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7Institute of Geophysics, ETH Zurich, 8092 Zurich, Switzerland
8Jet Propulsion Laboratory, California Institute of Technology, Pasadena, 91109 CA, USA

Accepted 2022 November 7. Received 2022 October 7; in original form 2022 April 19

S U M M A R Y
The SEIS (seismic experiment for the interior structure of Mars) experiment on the NASA
InSight mission has catalogued hundreds of marsquakes so far. However, the detectability
of these events is controlled by the weather which generates noise on the seismometer. This
affects the catalogue on both diurnal and seasonal scales. We propose to use machine learning
methods to fit the wind, pressure and temperature data to the seismic energy recorded in the
0.4–1 and 2.2–2.6 Hz bandwidths to examine low- (LF) and high-frequency (HF) seismic
event categories respectively. We implement Gaussian process regression and neural network
models for this task. This approach provides the relationship between the atmospheric state
and seismic energy. The obtained seismic energy estimate is used to calculate signal-to-
noise ratios (SNR) of marsquakes for multiple bandwidths. We can then demonstrate the
presence of LF energy above the noise level during several events predominantly categorized
as HF, suggesting a continuum in event spectra distribution across the marsquake types.
We introduce an algorithm to detect marsquakes based on the subtraction of the predicted
noise from the observed data. This algorithm finds 39 previously undetected marsquakes,
with another 40 possible candidates. Furthermore, an analysis of the detection algorithm’s
variable threshold provides an empirical estimate of marsquake detectivity. This suggests that
events producing the largest signal on the seismometer would be seen almost all the time, the
median size signal event 45–50 per cent of the time and smallest signal events 5−20 per cent
of the time.

Key words: Planetary interiors; Seismic noise; Planetary seismology.

1 I N T RO D U C T I O N

The NASA InSight lander has recorded seismic and meteorological
data for over three Earth years since arriving on Mars on the 26th
of November 2018. This seismic data contain several important
marsquakes (InSight Marsquake Service 2022) which have enabled
Stähler et al. (2021), Khan et al. (2021) and Knapmeyer-Endrun
et al. (2021) to place constraints on the core, mantle and crust of
Mars using seismological tools. The task of identifying marsquakes
falls on the Marsquake Service (MQS) who systematically search

the data as it is downlinked to identify marsquakes, as outlined in
Clinton et al. (2021) and Ceylan et al. (2021). The first quake in the
MQS catalogue is from sol 105, where a sol is a Mars day and sol 0 is
the landing day. Since then there have been 951 quakes in the almost
thousand sols of the mission so far. However, between sols 500 and
800 only 27 of these 951 events were observed. This is largely due to
the environmental noise injection into the seismic data. The period
corresponds to the Northern Hemisphere winter and is marked by
the persistent presence of local turbulence throughout the Martian
sol, as characterized by Chatain et al. (2021). Moreover, even during
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the summer sols marsquakes are predominantly identified only in
the quiet periods just after sunset when the weather conditions are
extremely calm.

This demonstrates that atmospheric injection inhibits the dis-
crimination of data of a seismic origin. In doing so, a complete
catalogue of Martian events cannot be collated. This means events
which would add further information on the Martian structure are
missed and further constraints cannot be placed on the seismicity
of Mars. Moreover, autocorrelation techniques have been imple-
mented to examine the Martian structure. These approaches are
either based on the coda of marsquakes or on identifying the am-
bient diffuse seismic wavefield (Compaire et al. 2021; Schimmel
et al. 2021). As a result, the separation of the seismometer data
into atmospherically induced and seismic origin components is of
interest.

To limit atmospheric injection into the seismic data, the SEIS
(seismic experiment for the interior structure of Mars) instrument
was placed on the ground away from the lander and covered with a
wind and thermal shield (WTS, Lognonné et al. 2019). Stott et al.
(2021) verified that the WTS removed the direct forcing pathway on
SEIS and so reduced wind-induced signals. However, a problematic
injection of atmospherically generate noise into the seismic record
persists. The impact of wind, pressure and temperature on the seis-
mic data was predicted in the pre-landing noise model of Mimoun
et al. (2017). At the lowest frequencies <10−3 Hz temperature ef-
fects dominate (Lognonné et al. 2020). Garcia et al. (2020) showed
pressure coupling through compliance for certain periods of the
sol below 0.5 Hz. For marsquakes however, wind noise dominates,
with the lander providing a key source of vibrations as outlined in
Murdoch et al. (2017, 2018) and Stott et al. (2021). The in situ
sensitivity of the seismic data to the wind and pressure variation
was examined in Charalambous et al. (2021), which described the
relationship between the seismic energy level (i.e. envelope of the
seismic data), wind speed and pressure fluctuations.

Atmospherically generated noise, therefore, forms the most sig-
nificant component of seismic noise on Mars. Machine learning has
been applied to separate such noise features within seismic data
on Earth, for example, in Johnson et al. (2020) and Seydoux et al.
(2020). These unsupervised learning approaches aim to cluster data
segments with common attributes. The deep scattering network ap-
proach in Seydoux et al. (2020) was implemented for the InSight
data in Barkaoui et al. (2021), which identified types of glitches
(Scholz et al. 2020) and atmospheric noise. In planetary scenarios,
machine learning approaches have been applied for event detection
on the Moon. Knapmeyer-Endrun & Hammer (2015) and Civilini
et al. (2021), respectively, developed a hidden Markov model and
convolutional neural network approach to detect patterns related to
moonquakes. These are a supervised learning classification style
problem.

The aim of this work is to analyse the seismic data, and therefore
marsquakes, with respect to the atmospheric contribution. To that
end, we formulate a supervised learning regression style problem,
to predict the seismic energy from the atmospheric data. This in-
tegrates the wind speed, wind direction, pressure and temperature
data to allow for information on the variability in the relationship
due to atmospheric conditions to be taken into account. We imple-
ment two types of machine learning algorithms for this curve fitting
task, Gaussian process (GP) regression and a multilayer percep-
tron (MLP) neural network (NN). The resulting machine learning
models produce an estimation of the atmospheric noise level in the
SEIS data. This prediction can be used as a tool to analyse known
marsquakes and identify new ones.

2 DATA A N D P R E - P RO C E S S I N G

2.1 The seismic data

The InSight events are catalogued by the MQS according to a devel-
oped taxonomy. The event categories (as described in Clinton et al.
2021) are split as:

(i) Low frequency (LF)—energy below 2.4 Hz on all three com-
ponents.

(ii) Broad band (BB)–energy predominantly below 2.4 Hz on all
three components with some excitation above and including the
2.4 Hz mode.

(iii) 2.4 Hz—energy in all three components localized to the
2.4 Hz mode.

(iv) High frequency (HF)—energy in all three components pre-
dominantly at 2.4 Hz and above.

(v) Very high frequency (VF)—energy in all three components
predominantly at 2.4 Hz and above but the horizontal energy is
greater than the vertical for higher frequencies. They have a partic-
ular spectral characteristic.

(vi) Super high frequency (SF)—very short duration, exciting
energy above 2.4 Hz with horizontal energy larger than vertical.

The 2.4-Hz mode is proposed to be a resonance of geophysical
origin and is excited by seismic events at these frequencies (Dahmen
et al. 2021b; Giardini et al. 2020; Hobiger et al. 2021; Compaire
et al. 2021). On top of event excitation it is also observed ambi-
ently (Dahmen et al. 2021b; Compaire et al. 2021) with a variable
amplitude when the noise level is low enough.

For our purposes, we can split them into a lower frequency (LF
and BB events) and higher frequency category (2.4 Hz, HF and VF
events). In this work, we do not examine the SF events as these are
already detected by an automated algorithm (Dahmen et al. 2021a).
On top of these categories, the events are split into the following
classes:

(i) A—multiple clear phases with clear polarization.
(ii) B—multiple clear phases with no polarization or with polar-

ization but not clearly identifiable phases.
(iii) C—signal is clear but clear phase picking is difficult.
(iv) D—signal is very weak, impossible to pick phases or may

not be a seismic event.

As described in Clinton et al. (2021). The aim of this class system
is to indicate their usability for seismic analysis, as much as their
general quality.

Fig. 1 shows the probabilistic power spectral density (PPSD) of
the VBB (the very broad-band seismometer on SEIS) data taken over
sols 257–267. This is the histogram of the PSD over this period and
is normalized to give the probability of the PSD taking that value
for a given frequency. To examine the lower frequency group we
use the velocity channel filtered between 0.4–1 Hz. This region has
a relatively flat/white spectrum as shown in Fig. 1.

For the higher frequency category we focus on the 2.2–2.6 Hz
range to isolate the energy in the 2.4 Hz mode, which is always
excited by events in this group. Isolating this mode means that we
do not have to be concerned with the increasing sensitivity to wind
with increasing frequency, shown in Fig. 1.
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980 A.E. Stott et al.

Figure 1. The PPSD of the (top to bottom) vertical, north and east components of the VBB over sols 257–267. The red PSD overlay is the LF S0173a event,
the white is the HF S0424c and the magenta is the VF S0475a event. The red lines indicate the 0.4–1 Hz band used for the LF envelope and the white lines the
2.2–2.6 Hz bandwidth for the HF envelope.

2.2 Pre-processing and data cleaning

Based on the above considerations for how atmospheric energy can
generate seismic signals, the data used for the machine learning
models are:

(i) seismic energy level of the VBB Z, N and E axes in the 0.4–1
and 2.2–2.6 Hz bandwidths);

(ii) wind speed boom 1 and 2;
(iii) wind direction boom 1 and 2;
(iv) air temperature from boom 1 and 2;
(v) pressure and its envelope (in the 0.1–4 Hz frequency band).

Note boom 1 and 2 refers to the two different wind sensors of
TWINS, which each have complementary orientations designed
to cover wind from all directions (Banfield et al. 2019). The ma-
chine learning model therefore has eight inputs (2 wind speeds, 2
wind directions, 2 air temperatures, the static pressure and the RMS

envelope of the pressure signal) and three outputs (the seismic en-
ergy level, envelope, for Z, N and E).

Prior to the implementation of machine learning algorithms, the
InSight data must be pre-processed and cleaned. InSight data are
available (both seismic and meteorological) in miniseed (Service
2019). We use the ObsPy Python package (see Beyreuther et al.
2010; Megies et al. 2011; Krischer et al. 2015) for processing the
data.

There are several data issues and peculiarities that need to be
taken into account. For example, the available data for each sen-
sor over the mission are not always at the same data rate, due to
data downlink volume considerations. Moreover, there are periods
of data dropout on some sensors either from anomalies or, more
recently, power considerations when some sensors had to be turned
off. The pre-processing must blend together this data taken at dif-
ferent sampling rates and identify the periods when data from all
sensors was available. The data channels used are outlined in Ta-
ble A1.
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The first step is to identify the sols which have coincident data
from all sensors, that is, find the sols where there is at least one
of the channels in Table A1 for each sensor. Once this has been
obtained, the seismic data pipeline is to:

(i) load data;
(ii) remove the sensor response;
(iii) rotate to the vertical (Z), north (N) and east (E) coordinate

frame;
(iv) filter to 0.4–1 Hz and 2.2–2.6 Hz bandwidth;
(v) compute the signal envelope over 10s;
(vi) downsample to 1 sample per second (sps).

The pressure data are similarly filtered to obtain the envelope
and both the envelope and original data are downsampled to 1 sps.
The wind speed, direction and air temperature are also converted to
the common sample rate of 1 sps, which is chosen as it is the most
common sample rate for this data. Each data vector is saved sol
by sol so that the processing can be done in batches and is readily
extended to new data.

After this initial treatment, several artefacts must be removed
from the data. These include:

(i) large erroneous peaks;
(ii) other peaks due to glitches and other transients;
(iii) data gaps.

The glitches are a common problem to tackle with the InSight
seismic data and most are removed through the ISAE deglitching
technique proposed in Scholz et al. (2020). However, some remain
which appear as spikes in the envelope. A further processing step
is made to remove these peaks significantly above the local median
value of the data within a window. The data gaps are identified from
the miniseed files. The method to discount these periods of data
is through a mask vector, which is a Boolean logical inclusion or
exclusion of the data at that point. This makes it straightforward
to modify without deletion and manipulate the data, in terms of
keeping the original time sample.

The next step is to apply the transformations for input into the
machine learning algorithms. The seismic envelope is converted to
its base 10 logarithm to give the seismic energy level and, along
with the pressure envelope, is smoothed with a moving median and
mean filter each of length 15 s. The median filter is applied first to
remove excess spikes and then smoothed by the mean filter. Each
variable is then normalized to have an amplitude between −1 and 1.
The final data are stored along with the mask vectors for each sol.
After this full pre-processing, ∼30 million samples are available (at
1 sps up to sol 1000) for use with the machine learning algorithms.

In order to handle the large memory and computational require-
ment for both the pre-processing and training machine learning
models the code was run on the CALMIP computing cluster fa-
cility. The choice to operate on the data one sol at a time when
possible enabled parallelization of the code for improved calcula-
tion time and reduced the need for very large matrices to be stored
or operated on.

3 AT M O S P H E R I C A L LY G E N E R AT E D
N O I S E

3.1 Theoretical perspectives

Prior to landing, Mimoun et al. (2017) constructed a noise model
for SEIS to determine the level of injection from each possible noise

source. In the bandwidths where seismic events are observed, the
main effect is due to the wind. The forcing mechanism is given by
drag/lift

F = 1

2
CD/L AρAU 2 (1)

where CD/L and A are the drag/lift coefficient and surface area of
whichever body the wind forces, ρA is the air density and U the
wind speed.

The pathways through which this will generate vibrations sensed
by SEIS are either by forcing on the lander or on the WTS, whereby
the vibrations are coupled through the regolith to SEIS feet. Mur-
doch et al. (2017) developed a physical model for lander-induced
vibrations into the SEIS data which was integrated into the overall
noise model of Mimoun et al. (2017). Stott et al. (2021) verified that
lander-induced vibrations are the dominant noise source at least for
high wind speeds. The lander and SEIS assembly also have vibra-
tional modes excited by the wind which were modelled in Murdoch
et al. (2018) and analysed in Dahmen et al. (2021b) and Hurst et al.
(2021).

On top of wind-induced sources, pressure forcing can cause
ground deformation (Garcia et al. 2020; Kenda et al. 2020). More-
over, Charalambous et al. (2021) demonstrated that the pressure
envelope between 0.1 and 4 Hz is well correlated to the seismic
energy level. The VBB is also directly sensitive to temperature (Mi-
moun et al. 2017), however, this does not fluctuate on the scale of
events so we only consider the atmospheric temperature to take into
account changes of air density. The magnetic field variations so far
have not been seen to be very well correlated with the seismic data
in event bandwidths and so are not included.

3.2 The observed variation of the atmospheric data with
the seismic data

The input–output relationships for the pre-processed data are shown
in Fig. 2 for three periods (of three sols) over the mission centred
around sol 258, 495 and 690. The colour coding indicates the time
of the sol where dark colours indicate night, turning progressively
lighter through blue during the morning and then darker through
red in the afternoon to the night. It can be seen that the relation-
ship between the seismic data and each of these variables changes
over both the Martian sol and season, as was demonstrated in Char-
alambous et al. (2021). This is straightforwardly observed by the
variation with pressure in Fig. 2 which covers a different range of
pressures for each section.

The plots on the diagonals of the scatter plot matrix in Fig. 2
for the three seismic components show the KDE (kernel density
estimate) of the probability density function (pdf) for each of the
three different periods of data. For the sol 258 section, there are three
modes and a wide range of values covered. In the sol 495 section, the
range narrows and there are two modes before a single mode is
shown in the sol 690 section. This is matched by the relationships
to each of the atmospheric data, which generally appear to collapse
and become less structured as the conditions are more similar over
the entire sol. However, different regimes are still observable. For
example, in the sol 690 section the dark nighttime zone in the wind
speed boom 2 and pressure envelope is still distinct from the other
times of sol. The slope for this nighttime period is still greater than
for the other times of sol but shallower than the same coloured zone
in the other seasons.

In short, the goal of the machine learning is to fit the curves
presented in Fig. 2, accounting for both the highlighted diurnal and
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982 A.E. Stott et al.

Figure 2. A matrix of scatter plots between the atmospheric data (model
inputs) and the three axis seismic noise levels (model outputs). This is plotted
for 3 sols at three different seasons over the mission. The diagonal is the
KDE of the pdf for the seismic data. The colour indicates the time of the
sol starting with black at midnight LMST (local mean solar time) going to
lighter blue to midday before turning darker red over the afternoon.

seasonal variation. Some cause of this variability can be understood
through consideration of the drag/lift eq. (1) as outlined above. First
of all, this is dependent on the air density which is, in turn, dependent
on pressure and air temperature. Moreover, drag/lift coefficient is
dependent on the atmospheric conditions, for example, whether
the wind is in a turbulent or laminar flow. As a result, we must
consider the atmospheric stability at InSight over the Martian day
and seasons, presented in Spiga et al. (2021), Banfield et al. (2020)
and Chatain et al. (2021).

During the daytime on Mars there is strongly convective turbu-
lence. This provides the highest wind speeds and strongest overall
seismic response. On the other hand, the Martian atmosphere is
often more stably stratified at night leading to laminar flows and
when night time turbulence occurs it is generally weaker. Although
the night time signals are not usually as strong as the daytime, the
seismic response is more sensitive yielding a higher velocity for
a given wind speed than during the day. This is shown in Fig. 2
where the darker colours at night generally show a steeper slope to
the wind speed than the lighter daytime colours. There can also be
a quiet period just after sunset when the planetary boundary layer
collapses and there is little wind speed. During this period there
is very little wind or turbulence and so this period is where most
seismic events are found (Clinton et al. 2021).

Chatain et al. (2021) investigated the seasonal variability in turbu-
lence across the Martian sol at InSight. They showed that a buoyancy
source is the dominant factor for the daytime turbulence whereas
the evening/night time turbulence is driven by wind shear. Earlier
in the mission, the stable atmosphere at night also creates a buoy-
ancy sink which can inhibit the shear source, causing a turbulent
flow to move towards a laminar one. As the Northern Hemisphere
winter approached, the wind shear source begins to dominate the

buoyancy sink, leading to increased evening/night time turbulence
and the quiet period completely disappears.

The seismic response is therefore understandable in terms of
the physical relationship, however, this also illuminates that there
are many components to take into consideration. As a result, it is
difficult to determine a physical model which is able to predict
the seismic signal sufficiently for event analysis. To that end, we
implement a machine learning model to account for the complexities
outlined here. This also allows other possible sources/forcing to play
a part in the prediction, which may not be immediately identifiable.

4 I M P L E M E N TAT I O N O F T H E
M A C H I N E L E A R N I N G M O D E L S

The next step is to implement machine learning models to fit the
input-output relationships demonstrated above in Fig. 2. The atmo-
spheric variables (the 2 wind speeds, directions, air temperatures,
pressure and pressure envelope) are the inputs and the envelope of
the three seismometer axes are the outputs. We consider two main
methods to do this, GP regression and NNs. At a base level each of
these approaches can be considered equivalent implementations to
obtain the prediction. We will first present their individual applica-
tions to the data and then compare their performances.

4.1 Gaussian process regression

4.1.1 Background

A Gaussian process (GP), as defined in Williams & Rasmussen
(2006), is a set of random variables where any finite selection has a
joint Gaussian distribution. GP regression applies this probabilistic
approach around the regression model

y = f (x) + η (2)

where the output of the model y is predicted from the input vector
x through the function f( · ) plus some white noise η ∼ N (0, σ 2).
The function f( · ) is considered to be Gaussianly distributed itself,
that is, we consider the distribution of functions that fit the data. In
this way GP regression is considered non-parametric, as opposed
to having a specific form defined by parameters, for example, a
quadratic function.

In the GP framework the distribution of the function is given as

f (x) ∼ GP(m(x), k(x, x′)) (3)

where m(x) and k(x) are termed the mean and covariance function
of the output f (x). These functions are selected depending on the
characteristics of the problem at hand. The mean function can be
used to encode known functional information directly. The covari-
ance function sets the prior form for the functions that fit the data,
that is, it determines the characteristics of the functions that fit the
data. The covariance function must be positive-semi-definite and is
described by a chosen kernel function to give the level of similarity
between the outputs for two arbitrary inputs x and x′.

From the definition, any set of samples from a GP has a multivari-
ate normal distribution. So for a set of inputs, x1, . . . , xn , denoted
as X the vector of function outputs f = [ f (x1), . . . , f (xn)] has the
distribution

f ∼ N (m, K) (4)

where m = [m(x1), . . . , m(xn)] and the matrix K has entries ki j =
k(xi , x j ). For simplicity the mean is herein set to be zero. Now
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Machine learning and marsquakes 983

consider the set of inputs X along with the corresponding outputs
y. To train the GP regression model we must obtain the conditional
distribution (the posterior) as

f|X, y (5)

For a set of new, test inputs, denoted as X∗, the prediction from the
GP regression can be inferred from the conditional distribution

f|X, yX∗ (6)

where the joint distribution of the vectors f and f∗ follows the
multivariate normal distribution. This can be evaluated assuming
the white Gaussian noise term η. Note that this is a distribution
and so the prediction is taken as the expectation. The covariance
can also be extracted and so the evaluation of prediction confidence
intervals is straightforward.

The performance of a GP regression model depends on the se-
lection of the mean and covariance functions, that is, the prior dis-
tribution of the function. The mean function is usually set to zero.
The covariance function is often set by a kernel.

The behaviour kernel and mean functions are controlled by hyper-
parameters. For example, a common kernel function is the squared
exponential

k(x, x′) = exp(−|x − x′|2
2l2

) (7)

where the lengthscale hyperparameter l defines the level of sim-
ilarity between two points at a distance |x − x′|. To evaluate the
appropriate hyperparameter value for a given problem an optimiza-
tion is performed to maximize the log marginal likelihood of the
training data given as

log(P(y|X )) (8)

In this work, we use the GPy library for Python (GPy since 2012)
to implement GP regression models. The prediction requires matrix
inversion and so has high computational complexity. This makes
them more appropriate for small data sets.

4.1.2 Implementation

A global model was fitted using 3000 data samples for the training
data, randomly selected from across the entire available data. The
time separation of these was checked and found that there is no
gap longer than 2 sols between consecutive samples confirming
a representative sampling across the mission. The prediction of
this model was then calculated for each sol separately and stored.
Four models with different kernels were trained on the LF data
to identify the best choice. These were (1) an Exponential kernel,
(2) radial basis function (RBF), (3) Exponential added to an MLP
kernel and (4) Exponential added to an MLP kernel multiplied by
another exponential kernel. For further details on these kernels, see
Williams & Rasmussen (2006).

To evaluate model performance we use the root mean square error
(RMSE) metric given by

RMSE =
√√√√1/N

N−1∑
n=0

(yn − ŷn)2

where N is the number of data points, yn and ŷn are the observed
and predicted values at time instance n. The RMSE was calculated
on 20 per cent of the whole mission’s data (test data not used for
training) for each model and is shown in Table 1. The Exponential

Table 1. RMSE of GP global model for
different kernels.

GP Kernel type Test RMSE

Exp. 0.075
RBF 0.078
Exp. + MLP 0.074
Exp. + MLP × Exp. 0.075

+ MLP kernel marginally the lowest error and so was selected for
use in the rest of this study.

This global model used only 3000 samples to calculate the fit,
which is a very small portion of the total ∼ 30 million available. This
is because GP regression requires significant computational and
memory resources in optimization and prediction. As a result, using
a larger portion of the data for training quickly becomes intractable.
This global model provides a good estimate of the relationship
dynamics, however, it may not sufficiently represent some parts
of the atmospheric–seismic relationship for marsquake analysis. To
this end, we also propose a local model where a GP regression model
is obtained independently for each sol. The training data for this
model are 3000 samples randomly selected from the preceding and
following sols. In this way, the local conditions are best accounted
for. This local method does require significantly more resources as
a new model is trained for each sol, when only one for the entire
mission was previously required. Herein we will refer to the GP
model trained on data sampled from across the entire mission as
the global GP model and the GP trained on data only from the
surrounding sols as the local GP model.

4.2 Neural networks

4.2.1 Background

A neural network (NN) takes each element in an input feature vec-
tor and maps them to an output value through a series of connected
‘neurons’. Each ‘neuron’ multiplies each connection by a weight
before summing, applying a bias (also a type of weight) and pass-
ing through an activation function (Murphy 2012). The activation
function can take several forms, for example, the ReLu (rectified
linear) function given as

f (x) = max(0, x) (9)

where the output is zero for inputs below zero and linear for outputs
above. This choice is useful for regression problems and is less
susceptible to vanishing gradient problems than other activation
function choices (Goodfellow et al. 2016). The full NN is made
up of sequentially applied layers each consisting of several neurons
taking the output of the previous layer as an input until the output
layer is reached.

The number of neurons in each layer is the breadth of the network
and the number of layers is the depth. Large numbers of layers gives
rise to deep learning (Goodfellow et al. 2016), useful for approxi-
mating extremely complex functions. NNs are able to approximate
a wide class of functions (universal approximation theory, Cybenko
1989) given an appropriate architecture, that is, the number of lay-
ers, the number of neurons on each layer and the choice of activation
functions.

The training of an NN to a specific task requires the weights
and bias values for each neuron to be optimized. This is achieved
through stochastic gradient descent algorithms to find the minimum
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984 A.E. Stott et al.

of the loss function, in our case the mean square error of the pre-
dicted output and the target output. These algorithms evaluate the
gradient (using backpropagation) for a subset of training data and
iteratively update the weights to step towards the minimum of the
loss function. The subset of training data used for an evaluation of
the gradient is known as a batch. Splitting the data into batches is
helpful for computational efficiency but also provides a regulariza-
tion effect. The resulting step in updating the weights dependent
on the gradient is controlled by a learning rate, trading off eventual
accuracy and convergence speed. A complete pass of the training
data (all the batches) is known as a training epoch. Several epochs
may be completed to finalize the model weights. Comparing the
loss for the training data to a separate validation/development data
set (not contained within the training data) for each epoch indicates
where a model may be overfitting or have reached convergence on a
good solution. A detailed explanation of these aspects can be found
in Murphy (2012) and Goodfellow et al. (2016) for example.

The choice of topology of the network, batch size, learn-
ing rate and number of epochs are determined empirically
through a process known as tuning. During tuning several dif-
ferent networks are trained for an array of different hyperpa-
rameters (i.e. batch size, number of epochs and learning rate).
For each topology/hyperparameter, the training loss and valida-
tion/development loss for a trained NN are evaluated to find
the optimal choice in terms of lowest error while not overfit-
ting (small difference between training and validation loss) and
parsimony. In general, the NN performance improves for larger
data sets.

4.2.2 Implementation

An MLP NN architecture was implemented using the Keras python
package of Chollet et al. (2015). Each neuron in the hidden layers
was defined by the ReLu activation function in eq. (9), apart from the
final output layer where a linear combination was used. A dropout
layer was added to the first layer of the NN for regularization. The
dropout layer sets a given node in a layer to zero with the dictated
frequency during training which reduces the networks ability to
memorize samples, reducing the chances of overfitting (Goodfellow
et al. 2016).

The total data set (for both the LF and HF energy data) was split
into a training, validation and test data set. The training set is used
for the optimization of the network weights while the validation
set is used as a separate assessment the performance over training
to detect overfitting and select the optimal network topology and
hyperparameters (batch size and level of dropout). The test set then
gives the final assessment of performance, ensuring separate data
has been used to what has been used for optimization to give a true
performance of the network.

Prior to separation into the training, test and validation data set
the data were split into one hour long chunks. This splitting by hour
avoids closely correlated consecutive samples being present in both
training and validation/test data sets. The test data set was taken
as 20 per cent of these chunks at random from across the mission
and set aside. Of the remaining chunks 80 per cent were randomly
selected from across the mission to train the NN (64 per cent of the
total data) and the remaining 20 per cent were taken as a separate
validation set (16 per cent of the total data).

Figs A1 and B1 show the training and validation error for a range
of models with a range of neurons, numbers of hidden layers, batch
sizes and level of dropout for both LF and HF energy predictions.

The training for each model used the ADAM optimizer (Kingma &
Ba 2014, a variant of the stochastic gradient decent algorithm) with
a starting learning rate of 0.001 and done over 500 epochs. The best
choice of network is that with the lowest validation loss and smallest
gap between validation and training loss. For our application, the
final choice of network for the LF prediction was made to be a
network with 6 hidden layers, 30 neurons on each layer with a
dropout of 0.005 and batch size of 512. On the other a model of
4 hidden layers with 30 neurons on each layer with a dropout of
0.005 and batch size of 512 was chosen for the HF prediction. Note
that there are however several networks with similar training and
validation losses and therefore performance.

Fig. 3 shows the training and validation loss over the training
epochs of the selected networks. The LF model is very slowly
decreasing and the RMSE has not improved significantly for several
epochs and so is sufficiently trained. The HF model training loss
improves very slightly beyond the test loss after ∼220 epochs and
so training can be halted. Note that the validation loss varies over
epochs of the order of performance difference between the similar
networks, highlighting that each is a valid choice. At this level, the
effects of the sensors performance can be a factor. In particular the
wind sensor has limited resolution at low and high wind speeds.
These selected models which are used for the subsequent results
on application to the data are referred to as the NN/neural network
model.

4.3 Analysis of the fits

In this section, we will discuss the performance of the GP and NN
models trained above to predict both the LF (0.1–1 Hz) and HF
(2.2–2.6 Hz) seismic energy. Table 2 shows the RMSE computed
for each of the three models from 20 per cent of the overall data. This
gives a comparable view of the overall performance for each model.
Note that the local GP model had several sols removed from the
error calculation as they had erroneous predictions due to sampling
data artefacts in the training data. The NN approach provides the
lowest error, followed by the local and then global GP models. This
is the case for both LF and HF seismic energy predictions. On
top of this, the LF model has slightly better performance than the
HF model.

In order to analyse how the performance of models varies over the
Martian sol and seasons we will examine over three exemplar sols:
258, 495 and 690 which are the central sols for the periods in Fig. 2.
For the LF bandwidth, Figs 4, 5 and 6 show the predictions compared
to the observations and residual errors of the LF bandwidth for the
GP global, GP local and NN models respectively, while Figs 7,
8 and 9 show the same for the HF bandwidth. The residuals are
shaded with their smoothed values over 100s and 1000s and their
PDF estimates are shown on the side panel. First note that there is
no significant difference in the prediction of the vertical (Z) and
horizontal (N and E) components for any model and for all sols and
all perform reasonably at this scale. Table 3 shows the RMSE for
each sol for each model. For each sol the RMSE is lowest for the NN,
followed by the local GP and then global GP, as was the case with the
error calculated over the whole data set. This is aside from the local
GP prediction on sol 690 which has equivalent/slightly improved
error than the NN for the LF and HF predictions, respectively.

One major advantage of the GP models over the NNs is that the
prediction is given as a distribution, and so confidence intervals
are obtained intrinsically. These confidence intervals (plotted at
95 per cent) are generally much tighter to the prediction for the
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Machine learning and marsquakes 985

Figure 3. The validation and training RMSE of the selected NN models for LF and HF over 500 training epochs.

Table 2. Test RMSE of ML models.

Model Test RMSE

LF HF

GP global 0.074 0.081
GP local 0.072 0.075
Neural network 0.068 0.069

local GP than the global GP model, indicating the local model to
have better constrained the relationship.

4.3.1 Analysis of diurnal and seasonal variation

Recall that there are are three common regimes over a Martian
sol: daytime turbulence, the evening quiet period and night time
turbulence. These regimes are clear on sol 258 but change over
the mission, most notably the quiet period is only briefly visible
on sol 495 and has disappeared by sol 690, when the night time
turbulence has become more intense. The pdf of the residuals is
generally Gaussian-like and consistent for each sol, indicating there
is no major change in the prediction quality over the seasons. How-
ever, certain features can be noticed. The night time (turning into
early morning) turbulence shows sharp transient level changes, es-
pecially on sol 258 and sol 690. These rapid transient shifts are not
always instantly predicted and cause a level change in the residu-
als highlighted by the light coloured smoothed trends. These tran-
sients may be because the seismometer records effects at further
distances than the meteorological data. Moreover, the daytime con-
vective turbulence has greater variation than the other turbulent
periods. This variation is largest on sol 495, where the residuals are
larger during the daytime and so their distribution is not completely
stationary. Note that sol 495 also has the largest RMSE for the
LF prediction.

The prediction of the HF energy level during the quiet, low noise,
periods is generally more constant in appearance than for the LF.
This suggests that the HF estimates do not predict all the general
ambient variation in this regime. This is the likely cause of the higher
RMSE generally seen for the HF compared to the LF predictions.
One possible reason is that the atmospheric sensors are not sensitive
enough for this prediction, as the higher frequencies are generally
more sensitive to the wind (Charalambous et al. 2021). On the other
hand, the HF prediction covers the 2.4 Hz mode. As introduced,
this mode is proposed to be of geophysical origin and is amplified
by events in this bandwidth making it useful to detect marsquakes.

However, the mode also exhibits ambient modulation over the sol
and season, the generation of which has yet to be pinned down. The
fact that these machine learning models fail to predict the overall
ambient variation of the 2.4 Hz suggests that it is not generated with
local atmospheric effects. This effect may explain the lower RMSE
for the sol 690 prediction as there is no quiet period and hence no
ambient variation of the 2.4 Hz which requires prediction.

5 Q UA K E A NA LY S I S A N D D E T E C T I O N

In this section, we take the seismic noise energy predic-
tions/estimates of the introduced machine learning models and show
how we can use it to examine the quality of and detect events. The
best performing and most robust model is that of the NN and so we
will use its results unless stated otherwise.

5.1 Signal-to-noise ratio of marsquakes

The residual (model prediction subtracted from the observed data)
can be used to examine the seismic signals independence from
atmospheric injections. As the prediction is in the logarithmic do-
main, this subtraction yields the signal-to-noise ratio (SNR) of the
observed energy to the predicted noise level at a particular point in
time. We can then calculate the SNR for a particular event is given
as the maximum of this residual signal during the event, based on
the prediction from NN models. This yields an approach to assess
event quality in terms of its separation from the atmospherically
generated noise. The SNR was calculated in this way for every
event in the MQS catalogue (with available data) in both the LF
(0.4–1 Hz) and HF (2.2–2.6 Hz) bandwidths. A table of these is
provided in Supporting Information. Note that this SNR is in terms
of signal energy.

5.1.1 Example marsquake analysis with machine learning
prediction

To show how the machine learning prediction can be used to analyse
a particular event, Fig. 10 shows two events from the low-frequency
group. The S0395a event (left) is a BB quality C and the S0325a
event (right) is an LF quality B. These are two clearly observed
events and the seismic energy during both events clearly deviates
from the proposed NN model predicted noise levels and the LF SNR
for both events is around 3. The S0395a (left) event takes place in
a fairly quiet period, with a clearly visible event-like envelope in
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986 A.E. Stott et al.

Figure 4. Global GP LF prediction and observations. The N and E traces are offset on the y-axis by 2 log(m s−1) and 1 for the prediction/observation in the
top row and residual in the bottom row, respectively. The black markers represent successive relative points equivalent to −10 log(m s−1) or 0.

Figure 5. Local GP LF prediction and observations. The N and E traces are offset on the y-axis by 2 log(m s−1) and 1 for the prediction/observation in the top
row and residual in the bottom row, respectively. The black markers represent successive relative points equivalent to −10 log(m s−1) or 0.

the observed energy and SNR. As it is a BB event there is some
energy at high frequencies. It can be seen that there are two distinct
peaks in the HF energy but only one in the LF energy. As it is a
C quality only one phase pick is given in the catalogue. Further-
more, the LF SNR highlights some energy prior to the event start
not indicated by the catalogue. This can also be seen in the spectro-
gram. This energy emerges from the lower frequencies, similar to

atmospheric noise, however, the machine learning has indicated it
is separable. On the other hand, the S0325a (right) event takes place
in a fairly noisy period, however, two phase arrivals are apparent in
the observed LF energy. This is better highlighted in the LF SNR
and gives the event its quality B rating meaning its distance can be
determined.

Fig. 11 shows two high-frequency type events. The S0542a event
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Machine learning and marsquakes 987

Figure 6. NN LF prediction and observations. The N and E traces are offset on the y-axis by 2 log(m s−1) and 1 for the prediction/observation in the top row
and residual in the bottom row, respectively. The black markers represent successive relative points equivalent to −10 log(m s−1) or 0.

Figure 7. Global GP HF prediction and observations. The N and E traces are offset on the y-axis by 2 log(m s−1) and 1 for the prediction/observation in the
top row and residual in the bottom row, respectively. The black markers represent successive relative points equivalent to −10 log(m s−1) or 0.

(left) is a VF quality C event while the S0534a event (right) is a
2.4 Hz type quality C. These events both occur in an extremely
noisy period as the season progressed into winter. After the S0542a
event, only two events were identified until sol 653. In spite of the
noise, the NN model prediction of S0542a (left) is able to establish
the signal clearly with a peak SNR of nearly 8. During this S0542a
event (left) there is a large gust which causes the SNR to drop and

then recover. This enables the assessment of where the energy of the
event is suitable to use and where it may be contaminated by noise.
The comparison to the model predictions also clearly separates the
energy of the the S0534a event (right) from a very noisy background.
As S0534a (right) is a 2.4 Hz type event, only energy at this mode
is clearly observable in the spectrogram. However, the predictions
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988 A.E. Stott et al.

Figure 8. Local GP HF prediction and observations. The N and E traces are offset on the y-axis by 2 log(m s−1) and 1 for the prediction/observation in the top
row and residual in the bottom row, respectively. The black markers represent successive relative points equivalent to −10 log(m s−1) or 0.

Figure 9. NN HF prediction and observations The N and E traces are offset on the y-axis by 2 log(m s−1) and 1 for the prediction/observation in the top row
and residual in the bottom row, respectively. The black markers represent successive relative points equivalent to −10 log(m s−1) or 0.

Table 3. RMSE of ML models for three sols.

Model Sol 258 Sol 495 Sol 690

LF HF LF HF LF HF

GP global 0.068 0.077 0.077 0.078 0.70 0.077
GP local 0.066 0.075 0.074 0.074 0.064 0.068
Neural network 0.064 0.073 0.068 0.071 0.063 0.068

indicate there is some LF energy for S0534a (right) with an SNR of
up to 2.

The amplitude velocity residuals is shown in the fourth panel
down for each figure, where the amplitude of the predicted
noise is removed from the observed velocity amplitude, thereby
decorrelating the current atmospherically generated noise from the
event envelope. Both high-frequency type events in Fig. 11 show
a slope break at the HF residuals, indicating a possible secondary
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Machine learning and marsquakes 989

Figure 10. The NN model predictions and SNR analysis for the S0395a BB quality C (left) and S0325a LF quality B (right) events. The top panel of each
event has the LF predictions/observations offset by −1.4 log(m s−1) and −2.8 log(m s−1) for the N and E axes with the HF predictions/observations offset
from the respective LF predictions by 0.65 log(m s−1). The black marks indicate the relative level of −10 log(m s−1) for each trace. The second bottom panel
has the HF velocity residual offset by 3 × 10−10 m s−1 from the LF, indicated by the black mark.

phase pick which is not given in the MQS catalogue as it cannot be
clearly seen in the raw data.

This analysis of these events demonstrate how the machine learn-
ing predictions of atmospherically generated noise can be used to
extract useful details from marsquakes. This provides a framework
which yields information helpful for the detailed and consistent
cataloguing of marsquakes.

5.2 Marsquake catalogue analysis

Fig. 12 shows the SNR for every event (with available data) through-
out the first thousand sols. This does exclude most events later in
the mission as power constraints prevented the wind and pressure
sensor to be on at all times. The top and bottom panels show the
SNR for each event (all types) for in the HF (2.2–2.6 Hz) and LF
(0.4–1 Hz) bandwidths, respectively, based on the proposed NN
model to predict the corresponding bandwidth seismic energy. It
can be seen that the SNR generally modulates with the overall noise
level throughout the mission (Clinton et al. 2021), increasing up
to around sol 330 then decreasing until the noise was too high for
many events to be observed. This is in accordance with the level
of local turbulence demonstrated in Spiga et al. (2021) and Chatain
et al. (2021).

Notice that many events from the HF grouping of events (2.4 Hz,
HF and VF) have reasonable LF SNRs. This indicates the pres-
ence of separable LF energy within these events, in contrast to their
taxonomy outlined above. This demonstrates that the above obser-
vation of LF energy in the S0534a event (in Fig. 11) is not unique

to that event and is a consistent feature which occurs regularly for
all the high frequency types of event.

To examine this further, Fig. 13 shows the residual velocity am-
plitude (the subtraction of the prediction from the observed in the
amplitude domain) against each events magnitude (as derived in
Böse et al. 2021) and distance for both the LF and HF NN model
predictions. There is a good correlation between the magnitude and
the amplitude residual in both the LF and HF bandwidths for all
the HF event types, indicated by the Pearson correlation coefficient,
ρ, in the legend where it was significant enough to reject the null
hypothesis of no correlation, that is, the p-value was below 0.05
for 95 per cent confidence interval. The magnitude of an event is
dependent on both observed amplitude and distance (Böse et al.
2021). The high-frequency group of events (2.4 Hz, HF and VF)
are generally closer and so the amplitude is the dominant parameter
in determining the magnitude. The low -frequency event types (LF
and BB) are more effected by distance which contributes to the lack
of statistically significant correlation for the LF events magnitude
and residuals in the LF bandwidth, along with having fewer data
points. The effect of attenuation (due to their distance) on HF en-
ergy prohibits a correlation for the LF and BB events at the high
frequencies.

In contrast to magnitude, there is no clear correlation with
distance and the amplitude residual for the high-frequency event
groups. This shows the presence of LF energy is typical in all
high-frequency type events as a function of their size and it is
not an observational bias depending on location. As a result, this
suggests that both the high- and low-frequency event classes are
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990 A.E. Stott et al.

Figure 11. The NN model predictions and SNR analysis for the S0542a VF quality C (left) and S0534a 2.4 Hz quality C (right) events. The top panel of each
event has the LF predictions/observations offset by −1.8 log(m s−1) and −3.2 log(m s−1) for the N and E axes with the HF predictions/observations offset
from the respective LF predictions by 0.8 log(m s−1). The black marks indicate the relative level of −10 log(m/s) for each trace. The second bottom panel has
the HF velocity residual offset by 3 × 10−10 m s−1 from the LF, indicated by the black mark.

Figure 12. The SNR for the observed seismic energy to the predicted noise levels calculated for the LF 0.4–1 Hz and HF 2.2–2.6 Hz bandwidths. This is shown
for each event class over the mission.

not disparate groupings and that they instead follow a contin-
uum in frequency content. This in turn demonstrates the abil-
ity for the NN model to decorrelate the noise from the observed
events.

5.3 Quake detection

New marsquakes can also be directly detected through identifying
where the predicted noise level diverges from the observed signal. To
do so we must calculate a threshold the residual energy must reach

to suggest a seismic event. We propose the following algorithm to
calculate a variable threshold as:

(i) calculate exponential base 10 of the data to return to the
velocity amplitude domain and subtract the prediction from the
observation to obtain a residual,

(ii) filter the residual with a moving median over 100s and sub-
tract the same signal filtered with a moving median over 2000s,

(iii) take the absolute value of the signal and calculate the moving
median over 300s for the LF model and 100s for the HF model,
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Machine learning and marsquakes 991

Figure 13. The residual velocity (observed velocity amplitude − NN model predicted velocity amplitude) against the marsquake magnitude and distance for
both LF and HF models. The legend indicates the Pearson correlation coefficient (ρ) for a relationship where it is significant (p-value < 0.05).

Table 4. New LF type events.

Event name UTC time Type SNRZ LF

M0190a 2019-06-10T07:44:46 LF 1.59
M0205a 2019-06-25T18:45:03 BB 1.38
M0214a 2019-07-04T23:42:47 BB 1.68
M0248a 2019-08-08T20:32:23 LF 2.28
M0336a 2019-11-07T09:54:51 BB/HF 1.75
M0345a 2019-11-16T16:31:10 LF 2.12
M0395a 2020-01-06T20:46:37 LF 1.44
M0434a 2020-02-15T21:41:37 BB/HF 1.72
M0440a 2020-02-22T06:39:31 LF 1.37
M0452a 2020-03-05T07:11:54 LF 2.53
M0547a 2020-06-10T22:48:27 LF 1.79

(iv) calculate the threshold over a period of 2 hr as the mean
value plus three standard deviations of the signal in the window and
advance the window at 0.5 hr intervals over the sol,

(v) detect outliers where the absolute error is above this threshold,
(vi) select outliers only on all three components,
(vii) select periods where the detection has positive amplitude as

a marsquake will have additional signal.

Calculating the threshold in this way is attempting to find an
anomalous, outlying, sample within the distribution over the 2 hr
searched.

The detection algorithm performed on the LF, 0.4–1 Hz, band
found 25 of 32 LF and BB quakes (available with all atmospheric
data) in the MQS catalogue (InSight Marsquake Service 2022). Of
those not detected, one is the S0405c event which occurs at the very

Table 5. New HF type events.

Event name UTC time Type SNRZ HF

M0166a 2019-05-16T09:46:01 2.4 Hz 1.3
M0205b 2019-06-25T02:49:38 2.4 Hz 1.68
M0250a 2019-08-10T03:34:41 2.4 Hz 2.21
M0254a 2019-08-15T04:08:50 2.4 Hz 1.64
M0256a 2019-08-17T00:46:51 2.4 Hz 1.33
M0258a 2019-08-19T01:57:51 2.4 Hz 1.66
M0291a 2019-09-21T10:58:54 2.4 Hz 2.02
M0303a 2019-10-04T10:27:15 2.4 Hz 1.53
M0312a 2019-10-13T16:10:53 2.4 Hz 1.64
M0313a 2019-10-14T13:43:33 2.4 Hz 1.52
M0313b 2019-10-14T18:09:01 2.4 Hz 1.69
M0314a 2019-10-15T18:38:26 2.4 Hz 1.65
M0317a 2019-10-18T16:53:42 2.4 Hz 1.57
M0331a 2019-11-02T05:04:35 2.4 Hz 1.53
M0333a 2019-11-04T08:23:55 2.4 Hz 1.83
M0336a 2019-11-07T09:50:17 HF/BB 1.52
M0338a 2019-11-08T17:37:39 HF/BB 1.81
M0338b 2019-11-09T07:52:22 2.4 Hz 1.7
M0349a 2019-11-20T13:29:37 2.4 Hz 1.74
M0351a 2019-11-22T16:59:05 2.4 Hz 1.57
M0354a 2019-11-25T16:50:08 2.4 Hz 1.64
M0365a 2019-12-07T00:10:51 2.4 Hz 1.79
M0431a 2020-02-12T19:41:13 2.4 Hz 1.34
M0434a 2020-02-15T21:43:03 BB/HF 1.53
M0446a 2020-02-28T05:36:02 2.4 Hz 1.93
M0458a 2020-03-10T21:22:01 2.4 Hz 1.7
M0466a 2020-03-19T19:37:39 2.4 Hz 1.53
M0516a 2020-05-10T02:52:42 2.4 Hz 1.77
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992 A.E. Stott et al.

Figure 14. Examples of new LF group event detections. The top panel of each event has the LF predictions/observations offset by −1.4 log(m s−1) and −2.8
log(m s−1) for the N and E axes with the HF predictions/observations offset from the respective LF predictions by 0.65 log(m s−1). The black marks indicate
the relative level of −10 log(m s−1) for each trace. The second bottom panel has the HF velocity residual offset by 2 × 10−10 m s−1 from the LF, indicated by
the black mark.

Figure 15. The new LF event detected with the local GP model. The hor-
izontal components are offset by −1.4 log(m s−1) and −2.8 log(m s−1),
respectively, with the black marker indicating the relative level of −10
log(m s−1).

start of the noisy period and has several major glitches nearby. As a
result, the residual is very noisy and so difficult to detect the quake
as an outlier even though it is observed with an SNR of 2 to the
predicted noise level. Another event not detected is S0132a which
is quality D and other techniques (Charalambous et al. 2021) have
also shown it to be heavily contaminated. The remaining events not
detected all have SNR below 1.3 for all components and are all
class D or C events. On inspection the energy in these events is
mainly below 0.4 Hz so not appropriately represented by the chosen
envelope. From the remaining LF detections, 33 can be attributed
to high-frequency types of marsquakes already present in the MQS

catalogue. As demonstrated above, this group does often contain LF
energy.

Following this, there are 530 remaining new LF detections. These
were further filtered to find more likely marsquake candidates by
requiring a minimum detection duration of 2 min and an SNR
greater than 1.2 on the vertical and 1.1 on the horizontals, leaving
250 new LF detections which were manually reviewed. The manual
review followed a similar process to that of MQS (Clinton et al.
2021) and discarded detections owing to the following:

(i) known aseismic signals such as glitches/donks not fully fil-
tered from the data, a full coverage is given in (Ceylan et al. 2021),

(ii) a discontinuity in the data caused by a change in the wind
retrieval algorithm,

(iii) anomalous spikes caused either by a short gust of wind
during a quiet period or extremely strong rapid gusts of wind during
the daytime which cause a larger residual and not fully filtered out
by the detection algorithm.

After removing such false detections we propose 11 new
marsquakes in the lower frequency classes which are presented
in Table 4. These each contain confirmatory characteristics of a
marsquake whereby, some bandlimited energy is identifiable in the
spectrogram separate to wind excitation and the envelope follows
the decay characteristics of an event. These new events are given a
name according to the MQS naming convention with the prefix M
instead of S, followed by sol number and then alphabetical suffix to
denote which event it is per sol. A further nine possible detections
are listed in Table B1 which are not straightforward to confirm but
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Figure 16. Examples of new HF group event detections. The top panel of each event has the LF predictions/observations offset by −1.4 log(m s−1) and −2.8
log(m s−1) for the N and E axes with the HF predictions/observations offset from the respective LF predictions by 0.65 log(m s−1). The black marks indicate
the relative level of −10 log(m s−1) for each trace. The second bottom panel has the HF velocity residual offset by 3 × 10−10 m s−1 from the LF, indicated by
the black mark.

Figure 17. The distribution of detection threshold and events. The red curve is the cumulative distribution of the detection algorithm threshold and the blue is
the histogram/KDE of the level at which the low-frequency (left) and high-frequency (right) groups of events were detected as being outliers by the proposed
detection algorithm.

have some features in line with those of putative marsquakes and
are of interest for catalogue completeness.

The detection algorithm was also ran on the 2.2–2.6 Hz HF
envelope. This found 314 out of 377 of the HF event types in the
current MQS catalogue (InSight Marsquake Service 2022). Most
undetected events are quality D with some C and only three quality

B events missed. A further 10 of the new detections are associated
with the low-frequency grouping of events already in the MQS
catalogue. The remaining new HF detections were filtered similarly
to the LF detections above, requiring a minimum duration of 2 min
and an SNR greater than 1.2 on the vertical and and on one of the
horizontal components while the other horizontal component should
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have an SNR of at least 1.1. This yields 498 new detection candidates
to examine. A manual review (following the same procedure as
above) yielded an extra 28 new marsquakes presented in Table 5
and a further 31 possible detections in Table C1. Of these new HF
detections two are shared with the new LF detections.

A comparison of the machine learning model prediction during
the MQS catalogue events not detected by the proposed algorithm
shows they are seen by the machine learning model prediction.
However, they are simply not observed as significant outliers by
the algorithm. A particular consideration for HF event detection
is that the machine learning model does not well predict ambient
modulation of the 2.4 Hz mode. As a result, if the ambient excitation
increases and then decreases fast enough it may yield a detection.
This poses a problem for the discrimination of low-amplitude HF
type events from these ambient variations and so the proposed new
detections are based on the subjective criteria to have event-like
qualities.

Most of the newly detected events are typically found in either
noisy periods typically with episodic gusts or as very low amplitude
events in quieter periods. Both of these types of events are difficult
to identify by eye and so difficult to be caught by the MQS. This
highlights how the machine learning predictions can be used to aid
marsquake detection and provide new information to add confidence
to a difficult detection. Fig. 14 shows two such archetype new LF
group events detected on Sol 248 (left) and 452 (right). The sol
248 (left) event is an example of a low-amplitude event in a quiet
period. On the other hand, the sol 452 (right) event is an example of
a detection in a noisy period, however, it is clearly separate from the
environment and also exceeds the confidence interval of the local
GP model, shown in Fig. 15. Fig. 16 shows this archetype for two
new HF events detected on sol 313 (left) and 516 (right). The sol 313
event (left) is an example low-amplitude 2.4 Hz type event during a
relatively quiet period. It can be seen in the top panel (left) that the
noise prediction for the 2.4 Hz energy during this period is flat and
the ambient variation is not predicted. In this case the event has a
double peak in the HF SNR/velocity residuals and event-like decay
which lead to a confirmed detection. The sol 516 event (right) is in
a noisy period with nearby broad-band artefacts but there is clear
divergent HF energy. The spectrogram shows an increase in energy
at the 2.4 Hz mode confirming the event.

5.4 Seismic detectivity

The threshold obtained in the detection algorithm effectively dic-
tates the energy level required of a marsquake to be detected at
that point in time. Tracking this threshold over the mission enables
an estimate the detectability of a marsquake similar to one in the
catalogue over the mission.

Fig. 17 shows, for both the LF (0.4–1 Hz) and HF (2.2–
2.6 Hz) bandwidths, the histogram (in red) of the signal level each
marsquake reached to break the threshold is also shown in Fig. 17.
Note that the event level histograms are positively skewed, indi-
cating that smaller marsquakes are likely hidden below the noise
level. This can be compared to the cumulative distribution of the
detection threshold obtained over the mission predictions, shown
as the blue curve. This cumulative distribution indicates the per-
centage of time in the data set for which the detection threshold is
at or below such a level. As a result, the comparison between this
distribution and detection level histogram then yields the amount
of the time where a similar event could be observed. For example,
the largest LF and HF type events reached a level of ∼10−9 m s−1

for which the probability of the detection threshold being below is
∼1 and so they could be seen almost the entire time. This means
that events in the data similar to those causing the largest signals
seen on SEIS (S0173a and S0235b) have likely to not have been
missed. The median amplitude event occurs at 10−10.6 m s−1 for LF
and 10−10.2 m s−1 for HF, for which the noise level is at or below
for ∼45 per cent and ∼50 per cent of the time, respectively. Finally,
the smallest events are at 10−10.9 m s−1 for the LF and 10−11.0 m s−1

for HF for which the noise levels are at or below for ∼20 per cent
and ∼5 per cent of the time, respectively. Note, however, that the
detection level is not a true noise level, it is the level for the residual
signal smoothed and detrended as in the detection algorithm. As a
result, we can only empirically interpret the detectability in relation
to the events observed rather than state the true noise level.

6 C O N C LU S I O N

This work implemented GP regression and an NN to predict the
seismic energy, as seen by SEIS on InSight, generated from the
wind and other atmospheric data. This was done for an LF (0.4–
1 Hz) and HF (2.2–2.6 Hz) bandwidth in order to examine the two
main frequency bands marsquakes are observed. We showed how
the relationship between seismic energy and each input atmospheric
variable varies across the Martian sol and seasons, owing to the
different forcing from different turbulent conditions. We implement
machine learning as a regression style problem for this task, using
mathematical complexity to account for a myriad of such factors.

The NN model was found to have the best performance for both
LF and HF regions across the entire data set in terms of RMSE. As
such it is the most useful for marsquake analysis. However, the GPs
confidence interval is useful to understand the uncertainty around
a prediction and may be of more interest for future work to unpick
the impact of the different atmospheric data variables and inform
physical models.

The NN model’s prediction was used to first analyse the energy
envelope of several marsquakes and derive an SNR (in terms of
energy) across the marsquake catalogue. This demonstrated how it
can be used for specific event analysis. Examining the SNR for both
LF and HF predictions found that the high-frequency group (HF,
VF and 2.4 Hz events) consistently contain LF energy with increas-
ing event magnitude. This demonstrates that the marsquake events
family is more of a continuum, rather than disparate groupings.

An algorithm was proposed to automatically detect marsquakes.
This has led to the detection of 39 new marsquakes and a further
40 possible candidates. Tracking the detection threshold from the
algorithm over the data set yields an empirical way to determine
the detectivity of marsquakes of a certain size. The cumulative
distribution of the threshold gives the amount of time in the mission
where the noise level is at or below this level. Comparing this
threshold to the catalogue of marsquakes showed that it is unlikely
any marsquakes similar to those generating the largest amplitudes
observed on SEIS have been missed, whereas the median amplitude
marsquake could be observed ∼45 per cent and ∼50 per cent of the
time for LF and HF events, respectively. Through aiding catalogue
completeness and analysing marsquake detectivity, this work can
be used to help place constraints on the seismicity of Mars.

The detection algorithm could be developed for implementation
on board missions to optimize data downlink, such as that proposed
by Civilini et al. (2021). Our proposed algorithm can rank the detec-
tion in terms of SNR and so the threshold at which a detection would
be downlinked is flexible depending on downlink resources. This
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is an advantage of the signal processing based approach. However,
the detection step could be made more robust with a further ma-
chine learning based implementation. Other future advances could
consider the use of a machine learning model in conjunction with
a physical model. In this way, it could utilize the InSight data as
prior information to help predict noise levels for future missions as
in Mimoun et al. (2017).

A notable feature of the machine learning model predictions is
that it does not predict the ambient variations in the 2.4 Hz mode,
although it does tend to predict the average level. This could suggest
its driving source is not solely from local atmospheric effects, how-
ever although it could be from regional effects or due to particular
atmospheric conditions. Future work could define a cut-off point to
separate marsquake excitation from ambient variations which will
aid catalogue completeness and also isolate the signal sources for
the 2.4 Hz excitation, leading to more information to determine the
modes origins.

This work highlights the use of machine learning for consistent
treatment of large-scale data in planetary missions. Owing to this
consistent treatment, information can be deduced and catalogued
repeatably. This represents a sensible approach for (extremely valu-
able) planetary data and can be considered in geophysical data on
the Earth.
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S U P P O RT I N G I N F O R M AT I O N

Supplementary data are available at GJI online.

MachineLearningandMarsquakes Detections.zip

Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the paper.

A P P E N D I X A : DATA C H A N N E L S

A P P E N D I X B : N E U R A L N E T W O R K
T U N I N G

A P P E N D I X C : L I S T O F P O S S I B L E N E W
D E T E C T I O N S

Table A1. Data channels.

Data type Channels

20 sps 10 sps 1 sps 0.5 sps 0.1 sps

VBB velocity U, V and W 02.BHU 03.BHU
Wind speed boom 1 and 2 10.LWS 10.VWS 13.VWS
Wind direction boom 1 and 2 10.LWD 10.VWD 13.VWD
Air temperature boom 1 and 2 10.LKO 10.VKO 13.VKO
Pressure 12.BDO 13.BDO 10.LDO
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Figure B1. NN training losses for the selection of the LF seismic energy prediction model. The training and validation loss are shown for a range NN
topologies, batch size and dropout rates. Each square contains the average RMSE for either the test and training loss from the last 10 epochs after 500 epochs
of training.

Figure B2. NN training losses for the selection of the HF seismic energy prediction model. The training and validation loss are shown for a range NNs
topologies, batch size and dropout rates. Each square contains the average RMSE for either the test and training loss from the last 10 epochs after 500 epochs
of training.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/233/2/978/6847165 by IN

IST-C
N

R
S IN

EE IN
SB user on 12 July 2023



998 A.E. Stott et al.

Table C1. Possible LF-type events.

Event sol UTC time SNRZ LF

220 2019-07-11T02:47:37 1.37
232 2019-07-23T11:40:07 1.23
255 2019-08-15T22:55:39 1.91
260 2019-08-21T02:57:43 1.44
356 2019-11-27T21:58:22 1.33
379 2019-12-21T10:38:33 1.44
428 2020-02-09T19:48:02 1.49
692 2020-11-06T19:22:59 1.5
882 2021-05-21T06:49:52 1.64

Table C2. Possible HF-type events.

Event sol UTC time SNRZ HF

177 2019-05-27T04:58:12 1.59
193 2019-06-13T09:38:01 1.43
199 2019-06-18T19:19:02 1.56
199 2019-06-18T21:39:21 1.44
204 2019-06-24T02:03:10 1.48
223 2019-07-14T06:12:19 2.0
235 2019-07-26T14:48:25 1.26
258 2019-08-19T03:40:06 1.37
301 2019-10-01T16:43:31 1.41
312 2019-10-13T14:02:38 1.38
320 2019-10-21T21:37:39 1.58
329 2019-10-31T03:00:42 1.37
332 2019-11-03T03:57:15 1.45
335 2019-11-06T08:10:31 1.46
336 2019-11-07T04:51:20 1.82
337 2019-11-08T06:43:48 1.48
342 2019-11-13T09:21:07 1.48
350 2019-11-21T15:14:01 1.34
354 2019-11-25T21:14:48 1.35
355 2019-11-26T18:57:03 1.52
356 2019-11-27T20:47:56 1.5
381 2019-12-22T19:11:19 2.09
391 2020-01-02T17:50:11 1.39
398 2020-01-09T21:00:15 1.61
403 2020-01-14T09:25:40 1.54
429 2020-02-10T20:19:53 1.45
441 2020-02-23T01:40:34 1.61
455 2020-03-08T12:14:32 1.6
457 2020-03-10T12:52:55 1.58
497 2020-04-20T14:39:15 1.77
502 2020-04-25T07:18:44 1.72
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