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ABSTRACT: Owing to the increasing share of variable renewable energies in the electricity mix, the European energy sector
is becoming more weather sensitive. In this regard, skillful subseasonal predictions of essential climate variables can provide
considerable socioeconomic benefits to the energy sector. The aim of this study is therefore to improve the European subseaso-
nal predictions of 100-m wind speed and 2-m temperature, which we achieve through statistical downscaling. We employ re-
dundancy analysis (RDA) to estimate spatial patterns of variability from large-scale fields that allow for the best prediction of
surface fields. We compare explanatory powers between the patterns obtained using RDA against those derived using princi-
pal component analysis (PCA), when used as predictors in multilinear regression models to predict surface fields, and show
that the explanatory power of the former is superior to that of the latter. Subsequently, we employ the estimated relationship
between RDA patterns and surface fields to produce statistical probabilistic predictions of gridded surface fields using dynami-
cal ensemble predictions of RDA patterns. We finally demonstrate how a simple combination of dynamical and statistical pre-
dictions of surface fields significantly improves the accuracy of subseasonal predictions of both variables over a large part of
Europe. We attribute the improved accuracy of these combined predictions to improvements in reliability and resolution.

KEYWORDS: Europe; Downscaling; Empirical orthogonal functions; Forecast verification/skill; Statistical forecasting;
Subseasonal variability

1. Introduction

Subseasonal predictions refer to predictions beyond two
weeks and up to two months (Robertson and Vitart 2018).
These predictions are influenced by both atmospheric initial
conditions and boundary forcings (Hoskins 2012). Predictabil-
ity on subseasonal time scales is limited by the use of imper-
fect initial conditions and imperfect numerical formulations in
prediction models (Lorenz 1963, 1982; Palmer et al. 2009;
Leutbecher et al. 2016). Predictability of fine-scale atmo-
spheric features on subseasonal time scales remains poor for
fundamental reasons, because of the chaos inherent in the at-
mosphere (Lorenz 1965; Jifan 1989; Zhang et al. 2019a). How-
ever, the predictability of large-scale, low-frequency features
in the ocean, over land, and in the cryosphere lasts well be-
yond two weeks (Vitart et al. 2012; Buizza and Leutbecher
2015; Toth and Buizza 2019). The key sources of subseasonal

predictability are Madden–Julian oscillation (e.g., Jones et al.
2004a,b; Zheng et al. 2018), snow cover (e.g., Sobolowski et al.
2010; Lin and Wu 2011; Orsolini et al. 2013), stratosphere–
troposphere interaction (e.g., Baldwin et al. 2003; Domeisen
et al. 2020; Schwartz and Garfinkel 2020), land conditions (e.g.,
Koster et al. 2011; van den Hurk et al. 2012; Prodhomme et al.
2016; Seo et al. 2019), and ocean conditions (e.g., Woolnough
et al. 2007; Fu et al. 2007; Subramanian et al. 2019). Predictions
on subseasonal time scales, however, need to be averaged on
large enough spatiotemporal scales to extract relevant and pre-
dictable components of the signal (Lorenz 1982; Zhu et al.
2014; Buizza and Leutbecher 2015). Since subseasonal predic-
tions are beyond deterministic limits of predictability (i.e.,
about ten days), these predictions are produced as ensembles
of numerical integrations, describing a range of possibilities in-
stead of a unique best estimate of the future state. This shift
from determinism to probabilism has been a major break-
through in extending the predictability horizon of subseasonal
predictions (Palmer 2012).

With a transition toward low carbon energy systems, the
energy industry is going to be one of the most important end-
users of subseasonal predictions (White et al. 2017). Skillful
subseasonal predictions of essential climate variables such as
wind speed, solar radiation, and surface temperature can in-
form the energy industry about expected renewable energy
production and energy consumption, and further prepare the
sector for any possible risks that may arise due to anomalies.
A nonexhaustive list of applications in the energy sector for
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which subseasonal predictions can be instrumental includes
determining required reserve levels, maintenance scheduling,
assessment of extreme risks, determining grid transmission ca-
pacity, and trading electricity in power markets.

Europe, being one of the world’s largest energy consuming
and greenhouse gas emitting regions, sits at the forefront of
the energy transition (Liobikienė and Butkus 2017; Jonek-
Kowalska 2022). In the European Union, wind power is be-
coming the largest renewable source of electricity (IEA 2020).
Hence, we focus this study on subseasonal predictions of 100-m
wind speed and 2-m temperature over Europe. Several studies
have assessed the quality of subseasonal predictions of wind
speed and surface temperature over Europe, and have found
skillful predictions relative to climatology for weekly mean
quantities beyond two weeks (e.g., Lynch et al. 2014; Monhart
et al. 2018; Diro and Lin 2020; Dorrington et al. 2020; Goutham
et al. 2022). Although the fundamental sources of subseasonal
predictability have been identified (Vitart et al. 2012), the phys-
ical relationships between large-scale, low-frequency fields and
surface fields (i.e., within the planetary boundary layer) are not
well represented in subseasonal prediction models due to pa-
rameterizations (Palmer et al. 2009; Leutbecher et al. 2016;
Robertson and Vitart 2018; Lledó and Doblas-Reyes 2020). In
addition, the forecast errors of surface fields grow relatively
faster than that of large-scale fields due to increased sensitivity
of the former to model parameterizations (e.g., Buizza and
Leutbecher 2015; Toth and Buizza 2019). Given the longer skill
horizon of large-scale fields compared to surface fields (Buizza
et al. 2015; Toth and Buizza 2019; Büeler et al. 2021), there is
an opportunity to improve subseasonal surface-field predic-
tions by accounting for the misrepresentations in physical rela-
tionships between large-scale and surface fields using historical
data. In other words, the information contained in the predic-
tion of large-scale fields is more reliable than that in surface
fields, and statistical downscaling techniques can be imple-
mented to correctly transfer this information from large-scale
fields to surface fields (e.g., Scaife et al. 2014; Manzanas et al.
2018; Goutham et al. 2021).

The most popular statistical downscaling techniques are the
linear methods due to their transparency and ease of interpre-
tation (Benestad et al. 2008; Wilks 2019). Generally, linear
statistical downscaling is done in three stages; one, choosing
predictors which have physical relationships with the predic-
tand; two, obtaining the linear relationship between predic-
tors and the predictand; and finally, using future dynamical
predictions of predictors to reconstruct the predictand. In a
majority of studies focusing on statistical downscaling of sur-
face variables over Europe, weather regimes obtained from
dimension reduction or clustering of geopotential height at
500 hPa (Z500) are used as predictors, which are then re-
gressed on surface variables (e.g., Grams et al. 2017; Alonzo
et al. 2017; Ramon et al. 2021). The obtained coefficients are
then employed on future predictions of weather regimes to re-
construct surface fields. Z500 has long been the variable of
choice to determine weather regimes as it represents the mid-
troposphere, making it easier to capture large-scale flow
(Wallace and Gutzler 1981; Cheng and Wallace 1993; Wilby and
Wigley 1997; Plaut and Simonnet 2001; Alonzo et al. 2017).

Alonzo et al. (2017) have developed a methodology to estimate
the distribution of surface wind speed over France based on the
knowledge (or forecast) of the large-scale atmospheric state,
the latter being summarized by the first few patterns obtained
through principal component analysis (PCA). It was verified that
these patterns or empirical orthogonal functions (EOFs) repre-
sent classical Euro-Atlantic weather regimes. Although each
weather regime is associated with a set of surface meteorologi-
cal conditions (van der Wiel et al. 2019), the main limitations of
the use of classical weather regimes for predicting surface fields
are that these weather regimes represent large-scale atmo-
spheric variability independently of the predictand and that
each surface climate variable responds differently to the same
weather regime (Bloomfield et al. 2019). This calls for the devel-
opment of new approaches to obtain large-scale spatial patterns
of variability that take into account variability of the predictand
itself (Bloomfield et al. 2019). One such approach is presented
in Bloomfield et al. (2019) where they use k-means clustering to
find “targeted circulation types” conditioned on the European
power system. It is important to understand large-scale flow
patterns that have the highest impact on surface variables as
these patterns can be used to enhance the skill horizon of
specific surface variables. The objectives of this research are
therefore to identify spatial patterns of variability of Z500
conditioned on 100-m wind speed and 2-m temperature over
Europe, and to use ensemble predictions of these patterns
to improve subseasonal ensemble predictions of 100-m wind
speed and 2-m temperature.

In this study, we employ a multivariate statistical technique
called redundancy analysis (RDA) between the Z500 field
and the surface fields to obtain patterns of Z500 that maxi-
mize explained variance of the surface variables (von Storch
et al. 1999; Tippett et al. 2008; Wilks 2014, 2019). We then ap-
ply the estimated linear regression coefficients on ensemble
dynamical predictions of a restricted number of RDA pat-
terns of Z500 to obtain statistical ensemble predictions of sur-
face variables. Several dimension reduction methods exist to
summarize coupled variations of large-scale fields and surface
fields using a few patterns and their corresponding coefficients
(von Storch et al. 1999; Tippett et al. 2008; Wilks 2019).
Among these methods, redundancy analysis distinguishes it-
self from classical multivariate techniques such as canonical
correlation analysis or maximum covariance analysis by being
asymmetric in the treatment of predictor and predictand (i.e.,
it distinguishes dependent and independent variables), as is
the case with multilinear regression (von Storch et al. 1999;
Wang and Zwiers 2001; Tippett et al. 2008; Wilks 2014). As
far as the authors are aware, this is the first study to compare
explanatory power between the patterns obtained using RDA
of Euro-Atlantic Z500 against those derived using PCA, when
used as predictors in a multilinear regression model to predict
100-m wind speed and 2-m temperature over Europe, and also
the first to reveal the RDA patterns of Z500 conditioned on
these two surface climate variables. In addition, contrary to
several studies which have discarded dynamical predictions of
surface variables completely in favor of statistical predictions
(e.g., Alonzo et al. 2017; Ramon et al. 2021), we demonstrate
how a simple combination of dynamical predictions of surface
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variables with statistical predictions derived from redundancy
analysis can enhance prediction skill. Although the idea of
combining dynamical and statistical predictions has already
been illustrated in some recent studies on seasonal time scales
(e.g., Schepen et al. 2012, 2014, 2016; Strazzo et al. 2019), in
this study, we demonstrate the value gained through a combi-
nation on subseasonal time scales. We also explore forecast
quality attributes of different ensemble predictions to identify
those that lead to differences in predictive quality between
dynamical and combined (i.e., dynamical 1 statistical)
predictions.

The article is organized as follows: Section 2 outlines the
data used; section 3 describes redundancy analysis, the combi-
nation of dynamical and statistical predictions, and the met-
rics used to evaluate quality of predictions; section 4 presents
the results in three parts: (i) compares and contrasts patterns
obtained using RDA against those of PCA, (ii) compares the
quality of different ensemble predictions, and (iii) takes a
closer look at forecast attributes that contribute to differences
in prediction quality between different ensemble predictions;
and sections 5 and 6 are reserved for discussions and conclu-
sions, respectively.

2. Data

a. Forecasts and reforecasts

The forecasts and retrospective forecasts (reforecasts) data
used in this study originate from extended-range predictions
(Vitart et al. 2017) of the European Centre for Medium-
Range Weather Forecasts (ECMWF). The medium-range
(i.e., up to two weeks) ocean–atmosphere coupled ensemble
forecasts are extended to 46 days twice a week at 0000 UTC on
Mondays and Thursdays to produce extended-range ensemble
predictions (Vitart et al. 2019). The operational ensemble
predictions consist of 51 members (50 perturbed 1 control).
The perturbed members are obtained using singular vectors
(Leutbecher 2005; Leutbecher and Palmer 2008) and ensem-
ble data assimilation (Buizza et al. 2008; Isaksen et al. 2010).
Stochastically perturbed parameterization tendencies (SPPT)
scheme is used to represent model uncertainty (Buizza et al.
1999; Palmer et al. 2009; Leutbecher et al. 2016). These
predictions are originally issued at a spatial resolution of
Tco639L91 (;18 km) up to a lead time of 15 days, and at
Tco319L91 (;36 km) after (Vitart et al. 2017, 2019).

The operational prediction model begins to drift signifi-
cantly from reality after about ten days of coupled integra-
tions. This drift can be attributed to inherent atmospheric
unpredictability (Zhang et al. 2019b; Žagar and Szunyogh
2020), and the use of imperfect initial conditions and imper-
fect representation of physical processes in the numerical
model (Palmer et al. 2009; Leutbecher et al. 2016). It is imper-
ative to remove the drift before employing the model. The
ECMWF produces reforecasts to estimate and remove the op-
erational model drift (Vitart et al. 2008). A reforecast set con-
sists of ensemble forecasts of 11 members (10 perturbed 1

control) issued for the same calendar day of the year as the
operational forecast over each of the past 20 years. ERA5

reanalysis provides the initial conditions for the reforecasts.
This reforecast set with 220 integrations (20 years 3 11 mem-
bers) allows for evaluation of the model climatology of opera-
tional forecasts.

We retrieve forecasts and the corresponding reforecasts of
2-m temperature (T2m), zonal and meridional components of
100-m wind speed, and geopotential at 500 hPa issued during
boreal winter (DJF) on a global grid between December 2016
and February 2020. The retrieved spatial resolution is 0.98 and
the temporal resolution is 6 h (instantaneous values at 0000,
0600, 1200, and 1800 UTC). The data are retrieved from the
Meteorological Archival and Retrieval System (MARS) of
the ECMWF. The 100-m wind speed (U100) is computed as
the square root of the sum of squares of zonal and meridional
components. The geopotential height (Z500) is computed by
dividing the geopotential by Earth’s gravitational acceleration g
(59.806 m s22). As the prediction model is undergoing peri-
odic improvements, the dataset used in this study consists of
forecasts and reforecasts from several versions (CY43R1,
CY43R3, CY45R1, and CY46R1) (Vitart et al. 2019). Never-
theless, the differences in model formulation and hence the
statistics between different versions are marginal (refer to
appendix A in Goutham et al. 2022). We focus on boreal
winter in this study as this season experiences high variability
in wind energy production in addition to increased energy de-
mand mainly for space heating. Furthermore, predictions are
more skillful in winter compared with other seasons due to
stronger boundary conditions (e.g., sea surface temperature
gradients), reinforced coupling (e.g., stratosphere–tropo-
sphere), and enhanced memory of initial conditions such as
soil moisture among others (Robertson and Vitart 2018). In
this study, only the perturbed members of forecasts and re-
forecasts are used. The reader is referred to the data avail-
ability statement to learn about the missing control member.
All the results shown in this study involving operational pre-
dictions rely on reforecasts for calibration as explained in
appendix A.

b. Reference

Generally, the forecast quality is assessed by comparing
against observations (Coelho et al. 2019; Wilks 2019). How-
ever, in the absence of a serially complete and spatially coher-
ent observed dataset, reanalysis is used as a reference in
forecast verification (Kalnay 2003). In this study, we use ERA5
reanalysis (Hersbach et al. 2020) as reference. ERA5 reanalysis
is a fifth-generation high-resolution (hourly output, 31-km hori-
zontal grid spacing) reanalysis produced using 4D-Var data as-
similation and the CY41R2 version of the Integrated Forecast
System of the ECMWF (Hersbach et al. 2020). We retrieve
ERA5 reanalysis of T2m, zonal and meridional components
of 100-m wind speed, and geopotential at 500 hPa on a global
grid between January 1979 and January 2021 at the same spa-
tial and temporal resolution as the forecasts. The data are re-
trieved from the Climate Data Store of the Copernicus
Climate Change Services (Raoult et al. 2017). The 100-m
wind speed and geopotential height are computed as previ-
ously described. Although ERA5 reanalysis shows cold biases
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in representing surface temperature over the Iberian Peninsula
and the Mediterranean (Johannsen et al. 2019), it represents
the means and extremes well over most of Europe (e.g.,
Simmons et al. 2021; Velikou et al. 2022). Although ERA5 rean-
alysis severely underestimates the mean winds over complex ter-
rain, it represents the variability of wind speed more realistically
compared with other reanalysis datasets over Europe (e.g.,
Ramon et al. 2019; Jourdier 2020; Dörenkämper et al. 2020;
Brune et al. 2021; Molina et al. 2021; Murcia et al. 2022).
Inspite of the biases, the representation errors of ERA5
reanalysis are small, and hence acceptable for verification
(Ramon et al. 2019; Velikou et al. 2022) and statistical
modeling (Tarek et al. 2020). Accordingly, ERA5 reanaly-
sis is used as a reference in forecast verification and as well
as for training the statistical model in this study.

3. Methodology

a. Redundancy analysis

RDA is a multivariate statistical technique that attempts
to find lower-dimensional patterns of linear dependence be-
tween two multivariate datasets (i.e., between predictor and
predictand) maximizing the coefficient of determination of
linear regression (von Storch et al. 1999; Wang and Zwiers
2001; Tippett et al. 2008; Wilks 2014). There exist several
other methods to find linearly coupled patterns between two
multivariate datasets, notably canonical correlation analysis
(CCA) and maximum covariance analysis (MCA). RDA, un-
like CCA or MCA, is asymmetric in the treatment of two
datasets as it identifies one as the predictor and the other as
the predictand. This way, the patterns derived from RDA are
specifically tailored for use in multilinear regression models:

P 5

p1,1 p1,2 … p1,t
p2,1 · … p2,t
· · … ·

pm,1 · … pm,t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ and Q 5

q1,1 q1,2 … q1,t
q2,1 · … q2,t
· · … ·

qn,1 · … qn,t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠:

Let P be the predictor anomaly matrix with each column rep-
resenting an observation at each of the m grid points. Let Q
be the predictand anomaly matrix with each column repre-
senting an observation at each of the n grid points. For illus-
tration purpose, P can be thought of as Z500, and Q as U100.
The elements of both P and Q are weighted by square root of
cosine of latitude to equalize variance (von Storch et al. 1999;
Wilks 2014, 2019). We use gridded Z500 weekly mean anoma-
lies over the Euro-Atlantic (208–808N, 1208W–408E) as the
predictor and gridded T2m/U100 weekly mean anomalies
over Europe (348–748, 138W–408E) as the predictand in this
study. The choice of the predictor domain and its sensitivity
to the predictand domain is discussed in section 5a. Regarding
the calculation of anomalies, we tested lagging 15-yr as well as
20-yr mean climatology for computing anomalies. We ob-
served that using lagging 15-year climatology (i.e., the most
recent 15-yr period as climatology) performs better relative to
using lagging 20-yr climatology (i.e., the most recent 20-yr pe-
riod) in alleviating cold biases in temperature forecasts that

are derived from the ongoing climate warming (not shown).
This observation is consistent with the ones previously seen in
the literature (e.g., Wilks 2013; Wilks and Livezey 2013; Wilks
2014). Therefore, we compute Z500, T2m, and U100 anoma-
lies by removing lagging 15-year mean climatology from the
observed weekly mean. The climatological data used to com-
pute anomalies correspond to the same week and month of
the year as the observation. Although U100 shows no particu-
lar trend, we retain the 15-yr period for computing U100
anomalies to make the inter-variable comparison consistent.
We have more explanatory variables (i.e., grid points) than
the number of observations in matrices P and Q. Hence, to
prevent over-determination and to lessen the computational
burden, we perform PCA of matrices P and Q to obtain their
corresponding principal components (PC) retaining 99% of
the variance in the original data (von Storch et al. 1999; Wilks
2019). As the predictor and the predictand vectors are mea-
sured in different units, we normalize them by subtracting the
gridpoint mean and dividing by the gridpoint standard devia-
tion (Wilks 2019). The predictor and predictand PCs of the
normalized variables P′ and Q′ are computed as X5 ET

PP
′

and Y5 ET
QQ

′, respectively. Here, the matrices ET
P and ET

Q

hold the predictor and predictand patterns, respectively. The
superscript T denotes vector or matrix transpose. Using cen-
tered variables in place of normalized variables marginally de-
grades the results (not shown). The joint sample variance–
covariance matrix of the leading predictor and predictand
PCs is given by

S 5 (x1; x2; …; xi; y1; y2; …yj)(x1; x2; …; xi; y1; y2; …; yj)T

5
SXX SXY

SYX SYY

( )
: (1)

Here, the (i 1 j) 3 t matrix (x1x2… xiy1y2… yj)
T is formed

through concatenation of the leading i predictor PCs xi and
the leading j predictand PCs yj. Since we use standardized var-
iables, S is in fact a correlation matrix (von Storch et al. 1999;
Wilks 2019). Nonetheless, we use “covariance matrix” as a
general terminology to describe the method. The covariance
matrix of predictand PCs conditioned on predictor PCs is
given by

SŶŶ 5 SYXS
21
XXSXY: (2)

The eigen-decomposition of the square symmetric matrix in
Eq. (2) yields orthonormal eigenvectors B and diagonal matrix
L of positive eigenvalues l, both sorted in descending order
based on the values of l. The columns of B consist in the pat-
terns that account for the variance of predictand PCs when
conditioned on predictor PCs. We can deduce the predictor
patterns A through the equation:

A 5
1



L

√ S21
XXSXYB: (3)

We can conveniently compute the predictor and predictand
redundancy PCs using V5 ATX and W5 BTY, respectively.
The regression coefficients of the linear relationship between
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V and W are given by R5




L

√
. The redundancy PCs V and W

are linked through W5 RV. For a given number of retained
patterns, redundancy analysis guarantees that the coefficient
of determination of the linear regression is maximized. In this
study, we use 7-day rolling averages of ERA5 reanalysis of
Z500, T2m, and U100 in a perfect prognosis framework for
fitting the model (e.g., Hewitson and Crane 1996; Zorita and
von Storch 1999; Ramon et al. 2021). We compute regression
coefficients by fitting a separate model for each predictand.
We choose the training period to be the boreal winter be-
tween December 1999 and February 2016 (i.e., 17 years).

b. Statistical and hybrid predictions

We can use redundancy regression coefficients (R), predic-
tor patterns (A), predictand patterns (B), and the relationship
between predictor and predictand redundancy PCs to predict
the predictand given a new set of predictors. Let XO be a new
set of predictor PCs computed from a new set of predictor
anomaly matrix PO (i.e., XO5 ET

PP
′
O with ET

P unchanged from
the initial analysis). We can compute the predictand redun-
dancy PCs as Ŵ 5 RTVO 5 RTATXO. We can then obtain the
standardized predictand vector anomalies using the following
equation:

Q̂O

′
5 EQ(BT)21Ŵ 5 EQ(BT)21RTATXO: (4)

We consider an ensemble of weekly mean anomalies of Z500
operational extended-range predictions from ECMWF at any
given lead time as PO. The operational predictions are bias-
corrected using the mean and variance adjustment method
(Torralba et al. 2017; Manzanas et al. 2019; Goutham et al.
2022) as described in appendix A. The prediction anomalies
are computed in a similar way to the observed anomalies, but
using a lagging 15-yr climatology derived from the reforecasts.
We apply Eq. (4) on a restricted number of PCs (XO) of PO to
obtain an ensemble of predicted weekly mean anomalies of
T2m or U100. The truncation of predictor PCs is a necessary
step to optimize the accuracy of ensemble predictions, and it
will be discussed further in the following sections. The pre-
dicted T2m or U100 anomalies are converted to absolute val-
ues by adding the lagging 15-yr climatology of the respective
variable derived from reforecasts. Although we use dynamical
predictions of Z500 to predict surface fields, we refer to the
predicted vectors as statistical (ST) predictions, emphasizing
the role of the statistical relationship between the predictor
and the predictand. We then obtain a 100-member ensemble
hybrid (HY) prediction by concatenating a 50-member statis-
tical surface field prediction with a 50-member dynamical
(DY) surface field prediction. All the ensemble members of
the hybrid prediction receive equal weights.

c. Measures of prediction skill

Evaluation of probabilistic prediction skill involves measuring
different aspects of prediction quality (Jolliffe and Stephenson
2003; Wilks 2019; Coelho et al. 2019). The most important at-
tributes of a forecast/prediction quality are as follows:

• Accuracy: it measures the average distance between fore-
casts and observations;

• Association: it measures the strength of the relationship be-
tween forecasts and observations;

• Reliability: it measures calibration of the issued forecast
probabilities;

• Resolution: it measures how the frequency of occurrence of
an event varies as the issued forecast probability changes;
and

• Sharpness: it measures the ability of forecasts to produce
concentrated predictive distributions that are distinct from
climatological probabilities.

Several scores have been proposed in the literature to as-
sess probabilistic prediction skill taking into account these dif-
ferent forecast attributes (e.g., Jolliffe and Stephenson 2003).
In this study, we employ the following metrics and diagnostic
plots:

1) CONTINUOUS RANKED PROBABILITY SKILL

SCORE (CRPSS)

The continuous ranked probability score (CRPS) measures the
distance between the cumulative distribution functions (CDF) of
a probabilistic prediction and an observation (Matheson and
Winkler 1976; Unger 1985; Hersbach 2000). The CRPS is a nega-
tively oriented score in that the smallest values indicate more ac-
curate predictions. It is also a proper score as it rewards those
predictions whose probabilities are concentrated around the ob-
servation (Gneiting and Raftery 2007). The CRPS has the same
units as the physical quantity being verified. The CRPS can be de-
composed into components consisting of reliability, resolution,
and uncertainty (Hersbach 2000). The CRPSS compares the
prediction skill of a given prediction system with that of a
benchmark. In the absence of reliable forecasts for end-user
applications, a common practice in the energy industry is to use
observed climatology, a long-term average of observed weather
(typically 35 years), as the expected weather. In this study, we
use a 35-yr lagging observed climatology, derived from ERA5
reanalysis, as a 35-member ensemble benchmark prediction
(CL). This climatological data corresponds to the same week
and month of the year as the dynamical prediction but taken
over the last 35 years. The choice of a 15-yr lagging climatology
for computing anomalies, as described in section 3a, is solely to
alleviate cold bias in statistical T2m predictions. Since the pre-
diction systems compared in this study (i.e., dynamical, statisti-
cal, hybrid, and climatological) are composed of different
ensemble sizes, we compute fair-CRPS (FCRPS) and fair-
CRPSS (FCRPSS) to have an unbiased estimate of the scores
(Ferro 2014). Skillful predictions should have FCRPSS greater
than zero. The standard practice in forecast verification is to
compute scores for reforecasts, and use these scores as an indi-
cation of the skill of the operational forecasts (Jolliffe and
Stephenson 2003). However, Goutham et al. (2022) have
shown that the skill of operational predictions on S2S time
scales over Europe is higher than that of reforecasts. The im-
proved skill of operational predictions is mainly attributed to
their larger ensemble size relative to the reforecasts. Therefore,
we compute all the scores and diagnostic plots for operational
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dynamical predictions and the corresponding statistical and hy-
brid predictions in this study. In particular, we first calculate
the FCRPS of weekly averaged dynamical, statistical, hybrid,
and climatological predictions for each of the forecast issue
dates and at each of the considered lead times. We then com-
pute FCRPSS and its mean over all the forecast issue dates us-
ing climatological predictions as the benchmark. We apply the
Wilcoxon signed-rank test (Wilcoxon 1945; Conover 1971;
Wilks 2019) (see appendix B) to investigate the statistical sig-
nificance of the differences of FCRPSS between hybrid and dy-
namical predictions.

2) PROPORTION OF SKILLFUL FORECASTS (PSF)

As the mean of a distribution is sensitive to the existence of
outliers, the mean-FCRPSS overemphasizes negative instances,
and can therefore lead to underestimation of the prediction skill
(Goutham et al. 2022). Therefore, we compute fair-proportion
of skillful forecasts (FPSF) in addition to mean-FCRPSS. As
the name suggests, the FPSF is a proportion of the number of
predictions that have FCRPSS greater than zero to the total
number of predictions considered.

3) ANOMALY CORRELATION COEFFICIENT (ACC)

The ACC is a deterministic score that measures the linear
association as Pearson’s correlation coefficient between the
anomalies of the ensemble mean predictions and observations
(Namias 1952; Wilks 2019). ACC is complementary to CRPS
as it is insensitive to forecast errors in accuracy. Accordingly,
a forecast can be skillful (based on ACC) if it has some tem-
poral association with the observations, irrespective of the
magnitude of its accuracy.

4) RELIABILITY DIAGRAM

A reliability diagram is a diagnostic plot to understand the
full joint distribution of predictions and observations for prob-
abilistic predictions of a binary predictand (Sanders 1963;
Jolliffe and Stephenson 2003; Wilks 2019). It can be used to
measure reliability, resolution, and sharpness. In this study,
we plot reliability diagrams for upper and lower terciles of
weekly mean predictions averaged over a geographical do-
main. Geographical domain averaging, wherever applicable,
is computed as the mean of cosine-latitude weighted gridpoint
values.

In this study, we compute all the scores and diagnostic plots
for weekly averaged quantities at four subseasonal lead times.
More specifically, lead week 3 corresponds to the weekly av-
erage between days 14–20, week 4 between days 21–27, week
5 between days 28–34, and week 6 between days 35–41. We
employ leave-one-out cross validation to estimate the optimum
number of predictor patterns (i.e., truncation) in statistical pre-
dictions. The truncation is carried out with the criterion to
optimize the median of FCRPSS of target predictions (i.e., sta-
tistical or hybrid) over the domain. This means that the number
of predictor patterns retained in the best statistical predictions
and in statistical predictions which form a component of hybrid
predictions is different. Since hybrid predictions retain a large
part of the information from dynamical predictions, the statistical

predictions which form a component of hybrid predictions re-
quire deep truncation, i.e., only a small number of predictor
patterns are sufficient. On the other hand, a large number of
predictor patterns are required to obtain optimum statistical-only
predictions. We prefer, as a truncation criterion, the median of
FCRPSS to the mean as the mean is relatively more sensitive to
extreme values. The number of predictor principal components
required to obtain optimum U100 and T2m predictions, and the
sensitivity of these predictions to the number of retained princi-
pal components will be discussed in the following section.

4. Results

As a first step, we test the efficiency of patterns obtained us-
ing PCA on one hand, to those obtained using RDA on the
other, to provide information on surface fields when used as
predictors in a multilinear regression model. Subsequently,
we analyze the differences in prediction quality between dy-
namical, statistical, hybrid, and climatological predictions as
well as between U100 and T2m. Finally, we explore and com-
pare several forecast quality attributes between hybrid and
dynamical predictions to understand the reasons for the dif-
ferences in skill between the two.

a. How do the patterns derived using redundancy
analysis differ from those obtained using principal
component analysis?

We compare the differences between EOFs of Z500 anom-
alies over the Euro-Atlantic derived using PCA, against those
derived using RDA conditioned on U100 and T2m over
Europe in Fig. 1. The EOFs of the Z500 field in PCA are cho-
sen independently of the predictand to represent the maxi-
mum possible variability contained in the predictor itself. In
contrast, the EOFs of the Z500 field in RDA are chosen to
maximize the explained variance of the predictand. Alonzo
et al. (2017) have verified that the principal components ob-
tained through PCA of Z500 over the Euro-Atlantic repre-
sent the classical Euro-Atlantic weather regimes.

The first three patterns shown in Fig. 1a resemble classical
weather regimes of North Atlantic Oscillation, Scandinavian
regime, and Atlantic regime, respectively (Alonzo et al. 2017;
Bloomfield et al. 2019; van der Wiel et al. 2019; Garrido-Perez
et al. 2020). Please note that the patterns in Fig. 1 are sign in-
definite, and that the color bars have no units as the units are
carried by the corresponding PCs. The imprints of weather re-
gimes on 10-m wind speed and T2m can be obtained from
Bloomfield et al. (2019), van der Wiel et al. (2019), and
Garrido-Perez et al. (2020). The first observation that can be
made from Z500 patterns in Fig. 1 is that the centers of action
of RDA (top rows in Figs. 1b and 1c) are shifted toward or
onto the European domain. This is logical as RDA patterns
are conditioned on U100 and T2m over the European do-
main. Besides, we can notice variations in the strengths of
troughs and ridges between PCA and RDA Z500 patterns.
The Z500 patterns obtained using RDA further display inter-
variable differences that may be attributed to the behavior of
the conditioned variable itself. Some of the Z500 patterns ob-
tained using RDA may be seen as perturbations of those
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obtained using PCA, but with major changes in the relative
importance of patterns for surface field prediction.

The imprints of classical weather regimes on 10-m wind
speed and T2m are illustrated in Fig. 2 in Bloomfield et al.
(2019). Although RDA surface field patterns in Fig. 1 in this
work and the surface responses of weather regimes in Fig. 2 in

Bloomfield et al. (2019) are not measured in the same units,
they can still be compared assuming an equivalent multiplica-
tion factor to U100 and T2m imprints in Fig. 1. Overall, it is
conspicuous that the surface imprints of RDA patterns are
stronger and more concentrated over Europe compared with
the surface responses of classical weather regimes. The imprints

FIG. 1. (a) The first three patterns or empirical orthogonal functions of Z500 anomalies over the Euro-Atlantic computed through prin-
cipal component analysis. (b) The first three paired patterns of redundancy analysis of Z500 anomalies conditioned on U100 anomalies.
(c) The first three paired patterns of redundancy analysis of Z500 anomalies conditioned on T2m anomalies. The top rows in (b) and (c)
represent Z500 RDA patterns, and the corresponding bottom rows represent imprints of U100 and T2m, respectively. Please note that
the color bars have no units, and that the signs are arbitrary. The patterns shown are unrotated.
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of RDA patterns on U100 in Fig. 1 show anomalous meridional
and zonal dipoles which are originally absent in the surface re-
sponses of classical weather regimes on 10-m wind speed [Fig. 2
in Bloomfield et al. (2019)]. Although there are similarities in
the first two imprints of weather regimes and RDA patterns on
T2m, the center of the anomaly of the imprint corresponding to
the first RDA pattern is shifted toward the southwest, while the
imprint corresponding to the second RDA pattern shows a
stronger dipole with a stretched northern anomaly center rela-
tive to the responses of weather regimes on T2m. The imprint
of the third RDA pattern on T2m is significantly different from
that of the Atlantic regime in Fig. 2 of Bloomfield et al. (2019)
and shows pronounced variations along with a tripole. The sub-
sequent patterns are not shown in this work, but they present
similar characteristics. Overall, the patterns in Fig. 1 indicate
stronger surface imprints of RDA patterns compared with
weather regimes on both U100 and T2m.

Having understood the differences in surface imprints be-
tween weather regimes and RDA patterns, we now compare
the statistical explanatory power between PCA and RDA
Z500 patterns, when used as predictors in a multilinear regres-
sion model, to accurately reconstruct surface fields. In Fig. 2,
we compare the performance of regression between principal
component regression (PCR) and RDA models. Particularly,
we use coefficient of determination (R2) and root mean squared
error (rmse) of the linear fit between the predictor and the pre-
dictand as evaluation metrics. The R2 measures the proportion
of variation of the predictand that is accounted for by regres-
sion. Accordingly, the higher the R2, the more is the predictand
explained by the predictor. Kindly note that the R2 presented in
Fig. 2 shows the explained variance of individual grid points,
while redundancy analysis maximizes the R2 averaged over the
domain. In PCR, we first compute the PCs of the Euro-Atlantic
Z500 anomaly field through principal component analysis, and

then use these PCs as predictors to predict U100 and T2m over
Europe via standard linear regression (Wilks 2019). In Fig. 2,
we retain the same number of PCs (i.e., all) for both PCR and
RDA methods to facilitate comparison. From Fig. 2, it is con-
spicuous that the R2 of RDA, with domain averages for U100
and T2m being 0.83 and 0.94, respectively, is substantially
higher than that of PCR (domain averages of U100 and T2m
being 0.46 and 0.56, respectively) for both the variables. Conse-
quently, the rmse of the linear fit between the predictor and the
predictand of RDA, with domain averages for U100 and T2m
being 0.53 m s21 and 0.468C, respectively, is lower than that of
PCR (domain averages of U100 and T2m being 0.96 m s21 and
1.278C, respectively). The spatial variations of rmse of U100
and T2m resemble that of the interannual variability of the re-
spective variables (see appendix C). The R2 of RDA for T2m is
relatively high compared with U100. Despite RDAmodels hav-
ing higher R2, the R2 for U100 drops to values below 0.5 over
mountainous and other regions where the local effects are con-
siderable. In general, using RDA Z500 patterns conditioned on
the targeted predictand is advantageous over the use of Z500
patterns derived using PCA.

b. How do the different types of ensemble
predictions compare?

In this section, we compare the skill of dynamical, statisti-
cal, hybrid, and climatological predictions in predicting U100
and T2m over Europe. To begin, we consider one case for il-
lustrative purposes: the temporal evolution of ensemble prob-
ability density functions (PDFs) of dynamical, statistical,
hybrid, and climatological U100 predictions over southern
Scandinavia initialized on 6 February 2017 is illustrated in
Fig. 3. The chosen domain, i.e., southern Scandinavia, spans
52.08–61.08N, 4.48–19.08E (see appendix C), and the PDFs are
computed for weekly means. The domain averaging is

FIG. 2. Comparison of regression performance between principal component regression (PCR) and redundancy analysis (RDA) mod-
els. Performance is measured using coefficient of determination (R2) of the linear fit between the predictor and the predictand, and root-
mean-squared error (rmse) between the predicted values and ERA5 reanalysis. The models are fit for weekly averages for the boreal win-
ter between December 1999 and February 2016. (a) U100 and (b) T2m.

MONTHLY WEATHER REV I EW VOLUME 151282

Unauthenticated | Downloaded 03/17/23 12:54 PM UTC



computed as the mean of the cosine of latitude weighted grid-
point values. Besides having a longer skill horizon of subseasonal
U100 predictions compared to other European regions
(Goutham et al. 2022), southern Scandinavia is one of the most
important regions for the wind energy industry in Europe
(WindEurope 2022). Hence, we consider southern Scandinavia
for illustration purposes. This specific forecast (initiated on
6 February 2017) was chosen as it is qualitatively representative
of the overall results. In Fig. 3, the climatological predictions cor-
respond to the same week and month of the year as the dynami-
cal predictions but taken over each of the previous 35 years.

In week 3 in Fig. 3, the PDF of the dynamical prediction
(m 5 7.03 m s21 and s 5 1.08 m s21) is closer to the observa-
tion (57.22 m s21), and therefore it appears to be more
accurate than statistical prediction (m 5 5.88 m s21 and
s 5 0.76 m s21). However, dynamical predictions begin to
converge toward their model climatology starting week 4. The
statistical predictions are usually sharper compared with dy-
namical predictions at short lead times. This is attributed to
slower evolution of large-scale fields compared to surface
fields (e.g., Buizza and Leutbecher 2015; Robertson and Vitart
2018). Beyond week 4, statistical predictions typically carry more
valuable information relative to their dynamical counterparts
and thus contribute greatly to hybrid prediction accuracy. To il-
lustrate, the week-6 statistical prediction (m 5 6.45 m s21 and
s 5 0.82 m s21) is closer to observation (56.73 m s21) compared
with dynamical prediction (m 5 5.79 m s21 and s 5 0.99 m s21).
The statistical predictions are not perfect, and they are indeed
only as good as the skill of large-scale fields in dynamical predic-
tions. They fail when dynamical predictions fail, for instance
when dynamical predictions are initialized during days
closer to sudden stratospheric warming events (e.g., Gerber
et al. 2009; Tripathi et al. 2015). For curious readers, some

additional examples of comparison of different predictions
are illustrated in the online supplemental material. Overall, the
PDFs in Fig. 3 suggest that the hybrid predictions may be more
accurate than either dynamical or statistical predictions beyond
week 3.

We understood the behavior of different ensemble predic-
tions for one particular forecast in Fig. 3. In this section, we
look at an overall assessment of U100 forecasts initialized in
the boreal winter between December 2016 and February 2020
over southern Scandinavia. The comparison of the temporal
evolution of fair-CRPSS between dynamical, statistical, and
hybrid U100 predictions over southern Scandinavia is shown
in Fig. 4. These violin plots are produced by aggregating the
domain-averaged fair-CRPSS of all the forecasts initiated in
boreal winter between December 2016 and February 2020. In
week 3, the ocean–atmosphere coupled dynamical predictions
still carry important information about U100 over southern
Scandinavia. The dynamical predictions, with a mean of
FCRPSS of 20.0008 and a median of FCRPSS of 0.06, per-
form better than statistical predictions (mean 5 20.10 and
median5 20.04). The PDF of statistical predictions is heavily
skewed toward negative values. The hybrid predictions, with
a mean of 0.02 and a median of 0.07, perform better than ei-
ther dynamical or statistical predictions. In week 3, dynamical
predictions have a major contribution (compared with statisti-
cal predictions) to the improved skill of hybrid predictions.
Contrary to dynamical predictions, the statistical predictions
become more skillful with increasing lead time. Hence, statis-
tical predictions contribute considerably to the improved skill
of hybrid predictions at longer leads compared to shorter
leads. The interquartile range (IQR) of hybrid predictions de-
creases with increasing lead time. This can be attributed to
the decreasing IQR of statistical predictions with lead time.

FIG. 3. Illustration of the temporal evolution of ensemble probability density functions (PDFs) of dynamical (DY), statistical (ST), hy-
brid (HY), and climatological (CL) U100 predictions. The PDFs are computed as kernel density estimates (Gaussian kernel) using ensem-
ble members of weekly mean values averaged over southern Scandinavia (52.08–61.08N, 4.48–19.08E). The gridpoint values are weighted
by the cosine of their respective latitude before computing domain average. This illustration corresponds to dynamical predictions initial-
ized on 6 Feb 2017. The red vertical line in each of the panels indicates the observed weekly mean (OB).
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Beyond week-3, the improvements of hybrid predictions rela-
tive to their dynamical counterparts are statistically significant
with p values # 0.005 based on a Wilcoxon signed-rank test.
Overall, the means and medians of FCRPSS of hybrid predic-
tions, taking advantage of the strengths of the component pre-
diction systems, are both positive and higher than either
dynamical or statistical predictions at all lead times.

For a more general assessment and to understand spatial
variations of skill, we now compare the skill of dynamical and
hybrid predictions at the scale of grid points over Europe.
Figure 5 shows the comparison of the weekly evolution of
mean-FCRPSS and FPSF between dynamical and hybrid
U100 predictions across Europe. Although the hybrid predic-
tion skill in week 3 is marginally poorer relative to that of
dynamical predictions over southern Europe, the former
has a relatively more positive mean-FCRPSS over northern
Europe. Generally, the dynamical predictions, with an excep-
tion over and around the North Sea, are hardly skillful beyond
week 3. The added value of the information from the slowly
evolving large-scale fields through statistical predictions can
be clearly noticed starting week 5. In week 6, the average of
FPSF over Europe for dynamical and hybrid predictions are
49.6% and 54.1%, respectively. This indicates that the hybrid
predictions outperform both the dynamical and statistical
predictions (not shown) over a large part of Europe. Simi-
lar to the results presented in Ramon et al. (2021), the im-
provements brought in by the hybrid predictions are more

pronounced over northern Europe than southern Europe.
The number of patterns retained in statistical predictions
that form a component of optimum U100 hybrid predic-
tions increases slightly with lead time. The optimum U100
hybrid prediction skill is achieved when statistical predic-
tions are produced using 8–11 patterns on average, repre-
senting between 88% and 92% of the explained variance,
depending on the lead time. As hybrid predictions are con-
structed by concatenating the ensemble members of dynam-
ical and statistical predictions, the poor hybrid prediction
skill over southern Europe may be attributed to the poor
skill of dynamical U100 predictions as well as low R2 of the
linear fit between Z500 and U100 (Fig. 2). Overall, hybrid
predictions are more skillful than dynamical predictions at
all lead times over a large part of Europe. Since a major pro-
portion of the European wind farms are concentrated in and
around the North Sea (WindEurope 2022), the wind energy
industry could greatly benefit from improved hybrid predic-
tions over this region.

Analogous to U100, Fig. 6 compares the temporal evolution
of mean-FCRPSS and FPSF between dynamical and hybrid
T2m predictions over Europe. While hybrid predictions are
typically more skillful than their dynamical counterparts over
central, northern, and eastern Europe at all lead times, their
skill is marginally degraded over southwestern Europe. Since
we use a statistical model trained on the predictor and pre-
dictand anomalies, we notice the presence of cold biases in

FIG. 4. Illustration of the temporal evolution of Fair-CRPSS of dynamical (DY), statistical
(ST), and hybrid (HY) U100 predictions averaged over southern Scandinavia. In these standard
violin plots, horizontal white dashes indicate the median, white circles indicate the mean, black
boxes indicate the first and third quartiles, and black curves symmetric about the vertical (enclos-
ing the red region) indicate the probability density of the fair-CRPSS. The left, middle, and right
violin plots in each of the panels correspond to dynamical, statistical, and hybrid predictions, re-
spectively. Values above zero indicate skillfulness of the respective predictions relative to
climatology.
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statistical T2m predictions attributed to the ongoing climate
warming. This observation is consistent with the literature
(e.g., Wilks 2013; Wilks and Livezey 2013; Wilks 2014). The
presence of cold biases in statistical predictions translates to
biased hybrid T2m predictions, and the poor hybrid predic-
tion skill over certain regions in Fig. 6 can be attributed to
these biases. Additional postprocessing of hybrid predic-
tions may be required for them to be useful for practical ap-
plications, and this will be discussed in section 4c of the
manuscript. Contrary to U100, the optimum T2m hybrid
prediction skill is achieved when statistical predictions are
produced using three patterns on average, representing
about 75% of the explained variance. The number of patterns
retained in statistical predictions that form a component of
optimum T2m hybrid predictions is virtually insensitive to lead
time. The differences in the number of retained patterns be-
tween U100 and T2m can be attributed to the complexity of
the fields themselves. Overall, hybrid predictions benefit from
both the skillful dynamical predictions of surface fields at
shorter leads, and the longer skill horizon of large-scale fields
and their statistical relationship with surface fields at longer

leads, and hence are usually more skillful than either dynami-
cal or statistical predictions.

c. Which forecast quality attribute(s) improves
the hybrid prediction accuracy?

The previous section has shown how the dynamical and sta-
tistical predictions complement each other to make the hybrid
ensemble predictions more accurate than their components.
In this section, we explore the differences in other forecast
quality attributes such as association, reliability, resolution,
and sharpness between dynamical and hybrid predictions, to
understand the reasons for differences in accuracy between
the two.

To understand the differences in association, we compare
the temporal evolution of ACC between dynamical and hy-
brid predictions of U100 and T2m over Europe in Fig. 7. The
ACC of dynamical predictions of T2m is typically higher than
that of U100 at all lead times. For U100 dynamical predic-
tions, the ACC values drop below 0.4 starting week 4,
whereas, for T2m, the ACC values drop below 0.4 starting
week 5. Overall, the differences in ACC between dynamical

FIG. 5. Comparison of the temporal evolution of skill between dynamical (DY) and hybrid (HY) U100 predictions across Europe.
(a) Mean-FCRPSS. (b) Fair-proportion of skillful forecasts (FPSF). In (a) and (b), the top rows correspond to dynamical predictions
(DY), and the bottom rows correspond to hybrid predictions (HY). Values above zero in (a) and above 50% in (b) indicate skillful predic-
tions relative to climatology. Violet dots in hybrid predictions in (b) correspond to regions with statistically significant improvements at a
significance level of p# 0.05 based on a Wilcoxon signed-rank test (see appendix B).
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and hybrid predictions are marginal. The ACC of week-3 hy-
brid U100 predictions, relative to dynamical predictions, is
lower over southern Europe and stronger over northern
Europe. However, the differences in ACC between week-4
hybrid and dynamical U100 predictions are marginal over the
European domain. There are only marginal differences in
ACC between hybrid and dynamical T2m predictions over
continental Europe in week 3 and week 4. Similar to Figs. 5
and 6, the improvements in ACC brought in by hybrid predic-
tions are noticeable starting week 5. Although the ACC re-
mains poor (i.e., #0.4) for U100 predictions starting week 5,
the hybrid predictions marginally improve ACC over a large
part of the domain. The ACC of T2m hybrid predictions is
also marginally improved over more than two-thirds of conti-
nental Europe starting week 5.

We now compare the differences in reliability, resolution,
and sharpness between dynamical and hybrid predictions with
the help of reliability diagrams. We recall that reliability is a
measure of calibration of the issued forecast probabilities. In
a reliability diagram, the reliability component can be mea-
sured as the weighted average of the squared difference be-
tween the points and the diagonal line. The number of
forecasts in each bin is used as weights. The smaller the verti-
cal distance between the points and the diagonal line, the
more reliable are the predictions. In other words, perfectly

reliable predictions have forecast probabilities essentially
equal to observed frequencies, and hence all the points fall on
the 458 diagonal line. The climatological line is the vertical or
horizontal line drawn at the theoretical climatological proba-
bility of occurrence of the event considered (e.g., the climato-
logical probability for a tercile is 1/3). Resolution measures
the variations in the frequency of occurrence of an event as a
function of the issued forecast probability. The resolution
component can be measured as the weighted average of the
squared difference between the points and the horizontal cli-
matological line. The larger the vertical distance between the
points and the horizontal climatological line, the higher the
resolution. If the line connecting the points shows persistent
offset from the 458 diagonal line, it indicates the presence of
unconditional biases. Sharpness is a measure of the ability of
forecasts to produce concentrated predictive distributions
that are distinct from climatological probabilities. In a reliabil-
ity diagram, the larger the horizontal distance between the
climatological probability bin and the bin containing the max-
imum number of forecast instances, the sharper the predic-
tions. The no skill line is the line located midway between
the perfect reliability line and the horizontal climatological
line. Accordingly, the points located within the gray region
bounded by the vertical climatological line and the no skill
line contribute positively to skill. For a detailed description of

FIG. 6. As in Fig. 5, but for T2m.
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reliability diagrams with examples, the reader is directed to
Wilks (2019).

Figure 8 compares reliability diagrams between dynamical
and hybrid models for upper and lower terciles of weekly
mean U100 predictions for week 4 averaged across southern
Scandinavia. We choose this particular domain and week
for illustration purposes as the mean-FCRPSS of hybrid
predictions is higher than that of dynamical predictions over
this domain and during this week (Fig. 5). For the upper ter-
cile, hybrid predictions with a reliability component of 0.009
are more reliable than dynamical predictions (reliability 5

0.016). Both the dynamical and hybrid predictions for upper
tercile have a similar resolution (;0.007). However, for the

lower tercile, both the reliability and resolution components
of hybrid predictions are better than that of dynamical pre-
dictions. The difference in sharpness between dynamical
and hybrid predictions is marginal. Reliability diagrams for
the other lead times yield similar conclusions to the one ob-
tained here: hybrid predictions are more reliable and have a
better resolution than dynamical predictions (Fig. D1 in
appendix D).

Figure 9 compares the reliability diagrams for upper and
lower terciles of weekly mean T2m predictions for week 4 av-
eraged across Germany (47.38–558N, 6.38–15.48E) (see Fig. C1
in appendix C) between dynamical and hybrid predictions.
For the upper tercile, the reliability component of hybrid

FIG. 7. (top) Temporal evolution of anomaly correlation coefficient (ACC) of dynamical predictions of U100 and
T2m over Europe. (bottom) Temporal evolution of the difference of ACC between hybrid and dynamical predictions
(i.e., ACCHY 2ACCDY) over Europe.
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predictions (0.019) is higher than that of dynamical predictions
(0.010), with both predictions having a similar resolution
(;0.02). Although the reliability of upper tercile hybrid predic-
tions looks similar to that of dynamical predictions at first sight,
the hybrid predictions are in fact degraded due to the introduc-
tion of cold bias through the statistical model as a result of the
warming climate. On the other hand for the lower tercile, the
reliability component of hybrid predictions (0.013) is lower than
that of dynamical predictions (0.018), with both predictions hav-
ing a similar resolution (;0.025). The sharpness of the upper
tercile hybrid predictions is marginally degraded relative to that
of dynamical predictions.

We treat the cold bias of hybrid predictions by adjusting
the warming trend through a simple procedure. First, we

compute the observed climatology for any given week and
year under consideration by aggregating T2m of the same
week and the two adjacent weeks over each of the previous
15 years from ERA5 reanalysis. Then, we assume the trend to
be linear and fit a trend line to this climatological data. As we
have chosen a 15-yr period for climatology, the linearity as-
sumption for the warming trend stays approximately valid
(e.g., Wilks 2013; Wilks and Livezey 2013). Finally, we extrap-
olate the trend to the year under consideration and add it to
statistical predictions. We then obtain trend-adjusted hybrid
predictions (HYTrAd) by concatenating dynamical predictions
to trend-adjusted statistical predictions. Adjusting for the trend
in this way improves the reliability component of HYTrAd for
the upper (0.004) tercile without degrading the resolution. Since

FIG. 8. Reliability diagrams for upper and lower terciles of weekly mean U100 predictions for week 4 averaged
across southern Scandinavia (52.08–61.08N, 4.48–19.08E) (see Fig. C1 in appendix C). The forecasts are stratified
into five bins of equal width. The size of the points is proportional to the number of forecasts in the respective
bins. The vertical bars refer to the 95% confidence intervals computed through the standard parametric approach
by assuming a normal distribution for the underlying data (Machin et al. 2013). The vertical and horizontal dotted
lines indicate the climatological tercile probabilities (theoretically, the value is 1/3) in the forecasts and observa-
tions, respectively. Perfectly reliable predictions fall on the dotted diagonal line (458) connecting the points (0, 0)
and (1, 1). The points located within the gray area contribute positively to skill. DY is dynamical predictions; HY
is hybrid predictions.

FIG. 9. Reliability diagrams for upper and lower terciles of weekly mean T2m predictions for week 4 averaged across Germany
(47.38–558N, 6.38–15.48E) (see appendix C). The forecasts are stratified into five bins of equal width. The size of the points is propor-
tional to the number of forecasts in the respective bins. The vertical bars refer to the 95% confidence intervals computed through the
standard parametric approach by assuming a normal distribution for the underlying data (Machin et al. 2013). The vertical and hori-
zontal dotted lines indicate the climatological tercile probabilities (theoretically, the value is 1/3) in the forecasts and observations, re-
spectively. Perfectly reliable predictions fall on the dotted diagonal line (458) connecting the points (0, 0) and (1, 1). The points located
within the gray area contribute positively to skill. DY is dynamical predictions; HY is hybrid predictions; HYTrAd is trend-adjusted hy-
brid predictions.
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adjusting for the trend in this way shifts the entire distribution
to the right, it may degrade both reliability and resolution for
the lower tercile. Nevertheless, trend-adjusted hybrid predic-
tions show improved sharpness for both the terciles. (The reli-
ability diagrams for the remaining lead times are presented in
Fig. D2 in appendix D.) The intensity of the cold bias in the sta-
tistical model is different in different regions within Europe.
There are other more sophisticated ways to deal with trend in a
nonstationary climate, some of which are described in Wilks
(2013), Wilks and Livezey (2013), andWilks (2014). An alterna-
tive way to deal with the trend is to train on detrended T2m
anomalies in the statistical model. Nevertheless, exploring the
efficiencies of different trend adjustment methods will depend
on the targeted application, and is hence beyond the scope of
this research. Overall, the presented reliability diagrams show
that the improved accuracy of hybrid predictions of surface
fields relative to the corresponding dynamical predictions
(Figs. 4–6) stems from improved reliability and resolution.

5. Discussion

a. How sensitive are the statistical predictions to the
choice of predictor domain?

The assessment in the previous section shows promising po-
tential for extracting more skillful information from subseaso-
nal predictions for surface variables using the methodology
described in section 3. In this section, we discuss some of the
choices and perspectives regarding this methodology.

We tested several predictor domains by varying size and
geographical location to investigate the sensitivity of statisti-
cal prediction quality to the choice of domain. The predictor
domain is tailored to describe the large-scale circulation, and
more precisely features of this circulation that impact surface
fields over Europe. Hence, it is logical to choose a predictor
domain that is larger than the predictand domain. Given the
midlatitude circulation and dynamics (westerly flow, eastward
traveling perturbations), it is expected that a domain shifted
westward (i.e., upstream) should be best (Alonzo 2018). We
recall that the predictor domain retained in this study is the
Euro-Atlantic (208–808N, 1208W–408E). Displacing the pre-
dictor domain eastward (i.e., between 908W and 708E) with-
out changing the size yields similar results to the retained
Euro-Atlantic domain. However, choosing the predictor do-
main to be the same as that of the predictand domain (i.e.,
348–748N, 138W–408E) considerably degrades statistical pre-
diction quality. Shifting the predictand domain-sized predictor
domain to the west between 678 and 148Wmarginally (but iden-
tifiably) degrades statistical prediction quality with respect to
the case when the predictand domain-sized predictor domain is
centered over the predictand domain. This confirms our hy-
pothesis that the statistical model captures prominent informa-
tion from the large-scale, midtropospheric westerly flow.

b. How to further improve the hybrid prediction quality?

In this study, we used a single predictor, i.e., Z500 over the
Euro-Atlantic, to improve the quality of surface field predic-
tions. Other fields, tapping into other sources of subseasonal

predictability (e.g., ocean, soil moisture, cryosphere), could be
used in complement to Z500 to further improve the quality of
surface field predictions (e.g., Seo et al. 2019; Domeisen et al.
2020). The redundancy analysis model can also be used as a
tool to investigate physical as well as time-lag relationships
between different predictors and predictands, such as in the
case of assessing impacts of MJO on extratropical weather
(Zheng et al. 2018).

An additional way to improve hybrid predictions involves a
more clever combination of ensembles from dynamical and
statistical predictions. We recall that in this study, we concate-
nate dynamical and statistical predictions with each having an
ensemble size of 50 to obtain a 100-member equally weighted
ensemble hybrid prediction. Nonetheless, combining ensem-
bles through concatenation induces redundancy as some of
the information that statistical prediction brings in may
already be present in dynamical prediction. With the addition
of other predictors, the redundancy of ensemble members of
hybrid predictions increases substantially.

As a first attempt to put proper weights on statistical and
dynamical ensemble members of hybrid predictions, we classi-
fied statistical predictions into skillful or otherwise based on
the values of observed redundancy PCs with respect to their
climatological distribution when the dynamical predictions
are initiated. In other words, we examined whether the ob-
served redundancy PC values being in the lower or upper ex-
treme quantiles with respect to their climatology at the time
when dynamical predictions are initialized leads to the im-
proved or degraded skill of statistical predictions. However,
the results showed no detectable relationship between the
two, and hence this path was not pursued further. A promis-
ing way forward here is through a linear inverse model
approach as realized in Albers and Newman (2021), and the
authors plan to implement this in a future study.

There exist several alternative techniques to reasonably se-
lect ensemble members by minimizing redundancy. The most
popular method for combining ensembles is Bayesian model
averaging (BMA) (e.g., Schepen et al. 2012, 2014, 2016; Strazzo
et al. 2019). BMA combines different models by giving different
weights to the ensemble members from each model based on
their performance. Another method for combining models that
is gaining attention is the optimal transport distance or Wasser-
stein distance (e.g., Peyré and Cuturi 2019; Cumings-Menon
and Shin 2020). The authors plan to investigate and compare
these two methods in a future study.

6. Conclusions

With increasing de-carbonization of the energy sector (IEA
2021), the energy industry requires accurate predictions of
essential climate variables such as surface temperature and
100-m wind speed across a continuum of time scales. Having
accurate predictions of essential climate variables on subsea-
sonal time scales enables the energy industry to anticipate
and prepare contingency plans in the face of anomalies in
wind energy production and consumption (White et al. 2017).
This calls for ways to improve the skill horizon of predictions
of essential climate variables.
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Surface variables such as wind speed and temperature are
essential for many applications, yet in the forecast models,
surface variables are not the most realistic. They are indeed
strongly affected by small-scale, local features, and are heavily
sensitive to parameterizations, which always introduce strong
uncertainties. The skill horizon of predictions of surface varia-
bles is thus limited by errors in the representation of initial
conditions, model formulations, and the use of restricted spa-
tial resolution in subseasonal prediction models. Large-scale,
low-frequency fields have the advantage of being more skillful
than surface fields, and in addition, they drive a large part of
the variability of surface fields. In this study, we have pro-
posed a novel methodology to improve predictions of surface
variables by tapping into the large-scale, more reliable varia-
bles (e.g., Z500), and relating these to a surface variable of in-
terest by training on the observationally derived historical data
(i.e., ERA5 reanalysis). Generally, across Europe, weather re-
gimes have been commonly used to provide a compact sum-
mary of the large-scale configuration of the atmosphere. For
instance, Alonzo (2018) used weather regimes to summarize
the large-scale atmospheric state and infer the likely surface
wind speed distribution from these regimes using nonlinear re-
gression. Although weather regimes are powerful tools to an-
ticipate surface conditions, the main limitations of the use of
classical weather regimes for deducing surface fields are that
these weather regimes represent large-scale atmospheric vari-
ability independently of the surface fields, and that each surface
climate variable responds differently to the same weather re-
gime. This calls for the development of new approaches to ob-
tain large-scale spatial patterns of variability which take into
account the variability of the targeted surface variable.

In this study, we have employed redundancy analysis to
carry out a dimension reduction of the large-scale field (i.e.,
Z500). Redundancy analysis provides large-scale patterns spe-
cifically designed to capture the variability of a surface field of
interest. We have compared the coefficients of determination
between patterns obtained using principal component analysis
against those derived using redundancy analysis when used as
predictors in a multilinear regression model to reconstruct
surface fields. We have then employed the relationship be-
tween patterns obtained using redundancy analysis and sur-
face fields on the subseasonal dynamical predictions of
patterns to obtain statistical probabilistic predictions of sur-
face fields. Subsequently, we have combined statistical and
dynamical predictions of surface fields through a simple con-
catenation of the respective ensemble members. From the re-
sults presented, the following conclusions can be drawn:

1) The large-scale patterns obtained using redundancy analy-
sis better capture surface fields over Europe compared to
patterns derived using principal component analysis.

2) The added value of statistical predictions increases with
lead time, and so does their contribution to the improved
skill of hybrid predictions.

3) Combining dynamical and statistical predictions through a
simple concatenation improves the skill of surface field
predictions significantly over a large part of Europe at all
lead times.

4) The improved accuracy of hybrid predictions relative to
dynamical predictions stems from improved reliability
and resolution. No significant changes are observed in as-
sociation and sharpness between dynamical and hybrid
predictions.

5) The combination of dynamical and statistical predictions
can certainly be improved. Depending on the initial state
and/or the forecast evolution, one may have an a priori es-
timate of predictability, which could inform a more effi-
cient combination of dynamical and statistical predictions.

The redundancy analysis model employed in this study can
be used to identify spatial patterns of variability that impact
surface conditions at a particular location of interest such as a
wind farm. Wind farms, in addition to wind speed, require in-
formation about wind direction for operational purposes, e.g.,
to take into account the effect of wakes. In this regard, the re-
dundancy analysis model can be employed for wind compo-
nents separately. As a perspective, the redundancy analysis
model could be deployed to identify spatial patterns of vari-
ability for other climate variables such as solar radiation and
precipitation, and as well as for energy variables such as re-
newable energy production and consumption. The skill of sta-
tistical predictions realized in this study can be decomposed
into two components: one, the skill of relevant large-scale
Z500 patterns in the dynamical predictions, and two, the skill
of regression. Since the patterns derived using redundancy
analysis differ from those obtained using principal component
analysis, in terms of both spatial structure and explanatory
power, it would be interesting to understand the differences
in skill horizon between these patterns in dynamical predic-
tions. As hybrid predictions developed in this study remain
skillful even at a lead time of six weeks for both variables, it
would be interesting to see their added value on seasonal time
scales. These research questions along with the addition of
other sources of predictability, and employment of more effi-
cient ensemble selection are objectives for future studies.
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Climate Change Services upon registration. The control of the
ensemble should be treated as another indistinguishable ensem-
ble member. However, due to the unavailability of the control
member in the internal database of Ensemble de services pour
la recherche à l’Institut Pierre-Simon Laplace (ESPRI) as a re-
sult of an unintentional man-made error, we had to use only the
perturbed members.

APPENDIX A

Forecast Bias Adjustment

The bias-adjusted ensemble member x*k for any forecast
at a given lead time is

x*k 5 (xk 2 xcli)
sref

scli
1 oref, (A1)

where xk is the raw member, xcli and scli are the mean and
standard deviation, respectively, of all the members of the
reforecast set corresponding to the forecast, oref and sref are

the mean and standard deviation, respectively, of ERA5 re-
analysis corresponding to the reforecasts.

APPENDIX B

Wilcoxon Signed-Rank Test for Statistical Significance

The Wilcoxon signed-rank test is a nonparametric hy-
pothesis test that is used to investigate whether the consid-
ered data samples are derived from the same population or
generating process (Wilcoxon 1945; Conover 1971; Wilks
2019). The test assesses for possible differences in location
(i.e., rank) between members of a paired dataset. Here, the
test statistic is based on ranks rather than numerical values
of the data.

In this study, we consider a total of 103 forecasts initial-
ized in the boreal winter between December 2016 and
February 2020. We define the null hypothesis as “there is
no difference in fair-CRPSS between dynamical and hybrid
predictions,” and the alternate hypothesis as “hybrid predic-
tions have higher fair-CRPSS than dynamical predictions.”

FIG. C1. Illustration of the interannual variability of boreal winter ERA5 reanalysis of 100-m wind speed (U100)
and 2-m temperature (T2m) over Europe. The interannual variability is computed as the standard deviation of boreal
winter weekly means between December 1999 and February 2016. The red colored rectangles in U100 and T2m cor-
respond to southern Scandinavia (52.08–61.08N, 4.48–19.08E) and Germany (47.38–558N, 6.38–15.48E), respectively.

FIG. D1. As in Fig. 8, but includes additional lead times.
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We treat ties in the paired data using the method described
in Pratt (1959).

APPENDIX C

Interannual Variability of U100 and T2m over Europe

Figure C1 shows the interannual variability of boreal win-
ter ERA5 reanalysis of 100-m wind speed (U100) and 2-m
temperature (T2m) over Europe. The interannual variabil-
ity is computed as the standard deviation of boreal winter
weekly means between December 1999 and February 2016.

APPENDIX D

Additional Reliability Diagrams

Figures D1 and D2 show the reliability diagrams for up-
per and lower terciles of weekly mean predictions of 100-m
wind speed across southern Scandinavia and 2-m tempera-
ture across Germany, respectively.
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