compare the relationship linking VOD and AGC to the relation-
ship between other VIs and AGC, scatter plots similar to those 
of Fig. 3 were computed using Saatchi’s AGC with respect to 
NDVI and EVI (Fig. S3). It can be seen that there are no notice-
able differences between NDVI and EVI, and both NDVI and 
EVI quickly saturate for AGC values above 50 Mg C/ha. These 
results are likely to be related to the fact that NDVI, EVI, and 
LAI are sensitive to the green vegetation cover, and not to the 
total AGC in dense vegetation [70]. However, VIs could provide 
better spatial coverage with high resolution and are available for 
long-term time series, which can provide effective global mon-
itoring of vegetation trends [14]. A complementary use of VIs 
and VODs can thus allow for more complete monitoring of veg-
etation resources [51].

Among VODs, the spatial correlation between L-VOD and 
benchmark AGCs is higher than for the other VODs (Fig. 3A 
to C). This is due to the stronger penetration capacity of VOD 
retrieved at the L-band than at the C- and X-bands [46] and is 
thus more sensitive to the vegetation features of the whole can-
opy, including also the woody component [47,86]. This agrees 
with Li et al. [48] that showed that L-VOD maps are better 
correlated with AGC benchmark maps than higher-frequency 
VOD products (e.g., X-VOD and C-VOD) at the global scale.

Note that both IB-VOD and LPDR-VOD tended to saturate 
for AGC values higher than 50 Mg C/ha (Figs. S1 and S2). This 

result supports the findings of Chaparro et al. [54], who found 
that VOD at higher frequencies (e.g., X-band and C-band), as 
well as optical indices, saturates in dense vegetation in the trop-
ics. This may lead to uncertainties in the AGC estimation using 
IB-VOD and LPDR-VOD in the tropical forests of southern 
China. Conversely, IB-VOD and LPDR-VOD products are more 
sensitive to the top of the canopy vegetation features, making 
them more suitable for monitoring temporal changes in the 
green vegetation components [46,48].

Regarding the different benchmark AGC maps, the best 
correlation values of benchmark AGCs with VIs and VODs 
were generally observed for the Saatchi-WT map (with a mean 
value of R = 0.78), followed by the Saatchi map (with a mean 
value of R = 0.75) (Table 2). This is in line with the findings of 
Chang et al. [77] showing that the Saatchi-WT map showed 
better accuracy than the other AGC products, when comparing 
them against in situ measurements. However, it is worth noting 
that all benchmark maps used information from MODIS VIs, 
due to the limited availability of independent sources of LiDAR, 
although GEDI can provide more observations for biomass in 
the following years [29]. The high correlation between the inde-
pendent VODs and AGCs provide an alternative way to esti-
mate AGC stocks, as proposed in this study.

Continuous carbon sink over China
Our estimated carbon sink (+0.17 Pg C year−1) during 2013 to 
2019 are comparable to the values (+0.17 Pg C year−1) obtained 
during the 2000s reported by Jiang et al. [11] (Table 3). Also, the 
recent estimates by Harris et al. [87] indicated that forests in 
China were a net carbon sink of +0.14 Pg C year−1 during 2000 
to 2019, which is close to our estimates for woody vegetation. 
Our estimates are comparable to recent estimates from Xu et al. 
[21] using multiple remote-sensing dataset, who reported a net 
carbon gain in live biomass of China of +0.17 Pg C year−1 for 

Fig. 6. Comparisons between AGCmain and AGCnoLVOD changes over the areas of overlap. The AGC changes were expressed by the AGC stocks relatively to 2013. AGC changes 
estimated by the benchmark AGC maps of (A) Saatchi, (B) CCI, and (C) Saatchi-WT.

Fig. 7. AGC changes over China relatively to 2013 estimated by AGCmerge calibrated by different benchmark AGC maps. AGC changes estimated by the benchmark AGC maps 
of (A) Saatchi, (B) CCI, and (C) Saatchi-WT.
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2013 to 2019. These results confirmed that China has been a 
carbon sink in regards to biomass over the past 2 decades.

At the regional scale, in southern China, we found an increase 
of AGC of +0.10 Pg C year−1, which is quite similar to the estimate 
of +0.11 Pg C year−1 obtained by Tong et al. [25] for 2002 to 2017 
(Figs. 9 and 11). This also supports the results of Brandt et al. [88] 
and Tong et al. [89], which have found increased vegetation 
growth and carbon stocks in southern China during the recent 
decade. In southern China, our results suggested that the regions 
with the largest carbon sinks are the Guizhou, Hunan, and 
Guangdong provinces, in line with the findings of Wang et al. 
[12]. This can be explained primarily by increasing areas of 
newly planted forests, as a consequence of intensive national 
afforestation/reforestation programs implemented in the past 
few decades [63,90].

In northeast China, our results indicated a carbon loss of 
−0.02 Pg C year−1. In that region, Piao et al. [2] estimated a small 
carbon source (−0.004 Pg C year−1) during the 1980s and 1990s 
using both inventory-satellite-based and atmospheric inversion 

methods. This carbon loss was probably caused by overharvest-
ing and degradation of forests [2,78].

Our estimates of the carbon sink are lower than the estimates 
using inversion of atmospheric data. For example, the inversion 
results constrained by ground-based and space-based measure-
ments of atmospheric CO2 indicated a net terrestrial CO2 sink 
in China of about 0.30 to 0.43 Pg C year−1 in 2010 to 2015 
[91–93]. Relative to our results, this larger carbon sink values 
could be explained by the fact that our estimates do not account 
for the contribution for carbon sink from belowground vege-
tation biomass and soil organic matter.

Relative to the results for the 1980s and 1990s, the magnitude 
of the carbon stock increases presented in this study are higher 
than those reported by previous estimates (Table 3). For example, 
Fang et al. [1] estimated the carbon sink of vegetation biomass 
in China at [+0.096, +0.106] Pg C year−1 between 1981 and 2000 
using forest inventory data. Piao et al. [2] estimated the terres-
trial carbon sink of China at +0.177 Pg C year−1 for the same 
period, of which 58% (+0.105 Pg C year−1) was attributed to 
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Fig. 8. Maps of the uncertainties of AGCmerge (Uncertaintiespixel) in 2015 in terms of spatial patterns (A) and Uncertaintiespixel associated with AGC density (B).

Fig. 9. Temporal variations in annual AGC (Pg C), expressed as the difference from 2013 values. (A) Annual variations in AGC in (A) China, (B) Southern China, (C) Three-North 
Shelter Forest, (D) Tibetan Plateau, (E) Loess Plateau, and (F) Northeast China.
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vegetation biomass. Our estimations of the biomass carbon stock 
increases are also higher than the estimates from Pan et al. [90], 
who reported a forest carbon sink of +0.12 Pg C year−1 in China 
during 2000 to 2007 using inventory data. This difference sug-
gests that forest biomass carbon gains in the 2010s substantially 
increased in comparison to the 1980s and 1990s in China.

Limitations of this study
High uncertainties in our AGC estimates were observed in 
regions with low AGC density. This is the case also in other 

studies analyzing remote-sensing AGC retrievals. For exam-
ple, AGC benchmark maps mainly derived from GLAS LiDAR 
observations have high uncertainties at low AGC density [7]. 
This could be explained by the fact that GLAS LiDAR shots 
only marked forest canopies as valid observations; thus, the 
regions with low AGC density (e.g., nonforest regions) could 
be inaccurately estimated [21]. However, considering the lim-
ited contribution of areas with low AGC density to the AGC 
dynamics over China, the impact of the low performance of 
AGC estimates at low AGC density is limited.

A B

Fig. 10. Spatial patterns of the net AGC dynamics across China during 2013 to 2019. (A) Average AGC density (in Mg C/ha) and net AGC change for 2013 to 2019 summed for 
each province (in Tg C year−1). (B) Net AGC change for 2013 to 2019 (summed per latitude). The corresponding pixel-scale AGC dynamics are shown in Fig. 11.

Table 3. Carbon sinks (Pg C year−1) for China documented in the scientific literature.

Category Carbon sink Period Method Reference

Vegetation 0.096–0.106 1980s–1990s Inventory Fang et al. [1]

0.105 ± 0.048 1980s–1990s Inventory Piao et al. [2]

0.092 ± 0.074 1980s–1990s Process model Piao et al. [2]

0.17 ± 0.06 2000s Inventory Jiang et al. [11]

0.17 2013–2019 Maps Xu et al. [21]

Forest 0.075 ± 0.035 1980s–1990s Inventory Fang et al. [1]

0.13 ± 0.04 2000s Inventory Jiang et al. [11]

0.104 2000s Inventory Jiang et al. [11]

0.115 2000s Inventory Pan et al. [90]

0.14 2000–2019 Maps Harris et al. [87]

0.17 2013–2019 VOD and VI Our study
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To gap-fill the missing observations of L-VOD (Fig. S6), a 
merging model was proposed to produce a more spatially com-
plete coverage of the China AGC product. Effects of RFI on 
L-VOD, which vary in both space and time, could affect our 
estimates of the interannual variations of AGC. Meanwhile, the 
effects of RFI on L-VOD leads to missing observations and limits 
its applicability for monitoring seasonal variation of AGC over 
some regions in China [6]. However, the RFI effects on L-VOD 
have strongly decreased over China since 2016 [47].

The coarse spatial resolution (0.25°) of our AGC product 
limits its applicability for monitoring fine-scale carbon losses 
and gains, e.g., related to disturbance regimes. As different land 
cover types are often mixed within a single pixel, the carbon 
change of AGC observed in a 0.25° grid cell comprises all land 
covers including forests and nonforest ecosystems, representing 
a mix of different processes (e.g., deforestation, forest degrada-
tion, and reforestation). Our pixel-level estimates of AGC sinks 
are admittedly conservative as a result of the coarse spatial res-
olution of the VOD product, which inevitably represents aver-
aged estimates.

Considering the large spatial mismatch between AGC esti-
mates (0.25°) and point-scale measurements, direct evaluation 
of the AGC estimates compared with in situ measurements will 
result in large bias, especially over strongly mixed 0.25° pixels, 
e.g., mixed pixels including dense and low-density forests. A 

bootstrapped cross-validation method was used here to eval-
uate the uncertainties associated with the AGC estimates, but 
further independent evaluations using local carbon density 
estimated by airborne LiDAR are needed to better evaluate the 
performance of our AGC model. It is also noteworthy that the 
uncertainties of the AGC estimates computed from different 
calibration models were inconsistent (Fig. 12). For example, 
the calibrated AGC models have different uncertainties based 
on the Saatchi (Fig. 12A) and CCI benchmark maps (Fig. 12B), 
where uncertainties larger than 100% covered 6.6% and 10.9% 
of China, respectively. The higher uncertainties (>100%) in our 
AGC estimates were mainly observed in northern China and 
the eastern Tibetan Plateau and may be related to topography 
in those mountainous regions. Areas of high uncertainties in 
the AGC estimates calibrated with the CCI map displayed a 
larger coverage than for the others benchmark maps. In the most 
southern and southwestern regions of China, the majority of 
the uncertainties of the AGC estimates are smaller than 10%.

Conclusions
This study provided the first comprehensive assessment of opti-
cal VIs and microwave VODs for monitoring spatial patterns 
of AGC in China, demonstrating the capabilities in the syner-
gistic use of VODs and VIs to provide an explicit quantification 

140°E130°E120°E110°E100°E90°E80°E70°E

40°N

30°N

20°N

3

2

1

0

-1

-2

-3
0 1,000500 km

Fig. 11. Net AGC change in China during 2013 to 2019 (Mg C ha−1 year−1). Note: Negative values are carbon sources.

D
ow

nloaded from
 https://spj.science.org on February 16, 2023

https://doi.org/10.34133/remotesensing.0005


Chang et al. 2023 | https://doi.org/10.34133/remotesensing.0005 13

of the AGC dynamics across large scales. It is worth noting 
that the validation for the estimated AGC product is not based 
on measured AGC, limited by the availability of in situ meas-
urements at a large scale (e.g., larger than 0.25°). Thus, further 
independent evaluations using local carbon density estimated 
by airborne LiDAR or forest inventory data are needed to val-
idate our results. Especially, with the recent and future launches 
of Chinese HJ-1C [94], Britain's NovaSAR-S [95], NASA’s GEDI 
[29], ICESat-2 [96], NISAR [97], and ESA’s BIOMASS [75,98], 
more biomass products will be good candidates for improving 
the accuracy of continental AGC maps following the approach 
presented in this study. In future, the carbon dynamics found by 
this study will be analyzed using ancillary data on climate changes 
and forest disturbances, to better understand and reveal the 
drivers of China carbon dynamics.
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