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1. Introduction
Combining multiple forecasts from imperfect models of reality can often lead to forecasts that are better than any 
single model. Such multi-model forecasts have been enormously successful in weather and climate prediction 
(Hagedorn et  al.,  2005; Krishnamurti et  al.,  2016); economics (Clemen,  1989); epidemiological forecasting, 
including that of COVID-19 (Cramer et al., 2022); hydrology (Okuno et al., 2019; Xue & Zhang, 2014); tracking 
and navigation (Bar-Shalom et al., 2001); space weather (Schunk et al., 2016); air quality forecasting (Mallet 
et al., 2009; Sengupta et al., 2020); and numerous other application areas (Clemen, 1989; Fragoso et al., 2018; 
Trenkler & Gotu, 1998).

Data assimilation (DA) is the process of combining model forecasts with observations to obtain a state estimate 
of a system. DA is an essential part of forecasting in a wide variety of scientific and engineering fields, with 
most methods based nowadays on the Kalman filter (Asch et al., 2016). In the meteorological literature, the need 
for methods to take noisy, possibly sparse observations and produce an initial condition suitable for a numerical 
model has been recognized since the first numerical weather forecast (Panofsky, 1949), and the Kalman filter 
was proposed for this purpose in Ghil et al. (1981). Ensemble Kalman filters (EnKFs), which approximate the 
evolution of the probability distribution using a Monte Carlo approach (Evensen, 2003), have become popular for 
geophysical and other problems (Hamilton et al., 2016).

In this paper, we consider multi-model DA (MM-DA), a generalization of DA which allows for multiple forecast 
models (Narayan et al., 2012). MM-DA combines multiple forecasts and observations, bridging the literature on 
forecast combination with that on DA. In this paper we make several contributions to the existing literature on 
MM-DA: (a) we incorporate and estimate model error in MM-DA, allowing models that are less accurate to have 
a lower weight, and allow the weights to differ for different variables; (b) we formulate several possible imple-
mentations of deterministic EnKFs for MM-DA (MM-EnKFs) and discuss computational issues; (c) we provide 
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an open-source software implementation of MM-EnKFs; (d) we test MM-EnKF with chaotic models for DA 
and forecasting in various scenarios; and, finally, (e) we prove linear minimum variance optimality of MM-DA.

The paper is laid out as follows. In Sections 1.1 and 1.2, we review the literature on combining forecasts and 
on MM-DA, respectively. In Section  2, we discuss the development and implementation of MM-EnKFs. In 
Section 4, we apply MM-EnKFs to chaotic systems. In Section 5, we draw conclusions and provide an outlook, 
including on applications to data-driven models. Finally, in Appendix A, we prove optimality of MM-DA in the 
linear minimum variance sense, and in Appendix B we detail the simple model error estimation method used in 
the numerical experiments.

1.1. Combining Multiple Model Forecasts

Bates and Granger (1969) were among the first to combine multiple distinct forecasts. They weighted multiple 
univariate forecasts according to past performance, and showed that the combined forecast resulted in lower error. 
Combining forecasts has become an important topic in statistics; see the historical overview Hoeting et al. (1999) 
and the bibliographies Clemen (1989), Trenkler and Gotu (1998).

The advantage of multi-model forecasts over single-model ones, at comparable total ensemble size, comes from 
distinct models having different model errors. The skill of the multi-model forecast will then be improved to 
the extent that the model errors compensate for each other (Hagedorn et  al.,  2005). Furthermore, when the 
multi-model forecast is probabilistic, these multiple model errors may lead to better spanning the true forecast 
uncertainty (Wilks,  2019). The need for weighting comes when some models have higher skill than others, 
implying that the former should have higher weight in the combined forecast than the latter. The general situation, 
however, is that one model may not be superior to all the others in all respects. More typically, some models may 
have superior skill in some variables, in the representation of particular processes, or at some forecast horizons. 
We discuss different weighting approaches in the following section.

1.1.1. Weighting Distinct Forecasts

Several approaches for weighting distinct model forecasts have been developed, with Bayesian model averaging 
(Hoeting et al., 1999) being one of the most common ones. This methodology estimates the posterior model prob-
abilities based on past data, and assigns the models scalar weights based on these probabilities. Dynamic versions 
have also been developed, to allow the weights to evolve based on current conditions. Both these methods, as well 
as several others discussed in Narayan et al. (2012), are limited to scalar weights.

Other methods have been developed in the context of atmospheric prediction. Here, the models are 
high-dimensional, and each model may produce an ensemble of forecasts that attempts to capture the predictive 
uncertainty. Multi-model ensembles (MMEs), where multiple models are combined into a single ensemble with-
out weighting, are used widely in climate prediction (Hagedorn et al., 2005). Multi-model superensembles, which 
weight the distinct model ensembles based on weights determined by multiple linear regression, have also been 
widely adopted (Krishnamurti et al., 2016).

The Dynamic Integrated Forecast System, developed by the National Center for Atmospheric Research, peri-
odically nudges model weights in the direction of error decrease (Myers et al., 2011). Cross-pollination in time 
(CPT) uses the forecasts of each model as initial conditions for the other models, along with some pruning rule 
to avoid an exponential increase of trajectories with time (Du & Smith, 2017; Schevenhoven & Selten, 2017). 
In a connected supermodel, each model is nudged toward the others by introducing coupling terms in the evolu-
tion equations, and the supermodel is taken as an average of these coupled models (Duane et al., 2017; Selten 
et al., 2017). In a weighted supermodel, the individual models are not directly connected through coupling terms; 
rather, the supermodel tendency is taken to be a weighted average of the individual model tendencies, and the 
individual models compute their tendencies based on the supermodel state (Schevenhoven et al., 2019). CPT and 
weighted supermodels were compared by Schevenhoven et al. (2019) and Schevenhoven and Carrassi (2022).

Sengupta et  al.  (2020) used a Bayesian neural network to infer model weights. Sequential aggregation takes 
inspiration from online learning and game theory in weighting forecasts with rules that have theoretical perfor-
mance guarantees (Gonzalez et al., 2021; Mallet et al., 2009; Thorey et al., 2017). Forecast weights can also be 
determined using Markov chain Monte Carlo (Dumont Le Brazidec et al., 2021). Several other methods were 
compared for meteorological applications in Young (2002), Gerding and Myers (2003).
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1.1.2. DA With Multiple Models

Several methods have been proposed to weight models using DA methods, in particular relying on Kalman or 
particle filters. Anandalingam and Chen (1989) first recognized that a particular Bayesian forecast combination 
problem was equivalent to a Kalman filter. Du and Smith  (2017) used DA in addition to CPT in combining 
forecasts. Chen and Stechmann (2019) and Counillon et al. (2022) used DA to synchronize distinct models by 
assimilating forecasts as pseudo-observations. Multiple parametric variations, or variations in physical param-
eterizations in an atmospheric model, have also been used in EnKFs without weighting, in order to capture the 
effect of model error (Houtekamer & Zhang, 2016; Wu et al., 2008).

Here, we are interested in the problem of generating an optimal state estimate using multiple model forecasts 
and observations. Section 10.2 in Simon (2006) proposes to run a Kalman filter for each model, and estimate 
its conditional probability given the observations from the innovations. These probabilities are then used as 
weights in combining the model forecasts. This approach is similar to the interacting multiple model (Bar-Shalom 
et al., 2001) filter, popular in tracking applications, and multiple model adaptive estimation (Akca & Efe, 2019).

Xue and Zhang  (2014) combines a Bayesian model averaging approach with an EnKF, by recomputing the 
ensemble weights as new observations arrive. Coelho et al. (2015) estimates model weights using a separate filter. 
Otsuka and Miyoshi  (2015) implements a multi-model EnKF by adjusting the number of ensemble members 
for each model at every cycle based on a Bayesian estimate of the model's probability. In the ensemble average, 
the model with more ensemble members is then weighted more heavily. Mallet (2010) combines the sequential 
aggregation approach with DA.

1.2. Multi-Model Data Assimilation (MM-DA)

In this paper, we consider a generalization of the Kalman filter formulation to multiple models. This generaliza-
tion differs from the methods in the previous paragraphs in the models' and the observations' weights being deter-
mined as part of the filtering process itself, instead of being estimated separately. MM-DA, proposed by Logutov 
and Robinson (2005) and Narayan et al. (2012), is based on the variational or Bayesian formalisms from which 
the Kalman filter and related methods are derived, except that multiple models are included.

The MM-DA formulation was perhaps first studied by Logutov and Robinson  (2005), who also proposed an 
expectation maximization algorithm for estimating the forecast error parameters along with the state estimate. 
The connection to the Kalman filter was not explicitly made in Logutov and Robinson (2005). The same formu-
lation was independently developed by Narayan et al. (2012), who showed that it can be implemented by using 
an iterative method. We base our exposition on Narayan et al. (2012), but using the common DA notation of Ide 
et al. (1997); see Table 1 for a definition of symbols.

Suppose we have M models, with each model m having its own forecast state 𝐴𝐴 𝐱𝐱
f
𝑚𝑚 ∈ ℝ

𝑛𝑛𝑚𝑚 with forecast error covar-
iance matrix 𝐴𝐴 𝐏𝐏

f
𝑚𝑚 . Each model is assumed to be unbiased. One has to choose a space for the multi-model forecasts 

to reside in; for example, a given spatial grid in the case of an atmospheric model. We take this to be the space 
of one of the model states—although this is not necessary—and refer to this model as the reference model mr; its 
choice will be discussed later.

We then define the operators 𝐴𝐴 𝐆𝐆𝑚𝑚 ∶ ℝ
𝑛𝑛𝑚𝑚𝑟𝑟 → ℝ

𝑛𝑛𝑚𝑚 which map from the reference model space to the model space 
of model m with dimension nm. Clearly, 𝐴𝐴 𝐆𝐆𝑚𝑚𝑟𝑟

= 𝐈𝐈 and we assume for the moment that these operators are linear, 
although this assumption can be relaxed later.

We also have a p-dimensional observation vector y with observation error covariance matrix R. We define the 
observation operator 𝐴𝐴 𝐇𝐇 ∶ ℝ

𝑛𝑛𝑚𝑚𝑟𝑟 → ℝ
𝑝𝑝 , which maps from the reference model space to the observation space.

Each model's state evolution operator is denoted by Mm, and it is also assumed to be linear for the moment. Later, 
the nonlinear state evolution operator will be denoted by 𝐴𝐴 𝑚𝑚 .

1.2.1. Variational Formulation and Direct Solution

1.2.1.1. The Formulation

For a single model forecast x f with covariance matrix P f, the variational formulation of the optimal state estima-
tion problem defines a cost function 𝐴𝐴 [𝐱𝐱] for a control variable x as
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[𝐱𝐱] = ‖𝐱𝐱 − 𝐱𝐱
f‖2

(𝐏𝐏f )
−1
+ ‖𝐇𝐇𝐱𝐱 − 𝐲𝐲‖2

𝐑𝐑
−1
. (1)

Here we use the short-hand weighted-norm notation 𝐴𝐴 ‖𝐯𝐯‖2
𝐀𝐀
≡ 𝐯𝐯

𝑇𝑇
𝐀𝐀𝐯𝐯 for a quadratic form with symmetric positive 

semidefinite matrix A. This cost function measures the sum of the squared Mahalanobis distances of x from the 
forecast x f and the observations y. The minimizer of Equation 1 is the assimilation step of the Kalman filter.

Equation 1 can be generalized to multiple models as

 [𝐱𝐱] =

𝑀𝑀∑

𝑚𝑚=1

‖𝐆𝐆𝑚𝑚𝐱𝐱 − 𝐱𝐱
f
𝑚𝑚‖

2

(𝐏𝐏f𝑚𝑚)
−1
+ ‖𝐇𝐇𝐱𝐱 − 𝐲𝐲‖2

𝐑𝐑
−1
. (2)

Note that this generalization implicitly assumes that the forecast errors are mutually uncorrelated; see Section 5.2.1 
for more details.

Table 1 
Definition of Symbols

bm Bias of mth model

B Climatological forecast error covariance matrix

{γ, δ} Smoothing parameter for {inflation, model error} estimation

E {f,a} {forecast, analysis} ensemble

𝐴𝐴 𝐄𝐄
f ′

1∶𝑚𝑚
 Multi-model forecast ensemble after averaging over models 1 to m

𝐴𝐴 {𝐆𝐆𝑚𝑚,𝑚𝑚} {linear, nonlinear} mapping from reference model space mr to the space of model m

𝐴𝐴
{
𝐆𝐆𝑚𝑚

1
→𝑚𝑚

2

,𝑚𝑚
1
→𝑚𝑚

2

}
 {linear, nonlinear} mapping from space of model m1 to space of model m2

𝐴𝐴 {𝐇𝐇,} {linear, nonlinear} observation operator of reference model

𝐴𝐴 {𝐇𝐇𝑚𝑚,𝑚𝑚} {linear, nonlinear} observation operator of mth model

K Gain matrix

mr Reference model

M Number of models

𝐴𝐴 {𝐌𝐌,} {linear, nonlinear} forecast model

nm Dimension of mth model

Nm Ensemble size of mth model

ρ Localization matrix

P {f,a} {forecast, analysis} error covariance

𝐴𝐴 𝐏𝐏
f ′

1∶𝑚𝑚
 Multi-model forecast error covariance after averaging over models 1 to m

Q Model error covariance

R Observation error covariance

x {t,f,a} {true, forecast, analysis} state

𝐴𝐴 𝐱𝐱
f ′

1∶𝑚𝑚
 Multi-model forecast state after averaging over models 1 to m

𝐴𝐴
(
𝐱𝐱
{f ,a}

)

𝑖𝑖
 ith member of {forecast, analysis} ensemble

𝐴𝐴 𝐱𝐱
{f ,a} Mean of {forecast, analysis} ensemble

X {f,a} {forecast, analysis} ensemble anomalies

y Observation

Note. The superscript convention follows Ide et al. (1997).
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1.2.1.2. The Direct Solution

Minimizing the multi-model cost function 𝐴𝐴  [𝐱𝐱] above gives the analysis solution x a and its corresponding covar-
iance matrix P a for the multi-model Kalman filter (Narayan et al., 2012):

𝐱𝐱
a
= 𝐏𝐏

a

(
𝑀𝑀∑

𝑚𝑚=1

𝐆𝐆
𝑇𝑇

𝑚𝑚

(
𝐏𝐏
f
𝑚𝑚

)−1
𝐱𝐱
f
𝑚𝑚 +𝐇𝐇

𝑇𝑇
𝐑𝐑

−1
𝐲𝐲

)

, (3)

where (⋅) T is the transposition operator and

𝐏𝐏
a
=

(
𝑀𝑀∑

𝑚𝑚=1

𝐆𝐆
𝑇𝑇

𝑚𝑚

(
𝐏𝐏
f
𝑚𝑚

)−1
𝐆𝐆𝑚𝑚 +𝐇𝐇

𝑇𝑇
𝐑𝐑

−1
𝐇𝐇

)−1

. (4)

The solution is thus a weighted mean, where the weights for each model m are inversely proportional to 𝐴𝐴 𝐏𝐏
f
𝑚𝑚 , and 

the weight of the observations is inversely proportional to R. Note that if we set M = 1, we recover the regular 
Kalman filter equations.

The analysis x a will be in the reference model space. The analysis in the model space for m ≠ mr can then be 
obtained by computing

𝐱𝐱
a
𝑚𝑚 = 𝐆𝐆𝑚𝑚𝐱𝐱

a
, (5)

and the analysis covariance matrix as

𝐏𝐏
a
𝑚𝑚 = 𝐆𝐆𝑚𝑚𝐏𝐏

a
𝐆𝐆

𝑇𝑇

𝑚𝑚. (6)

For the next forecast cycle, each model is applied to the analysis state:

𝐱𝐱
f
𝑚𝑚(𝑡𝑡𝑖𝑖+1) = 𝐌𝐌𝑚𝑚(𝑡𝑡𝑖𝑖)𝐱𝐱

a
𝑚𝑚(𝑡𝑡𝑖𝑖), (7)

and the covariance is propagated according to

𝐏𝐏
f
𝑚𝑚(𝑡𝑡𝑖𝑖+1) = 𝐌𝐌𝑚𝑚(𝑡𝑡𝑖𝑖)𝐏𝐏

a
𝑚𝑚(𝑡𝑡𝑖𝑖)𝐌𝐌𝑚𝑚(𝑡𝑡𝑖𝑖)

𝑇𝑇
+𝐐𝐐𝑚𝑚(𝑡𝑡𝑖𝑖), (8)

where Qm is the model error covariance matrix for model m. We have introduced explicit time dependence here 
for clarity. In Figure 1, we show a schematic diagram of single- and multi-model assimilation–forecast cycles. 
The model error is discussed in greater detail in Section 2.1.1.

Although here we considered the variational formulation, the same equations for the multi-model Kalman 
filter can also be derived from the Bayesian formulation of the problem (Logutov & Robinson, 2005; Narayan 
et al., 2012).

The single-model Kalman filter is the optimal linear filter in the sense of being the minimum variance unbiased 
estimator. It has not previously been shown, though, that the multi-model Kalman filter is optimal in terms of 
minimizing variance, and we prove this in Appendix A.

1.2.2. Iterative Solution

In some cases, it may be possible to directly compute the right-hand side of Equation 3 or to minimize Equa-
tion  2 using an approach similar to the three-dimensional variational algorithm (3D-Var) (Asch et  al.,  2016; 
Kalnay, 2002). Narayan et al. (2012) show, instead, how to solve the problem iteratively.

In this iteration, the analysis of the previous model m − 1 is considered as the forecast for the subsequent model 
m, and the forecast of model m is considered as an observation.

𝐊𝐊𝑚𝑚 = 𝐏𝐏
f ′

1∶𝑚𝑚−1
𝐆𝐆

𝑇𝑇

𝑚𝑚

(

𝐆𝐆𝑚𝑚𝐏𝐏
f ′

1∶𝑚𝑚−1
𝐆𝐆

𝑇𝑇

𝑚𝑚 + 𝐏𝐏
f
𝑚𝑚

)†

, (9a)

𝐱𝐱
f ′

1∶𝑚𝑚
= 𝐱𝐱

f ′

1∶𝑚𝑚−1
+𝐊𝐊𝑚𝑚

(

𝐱𝐱
f
𝑚𝑚 −𝐆𝐆𝑚𝑚𝐱𝐱

f ′

1∶𝑚𝑚−1

)

, (9b)

𝐏𝐏
f ′

1∶𝑚𝑚
= (𝐈𝐈 −𝐊𝐊𝑚𝑚𝐆𝐆𝑚𝑚)𝐏𝐏

f ′

1∶𝑚𝑚−1
; (9c)
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here † indicates the Moore–Penrose pseudoinverse, 𝐴𝐴 𝐱𝐱
f ′

1∶𝑚𝑚
 indicates the combined forecast of models 1 to m, and 

𝐴𝐴 𝐏𝐏
f ′

1∶𝑚𝑚
 indicates the forecast covariance matrix of 𝐴𝐴 𝐱𝐱

f ′

1∶𝑚𝑚
 . Once done with the M models, one assimilates the actual 

observations.

𝐊𝐊 = 𝐏𝐏
f ′

1∶𝑀𝑀
𝐇𝐇

(

𝐇𝐇𝐏𝐏
f ′

1∶𝑀𝑀
𝐇𝐇

𝑇𝑇
+ 𝐑𝐑

)†

, (10a)

𝐱𝐱
a
= 𝐱𝐱

f ′

1∶𝑀𝑀
+𝐊𝐊

(

𝐲𝐲 −𝐇𝐇𝐱𝐱
f ′

1∶𝑀𝑀

)

, (10b)

𝐏𝐏
a
= (𝐈𝐈 −𝐊𝐊𝐊𝐊)𝐏𝐏

f ′

1∶𝑀𝑀
. (10c)

When the covariance matrices 𝐴𝐴 𝐏𝐏
f
𝑚𝑚 and R are positive definite, the iterative solution is equivalent to the direct 

solution. However, unlike the direct solution, the iterative solution allows the covariance matrices 𝐴𝐴 𝐏𝐏
f
𝑚𝑚 and R to be 

singular. The iterative solution can be shown to be independent of the order in which the models and observations 
are assimilated, as long as there are no inconsistent zero-variance components (Narayan et al., 2012).

Importantly, the iterative procedure suggests a way to use single-model DA methods to estimate a solution to the 
MM-DA problem. Notice that Equations 9a–9c and 10a–10c are the assimilation step of a single-model Kalman 
filter, and thus they can be replaced by any single-model DA method.

Assume now that we have a DA method that takes as input the forecast state x f, forecast error covariance P f, 
observation vector y, observation error covariance R, and observation operator 𝐴𝐴  , and returns as output the 
analysis state x a and analysis error covariance P a. Denote this function by 𝐴𝐴 (𝐱𝐱a,𝐏𝐏a) = DA

(
𝐱𝐱
f
,𝐏𝐏

f
, 𝐲𝐲,𝐑𝐑,

)
 . Then, 

for m = 2, …, M:
(

𝐱𝐱
f ′

1∶𝑚𝑚
,𝐏𝐏

f ′

1∶𝑚𝑚

)

= DA

(

𝐱𝐱
f ′

1∶𝑚𝑚−1
,𝐏𝐏

f ′

1∶𝑚𝑚−1
, 𝐱𝐱

f
𝑚𝑚,𝐏𝐏

f
𝑚𝑚,𝑚𝑚

)

, (11)

and 𝐴𝐴 𝐱𝐱
f ′

1∶1
= 𝐱𝐱

f

1
 , 𝐴𝐴 𝐏𝐏

f ′

1∶1
= 𝐏𝐏

f

1
 . Finally,

(𝐱𝐱
a
,𝐏𝐏

a
) = DA

(

𝐱𝐱
f ′

1∶𝑀𝑀
,𝐏𝐏

f ′

1∶𝑀𝑀
, 𝐲𝐲,𝐑𝐑,

)

. (12)

Figure 1. Schematics of a forecast–assimilation cycle for single- and multi-model data assimilation. For the purposes of this 
figure, we assume H = Gm = I.
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Note that we allow in Equations 11 and 12 for possibly nonlinear operators 𝐴𝐴 𝑚𝑚 and 𝐴𝐴  , thus relaxing the linearity 
assumption on the operators Gm and H, since many DA methods can deal with nonlinear observation operators. 
However, unless these operators are linear and the 𝐴𝐴 DA function is the Kalman filter assimilation step, the solution 
Equation 12 is only an approximation to the direct solution. Furthermore, order-independence is no longer guar-
anteed. A related issue occurs in serial EnKFs, wherein observations are assimilated one at a time, and localiza-
tion generally introduces order dependence. Kotsuki et al. (2017) investigated the use of different ordering rules 
in this setting, and a similar investigation could be carried out for MM-DA. In our results in Section 4, we briefly 
explore empirically the role of the order in which the iterative solution is computed.

2. A Multi-Model Ensemble Kalman Filter (MM-EnKF)
As discussed in the previous section, MM-DA can potentially be used with any DA method. In this section, we 
describe the development and implementation of a multi-model ensemble Kalman filter (MM-EnKF). One of 
the advantages of EnKFs in general is that they dynamically estimate the forecast error covariance matrices, and 
are thus able to adapt to current conditions, or “errors of the day” (Kalnay, 2002). In the MM-EnKF, this flow 
dependence is then reflected in the weights assigned to each model and the observations in the state estimate.

For each m, we take its ensemble to have Nm members and denote the forecast and analysis ensembles as 
𝐴𝐴 𝐄𝐄

f
𝑚𝑚 =

[(
𝐱𝐱
f
𝑚𝑚

)

𝑖𝑖

]𝑁𝑁𝑚𝑚

𝑖𝑖=1
 and 𝐴𝐴 𝐄𝐄

a
𝑚𝑚 =

[
(𝐱𝐱a𝑚𝑚)𝑖𝑖

]𝑁𝑁𝑚𝑚

𝑖𝑖=1
 , respectively; here 𝐴𝐴

(
𝐱𝐱
f
𝑚𝑚

)

𝑖𝑖
 and 𝐴𝐴 (𝐱𝐱a𝑚𝑚)𝑖𝑖 denote the ith member in the forecast or 

analysis ensemble. We denote the means of the forecast and analysis ensemble by 𝐴𝐴 𝐱𝐱
f

𝑚𝑚 and 𝐴𝐴 𝐱𝐱
a
𝑚𝑚 , respectively.

2.1. Incorporation of Model Error

2.1.1. The Model Error

Narayan et al. (2012) did not explicitly address model error covariances as part of the multi-model Kalman filter. 
Yang et al. (2017) did include model errors in their multi-model filter equations, but did not discuss methods 
to estimate them. We stress here that considering model errors is critical for the MM-DA's correctly weighting 
models, and that the multi-model filter must therefore be supplemented by a model error estimation method.

We assume that the true state evolution of the system can be expressed, for each model Mm, as

𝐆𝐆𝑚𝑚𝐱𝐱
t
(𝑡𝑡𝑖𝑖) = 𝐌𝐌𝑚𝑚(𝑡𝑡𝑖𝑖−1)𝐆𝐆𝑚𝑚𝐱𝐱

t
(𝑡𝑡𝑖𝑖−1) + 𝜼𝜼

𝑚𝑚
(𝑡𝑡𝑖𝑖−1), (13)

where x t(ti) is the true state at time ti and ηm is a model error with mean 0 and covariance Qm.

For model m, the forecast error covariance 𝐴𝐴 𝐏𝐏
f
𝑚𝑚 at time ti+1 can then be estimated by Equation 8. This equation 

holds exactly only for a linear model (Tandeo et al., 2020). Thus 𝐴𝐴 𝐏𝐏
f
𝑚𝑚 can be written as a sum of two terms,

𝐏𝐏
f
𝑚𝑚(𝑡𝑡𝑖𝑖+1) = 𝐏𝐏

p

𝑚𝑚(𝑡𝑡𝑖𝑖+1) +𝐐𝐐𝑚𝑚(𝑡𝑡𝑖𝑖). (14)

The term P p is sometimes called the predictability error (Berry & Sauer, 2013), and is due to the effect of the 
system's dynamics on the uncertainty in the initial conditions. Therefore Kalman filters, without incorporating 
Q, are prone to underestimate P f.

Note that the assumption that the total forecast error can be decomposed as a sum of an initial-condition error and 
a model error becomes less justified at longer lead times, due to the correlations between the initial condition and 
model errors (Carrassi, Vannitsem, & Nicolis, 2008; Mitchell & Carrassi, 2015).

Besides the underestimation problem, the consideration of model error in MM-DA is critical, since estimating the 
forecast error covariance from the ensemble spread as in EnKFs may give similar weights to models of different 
accuracy. For example, in Li et al. (2009), the perfect model was found to have similar spread to an imperfect 
model. Another issue is that a systematically overconfident model would be given higher weight if only the spread 
is accounted for.

Common ways to handle model error include: estimating the model error covariance matrix Q and using it to 
inflate the forecast covariance (additive inflation); inflating the forecast covariance with scalars (multiplicative 
inflation); or attempting to directly correct model error (bias correction). Gharamti  (2018) discusses several 
additional methods.
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Additive inflation generally works better than simple multiplicative inflation in accounting for model errors 
(Hamill & Whitaker,  2005; Li et  al.,  2009; Raanes et  al.,  2015; Whitaker & Hamill,  2012), since the latter 
assumes that model errors will have the same structure as errors due to initial conditions, which is not gener-
ally the case. Estimating scalar inflation factors, however, is more feasible in high-dimensional and data-scarce 
settings than estimating the matrix Q. Moreover, there are methods for multiplicative covariance inflation that 
allow the inflation to vary in space and time (Anderson, 2009; Gharamti, 2018; Tandeo et al., 2020). Such meth-
ods are likely to narrow the performance gap or surpass temporally fixed additive inflation.

Several sophisticated state-dependent bias correction schemes have been developed and used in DA (Farchi 
et al., 2021; Li et al., 2009). The best results are usually obtained by a combination of bias correction and infla-
tion (Baek et al., 2006; Li et al., 2009), with the latter accounting for the model error remaining after the bias 
correction.

In this paper, we use additive inflation to account for model error. Future work could apply bias correction to each 
model in addition to inflation. In the algorithms that follow, we use bm to refer to the bias of model m, when bias 
estimation is employed; otherwise, bm = 0.

2.1.2. Estimation Method and Use in Filtering

In this paper, we use a simple, innovation-based estimation method for model error covariance, which we describe 
in Appendix B. However, there are a variety of methods for estimating Q, often simultaneously with estimating 
R; see the reviews of Duník et al. (2017) and Tandeo et al. (2020). When estimating Q is not computationally 
feasible, many methods for adaptive estimation of multiplicative covariance inflation are available, as described 
in the last section.

Several methods to estimate Q, including the one we use, rely on the statistics of the innovations, that is, of the 
differences between observations and forecasts. In order to compute innovations for our MM-EnKF, we must 
define an additional observation operator 𝐴𝐴 𝐇𝐇𝑚𝑚 ∶ ℝ

𝑛𝑛𝑚𝑚 → ℝ
𝑝𝑝 for each model, which maps the model space to the 

observation space. For the reference model m = mr, 𝐴𝐴 𝐇𝐇𝑚𝑚𝑟𝑟
= 𝐇𝐇 . When Gm is injective, Hm is given by

𝐇𝐇𝑚𝑚 = 𝐆𝐆
†

𝑚𝑚𝐇𝐇. (15)

In case Gm is not injective, Hm would have to be specified for every model. The innovations for model m are given 
by 𝐴𝐴 𝐝𝐝𝑚𝑚 = 𝐲𝐲 −𝐇𝐇𝑚𝑚𝐱𝐱

f
𝑚𝑚 .

Given an estimate of Qm, in order to account for it in the ensemble, samples drawn from the multivariate Gaussian 
distribution 𝐴𝐴 

(
𝟎𝟎, �̃�𝐐𝑚𝑚

)
 can be added to the mth forecast ensemble (Asch et al., 2016; Mitchell & Carrassi, 2015), 

as done herein. Mitchell and Carrassi (2015) found this stochastic method to perform better than directly inflating 
the covariance matrix. Raanes et al. (2015) showed, however, that some methods work better for additive inflation 
in square-root filters than random sampling.

Here, we estimate Qm for each model independently using the method described in Appendix B. Logutov and 
Robinson (2005), though, showed that an error estimation method—in their case, the direct estimation of the 
forecast error covariance matrices 𝐴𝐴 𝐏𝐏

f
𝑚𝑚 —using all the models simultaneously can be more effective, especially 

when there is a small number of verifying observations. While not taken here, the latter approach could prove 
useful in the future.

2.2. Ensemble Perturbations

By applying the MM-DA framework directly to an EnKF, the iterative procedure results, prior to assimilating 
observations, in a combined multi-model forecast ensemble 𝐴𝐴 𝐄𝐄

f ′

1∶𝑀𝑀
 . This ensemble lives in the reference model 

space, and has 𝐴𝐴 𝐴𝐴𝑚𝑚𝑟𝑟
 ensemble members. A disadvantage of this approach is that, already at the beginning of the 

forecast cycle, it reduces the number of ensemble members from ∑mNm to 𝐴𝐴 𝐴𝐴𝑚𝑚𝑟𝑟
 . Even though the information from 

these members is included in 𝐴𝐴 𝐄𝐄
f ′

1∶𝑀𝑀
 , a larger ensemble helps reduce sampling error.

Furthermore, once observations are assimilated, we obtain E a, an analysis ensemble in the reference model space. 
How does one then obtain the analysis ensemble 𝐴𝐴 𝐄𝐄

a
𝑚𝑚 in each model space m, in order to use it as initial conditions 

for the next forecast cycle?
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Previous work on MM-DA did not address these questions dealing with ensemble perturbations in an MM-EnKF. 
Here, we discuss three ways of doing so.

2.2.1. Method 1

This method is a straightforward application of the iterative methodology described above: we simply compute 
𝐴𝐴 𝐄𝐄

f ′

1∶𝑀𝑀
 . After assimilating observations, we then take

𝐄𝐄
a
𝑚𝑚 = 𝐆𝐆𝑚𝑚𝐄𝐄

a (16)

as the analysis ensemble in model space m. A schematic diagram is shown in Figure 2a.

This method has a disadvantage in terms of sampling error, as described above. Moreover, Equation 16 implies 
that each new model ensemble will now have the same number of ensemble members as that of the reference 
model: 𝐴𝐴 𝐴𝐴𝑚𝑚 = 𝐴𝐴𝑚𝑚𝑟𝑟

 . If 𝐴𝐴 𝐴𝐴𝑚𝑚𝑟𝑟
≥ 𝐴𝐴𝑚𝑚 for all m ≠ mr, though, a random choice of Nm ensemble perturbations out of the 

𝐴𝐴 𝐴𝐴𝑚𝑚𝑟𝑟
 could still be made for each m ≠ mr.

A related issue is that, for Method 1, each model's posterior ensemble has the same perturbations but 
transformed into the model space m, since 𝐴𝐴 𝐄𝐄

a = 𝐱𝐱
a
𝟏𝟏
𝑇𝑇 + (𝑁𝑁 − 1)

1∕2
𝐗𝐗

a (Asch et  al.,  2016) implies that 
𝐴𝐴 𝐆𝐆𝑚𝑚𝐄𝐄

a = 𝐱𝐱
a

𝑚𝑚𝟏𝟏
𝑇𝑇 + (𝑁𝑁 − 1)

1∕2
𝐆𝐆𝑚𝑚𝐗𝐗

a , where X a are the reference model's analysis ensemble perturbations and 1 is a 
vector of ones. This may reduce the effective number of ensemble members in the multi-model forecast ensem-
ble, when the models are similar enough.

Figure 2. Diagram of the proposed algorithms. In Method 1, one model is treated as the reference model. In Method 2, each 
model is treated as the reference model in turn, and the combined forecast ensembles are concatenated into a superensemble 
before assimilating observations. Arrows indicate information treated as observations in data assimilation, dotted lines indicate 
those treated as background. Braces indicate concatenation for Method 2, and application of Equation 16 for Method 1.
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2.2.2. Method 2

We propose an alternative method for handling the ensemble perturbations. Here, we repeat the iterative proce-
dure of Equation 9 m times at each assimilation step, changing the reference model to mr = m each time. Then, we 
have m model ensembles, each in their own model space. We then map all these ensembles into a single model 
space, considering them as a single “superensemble.” The observations are then assimilated into this superen-
semble, and the analysis ensemble members can be mapped back into their respective model spaces. A schematic 
diagram appears in Figure 2b.

This method uses all the ensemble members in assimilating the observations, and will thus suffer from lower 
sampling error than Method 1. Furthermore, one obtains an analysis ensemble for each model which retains the 
number of ensemble members Nm, and has distinct ensemble perturbations for each model.

This method, though, has a larger computational cost than Method 1: the multi-model forecast combination cost 
in terms of operation count will increase by a factor of about M, although each of the M assimilation steps can be 
done in parallel. Likewise, if the ensemble sizes are equal, the memory requirement for the analysis ensembles 
will increase by a factor of M. Furthermore, this method requires mappings from every model space m to every 
other model space m′: 𝐴𝐴 𝑚𝑚→𝑚𝑚′ . This is only possible if the mappings are invertible. Hence, this method is easiest 
to implement when all the models are in the same space or when there is a simple mapping between them, but it 
will not work with different dimensions of model space.

2.2.3. Other Approaches

Lastly, the analysis ensemble could be regenerated for each m ≠ mr by matching the known moments of the anal-
ysis distribution 𝐴𝐴

(
𝐱𝐱
a
𝑚𝑚,𝐏𝐏

a
𝑚𝑚

)
 , as obtained from Equations 5 and 6. There is no unique set of ensemble members that 

possess these moments, but some that do can be generated by sampling from the multivariate normal 𝐴𝐴 
(
𝐱𝐱
a
𝑚𝑚,𝐏𝐏

a
𝑚𝑚

)
 .

Another way to generate appropriate ensemble members is to use sigma points as in the unscented Kalman 
filter (Julier & Uhlmann, 2004). Doing so, however, requires at least 2nm sigma points, which is not feasible for 
high-dimensional, computationally expensive models.

In the numerical experiments that follow, we compare only Methods 1 and 2.

2.3. Computational Considerations

For the iterative form of MM-DA, the Kalman gain Equation 9a can be written as

𝐊𝐊𝑚𝑚

(

𝐆𝐆𝑚𝑚𝐏𝐏
f ′

1∶𝑚𝑚−1
𝐆𝐆

𝑇𝑇

𝑚𝑚 + 𝐏𝐏
f
𝑚𝑚

)

= 𝐏𝐏
f ′

1∶𝑚𝑚−1
𝐆𝐆

𝑇𝑇

𝑚𝑚, (17)

where the linear system is solved for Km in order to avoid explicit matrix inversion. Note that here, since the fore-
cast of model m is treated as an observation, we are required to solve a system in the model space 𝐴𝐴 ℝ

𝑛𝑛𝑚𝑚 . This can 
be too computationally expensive for high-dimensional models.

2.3.1. Taking Advantage of Lower-Dimensional Models

If only one of the models has very high dimension, that model can be chosen to be the reference model mr. Then, 
in the iterative procedure, the inversions will only have to be done in the lower-dimensional model spaces, thus 
facilitating the computations.

Alternatively, if several models have high dimensions but only large-scale features are of interest, their forecasts 
could be mapped to a lower-dimensional space prior to assimilation, and the Gm modified accordingly. In the case 
of weather or climate models, this could consist in mapping the forecasts to a coarser grid. Possible solutions 
for multiple high-dimensional models with high-dimensional features that are relevant will be discussed below.

2.3.2. Taking Advantage of Low Rank

When using an EnKF, both 𝐴𝐴 𝐏𝐏
f ′

1∶𝑚𝑚−1
 and 𝐴𝐴 𝐏𝐏

f
𝑚𝑚 in Equation 17 will be sample covariance matrices and they will be 

rank-deficient if the ensemble sizes are smaller than the model dimensions, as is typically the case. Localization 
generally increases the rank; when not applied, the low rank of these covariance matrices can be exploited to 
obtain a least-squares solution in 𝐴𝐴 

(
𝑛𝑛𝑚𝑚𝑁𝑁

′2
𝑚𝑚

)
 operations, where 𝐴𝐴 𝐴𝐴

′
𝑚𝑚 is the rank of the matrix 𝐴𝐴 𝐆𝐆𝑚𝑚𝐏𝐏

f ′

1∶𝑚𝑚−1
𝐆𝐆

𝑇𝑇

𝑚𝑚 + 𝐏𝐏
f
𝑚𝑚 

(Mandel, 2006).
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2.3.3. Right-Multiplied ESRFs

In the following approaches to efficient MM-EnKF implementation, an important role is played by square-root 
Kalman filters (SRFs) (Bellantoni & Dodge, 1967; Bierman, 1977), and in particular ensemble SRFs (ESRFs) 
(Tippett et al., 2003). In their historical account, Grewal and Andrews (2010) state that the SRF is an “improve-
ment […] over conventional Kalman filtering [achieving] ‘the same accuracy with half as many bits’ of precision.”

An alternative form of the gain is obtained by applying the Sherman–Morrison–Woodbury formula (Hager, 1989) 
to Equation 17:

𝐊𝐊𝑚𝑚 =

((

𝐏𝐏
f ′

1∶𝑚𝑚−1

)−1

+𝐆𝐆
𝑇𝑇

𝑚𝑚

(
𝐏𝐏
f
𝑚𝑚

)−1
𝐆𝐆𝑚𝑚

)−1

𝐆𝐆
𝑇𝑇

𝑚𝑚

(
𝐏𝐏
f
𝑚𝑚

)−1 (18)

Some ensemble Kalman filter variants use gains of the form Equation 18, but express the analysis in the ensemble 
subspace (Asch et al., 2016). These are known as right-multiplied ESRFs (Sakov & Bertino, 2011).

The ensemble transform Kalman filter (ETKF: Bishop et al., 2001) is an important form of right-multiplied ESRF. 
The gain can be computed by solving a linear system without explicitly inverting 𝐴𝐴 𝐏𝐏

f
𝑚𝑚 . If 𝐴𝐴 𝐏𝐏

f
𝑚𝑚 is assumed to have 

a block-diagonal structure with relatively small blocks, the computation becomes feasible. This block-diagonal 
structure is intrinsic to analyses being done locally, as in the local ETKF (LETKF; Hunt et al., 2007).

Similar to the low-rank case discussed above, when 𝐴𝐴 𝐏𝐏
f
𝑚𝑚 is rank-deficient with rank Nm, its pseudoinverse can be 

computed in 𝐴𝐴 
(
𝑛𝑛𝑚𝑚𝑁𝑁

2

𝑚𝑚

)
 operations.

2.3.4. Structured Covariance Matrices

Another way of making the matrix operations less expensive is to take either 𝐴𝐴
(
𝐆𝐆𝑚𝑚𝐏𝐏

f ′

1∶𝑚𝑚−1
𝐆𝐆

𝑇𝑇

𝑚𝑚 + 𝐏𝐏
f
𝑚𝑚

)
 in gains of the 

form of Equation 17 or 𝐴𝐴 𝐏𝐏
f
𝑚𝑚 in gains of the form of Equation 18 to have a simplified structure. As discussed above, 

block-diagonal structure is one such possibility. Block-diagonality also enables the use of sequential EnKFs 
(Houtekamer & Mitchell, 2001). Several simplified structures were considered for observation error covariance 
matrices in Stewart et al. (2013).

The simplest structure, but a rather restrictive one, is assuming the matrices to be diagonal; then the inverse is 
trivial to compute and store. The diagonality assumption is often made for the covariance matrices of observation 
errors. Note that if all the 𝐴𝐴 𝐏𝐏

f
𝑚𝑚 are treated as diagonal in computing Equations 3 and 4 with the direct method, the 

solution corresponds to the minimum variance estimator when the weights for each 𝐴𝐴 𝐱𝐱
f
𝑚𝑚 are vectors instead of 

matrices; see Corollary 2 in Sun (2004).

For right-multiplied ESRFs, if we only impose the simplified structure when inverting 𝐴𝐴 𝐏𝐏
f
𝑚𝑚 , the simplified-structure 

assumption is not made for the forecast covariance of the reference model, 𝐴𝐴 𝐏𝐏
f
𝑚𝑚𝑟𝑟

 .

In the experiments below, since the dimensionality is relatively low, we first apply localization to each 𝐴𝐴 𝐏𝐏
f
𝑚𝑚 and 

then invert directly.

2.4. Multi-Model Forecasting

MM-DA can be used for real-time forecasting with multiple models by carrying out the iterative procedure for the 
available models and not assimilating any observations (Logutov & Robinson, 2005; Narayan et al., 2012). Doing 
so corresponds simply to the use of Equation 9 to combine the multiple models.

We can let R −1 → 0 in Equation 2, since this limit of infinite variance simply corresponds to no observations 
being available. Then, Equations 3 and 4 of MM-DA for the analysis state and covariance become.

𝐱𝐱
a
= 𝐏𝐏

a

(
𝑀𝑀∑

𝑚𝑚=1

𝐆𝐆
𝑇𝑇

𝑚𝑚

(
𝐏𝐏
f
𝑚𝑚

)−1
𝐱𝐱
f
𝑚𝑚

)

, (19a)

𝐏𝐏
a
=

(
𝑀𝑀∑

𝑚𝑚=1

𝐆𝐆
𝑇𝑇

𝑚𝑚

(
𝐏𝐏
f
𝑚𝑚

)−1
𝐆𝐆𝑚𝑚

)−1

. (19b)
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Thus, MM-DA neatly handles multi-model forecasting in addition to DA. Note that, when G1 = G2 = ⋯ = GM = I 
and 𝐴𝐴 𝐏𝐏

f

1
= 𝐏𝐏

f

2
= ⋯ = 𝐏𝐏

f

𝑀𝑀
 , Equation 19a reduces simply to the unweighted multi-model average.

When forecasting at long lead times, it can be helpful to apply MM-DA recursively at intermediate leads. The 
set of model error covariance matrices should be specified for each lead time; it is known in the seasonal climate 
prediction context, for example, that the “best model” can depend on the lead time (Hagedorn et al., 2005).

Assume that we have estimated the model error covariance matrix for each model m at different intermediate lead 
times kτ, which we denote by 𝐴𝐴 𝐐𝐐

𝑘𝑘𝑘𝑘

𝑚𝑚  . Then, if the desired forecast horizon is T = Kτ, MM-DA can be applied first 
at lead time τ with model error covariance matrices 𝐴𝐴 𝐐𝐐

𝜏𝜏

𝑚𝑚 . The analysis for this horizon is then used as an initial 
condition for the forecasts out to time 2τ, whereupon MM-DA is applied with 𝐴𝐴 𝐐𝐐

2𝜏𝜏

𝑚𝑚  , etc. This recursive method 
tends to perform better than directly applying MM-DA at horizon T, since the trajectory is repeatedly corrected.

One may wonder whether, at long lead times, when the error growth of a nonlinear forecast model ceases to obey 
linearized dynamics, Equation 14 for the forecast error covariance is still a good approximation. Here, it is more 
useful to think of Q as an additive inflation that compensates for overconfidence in the prediction.

2.5. Filter Algorithm

Localization is critical for EnKFs (Carrassi et al., 2018). Here, we apply localization at each step of the iterative 
procedure, and also when observations are assimilated.

We use the left-multiplied form of the ESRF, as described in Sakov and Bertino (2011), for both the multi-model 
combination and the assimilation of observations. This EnKF is a deterministic filter for which it is particularly 
simple to express covariance localization.

The left-multiplied ESRF equations are given by.

𝐗𝐗 = (𝑁𝑁 − 1)
−1∕2

(

𝐄𝐄
f
− 𝐱𝐱

f
𝟏𝟏
𝑇𝑇

)

, (20a)

𝐏𝐏
f
= 𝝆𝝆◦

(
𝐗𝐗𝐗𝐗

𝑇𝑇
)
, (20b)

𝐊𝐊 = 𝐏𝐏
f
𝐇𝐇

𝑇𝑇
(
𝐇𝐇𝐏𝐏

f
𝐇𝐇

𝑇𝑇
+ 𝐑𝐑

)−1
, (20c)

𝐱𝐱
a
= 𝐱𝐱

f
+𝐊𝐊

(

𝐲𝐲 −𝐇𝐇𝐱𝐱
f
)

, (20d)

𝐄𝐄
a
= 𝐱𝐱

a
𝟏𝟏
𝑇𝑇
+ (𝑁𝑁 − 1)

1∕2
(𝐈𝐈 −𝐊𝐊𝐊𝐊)

1∕2
𝐗𝐗, (20e)

where ρ is the localization matrix; ◦ is the Hadamard, or element-wise, product; and X are the normalized ensem-
ble perturbations.

In the iterative procedure, we use the ensemble mean 𝐴𝐴 𝐱𝐱
f

𝑚𝑚 of model m as the observation for the MME 𝐴𝐴 𝐄𝐄
f ′

1∶𝑚𝑚−1
 .This 

ESRF form is not efficient for high-dimensional systems, since the update is done in the state space instead of the 
ensemble space. For high-dimensional systems, right-multiplied ESRFs are more practical. See Section 2.3 for 
more details on computational issues.

2.6. Inflation

EnKFs generally underestimate the forecast covariance due to model and sampling errors, thus imposing the need for 
inflation (Carrassi et al., 2018). While we attempted to account for the model error in each individual model, we found 
that the multi-model forecast covariance is usually still underestimated, and the underestimation increases with M.

This underestimation is due to the assumption that the models are unbiased, and that the errors for distinct models 
are independent of one another. That is, if the model forecasts were unbiased and independent, one would expect 
the error in a multi-model average to decrease as M −1/2, but this does not happen. See Knutti et al. (2010) and 
Christiansen (2020) for an explanation of this phenomenon in MMEs. Furthermore, in assimilating forecast states 
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of one model into another one, which has a different attractor, one inherently encounters representation error 
(Hodyss & Nichols, 2015). Hence, we also need to apply inflation to the multi-model forecast.

Here, we use a simple multiplicative covariance inflation scheme, with the inflation factor 𝐴𝐴 �̂�𝜆 estimated as in 
Tandeo et al. (2020):

�̂�𝜆 =
𝐝𝐝
𝑇𝑇
𝐝𝐝 − tr(𝐑𝐑)

tr(𝐇𝐇𝐇𝐇
f
𝐇𝐇

𝑇𝑇 )
. (21)

Since the inflation is applied to the multi-model forecast, we take 𝐴𝐴 𝐝𝐝 = 𝐲𝐲 −𝐇𝐇𝐇𝐇
f ′

1∶𝑀𝑀
 and 𝐴𝐴 𝐏𝐏

f = 𝐏𝐏
f ′

1∶𝑀𝑀
 and then apply 

a temporal smoothing, as in Equation B3, which yields

�̃�𝜆(𝑘𝑘 + 1) = 𝛾𝛾�̂�𝜆(𝑘𝑘) + (1 − 𝛾𝛾)�̃�𝜆(𝑘𝑘), (22)

for some 0 < γ < 1. Note that the numerator of Equation 21 is not guaranteed to be positive, although its expected 
value is. However, negativity of 𝐴𝐴 �̂�𝜆 does not pose a problem as long as the smoothed estimate 𝐴𝐴 �̃�𝜆 is positive. 
Encountering a negative 𝐴𝐴 �̃�𝜆 suggests either a misspecification of the error covariance matrices or a γ-value that is 
too large, allowing for rapid fluctuations in 𝐴𝐴 �̃�𝜆 .

Due to the MM-DA–specific reasons above, the resulting values of λ are higher than typically encountered with 
regular covariance inflation: in the experiments below, for instance, we have encountered 𝐴𝐴 �̃�𝜆 -values as large as 4.

2.7. Algorithms

We are ready now to summarize in pseudo-code the two proposed versions of the MM-EnKF, as Algorithms 1 
and 2. To maintain generality, we define the following DA_step function, which represents the analysis step 
for any EnKF, and in which the observation operator 𝐴𝐴  is kept as possibly nonlinear, since ensemble Kalman 
filters  allow for nonlinear observation operators.

Note that, for real-time forecasting, line 12 in the pseudocode for Method 1 or line 16 in the pseudocode for 
Method 2 is removed.

3. Relation to Other Methods
3.1. MM-EnKF Properties

The MM-EnKF has the following properties, compared to other methods for MM-DA and forecasting:

•  The method is a natural generalization of the standard Kalman filter to multiple models, and can be derived 
from both the variational and Bayesian viewpoints (Narayan et al., 2012), as well as from linear minimum 
variance estimation (see Appendix A). This fact allows for the use of well-understood DA methods, and the 
theoretical apparatus of optimal state estimation and Kalman filters (e.g., Jazwinski, 1970; Simon, 2006).

•  The methods reviewed in Section 1 mostly involve scalar weights. Here, the weights are matrices, which 
allows for variables to be weighted differently. In the case of spatiotemporal models, this allows the weights 

function DA_step

Input:

•  E f, the prior ensemble
•  y, the observation vector
•  R, the observation error covariance
•  𝐴𝐴  , the observation operator

Output: E a, the posterior ensemble
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assigned to each model to vary in space; this is important in the case of atmospheric models, where model skill 
can be highly spatially inhomogeneous (Du & Smith, 2017).

•  Each model can have its own model space. Most of the other reviewed methods do not allow for this, instead 
assuming a common model space. Distinct model spaces allow for the combination of models of different 
resolutions, those that predict different variables, or those that are restricted to different spatial domains. Some 
examples of such scenarios are provided in Section 4.

•  A common problem of adaptive multi-model methods is the weight of useful models converging to 0 (Smith 
et al., 2020). With MM-DA, this problem does not occur as long as the filter is stable, since this would require 

𝐴𝐴
(
𝐏𝐏
f
𝑚𝑚

)−1
→ 𝟎𝟎 . This feature may have its downside when a model is consistently detrimental.

Algorithm 1. Multi-Model Ensemble Kalman Filter Step (Method 1)
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•  If all models are biased in one direction, Bayesian model averaging will result in a forecast worse than the best 
model. This is not the case with MM-DA (Narayan et al., 2012).

•  The MM-EnKF methodology provides probabilistic analyses and forecasts, using ensembles. Many of the 
methods for forecast combination reviewed herein assume a single deterministic forecast for each model, and 
do not account for uncertainty.

•  DA is designed for forecast problems, and MM-DA is shown in Section 4 to improve forecast skill. However, 
some multi-model methods target instead improving climatology, that is, the system's long-term statistics. In 
MM-DA, the Qm are specified for a specific lead time; it is not clear how—or whether—these Qm's can be 
adequately adapted to capture climatological error instead. It is often the case, though, that long-term system-
atic errors are similar to those at short timescales (Martin et al., 2010; Rodwell & Palmer, 2007).

•  Several authors (Bach et  al.,  2021; Chattopadhyay et  al.,  2022; Chen & Stechmann,  2019; Counillon 
et  al.,  2022; Du & Smith,  2017; Ojeda et  al.,  2013; Potthast et  al.,  2022) explored the assimilation of 
forecasts as pseudo-observations. In many of these works, however, the error covariance assigned to the 

Algorithm 2. Multi-Model Ensemble Kalman Filter Step (Method 2)
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pseudo-observations was not defined in a consistent way, or the generalization to more than two models was 
not clear. MM-DA also assimilates forecasts as if they were observations, but in a consistent mathematical 
framework.

•  Rainwater and Hunt (2013) formulated an EnKF that uses ensembles at two different resolutions to compute 
the background covariance matrix, with a parameter that sets the weights given to each one. The low-resolution 
state forecast was not used. Hoel et al. (2016, 2020) combined forecasts at different resolutions in an EnKF, 
but they did not weight them differently. Popov et al. (2021) combined models of different fidelities in an 
EnKF with a control variate approach. In Section 4, we will show how the MM-EnKF can effectively incor-
porate forecasts at different resolutions and fidelities.

•  In the terminology of Mallet et al. (2009), MM-DA is a convex sequential aggregation rule.

3.2. Connection to Synchronization

To combine forecasts of two models we have, from Equations 9b and 9a.

𝐱𝐱1 = 𝐱𝐱
f

1
+𝐊𝐊2

(
𝐱𝐱
f

2
−𝐆𝐆1→2𝐱𝐱

f

1

)
, (23a)

𝐱𝐱2 = 𝐱𝐱
f

2
+𝐊𝐊1

(
𝐱𝐱
f

1
−𝐆𝐆2→1𝐱𝐱

f

2

)
, (23b)

where

𝐊𝐊1 = 𝐏𝐏
f

2
𝐆𝐆

𝑇𝑇

2→1

(
𝐆𝐆2→1𝐏𝐏

f

2
𝐆𝐆

𝑇𝑇

2→1
+ 𝐏𝐏

f

1

)−1
, (24a)

𝐊𝐊2 = 𝐏𝐏
f

1
𝐆𝐆

𝑇𝑇

1→2

(
𝐆𝐆1→2𝐏𝐏

f

1
𝐆𝐆

𝑇𝑇

1→2
+ 𝐏𝐏

f

2

)−1
. (24b)

Here, G1→2 is the matrix mapping from a state in model space 1 to the corresponding state in model space 2, 
and vice-versa for G2→1. Thus, each model is being nudged toward the forecast of the other. This mutual nudg-
ing connects MM-DA to the synchronization view of DA (Abarbanel et al., 2017; Carrassi, Ghil, et al., 2008; 
Penny,  2017; Penny et  al.,  2019): the multi-model combination step can be considered a form of impulsive 
synchronization between the models.

In the connected supermodeling approach of Selten et al.  (2017), connection terms between model states are 
introduced into the model equations. The connection coefficients are gathered into matrices C, which can be 
identified with the gain matrices Ki in Equation 23. We note, however, that MM-DA differs from the approach of 
Selten et al. (2017), as the latter directly estimates the connection coefficients by minimizing a cost function with 
training data. Additionally, the supermodeling approach uses static and diagonal C, does not allow for different 
model spaces, and does not consider ensembles of each model. Future work could compare the connection coef-
ficients obtained by connected supermodeling with the gains Ki obtained by MM-DA. Since supermodels are 
typically formulated in continuous time, determining the exact relationship between MM-DA and supermodels 
necessitates the derivation of the continuous-time analog of the multi-model Kalman filter, namely a multi-model 
Kalman–Bucy filter.

A similar connection can be made between MM-DA and weighted supermodeling: in the latter, the supermodel 
tendency is a weighted average of the individual model tendencies (Schevenhoven et al., 2019), while in MM-DA 
the analysis is a weighted average of the model forecasts (Equation 19a). Wiegerinck et al. (2013) showed that a 
connected supermodel becomes a weighted supermodel in the limit of large couplings.

4. Numerical Experiments
Previously, MM-DA was only tested on very low-dimensional models with non-chaotic behavior (Narayan 
et al., 2012; Yang et al., 2017), and recursive multi-step forecasts were not tested. Methods for multi-model fore-
casting have often been tested with perfect observations for calibration, single forecasts for each model rather than 
ensembles, and models that all share the same space (Schevenhoven & Selten, 2017; Schevenhoven et al., 2019); 
several papers, though, have extended this work to noisy observations (Du & Smith, 2017; Schevenhoven & 
Carrassi,  2022). Here, we conduct twin experiments of the proposed method for both DA and forecasting in 
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 various settings, including models of different dimensionality and different-sized ensembles. Noisy observations 
are used for the model error estimation in all cases.

4.1. Experimental Set-Up

In the following numerical experiments, we use the Lorenz96 (Lorenz, 1996) model, except that we allow a 
different forcing Fi for each site:

d𝑥𝑥𝑖𝑖

d𝑡𝑡
= −𝑥𝑥𝑖𝑖−1(𝑥𝑥𝑖𝑖−2 + 𝑥𝑥𝑖𝑖+1) − 𝑥𝑥𝑖𝑖 + 𝐹𝐹𝑖𝑖; (25)

here the indices i range from 1 to D and are cyclical. We use D = 40 variables in the experiments that follow.

The true model here has Fi = 8 for 1 ≤ i ≤ 10, Fi = 10 for 11 ≤ i ≤ 20, Fi = 12 for 21 ≤ i ≤ 30, and Fi = 14 for 
31 ≤ i ≤ 40, similar to Du and Smith (2017). We then define four imperfect forecast models to be used in the 
experiments, having fixed F ≡ 8, 10, 12, and 14 for all i.

We also use the two-scale version of model (Lorenz, 1996).

d𝑥𝑥𝑖𝑖

d𝑡𝑡
= −𝑥𝑥𝑖𝑖−1(𝑥𝑥𝑖𝑖−2 + 𝑥𝑥𝑖𝑖+1) − 𝑥𝑥𝑖𝑖 + 𝐹𝐹𝑖𝑖 −

ℎ𝑐𝑐

𝑏𝑏

𝑛𝑛∑

𝑗𝑗=1

𝑦𝑦𝑗𝑗𝑗𝑖𝑖𝑗 (26a)

d𝑦𝑦𝑗𝑗𝑗𝑗𝑗

d𝑡𝑡
= −𝑐𝑐𝑐𝑐𝑦𝑦𝑗𝑗+1𝑗𝑗𝑗(𝑦𝑦𝑗𝑗+2𝑗𝑗𝑗 − 𝑦𝑦𝑗𝑗−1𝑗𝑗𝑗) − 𝑐𝑐𝑦𝑦𝑗𝑗𝑗𝑗𝑗 +

ℎ𝑐𝑐

𝑐𝑐
𝑥𝑥𝑗𝑗𝑗 (26b)

where the indices i range from 1 to D, the indices j range from 1 to d, yd+1,i = y1,i+1, and y0,i = yd,i−1. The 𝐴𝐴 𝐴𝐴𝑗𝑗𝑖𝑖 vari-
ables represent smaller-scale dynamics, which interact with the larger-scale xi's. We set D = 20, d = 10, h = 1, 
b = 10, c = 10. With these parameters, the timescale is about 10 times as fast for the 𝐴𝐴 𝐴𝐴𝑗𝑗𝑖𝑖 ’s as for the xi's. Given the 
full state vector containing both the x and y variables,

vec

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑥𝑥1 𝑦𝑦1,1 𝑦𝑦2,1 ⋯ 𝑦𝑦𝑑𝑑,1

𝑥𝑥2 𝑦𝑦1,2 𝑦𝑦2,2 ⋯ 𝑦𝑦𝑑𝑑,2

⋮ ⋮ ⋮ ⋱ ⋮

𝑥𝑥𝐷𝐷 𝑦𝑦1,𝐷𝐷 𝑦𝑦2,𝐷𝐷 ⋯ 𝑦𝑦𝑑𝑑,𝐷𝐷

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (27)

where vec is the vectorization operator which stacks the columns of the matrix on top of one another to obtain a 
column vector, the corresponding G2 is the (d + 1)D × D matrix

(𝐆𝐆2)𝑖𝑖𝑖𝑖𝑖 =

⎧
⎪
⎨
⎪
⎩

1𝑖 if 𝑖𝑖 = 1

0𝑖 otherwise.

 (28)

The time integrations used the fourth-order Runge–Kutta scheme. For the single-scale Lorenz96 model, we use a 
timestep of Δt = 0.05, and for the two-scale one we use Δt = 0.005.

For localization, we use the Gaspari–Cohn correlation function (Gaspari & Cohn, 1999). For experiments with 
the single-scale model, we use a localization radius of 4. For experiments with the two-scale model, we apply a 
localization radius of 4 to the xi variables and a radius of 40 to the yj,i ones. Cross-scale interactions are localized 
such that observations of the yj,i are allowed to influence the corresponding xi, and vice versa.

In the following experiments, we compare the MM-EnKF to the unweighted MME, wherein the multiple 
single-model ensembles are treated identically as a single ensemble, except that each model ensemble is inflated 
using the appropriate Qm. We also compare the results to each of the individual single-model ensembles, again 
inflated by their respective Qm. Moreover, scalar inflation is applied for both the MME and the MM-EnKF, as 
described in Section 2.6.
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4.2. Experiments With Parametric Model Error

4.2.1. Multi-Model DA

We test out Methods 1 and 2 of the MM-EnKF with the four imperfect models. We use an analysis window, or 
time interval over which observations are assimilated, of 0.2; R = 0.25I40; δ = 10 −3 for the model error estima-
tion; and γ = 10 −2 for the inflation estimation. Here we fully observe the state, but test partial observations in 
Section 4.2.1.3.

For the MME and the MM-EnKF, we use 20 ensemble members for each model. In order to have a fair compar-
ison, 80 ensemble members are used for each of the individual model experiments. We carry out 10,000 DA 
cycles, and average the error over the last 2,000.

Figure 3 shows the results for the forecast and analysis errors. The forecast errors are for forecasts initialized from 
the analyses obtained by the filter, for a lead time equal to the analysis window. In addition to the root-mean-square 
error (RMSE), we use the continuous ranked probability score (CRPS: Hersbach, 2000), a probabilistic error 
metric, to measure the discrepancy between the ensemble and the true probability distributions. We apply the 
univariate CRPS along each dimension, and then take the mean. A strength of the CRPS is that it is a strictly 
proper scoring rule (Wilks, 2019).

The regular MME performs slightly better than the best model in terms of forecast error, and worse than the best 
model in terms of analysis error. The MM-EnKF, though, performs better than the MME and any individual 
model, in both forecast and analysis errors, and Method 2 has a slight edge over Method 1. The latter fact is likely 
due to Method 2 using a larger ensemble than Method 1 when assimilating the observations; see Section 2.2.

Figure 3. Overall performance of the multi-model ensemble Kalman filter, in terms of both root-mean-square error and the continuous ranked probability score. Here 
and in the subsequent experiments, we use suitably defined versions of the Lorenz96 model (Lorenz, 1996). The error bars are too small to be visible and hence none 
are plotted.
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4.2.1.1. Impact of Model Error Estimation

To see the effect of model error estimation on the performance of the MM-EnKF methods, we run it simultane-
ously with the DA itself, and consider the time evolution of the weights and analysis error. In Figure 4a we see the 
model weights evolving: initially assigned the same model error covariance, the model error estimation procedure 
estimates a higher error for models 1 and 3, and they are thus weighted less in the DA. Note that we show here 
only the trace, but in reality the weights are not the same for all variables.

In Figure 4b, the analysis error is shown over the same time interval. Initially, with the same weight for each 
model, the MM-EnKF performs worse than an unweighted MME. However, as the model error estimation 
becomes more accurate, the MM-EnKF reaches a lower asymptotic error than the MME.

4.2.1.2. Impact of Assimilation Order

To test the effect of the order in which the models are assimilated, we repeated the experiment with the 24 = 4! 
possible permutations of the model orders. The results are shown in Figure 5. In this case, model order is not 

very significant, and all the orders result in errors smaller than the best model 
and the MME. Furthermore, the standard deviation of the CRPS over all the 
permutations is about an order of magnitude smaller than the improvement of 
the MM-EnKF compared to either the individual models or the MME.

Although for this case the assimilation order has a minimal effect, it will be 
important to test this sensitivity in other set-ups.

4.2.1.3. Partial Observations

We test a case where we only have partial observations of the system. In 
particular, here we observe only the odd-numbered xi.

Figure 6 shows the results for both forecasting and analysis. Note that the 
forecast step here is not different than for full observations; however, the fore-
casts are initialized from analyses obtained using the partial observations. 
Again, the MM-EnKF produces the best forecasts and analyses.

4.2.2. Multi-Model Forecasts

We now test the MM-EnKF for real-time forecasting at different lead times. 
The experimental set-up is the same as in the previous Section 4.2.1, except 

Figure 5. Performance of Method 1 of the multi-model ensemble Kalman 
filter, with all permutations in the order of assimilating the four models plotted 
in green. The single-model analyses and unweighted multi-model ensemble are 
included for reference.

Figure 4. (a) Evolution of estimated model error covariance for the four models. Simultaneously in time, (b) shows a comparison of the evolution of the continuous 
ranked probability score error metric for the unweighted multi-model ensemble and the multi-model ensemble Kalman filter.
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that for each forecast cycle, we obtain the initial ensembles from a previous analysis with observations having an 
error of R = 0.1I. We run 5,000 forecast cycles for each lead time, and compute the error statistics over the last 
3,000 cycles.

Figure 7 shows that, for real-time forecasting, the MME error is similar to that of the best model, while the 
MM-EnKF consistently outperforms the MME and the individual models until the forecast errors start to saturate.

4.2.2.1. Recursive Multi-Step Forecasts

We then try to apply the multi-model forecasting recursively. After an interval of 0.2, we form the multi-model 
forecast and use it as the initial conditions for the next interval. Figure 8 shows that this results in much greater 
error reductions, while Method 2 has again a slight advantage.

4.2.3. Impact of Flow Dependence

In order to estimate the impact of flow dependence in the weights, we test a 3D-Var–like version of the filter, 
wherein instead of using the ensemble-estimated 𝐴𝐴 𝐏𝐏

f
𝑚𝑚 for each model, we use a static Bm. This version is more simi-

lar to that of Logutov and Robinson (2005), which uses static forecast covariance matrices; it differs, though, from 
3D-Var in that we keep the ensemble for the state update. These Bm, instead of representing an instantaneous esti-
mate of the forecast error covariance, represent the models' long-term statistical properties, and are often referred 
to as climatological error covariance matrices. We estimate these Bm by averaging the ensemble-estimated 𝐴𝐴 𝐏𝐏

f
𝑚𝑚 

over 100 cycles. We thus remove any flow dependence in the weights attached to the models and observations.

Comparing this non–flow-dependent version of the MM-EnKF to the 
flow-dependent one for both DA and forecasting in Table 2, we find that the 
flow-dependent MM-EnKF outperforms the non–flow-dependent version. 
Although the EnKF is generally known to outperform DA methods which 
lack flow dependence, such as 3D-Var, it is notable that the flow dependence 
also impacts the forecast skill. The flow dependence helps account for the 
uncertainty in the multi-model forecast, which is reflected in the improved 
CRPS. However, the flow dependence also improves the mean of the forecast 
ensemble, as reflected in the improved CRPS and RMSE, the latter depend-
ing only on the ensemble mean.

4.3. Experiments With Models of Different Fidelities

Suppose one has two models of different accuracy and computational cost: 
one is more computationally expensive and more accurate, the other less 
expensive and less accurate. Then, can a larger ensemble of the cheaper 
model improve DA or forecasts of the more expensive one? Such scenarios 
are often encountered in operational prediction where, due to constraints on 

Figure 7. Lead time dependence of single- and multi-model forecast 
performance.

Figure 6. Overall performance of the multi-model ensemble Kalman filter with partial observations, in terms of continuous ranked probability score. The different 
models and multi-model combinations are indicated on the abscissa.
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computational resources, only a small ensemble at a higher resolution can 
be afforded, but this can be supplemented by large low-resolution ensem-
bles (Gascón et al., 2019). We test this scenario by applying Method 2 with 
models having different ensemble sizes, and additive model errors of differ-
ent magnitudes.

We generate a 40 × 40 banded matrix B with bandwidth 20; the entries within 
the nonzero band are drawn from a uniform distribution 𝐴𝐴  (0, 1) . We then 
prescribe the model error for HF (for “high fidelity”) to have covariance 

𝐴𝐴 𝐐𝐐1 = (1∕10)(𝐁𝐁 − 0.4𝐉𝐉40)(𝐁𝐁 − 0.4𝐉𝐉40)
𝑇𝑇  , and LF (for “low fidelity”) to have 

covariance 𝐴𝐴 𝐐𝐐2 = (𝐁𝐁 − 0.4𝐉𝐉40)(𝐁𝐁 − 0.4𝐉𝐉40)
𝑇𝑇  , where J40 is the 40 × 40 matrix 

of ones.

We use a 5-member ensemble for HF and a 40-member ensemble for LF. 
In this case, the single-model forecasts do not have 45 ensemble members, 
rather 5 and 40, since a 45-member ensemble of HF would clearly outper-
form any MME which adds LF members at the expense of HF members. 
Rather, the question is whether the forecast skill of a small HF ensemble can 
be improved by adding LF members.

Figure 9 shows the performance of the MM-EnKF for recursive multi-step forecasts in this scenario. Here, the 
MME has error in between the errors of the HF and LF models, as would be expected from a simple average. On 
the other hand, the MM-EnKF clearly outperforms the MME and the 5-member ensemble of the more accurate 
HF model.

4.4. Experiments With Models With Different Resolved Scales

Here, we apply Method 1 with the two-scale Lorenz96 model being labeled HR (for “high-resolution”) and 
the single-scale version being labeled LR (for “low-resolution”). The two-scale Lorenz96 model includes the 
small-scale dynamics {yj} of Equation  26 affecting the large scales {xi}, while the single-scale version only 
includes the latter large scales of Equation 26a. This experiment thus serves as a test case for having ensembles 
at two different scales, one at higher resolution than the other.

The true model here is the two-scale Lorenz96 model with forcing as defined in Section  4.1. In this case, 
we prescribe an imperfect large-scale forcing of F = 8.5 for 1 ≤  i ≤ 10 and F = 9.5 for 11 ≤  i ≤ 20 for the 
higher-resolution model, while the lower-resolution model's forcing is perfect but model error is still present due 
to the unresolved scales.

Table 3 shows the results in terms of analysis RMSE in the large-scale variables {xi} and small-scale variables 
{yj,i}. The results demonstrate that higher resolution is, at least in the present setting, more valuable than accurate 
forcing for the DA performance, and that the MM-EnKF provides further improvement over the better one of the 
two models.

We then test forecasting with the same two models. In these experiments, we obtain the ensembles at the begin-
ning of each forecast cycle from a previous analysis with observations having an error of 10% of the clima-
tological variance. For the MM-EnKF, we forecast recursively, combining the forecasts every 0.2 time units. 

We run 500 cycles and show the results for the last 200 cycles in Figure 10. 
The MM-EnKF again outperforms both individual models by a substantial 
margin.

4.5. Implementation

We implemented the method in the Julia language, with the open-source code 
available (see Data Availability Statement). The code is modular, making it 
easy to add different DA methods and models. The CRPS error metric was 
computed with the proper scoring library (The Climate Corporation, 2015). 

Table 2 
The Errors Obtained for the Static and Flow-Dependent Versions of the 
Filter

Analysis CRPS Forecast CRPS Forecast RMSE

Static 0.235 ± 0.001 0.447 ± 0.003 0.813 ± 0.006

Flow dependent 0.202 ± 0.001 0.433 ± 0.003 0.803 ± 0.007

Note. The ± indicates the standard error in the time mean. Bold indicates the 
lowest error in a column.

Figure 8. Continuous ranked probability score error metric of recursive 
single- and multi-model forecasts by lead time.
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We used the parasweep library for Python of Bach  (2021) to facilitate the 
running in parallel of multiple experiments at different lead times and with 
different parameter values.

5. Concluding Remarks
5.1. Summary and Conclusions

In this paper, we proposed and implemented a MM-EnKF, based on the 
framework of Narayan et  al.  (2012). We addressed several gaps in previ-
ous work on MM-DA, including the formulation of an appropriate EnKF 
algorithm for high-dimensional systems and incorporation of model error 
estimation. Using numerical experiments with several versions of a chaotic 
model (Lorenz, 1996), we showed that the MM-EnKF is a robust and versa-
tile method for making use of multiple imperfect models of a system in DA, 
as well as forecasting.

5.2. Future Work

In future work, the MM-EnKF could be applied in more high-dimensional 
and complex models, including operational numerical weather prediction 

models. Section 2.3 discusses the computational considerations for such high-dimensional systems. Because the 
MM-EnKF can be implemented by iteratively using an EnKF, it can be adopted in contexts where an EnKF-based 
assimilation system already exists. It is, moreover, non-obtrusive, meaning that it does not require changes to the 
model equations.

In our numerical experiments, we did not perform any bias correction. However, in climate contexts, where 
model biases—as opposed to model error that can be approximated as unbiased noise with covariance Qm—
become increasingly important, one will need to address the model bias issue; see Section 2.1.1. Further-
more, the interpretation of the Qm becomes unclear when the ensembles mix on the models' attractors; see 
Section 2.4. Future work should address whether, and if so, how, the MM-EnKF can be extended to such 
climate problems.

Of course, the application of the MM-EnKF would also require the availability of multiple model forecasts. 
Examples of such operational multi-model systems include the North American Multimodel Ensemble 
(NMME: Kirtman et al., 2014) and the North American Ensemble Forecast System (NAEFS: Candille, 2009). 
To our knowledge, there is not yet any operational DA systems that use multiple models. Secondarily, one 
would require the construction of the 𝐴𝐴 𝑚𝑚 operators mapping to a common space. Such operations are already 
used in multi-model forecast contexts, when the distinct forecasts have to be regridded to a common grid before 
averaging.

We discuss further avenues for future work below.

5.2.1. Correlated Forecast Errors

The formulation of MM-DA assumes that the forecast errors are uncorre-
lated from each other (Logutov & Robinson, 2005). This may not be a good 
assumption for climate models, especially when distinct models have the 
same historical provenance (Abramowitz et  al.,  2019; Christiansen,  2020; 
Knutti et  al.,  2010). Future work could formulate a multi-model Kalman 
filter which accounts for correlated forecast errors, following Kalman filters 
that include correlations between observation and model errors (Berry & 
Sauer, 2018; Section 7.1 in Simon, 2006). In fact, the derivation in Appen-
dix A is easily modified for correlated forecast error. Although for a different 
problem, combining correlated state estimates arises in multi-sensor fusion 
(Kim, 1994; Sun, 2004), and similar ways of incorporating cross-correlation 
information could be tested with the MM-EnKF.

Figure 9. Continuous ranked probability score error metric of recursive 
multi-model forecasts by lead time.

Table 3 
The Analysis Root-Mean-Square Error Over the Large-Scale Variables {xi} 
and Small-Scale Variables {yi,j} in Data Assimilation Experiments With the 
Two-Scale Lorenz96 Model

Analysis RMSE in xi Analysis RMSE in yi,j

HR 0.511 ± 0.007 0.072 ± 0.002

LR 0.540 ± 0.004 –

MM-EnKF 0.447 ± 0.005 0.066 ± 0.001

Note. Here the analysis window is 0.05, with 2,000 cycles and errors averaged 
over the last 500. Bold indicates the lowest error in a column.
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5.2.2. Hybrid Forecasting and DA

Hybrid methods combining statistical or machine learning (ML) forecasts 
with a dynamical model of a system are a promising approach for improving 
on pure dynamical forecasts. Pathak et al. (2018) demonstrated the advantage 
of hybrid models in forecasting high-dimensional chaotic systems, showing 
that a hybrid that combines an ML forecast with a forecast from an imperfect 
dynamical model can be skillful for longer than either one individually. In 
Bach et al. (2021), the authors also demonstrated the advantage of combining 
a data-driven model with a dynamical model in leveraging the predictability 
of a system's oscillatory modes. In Chattopadhyay et al. (2023), the authors 
demonstrated that augmenting an atmospheric model ensemble with  a large 
ensemble of deep learning–based forecasts can significantly improve estima-
tion of the forecast covariance in an EnKF.

The MM-EnKF could be tested for hybrid DA and forecasting. As demon-
strated in Sections 4.3 and 4.4, MM-EnKF is able to successfully combine 
models of different accuracy and resolution. This feature could be used for 
combining physical and data-driven forecasts: namely, one of the model 
ensembles could be generated by a physical model and the other one by a 
data-driven model.

5.2.3. Multi-Fidelity and Multi-Resolution Forecasting and DA

Given a limited computational budget, it appears to be advantageous to supplement a small ensemble of expen-
sive, high-fidelity model runs with a large ensemble of cheaper, lower-fidelity runs. Future work could further 
explore the use of the MM-EnKF for combining ensembles at multiple fidelities or multiple resolutions. The 
MM-EnKF could also be tested for combining a global atmospheric forecast with multiple higher-resolution 
limited-area models, as in Kretschmer et al. (2015).

In addition to models that can be numerically simulated at lower resolution, another class of low-fidelity 
models consists of reduced-order models (ROMs) that approximate a high-fidelity model by dynamics in a 
lower-dimensional space. With projection-based model order reduction methods, in particular, one can project 
from the higher-dimensional space to the reduced space (Amsallem & Farhat, 2012; Antoulas, 2005). This idea 
allows one to combine high-fidelity models and ROMs within the MM-EnKF framework by defining the Gm 
operators to map from the full to the reduced space.

5.2.4. Multi-Model Smoothing

While filtering is the problem of optimally estimating the state of a system given all observations prior to the 
analysis time, smoothing takes into account also observations of the system obtained after the analysis time. Vari-
ous forms of ensemble Kalman smoothers have been developed (Evensen, 2018), and future work could adapt 
the MM-EnKF to solve the smoothing problem. For climate applications, this could enable the development of 
multi-model reanalyses.

Appendix A: Optimality of the Multi-Model Kalman Filter as the Linear Minimum 
Variance Estimator
We state this result in the form of a theorem and provide its proof herewith.

Theorem 1. Let 𝐴𝐴 {�̂�𝐱
𝓁𝓁
}

𝐿𝐿

𝓁𝓁=1
 be unbiased state estimates of the n-dimensional vector x under the linear transforma-

tion Gℓ, such that

�̂�𝐱
𝓁𝓁
= 𝐆𝐆

𝓁𝓁
𝐱𝐱 + 𝐞𝐞

𝓁𝓁
, (A1)

where 𝐴𝐴 𝔼𝔼[𝐞𝐞
𝓁𝓁
] = 𝟎𝟎 , 𝐴𝐴 𝔼𝔼

[
𝐞𝐞
𝓁𝓁
𝐞𝐞
𝑇𝑇

𝓁𝓁

]
= 𝐏𝐏

𝓁𝓁
 , and 𝐴𝐴 𝔼𝔼

[
𝐞𝐞
𝓁𝓁
𝐞𝐞
𝑇𝑇

𝓁𝓁
′

]
= 𝟎𝟎 when ℓ ≠ ℓ′.

Then, the minimum variance linear unbiased estimator of x is given by

Figure 10. Forecast root-mean-square error in the large-scale variables {xi} 
by lead time.
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�̂�𝐱 =

𝐿𝐿∑

𝓁𝓁=1

𝐀𝐀
𝓁𝓁
�̂�𝐱
𝓁𝓁
, (A2)

where

𝐀𝐀
𝓁𝓁
=

(
𝐿𝐿∑

𝓁𝓁
′=1

𝐆𝐆
𝑇𝑇

𝓁𝓁
′𝐏𝐏

−1

𝓁𝓁
′ 𝐆𝐆𝓁𝓁

′

)−1

𝐆𝐆
𝑇𝑇

𝓁𝓁

𝐏𝐏
−1

𝓁𝓁

. (A3)

In multi-sensor information fusion, a problem of the same form appears, except that all the Gℓ = I. For that case, 
minimum-variance optimality has been proven in Corollary 1 of Sun (2004). We largely follow the latter proof, 
but allow for general Gℓ.

Proof Begin by defining an estimator 𝐴𝐴 �̂�𝐱 of x as a linear combination of the 𝐴𝐴 �̂�𝐱
𝓁𝓁
 :

�̂�𝐱 =

𝐿𝐿∑

𝓁𝓁=1

𝐀𝐀
𝓁𝓁
�̂�𝐱
𝓁𝓁
. (A4)

Taking the expectation of 𝐴𝐴 �̂�𝐱 and using the linearity of the expectation operator,

𝔼𝔼
[
�̂�𝐱

]
=

𝐿𝐿∑

𝓁𝓁=1

𝐀𝐀
𝓁𝓁
𝔼𝔼
[
�̂�𝐱
𝓁𝓁

]
=

𝐿𝐿∑

𝓁𝓁=1

𝐀𝐀
𝓁𝓁
𝐆𝐆

𝓁𝓁
𝔼𝔼[𝐱𝐱]. (A5)

Then, in order for 𝐴𝐴 �̂�𝐱 to be unbiased—namely 𝐴𝐴 𝔼𝔼
[
�̂�𝐱

]
= 𝔼𝔼[𝐱𝐱] —we must have

𝐿𝐿∑

𝓁𝓁=1

𝐀𝐀
𝓁𝓁
𝐆𝐆

𝓁𝓁
= 𝐈𝐈. (A6)

The error 𝐴𝐴 �̃�𝐱 in 𝐴𝐴 �̂�𝐱 can be expressed as

�̃�𝐱 = 𝐱𝐱 − �̂�𝐱 =

𝐿𝐿∑

𝓁𝓁=1

𝐀𝐀
𝓁𝓁
(𝐆𝐆

𝓁𝓁
𝐱𝐱 − �̂�𝐱

𝓁𝓁
), (A7)

with covariance matrix

𝐏𝐏 = 𝔼𝔼
[
�̃�𝐱�̃�𝐱

𝑇𝑇
]
=

𝐿𝐿∑

𝓁𝓁=1

𝐀𝐀
𝓁𝓁
𝐏𝐏
𝓁𝓁
𝐀𝐀

𝑇𝑇

𝓁𝓁

. (A8)

In order to obtain the minimum variance estimator, we wish to minimize J ≡ tr(P). By linearity of the trace,

𝐽𝐽 =

𝐿𝐿∑

𝓁𝓁=1

tr
(
𝐀𝐀

𝓁𝓁
𝐏𝐏
𝓁𝓁
𝐀𝐀

𝑇𝑇

𝓁𝓁

)
. (A9)

We minimize J using the method of Lagrange multipliers (see, e.g., Boyd & Vandenberghe, 2004). The Lagran-
gian 𝐴𝐴  is defined as follows:

 = 𝐽𝐽 +

𝑛𝑛∑

𝑗𝑗=1

[

𝝀𝝀
𝑇𝑇

𝑗𝑗

(
𝐿𝐿∑

𝓁𝓁=1

𝐀𝐀
𝓁𝓁
𝐆𝐆

𝓁𝓁
− 𝐈𝐈

)

𝐞𝐞𝑗𝑗

]

, (A10)

where 𝐴𝐴 𝝀𝝀𝑗𝑗 =

[
𝜆𝜆1𝑗𝑗 , . . . , 𝜆𝜆𝑛𝑛𝑗𝑗

]𝑇𝑇  is the jth vector of Lagrange multipliers and ej is a vector with a 1 in the jth coordinate 
and zeros elsewhere. A necessary condition for 𝐴𝐴  to have a stationary point is that

𝜕𝜕

𝜕𝜕𝐀𝐀
𝓁𝓁

= 𝐀𝐀
𝓁𝓁
𝐏𝐏
𝓁𝓁
+

1

2

𝚲𝚲𝚲𝚲
𝑇𝑇

𝓁𝓁

= 𝟎𝟎 (A11)
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for all ℓ. We gather Equations A6 and A11 into a block matrix equation:

⎛
⎜
⎜
⎝

𝚺𝚺 𝐆𝐆

𝐆𝐆

𝑇𝑇

𝟎𝟎

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

𝐀𝐀

1

2

𝚲𝚲
𝑇𝑇

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

𝟎𝟎

𝐈𝐈

⎞
⎟
⎟
⎠

, (A12)

in which Σ, 𝐴𝐴 𝐀𝐀 , and 𝐴𝐴 𝐆𝐆 are the block matrices

𝚺𝚺 =

⎛
⎜
⎜
⎜
⎜
⎝

𝐏𝐏1

⋱

𝐏𝐏𝑀𝑀

⎞
⎟
⎟
⎟
⎟
⎠

,𝐀𝐀 =

⎛
⎜
⎜
⎜
⎜
⎝

𝐀𝐀
𝑇𝑇

1

⋮

𝐀𝐀
𝑇𝑇

𝑀𝑀

⎞
⎟
⎟
⎟
⎟
⎠

,𝐆𝐆 =

⎛
⎜
⎜
⎜
⎜
⎝

𝐆𝐆1

⋮

𝐆𝐆𝑀𝑀

⎞
⎟
⎟
⎟
⎟
⎠

. (A13)

Using a block matrix inversion identity on Equation A12, we obtain

𝐀𝐀 = 𝚺𝚺
−1
𝐆𝐆

(

𝐆𝐆

𝑇𝑇

𝚺𝚺
−1
𝐆𝐆

)−1

, (A14)

which implies

𝐀𝐀
𝓁𝓁
=

(
𝐿𝐿∑

𝓁𝓁
′=1

𝐆𝐆
𝑇𝑇

𝓁𝓁
′𝐏𝐏

−1

𝓁𝓁
′ 𝐆𝐆𝓁𝓁

′

)−1

𝐆𝐆
𝑇𝑇

𝓁𝓁

𝐏𝐏
−1

𝓁𝓁

. (A15)

Note that the AℓGℓ are positive semidefinite matrices. Thus, in the scalar case, Equation A6 is a convex linear 
combination, that is, the weights AℓGℓ are nonnegative and sum to 1. The multivariate case generalizes this prop-
erty by having the weights be positive semidefinite matrices that sum to the identity matrix.

To apply this theorem to the assimilation step of the multi-model Kalman filter, take L = M + 1. Then, for m = 1, 
…, M, take 𝐴𝐴 �̂�𝐱𝑚𝑚 = 𝐱𝐱

f
𝑚𝑚 and 𝐴𝐴 𝐏𝐏𝑚𝑚 = 𝐏𝐏

f
𝑚𝑚 . Finally, take 𝐴𝐴 �̂�𝐱𝑀𝑀+1 = 𝐲𝐲 , PM+1 = R, and GM+1 = H. At this point, identifying 𝐴𝐴 �̂�𝐱 

with x a, we recover Equation 3 of Section 1.2.1.

Appendix B: Model Error Estimation Method
Here, we suggest a method for estimating Q that is closely related to the one of Berry and Sauer (2013) and 
Hamilton et al. (2016), but we assume that the observation noise covariance R is known. This assumption allows 
us to derive a simple estimate for Q that does not require either lagged innovations or the gain matrix. Nor is 
model linearization required in the case of an EnKF applied to a nonlinear forward model.

The method for estimating Q relies on the statistics of the innovations d(ti) = y(ti) − Hx f(ti), which equal the 
difference between observations and forecasts. A standard result for the Kalman filter states that

𝔼𝔼
[
𝐝𝐝(𝑡𝑡𝑖𝑖)𝐝𝐝(𝑡𝑡𝑖𝑖)

𝑇𝑇
]
= 𝐇𝐇𝐇𝐇

f (𝑡𝑡𝑖𝑖)𝐇𝐇
𝑇𝑇 + 𝐑𝐑; (B1)

see, for instance, Desroziers et al. (2005) or Section 10.1 of Simon (2006).

If the state is not fully observed, as is usually the case in DA problems, then H is not invertible. However, for 
idealized cases when H is invertible, we can obtain an estimate 𝐴𝐴 �̂�𝐐 of Q by substituting Equation 14 into Equa-
tion B1. and rearranging:

�̂�𝐐(𝑡𝑡𝑖𝑖−1) = 𝐇𝐇
−1
(
𝔼𝔼
[
𝐝𝐝(𝑡𝑡𝑖𝑖)𝐝𝐝(𝑡𝑡𝑖𝑖)

𝑇𝑇
]
− 𝐑𝐑 −𝐇𝐇𝐇𝐇

p
(𝑡𝑡𝑖𝑖)𝐇𝐇

𝑇𝑇
)
𝐇𝐇

−𝑇𝑇
. (B2)

See Section B2 below for the general case in which H is not invertible.

In order to avoid abrupt changes in 𝐴𝐴 �̂�𝐐 over time, and to preserve positive semidefiniteness (see below), a temporal 
smoothing needs to be applied:

�̃�𝐐(𝑡𝑡𝑖𝑖+1) = 𝛿𝛿�̂�𝐐(𝑡𝑡𝑖𝑖) + (1 − 𝛿𝛿)�̃�𝐐(𝑡𝑡𝑖𝑖), (B3)
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where 0 < δ < 1 is a tunable parameter (Berry & Sauer, 2013; Tandeo et al., 2020), and 𝐴𝐴 �̃�𝐐 is the smoothed esti-
mate. Then, P f(ti+1) is estimated by adding 𝐴𝐴 �̃�𝐐(𝑡𝑡𝑖𝑖) to the P p estimated by the filter. In what follows, we drop the 
time indices for simplicity.

Covariance matrices must be positive semidefinite: in other words, their eigenvalues are real and nonnegative, 
that is, λmin ≥ 0. Due to the observation noise entering the 𝐴𝐴 𝔼𝔼

[
𝐝𝐝𝐝𝐝

𝑇𝑇
]
 term in Equation B2, the estimate 𝐴𝐴 �̃�𝐐 can often 

lack this property. To avoid this problem, a small enough δ must be chosen, and the “initial guess” 𝐴𝐴 �̃�𝐐(𝑡𝑡0) should 
be positive semidefinite. When forecasting at multiple lead times, we initialize at lead kτ by 𝐴𝐴 �̃�𝐐(𝑡𝑡0)𝑘𝑘

2 , inspired by 
the quadratic growth of model error described in Carrassi, Vannitsem, and Nicolis (2008).

In general, the larger the observation noise relative to the model error, the smaller δ must be. However, if the 
estimated 𝐴𝐴 �̃�𝐐 does become indefinite at some tj, definiteness can be restored. The matrix satisfying λmin ≥ ϵ that is 
nearest in the Frobenius norm ‖⋅‖F (Horn & Johnson, 2013) to the problematic one at t = tj can be computed by 
using the spectral decomposition and setting all λi < ϵ to ϵ (Cheng & Higham, 1998).

B1. Ensemble Filters

In the case of an ensemble Kalman filter, we estimate 𝐴𝐴 𝔼𝔼
[
𝐝𝐝𝐝𝐝

𝑇𝑇
]
≃
(
𝐲𝐲 −𝐇𝐇�̄�𝐱

f
)(
𝐲𝐲 −𝐇𝐇�̄�𝐱

f
)𝑇𝑇  , where 𝐴𝐴 �̄�𝐱

f is the mean of 
the forecast ensemble.

In ensemble filters, P p is estimated as

𝐏𝐏
p
=

1

𝑚𝑚 − 1

𝑚𝑚∑

𝑖𝑖=1

(
𝐱𝐱
f

𝑖𝑖
− �̄�𝐱

f
)(
𝐱𝐱
f

𝑖𝑖
− �̄�𝐱

f
)𝑇𝑇
, (B4)

where 𝐴𝐴 𝐱𝐱
f

𝑖𝑖
 is the ith ensemble member and m is the ensemble size. We use this P p directly in Equation B2, thus 

avoiding the need for a tangent linear model, as in Equation 8, when 𝐴𝐴  is nonlinear.

B2. Rank-Deficient Observations

When H is not invertible, we can find a solution that minimizes the Frobenius norm, as in Berry and Sauer (2013). 
We let 𝐴𝐴 �̂�𝐐 in Equation B3. be a linear combination of fixed matrices, 𝐴𝐴 �̂�𝐐 =

∑
𝑝𝑝
𝑞𝑞𝑝𝑝𝐐𝐐𝑝𝑝 . This formulation can be used 

to specify a simplified structure, such as a diagonal matrix or a block-constant one.

Let q be the vector of coefficients {qp}. Then,

� = arg min
{��}

‖

‖

‖

‖

� −
∑

�

������� ‖
‖

‖

‖�
, (B5)

where

𝐂𝐂 = 𝔼𝔼
[
𝐝𝐝𝐝𝐝

𝑇𝑇
]
− 𝐑𝐑 −𝐇𝐇𝐇𝐇

p
𝐇𝐇

𝑇𝑇
. (B6)

The minimization in Equation B5. is carried out by finding the least-squares solution of

𝐀𝐀𝐀𝐀 ≃ vec(𝐂𝐂), (B7)

where the pth column of A is vec(HQpH T).

Data Availability Statement
Version 2022-12 of the Julia code implementing the MM-EnKF used in this manuscript is preserved at 
Bach (2022), available via the MIT License and developed openly at https://github.com/eviatarbach/mmda. No 
data was used in this study. Scripts for numerical experiments are available in the MM-EnKF repository.
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Erratum
In the originally published version of this article, a few symbols in the first column of Table 1 were not boldfaced 
as intended. The boldface has been added to bm, B, E{f,a} , K, ρ, P{f,a} , Q, R, x{t,f,a}  and X{f,a}            , and this may 
be considered the authoritative version of record.
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