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Abstract. A fundamental hypothesis for the interpretation aofritical density£2, and the linear bia$, associated to the mass
the measured large-scale line-of-sight peculiar velocities wécers adopted to estimate the density fluctuations. The esti-
galaxies is that the large-scale cosmic flows are irrotationalated values off = Q°-¢/b are about.3 to 1 depending on
In order to assess the validity of this assumption, we estimatiee method or on the tracers that are used. There are other lines
within the frame of the gravitational instability scenario, thef activities that aim to estimate from only theintrinsic prop-
amount of vorticity generated after the first shell crossings @rties of the velocity field, (i.e., without comparison with the
large-scale caustics. In the Zel'dovich approximation the firsbserved galaxy density fluctuations). All these methods ex-
emerging singularities form sheet like structures. Here we copileit non-Gaussian features expected to appear in the velocity
pute the expectation profile of an initial overdensity under tHield, either the maximum expansion rate of the voids (Dekel
constraintthatitgoesthroughitsfirst shell crossing atthe pres&miRees 1994), non-Gaussian general features as expected from
time. We find that this profile corresponds to rather oblate stribe Zel'dovich approximation (Nusser & Dekel 1993), or the
turesin Lagrangian space. Assuming the Zel'dovich approximskewness of the velocity divergence distribution (Bernardeau
tion is still adequate not only at the first stages of the evoluti@t al. 1995). Yet they all also assume that the velocity field is
but also slightly after the first shell crossing, we calculate thpotential This is indeed a necessary requirement for building
size and shape of those caustics and their vorticity content ab@ whole 3D velocity out of the line-of-sight informations in
function of time and for different cosmologies. reconstruction schemes such as Potent (Bertschinger etal. 1990,

The average vorticity created in these caustics is small: D&kel et al. 1994). This is also a required assumption for car-
the order of one (in units of the Hubble constant). To illustratging calculations in the framework of perturbation theory. It
this point we compute the contribution of such caustics to tle therefore interesting to check the rotational content of the
probability distribution function of the filtered vorticity at largecosmic flows at scales at which they are considered in galaxy
scales. We find that this contribution that this yields a negligibtatalogues, that is at about 10 tohI8Mpc. This investigation
contribution at the 10 to 16~ 'Mpc scales. It becomes signifi-ought to be carried in the frame of the gravitational instabil-
cant only at the scales of 3 to4 !Mpc, that is, slightly above ity scenario with Gaussian initial conditions. It is known that
the galaxy cluster scales. in the single streamégime, primordial vorticity is diluted by

the expansion and that the higher order terms in a perturba-

Key words: galaxies: formation — cosmology: theory — cosmolion expansion cannot create “new” vorticity. Hence it is natural
ogy: dark matter —cosmology: large-scale structure of Universeassume that the vorticity on larger scales originate from the
(rare) regions where multi-streaming occurs. During the forma-
tion of large scale structures this happens first when the largest
caustics cross the first singularity, creating a three-flow region
where vorticity can be generated. As we argue in Sect. 2, analyt-
The analysis of large-scale cosmic flows has become a viggl calculations of constrained random Gaussian fields suggest
active field in cosmology (see Dekel 1994 for a recent revieifat the largest caustics that are created are sheet-like structures,
on the subject). The main reason is that it can in principle giv@ rough agreement with what is found in numerical simula-
access to direct dynamical measurements of various quantitiess or in galaxy catalogues. It is therefore reasonable to use
of cosmological interest. There are now a very large number&gl'dovich’s approximation to describe the subsequent evolu-
methods and results for the comparison of the measured largen of those objects.
scale flows with the measured density fluctuations as observedIn order to estimate the large scales vorticity distribution
in the galaxy catalogues. Most of these methods are sensit@ therefore proceed in five steps: first we evaluate the mean
to a combination of the density of the universe in units of tHgnstrained random field corresponding to a local asymmetry
of the deformation tensor on a given scalg,; secondly we

1. Introduction
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solve for the multi-flow egime within the generated causticwhereJ, is the Bessel function of index The scale®; is the
using Zel'dovich’s approximation throughout, even slightly bescale of the caustic in Lagrangian space. Hgystands for the
yond this first singularity. We then evaluate the vorticity fieldmsdensity fluctuation at this scale:

in that caustic. The next step involves modelling the variation

of the characteristics of typical caustics as a function of tim = [ d°k P(k) W3 (k Ry). (4)

for different power spectra. Finally, we estimate the amount of

vorticity expected at large scales arising from large scale fIg#@" the sake of simplicity a typical caustic is chosen to be char-
caustics. acterized by the average local perturbation over a sphere of
For the sake of simplicity and because is pedagologicaﬂ?quS_RL_ for which the deformatior_1 tensor at its centre gi_ven
more appealing, we present calculations carried out in two 8Rintis fixed. We are aware that this is a somewhat drastic ap-
mensions as well as in three dimensions. The former case i®fgXimation but consider that, at large scales, the behaviour of
particular easier to handle numerically. caustics having the mean initial profile will be representative of
The second section of this paper evaluates the charactdii§.average behaviqur. Thig is certainly not true a}t small scales
tics of the typical caustics expected at large—scale in a 2D or where thg complex interactions of structures at dlffer_ent scales
density field. The third section is devoted to the explicit calc@d Positions are expected to affect the global behaviour of any
lation of the vorticity for the most typical caustics. The fourtlgiven caustic. For some rare enough objects however we expect
section provides an estimate for the shape of the tail of the prdia¢ fluctuations around the mean profile to be small enough to
ability distribution function of the modulus of the vorticity in adfféct only weakly the global properties of the caustics. This has

sphere of a given radius. It is followed by a discussion on th&€n shown to be true in the early stages of the dynamics for
validity and implications of these results. spherically symmetric perturbations (Bernardeau 1994a). In the

following we will, however, encounter properties (see Sect. 3.3)
thatwe think are notrobust against small scale fluctuations. Such
2. Asymmetric constrained random fields properties will be ignored in the subsequent applications of our
results.
Since it is not our ambition to solve the problem of deriving the - \within the frame of this calculation the valuesisk) hence
vorticity statistics in its whole generality the vorticity will becorrespond to the expectation values (i) for the power spec-

estimated only within specific but typical caustics in the framey P(k) when the constraints on the deformation tensor are

work of the Zel'dovich approximation. _ satisfied. These solutions can be written as a linear combination
The first step involves building an initial density field iny the values of the deformation tensor:

which a caustic will eventually appear. The initial fluctuations b o- D

are assumed to be Gaussian with a given power sped®(h 5(k) = Z B ( )O,i A = Z o s 5)

characterizing the amplitude and shape of the initial fluctuationé. (O, W =Y

No a priori assumptions about the valuesd&ndA are made. - . . .
gWhere the coefficient§’ is the matrix of the cross-correlations

It will be shown that the statistics has very straightforward th dom G X : d5(k h
pendences upon these parameters. The expectation values \een the rahdom taussian varialiigsanda(k) as shown

random variable$,k), corresponding to the Fourier transformd! ppendix A. In Eq.[(b) the summanon IS ma_de OU'Y on the
of the local density field diagonal elements of the deformation tensor since it is always

possible to choose the axis in such a way that the other elements
3 ) are zero. In this instance, the diagonal elements are identified
6(x) = /d k (k) explik - x], (1) with the eigenvalue;, of the matrix.

are calculated once a local constraint has been imposed. Ti@ The 2D field

constraint will be chosen so that the caustic-to-be will have™

just gone through first shell crossing at the present time. Itis dr-2D geometry, the two coefficients; and «, defined by
pressed in terms of thecal deformation matrix of themoothed Eq. [B) are given by

density field. The components of the local deformation tensor _ 2 . B 2

at the positionx, are given by a1 = (3L = D)/oy, a2 =@l k211)/00 , where

I = (6, ®i;) = P(k) Wa(kRyp) k—; (6)

The brackets{.), denote ensemble averages over the initial
unconstrained) random density field. As a result, Elg. (5) reads

@i,j(xo):/cﬁké(k) WD(kRL)exp[ik-xo]ki—l;j, )

wherelWp, is the adopted window function. In what follows, we(

will use the top-hat window function for which 5(k) — P(k)Ws(kRyz)
- 2
ag
Ji(k) . ’ . :
WQ(k) =2 W m 2D, X [2 ()\1 + AQ) + 4 ()\1 - A2) COb(ze)] ’ (7)
T3 /2 (k) A1 and A\, are the eigenvalues of the deformation tensor and

Ws(k) = 3y/m/2 —az n 3D, (3) whered is the angle betweek and the eigenvector associated
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0 T T

T

with the first eigenvalue (see Appendix A for details). Consider 10

the parametes defined by b
-2

10 .
_ 2()\1 - )‘2) (8) s |
)\1 + AQ { —4
£ 10 T .
The coefficienta represents the amount of asymmetry in the
fluctuation (thus: = 0 corresponds to a spherically symmetri¢- -6

perturbation). This parameter is similar to the eccentrieity,

that was used by Bardeen et al. (1986) and more specificallyby = _g|

Bond & Efstathiou (1987) for 2D fields. In these studies however ‘ ‘ ‘

; o 1 2 3 4

investigations were made for the shape of the peaks around the —

maximum (i.e. eigenvalues of the second order derivatives of the maxs 7o

local density), sa ande cannot be straightforwardly identified.Fig. 1. The distribution function of\max /oo (solid line) in 2D dynam-
The formation time of the first singularity is determined byes. The dashed line is given by (Eg.{11)):

the maximum value of the eigenvalugs,... It is therefore rel-

R , . 1.5 T T T
evant to calculate the distribution function)f,....., and the dis- I
tribution function ofa oncel, .« IS known. From the statistical L ~
properties of the matrix elemends; we derive the distribution Lok FAY 1
function of the eigenvalues,,;,, and \,,.« (see Appendix B), T _:’,w.\‘v.,
which reads © i AN
o P “-\
23/2 0 5; ,j,/ BRRY i
P()\min7 >\max) = 771/720’8 ()\max - )\min) L ,//;:f \\\\?\
7)) ARES
1 /3 i NI ]
X exp |:—2 <2J12 —4 JQ):| s (9) 0.0 r ,//(’/ 1 \1:~_\_‘ T J
o . TS
0 0 1 2 3 4
with a

(10) Fig. 2. The distribution functions of for fixed values 0P\ max /00 =
1, 2, 3, 4 (respectively the solid, long dashed, short dashed and long
dotted dashed lines).

Jl = Amin + )\max ) J2 = )\min )\max~

The distribution function of\,,. follows by numerical inte-
gration over\,,i,. Fig. @) shows the distribution function of

Amax iN UNits of the variance. The dashed line corresponds\Whered,, and¢,, are polar angles of the vectrwith respect
the approximation, valid at,,a, /oo > 1: to the basis of the eigenvectors associated to the three eigen-

values,\1, A2, A3. The asymmetry of the distribution is again

Pmax(Amax) dAmax characterized by the values of
A 4 (Amax )| dA 223 — A1 — A AL — Ao
~ . max _ = max max . — 5 , a d b — 5 . 13
L5 o) P [ 3 < o) > ‘| o) (11 A1+ Ao 4+ 6A3 . A1+ Ao + 63 (13)

o . . ~ Whenbonly is zero Eq.[(IB) corresponds to a perturbation with
The distribution function of; for different values of,.x /00 1S axial symmetry, and when bothandb are zero it is a spheri-

presented in Figl{2). It turns out that the most significant valgglly symmetric perturbation. In terms efandb Eq. [12) then
corresponds ta ~ 1. In the following this value is chosen asyecomes

the typical value for the asymmetry in two dimensions. 3P(k) Walk R
5(k) = % (A1 + Ag + 6X3) (14)
0
x (1 + a cos(26;) + b cos(2¢y) [1 + cos(26;)]) -

In three dimensions the geometry is slightly more complicatgd; s now evaluate the distribution efandb from the distri-
and yields for the constrained density field (see Appendix B fg[,:ion function of the eigenvaluéa,, \s, \3) in 3D (assuming

2.2. The 3D field

details)

(k) =

3 P(k)Ws(kRyr)
808

—5cos(26;) — 5 cos(2¢y,) cos(26;)]

()\1 [1+5 cos(2¢%)

+A2 [1 45 cos(2¢y) — 5cos(20x) — 5 cos(2¢y,)

x cos(20k)] + 2X3 [3+ 5 cos(2 ‘gk)])’

A1 > A2 > )3) in order to identify the shape of the most sig-
nificant caustics. This distribution is given by (Doroshkevich
1970)

5°/2 27

S50 (A1 A2) (A= A3) (A2 — Ag)
To§

1 1
X exXp {—02 <3J12 — ?5 Jgﬂ , (15)

0

P()\la )\23 )\3) =
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10° * 3 typical caustic will be given by ~ 1 with a smallb. For further
-1 i simplifications we will assume that= 0. Such a caustic then
10 3 3 corresponds to a pancake-like structure with axial symmetry.
= L0-2 i ] Note that this result seems to differ from the results of Bardeen
~ et al. (1986) who found that the shape of the rare peaks should
KE —3f be somewhat spherically symmetric or filamentary (this picture
= 10 “f E .
=y : 3 was recently sustained by Pogosyan et al. 1996, from the result
104 ] of N-body simulations). This apparent discrepancy is due to
: ] the constraint under which the expectation valuesarfidb are
107°L ‘ ‘ ‘ s s ] calculated. In Bardeen et al.'s work the constraint is given by
0.0 05 1.0 1.5 20 25 3.0 the value of the local density, i.e. the sum of the three eigen-
Amax/ T0 values, whereas in this paper we put a constraint on the largest
Fig. 3. The distribution function of\max /oo (solid line) in 3D dynam- ejgenvalue. Th_is is a n_atural assumption for this _investigation
ics. The dashed line is the analytical FE{17). since the multi-streaming occurs as soon as a singularity has

been reached in one direction. Of course, this analysis assumes
that the Zel'dovich approximation holds in order to predict the
time at which this first singularity is reached. For oblate initial
structures such as the ones obtained for the most likely values
] of a (see Figs.5 and 6), we expect that this approximation is

E sufficiently accurate.

0.00F
~0.10f

-0.20F

b value

~0.30F
: 3. The geometry and vorticity of large-scale caustics

—0.40¢ In this section we investigate the properties of the caustics that
: are induced by the initial density fluctuation profiles we found in
the previous section. All the calculations are performed within
the framework of the Zel'dovich approximation, even sightly

after the first shell crossing.

~0.50F
0.5 1.0 1.5 2.0
a value

Fig. 4. The contour plot for the distribution afandb for a fixed value
of Amax/00 = 2 (dashed lines) andmax/o0 = 3 (solid lines). The

lines are evenly distributed in a logarithmic scale. 3.1. The linear displacement field

In the framework of the Zel'dovich approximation the displace-
with ment field can be written
Ji=A+Ae+ Ay, and Jo = Ao+ dAods + Ashp. (16) X =4a+ D(1)/D(to) ¥(a); (18)

From this expression we compute numerically the distribiihereD (¢) accounts for the time dependency of the linear grow-
tion function of the maximum eigenvalue (Figl (3)). An analyt"d mode (it is proportional to the expansion factor in case of

ical fit of this distribution function is provided by its behavioun Einstein-de Sitter geometry only). An important simplifica-
at largeX nax tion is that, at the order of the Zel'dovich approximation, this

displacement field is separable in time and space, and its space

A\ a\ ~ 6 Amax \ > dependencel(q), is potential, i.e., there is a velocity potential
pmax( rnax) max T[) U(q) e} that
2
X exp [5 <)\max) ‘| d>\max ' (17) \I/(q) - Vq . U(q) . (19)
2 g0 o) ) . . . .
This velocity potential is given by

This fit is accurate for the rare event tail (as shown in Fig. (3)), 1
which will be relevant for the derivation of Selct. 4.4. For a given'(q) = /dSq 5(k) — explik - (q — qo)] . (20)
value of \,.x we compute the distribution of the other eigen- k

The resulting contour plot correspondingX@.x/o0 = 2 to the pointx in real space (central position of the caustic).
and Aax /o9 = 3 is illustrated on Fig[{4). As for the distri- Both of them will be taken to be zero. For the calculation of the
bution of a in the previous subsection in 2D it depends onlyyp|icit expressions of(k) andU(q) we will assume that the

weakly upon the adopted value &f,.., (although the position power spectrum follows a power law behaviour,
of the maximum varies a little), and it tends to be all the more

peaked on its maximum as,,. is large. This implies that a P(k) o k", (21)
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characterized by the power index From Eq.[(Z2]l) the expres-
sion of the linear variance as a function of scale follows

N

y position
o(Ry,) o« R, " TP)/2, (22)
This approximation is valid within a limited scale range as will 1 \\Lag;ir;%lcan
be discussed in Sect. 5. At the scales of interest the index J . |\“
expected to be the range of~ —1, —2 from the constraints ! g;‘,‘;ﬂ:
obtained with the large-scale galaxy catalogues, like the APM— o F— 5
survey (Peacock 1991) the IRAS galaxy survey (Fisher et al. \ | xposition
1993) or from X-ray cluster number counts (Henry & Arnaud \ !
1991, Eke et al. 1996, Oukbir & Blanchard 1997). In two di- vl
mensions there are of course no such observationally motivated NI i
values, butwe will consider of the order of-1 as anillustrative
case. -2

3.1.1. The 2D potential Fig.5. The shape of the caustic for the 2D dynamies= —1, and

From the Eqs[{7){20) it is possible to calculate the expressibln_ax R 1.3.The das_hed line is the shape in Lagrangian space and the
of the potential solid line the shape in real space.

U(q) = G(0,n—2,q) + a cos(26,) L
x [G(0,n —2,q) —2G(1,n—2,q)] , with -
Ju(kq)
= [ &®kk" k). 23
Glma) = [ e L Wan(h @3 |
The latter expression is given by
Gv,n,q) = oF1(1+n/2,n/2,1+v,q¢?), o} Eulerian
for g<1, and (24) Caustic
_ I'(I+v)I(1—n/2)
G(V7 n, q) - q”+2 F(V — ?’l/2) 2F1(1 + TL/2, 1
—v+n/2,2,¢7%), for ¢>1. (25)

The expressions for the gradients of the potential involve similar

hyper-geometric functions. ) _ _
Fig. 6. The shape of the caustic for the 3D dynamies= —1.5 and

Amax = 1.5. The external shell is the Lagrangian position of the caus-
3.1.2. The 3D potential tic, the internal one its position in real space.

The expression of the potential following from E@sl(12)],(20)

becomes quite complicated, but involves here only “simple” . . )
functions. It reads window function. Note also that the potentials given here have

arbitrary normalizations. This is of no consequence for the de-

Ula) = [V(9) = V(=9)l/q*, (26) rived results since the global normalization of the initial den-
with sity profile is absorbed in the discussion for the value gf,
(Sect[4.h).
V() = |1+ 4> " sign(1 +q) (4(a) - B(g) [b cos(20)
% [1— cos(20)] + a cos(2 9)]) ’ @7) 3.2. The shape of the caustics
A multi-flow region forms as soon as EQ-{18) has more than one
_ 2 2 2 2 3 3
Alg) = —10¢"+Tng" —n7g +25 q an , solution. The corresponding region forms the so-called caustic.
+a (-1+2¢-nqg+2¢* —ng¢*-¢°), (28) These regions are illustrated in Fids. (5) aod (6) in respectively
B(q) = 3—-6q+3nq+4q¢* —4ng? 2 and 3 dimensions for typical values of the parameters. The

(29) solid lines show in 2D the shape of the caustic in real space, and
the dashed lines their shape in the original Lagrangian space.

Note that the potentials in EqE._{23) ahdl(26) have discontinu- For the chosen values afandb and for the relevank , ..

ous derivative afy = 1, which is an artifact of using a top-hatthe caustics form elongated structures. These figures are plotted

2@ -2 +ng
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in units of the smoothing scal;, . They suggest that the largest
dimension of the caustics are roughly of the order of magnitude X [ Z p(qs)] - [ Z p(qS)ui(qé‘)]
of the initial Lagrangian scale. Note that the boundaries of the flow s
caustics correspond to surfaces (or lines in 2D) where the Jaco- " [ Z dp(qs) (D), ] >
bian of the transformation between Lagrangian space and real 0qg gl

space vanishes, i.e.

J(q) — ‘%Z} =0. (30) /|ﬁ§s p(Qs)ui(qs)‘| ’ (36)

The size and shape of these caustics are characterized, in reD; ; is the matrix of the Fransformaﬂon between the La-
rangian space and the Eulerian space,

and 3D (although only approximately), by two lengths, the half"
depth of the caustia/, (that is the distance that has been covs (233
ered by the shock front after the first singularity) and its hal%-)” oq;

extensiore. For instance in Fig[{5) the value dfis about.1 ande® 7+ the totally antisymmetric tensor. The numerical ex-

2??hteh§u\i:?ijuaetigﬁll%s alt;] O?;g'g;geugrtshzf;ge dLi%rri?eg;aonrrsel_Ze pression of the local vorticity follows from the roots of Hg.j(18)
L y and the potentials Eq§._(28).(26).

sponds to the radius of the caustic since we restrict ourselves to
cylindrical symmetry.
The density in each flows” is given by the inverse of the 3.3.1. The local vorticity

Jacobian of the transformation so that As illustrated in Fig.[(¥) (the 2D case) amnd (8) (the 3D case), the

plas) = 1/J(qs). (31) Vorticity is null outside the caustic. First note that the vorticity
sign changes from one quadrant to another, so that the global

The total density within the caustic is then given by the summeerticity is zero (as it should be), and note that within each quad-

flow s

flow s

37)

tion over each flow of each of their densities, rant the vorticity is rather smooth. Note also that the vorticity is
mainly located near the edges of the caustic. In fact the vorticity
p(x) = Z P(ds)- (32) atthe edge is unbounded and the behaviour of the vorticity close
flow s to the edges is easily estimated. Callifjgandx, the position
of a point on the edge in respectively the Lagrangian space and
3.3. The velocity field, and the generated vorticity the Eulerian space, we can expandndq close tox, andqg.

Since the linear term in the expansion is singulag i q (by
definition of the caustic), there is one direction, orthogonal to
u(q) = D(t)/D(tO) U(q). (33) the edge and typeset with the subscripfor which

The velocity in each flow is given by

. . ] 2
For a given Robertson Walker cosmologdyt) obeys (x =o)L~ —n(di — )i, (38)
wheren is given by the second order expansion of the displace-
ment field along this direction. The minus sign accounts here

whereH, is the Hubble constant at the present time #(d) for the fact thatxy | has been assumed to be larger tikan

is the logarithmic derivative of the growing factor with respecthis equation is valid for two different flows (say 1 and 2) cor-
to the expansion factor. EG{34) is the only place where tf@SPonding to the two roots «f; in Eq. (38). The Jacobian for
Q dependence (andl dependence though it is negligible) willthe first two flows is then

come into play. J(x) ~ =20 (q; — qo)L ~ 21 (x0 — X) 1. (39)
In general the velocity fielda(x), is defined as the density _
averaged velocities of each flow. Thus we have Note that on the edge of the caustitix)|0 J(x)/9x| has a
finite value,n. There is also a third flow in the vicinity of,

_ 2tlow s Plas) u(gs) (35) which is regular; let us cali; the Lagrangian position of; in
 YhowsPas) this flow. The velocity is then given by

where the summation is carried on all the flows that have entengck) ~ ((xo - x)f/Q/\/ﬁ u(qop) + p(as) u(q3)>
the neighborhood af. The vorticity is then given by the anti- 1y
symmetric derivatives of the total velocity with respeckto / ((Xo -x), "T/Vn+ P(OB)) : (40)

O,
alx) = 3 chos 20
i,j J

= Z ekyj,i <[Z %(?(Dl)j,l ui(qs)]

flow s

D(t) = f(Q) Ho D(t) ~ Q%5 Hy D(t). (34)

u(x)

As a result we have

u(x) ~ u(ap) + plas) v/ (xo — x)1* (u(az) — u(ao)), (41)
whenx is within the caustic and

u(x) = u(qs), (42)
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1+ E Z oR------° : 7
O
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- 1
:g b I ] Fig. 7. The map of the vorticity in a typical 2D caus-
E 00 02 o4 o6 o= tic (n = _—1)._ Left panel:the local vorticity is antl_-
% ol ] radius symmetric with respect to the centre of the caustic. It
3 points along the Z-axis, and is positive in the second
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vorticity goes continuously to zero towards the axes.

whenx has crossed the caustic boundary. The local velocisheredl describes the edge of the quadrant. One should bear
is thus discontinuous at the caustic boundary and the indudedhind that, in Eq[(45) the velocities on the edge of the caustic

vorticity is consequently singular at, with are taken as the velocities of the third flow(gs), so that the
- \-1/2 _ singular part of the vorticity is taken into account.
w(x) & —plas) iy (xo —x) " (u(ds) — ulqo)) /2. (43) In three dimensions and for (almost) spherically symmetric

The direction|| is a direction parallel to the caustic. There igaustics the local vorticity is independent of the azimuthal angle,
only one such direction in 2D, two in 3D. There is howevey. It is then convenient to calculate the integrated vorticity per
not only a surface (or volume) contribution within the caustiaézimuthal angle in each quadrant,

Because of the discontinuity of the velocity field at the edges

_of the caustic, a yorticity field on the boundary_of the caustquuad' do = (/ dzrdrw(x)) a0
is created (see Figl 7 for the 2D case), whose linear or surface quadran

density for respectively the 2D and 3D cases are given by
_ (/ 'ru.d1+/ d2xuz> 0, (46)
Wlin., surf = (U(QS) - u(qO))H . (44) edges quadran

It turns out that the two contributions tend to cancel each oth@herer is the distance of the running point to the symmetry axis,
Indeed, as we have noticed previously, the velocity increasggy.,, is the velocity component along this axis. Compared to
close to the edge of the caustic, and then has a discontinuity@ 2D case there is a further difficulty due to the surface integral
the edge. This creates a sharp peak in the vicinity of the edggpfone component of the velocity. Note nonetheless that this
the vorticity. The vorticity, which is obtained by differentiationcontribution is not singular at the edge of the caustic as shown
of the local velocity is then expected to be opposite on boffy Eq. [21), and can thus be safely computed numerically. We

side of this peak. Realistically, the small scale perturbations g&@ind that this second integral contributes typically to about
going to wash out these features, and to smooth the velocityy; of the total for the relevant caustics.

peaks. As a result the quantities describing the behaviour of
the vorticity near the edge of the caustic are not robust and )
should not be taken at face value. On the other hand, we expedtS: Scaling laws

the integrated vorticity to be a more robust quantity, since it\§e now bring forward fits to describe the dependence of the

roughly independent of small scale fluctuations. integrated vorticity with the spectral indexand Apyax. Which
will allow us to characterize the most significant caustics that
3.3.2. The integrated vorticity contribute to the large—scales vorticity. We make explicit the de-

. ] ) o pendence of those quantities with respect to the size of the per-
In two dimensions, the integrated vorticity in each quadrafifrbationR;, and the cosmological parameter Expressed in
can be easily obtained numerically by simple one dimensionglits of the expansion factor, the displacement, in the Zel'dovich
integrals which, from Stoke’s theorem, can be expressed asgpproximation, is independent 6 Thereforen andb are in-
dependent of2, and are simply proportional t&;,. The total
p— 2 P . 1
“auad. = /quadran Pxw(x) = /edges u-di, (45) vorticity in each quadrant is on the other hand proportional to
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line), andn = —0.5 (triangles, short dashed line) power spectrum. line), andn = —1 (triangles, short dashed line) power spectrum.

Hy and £(9) (defined in Eq.(3K)), given that it is proportionafrable 1. F_itting parameters i_n Eq_(#7) f_or the 2D caustics. The quality
to the local velocity, and is clearly proportional to the volum@f those fits foro anda are illustrated in FigL{9).
of the perturbation. We thus have the following scalings,

n wo « do Qg €o Qe
d = do (Amax — 1),
(Br) = Rpdo( )a ~15 394 195 08 13 27 06
e(Rr) = Rp e (Amax — 1)7, -1 180 159 067 13 16 045
Wquad (R, Q) = f(Q) RP wo (Amax — 1)® Ho, (47) -05 163 143 075 13 13 032

where the parameters «q, a., wg, dg andeg are given in Ta-

ble () and[(R) for respectively the 2D and the 3D geometriable 2.Fitting parameters in EQ.{#7) for the 3D caustics. The quality
The accuracy of these fits is illustrated on Fifls. (@3-(10). Thedfeghose fits are illustrated in Fig.{10).

functions yield estimates of the geometry and vorticity gener-
ated by these large-scale caustics. From these tables one cafisee wo a do Qd €0 Qe
that the average vorticity (in units ¢f,) is roughly one within _, 067 176 057 1.31 161 049
the caustic. The amount of vorticity which is generated inthe; 5 046 155 052 1.30 1.25 0.37
caustics is thus found to be somewhat limited. It is also inter4 049 137 053 130 1.13 0.30
esting to note thab,,.q. Presents no singular behaviour when
the caustic appears at,.x ~ 1 (i.e.a > 1).

by the small caustics that are not rare, and therefore not well
described by the dynamical evolution of an isolated object. The
As argued previously, the calculation of the global shape of thén of this section is to estimatiee shape and position of the cut-
vorticity distribution is beyond the scope of this paper. Indeaff in the probability distribution function of the local smoothed
the loww behaviour of the vorticity distribution is dominatedvorticity. We will therefore estimat®r_(> w;), the probability

4. The vorticity distribution at large scales
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thatin a circular or spherical cell of radil the mean vorticity 4.2. Estimation of the caustic contribution to the vorticity PDF

exceeds.;. This estimation requires In order to estimate the contribution of those causticBo(>

(i) identifying the caustics that contribute mostly for each case;) two other fundamental quantities have to be estimated:
(i) estimating the contribution of each of those caustics. (i) the number density of caustics;

In each case various approximations are used. In the main t@(tthe volume for which each of them contributes ., (>

we simply spell the major highlights of the derivation. A more Ws)-
detailed and explicit calculation of the vorticity distribution iSThese quantities have been estimated for the specific caustics
presented in Appendix C. we have previously identified in Sect. 4.1.

4.1. Identification of the caustics 4.2.1. The number density of caustics

We assume in what follows that, is large enough for the con- Estimating the number density of caustics is, in general, a com-
tribution to Pr_ (> ws) to be dominated by large and rare caugplicated problem. In the case of Gaussian fields the correspond-
tics. This assumption is the corner stone of the calculation: orifyy investigation was carried by Bardeen et al. (1986) for 3D
a small fraction of the caustics with specific characteristics fé¢lds, and by Bond & Efstathiou (1987) for 2D fields. The num-
some critical time will contribute. ber of caustics is simply determined by the number of points at
The identification of the caustics contributing most resultghich the first derivatives of the local density vanishes. This
of a trade off between the amount of vorticity a given caustifefines accordingly the extrema of the local density field. The
can generate and its relative rarity: the highgk, the greater further requirements we have here on the second order deriva-
the internal vorticity is, according to E._{47) and given that tives of the potential ensures that such points are in fact maxima
is positive, but the rarer those caustics are (Eg$. (11)amnd (16f)density field. We refer here to Bardeen et al. (1986) for more
Obviously\.,,.x should be larger than unity for any vorticity atdetails on how to carry the investigation. A critical step involves
all to be generated. The calculation is slightly complicated sansforming théip;.... function in the value of the first deriva-
the fact that the Eulerian size of the caustics also depends oftiies into adp;... function in the position, thus introducing the
value of \,,.x. Let us assume here that the Eulerian size of tlJacobian of the second order derivatives of the density field.
caustics is substantially smaller than the smoothing length, After some algebra we find:
that the entire integrated vorticity in a quadrant can contribute

(in Appendix C, this assumption is shown to be self- con5|sten,t1)R D dPN = p ({ Ai })
This implies a scaling relation between the smoothing cell, o(Rr)
Dy, ,
and)\maxa % d7\; |Jac2({>‘l})| ’ (50)
oP(RL) (2mo?)P/2
ws RP oc RP (Apax — 1)°. (48)

where the probability is given either by EqL{9) of (15) in re-
For a given smoothing length and a given Eq. [48) yields a spectively 2D and 3DJac; ({A;}) is the Jacobian of the second
relation between the value of,,.. and the size of the caustic.order derivatives of the density field for given eigenvalues of
The caustics which contribute most to the vorticity are théhe deformation matrix ang is the variance of the derivatives
obtained by minimizing the ratia? , _/o2(Ry) which appears of the local density field,
in the exponential cutoff of the distribution function &f,.. K2
(Egs.[T1) andT17)). Given that (R ) behaves likek, "™ o3(R.) = / dPk P(k) 5 W2(RL). (51)
this minimization yields for the extremum value &f, .,

For a given geometnyi.€. given values ofi andb) Jac, is pro-
o= 2D . (49) Portional toA?,,., and it scales ak; > due to the derivatives

max 2D —a(n+ D) involved in the expression of the matrix elements. Itis therefore

appropriate to re-express EQ.[50) as

Note that for the values af we have found)\n?m is always

finite and positive. This means that the filtered vorticity is mdee;gR ) dPN = ({ }) dPAi no({Ai})
expected to be dominated by caustics which have evolved for” (RL) oP(Ry) RP

a finite time. This provides an a posteriori justification of the .

assumptions leading to this calculation. ( (R > where

The value of)\,.x found in Eq.[([49) is a robust result of b
our calculations, although it cannot be excluded that this value 3 1y — |JaCz({ i})| {U] RD. (52)
could be affected by the failure of the Zel'dovich approximation AD (27 )D

after the first shell crossing. . . .
9 Note thatng, thanks to the prefactaR?, is a dimensionless

quantity in Eq.[(BPR). A further simplification is provided by the
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fact that for large enough values ®f,.., the distribution func-
tionp({\;}), atfixed,.x, allows only a small range of possible
values for the smaller eigenvalues. We therefore neglect the vari-
ations ofJacy({\; }) with respect to those variables: itis viewed
here as a function of ., only and calculated for fixed values

of the a-symmetry parameterandb. The ratioo /oy depends
only on the value of the power law index. Recall however (see
Bardeen et al. 1986) that this ratio is not well-defined for top-
hat window functions because of spurious divergences for some
values ofn. To avoid this problem, we used the Gaussian win-
dow function to compute this ratio. As a result, for fixed values
of a andb, ng is a dimensionless quantity that can be explicitly
calculated in a straightforward manner. Relevant values,of
are given in tables in the Appendix C.

4.3. The contributing region

The region over which each caustic contributes is the surface i 11.Sketch showing the adopted simplification for describing a 2D
volume in 3D) of space in the vicinity of a given caustic Wherégustic. Vorticity is assumed to be localized on the black dots having
if one centers a cell in that location, the total vorticity inducef{te"+@auad. Of —waquad.. The dashed arearepresefits.s. forw. >
by the caustic within the cell is above,. [wauad. |-

In general the contributing surface or volume can be written,

‘/caus.(RLa R87 {Ai}a ws)
= /@[wc (c,Rp, Rs, {\i}) — ws] dPc, (53)

whereO is the Heaviside step functior, stands for the vec-
tor pointing to the center of the sampling sphere, whilgis
the vorticity found in that sphere intersecting the caustic with
characteristicR;, {\; }. In its full generality,V...;s. is a rather
complex function of the scald®;, andR,, and the eigenvalues
A; through the shape of the caustics andugf Yet, since the
Iili)r;lcf‘fr?(?tlicf)ﬂrg gg:s;ﬁ;iiigzng;ﬂ\? (te?((:)grzzzzgihitrz/ (é%r(lfﬁ;g 12. Sketch showing the adopted simplification for describing a

h | ired i di f h is th caustic. Vorticity is assumed to be localized on two rings (that
the only required ingredient for computigg, (> w;) is the appear as two horizontal black segments) having a lineic vorticity of

scaling behaviour o...s. at its takeoff — when reaching thegither eithert3 wquad. /e OF —3 wquad, /e. The shaded area represents
critical time,)\gf;x, at which a given caustic is large enough tav..us. /dws.

start contributing. The detailed geometry of the caustic and its

vorticity field accounts only for a correction in a multiplicative . ) , . .
factor. Consequently we make approximations describing dhis location on a particular example. Under this assumption,

distribution of the vorticity on the caustic in order to estimat&€ functionVeaus. takes the form,
the scaling properties af...s.. Veans. = Vo(R1/Rs) ©(Amax — O

max

) RL Rs ’ (54)

wherel/, can be calculated for the values of interesfpf and
R,.

In two dimensions we make the radical assumption that the

vorticity is entirely concentrated on four discrete points, whic —

—consistently with the hypothesis of S€ct. 3.3.2, have been talgé%'z' The 3D contributing volume
to bear either the vortiCity-wquad. OF —wquad., depending on In three dimensions, the vorticity will be assumed to be dis-
which quadrant is being considered. In practice the positiontobuted uniformly along twaings which are taken to bear the
the points is chosen somewhat arbitrarily at a third of the degihear vorticity 3wquad. /e — With respectively prograde and ret-
and extension of the caustic. The corresponding &ga. is rograde orientation. In practice these rings are also positioned
therefore identically null before a critical time correspondingt a third of the depth and extension of the caustic. The mean
to the chosew, and R and then takes a constant value whickorticity to be expected in a sampling sphere of radtyss then

can be deduced geometrically from the area of the loci of tigezen by algebraic summation over the segments corresponding
center of the sampling disks. In Fig._{11) we show the shapetofthe intersection of that sphere with the two rings. Maps of the

4.3.1. The 2D contributing surface
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sampled vorticity as a function of the centers of the sphereare '™~ T T T T
derived to computé/,,.... which according to EqL.{53) corre- . <D case
sponds to the volume in space defined by these centers yielding
a vorticity larger tham,. Fig. (I2) gives the shape of this loca-

tion for a given caustic and sampling radius. The functipp. 0.1
takes the form, F
‘/;aus. = VO(RL/RS)RLRE ()\max - )\gr?;x)y ) (55)

whereVy andy can be calculated for the values of interest of>
Ry, and R, at this critical values (see Appendix D, where itig\ 001 F
in particular demonstrated that whé&n, < R, V) asymptotes ~ E
to a fixed value ang = 1/2).

4.4, Estimation oPg, (> w;) 0.001

The tail of the probability distribution for the vorticity is now
estimated while integrating over all the caustics that might con-
tribute, and assuming that, for a fixed caustic, the probability
distribution is given by the number density of caustics times theo-.000t ool o1 N o
volume associated with each caustic. There is however a further W,

difficulty. The distribution of causticar, is well defined for

a fixed value ofR;, only, but there are actually caustics of al
sizes. To circumvent this difficulty we simply choaBg so that
the result we obtain is maximal, i.e.,

Pr, (> ws) ~ max [/ AP nr, ({A:})

PR B S U |

Fig. 13. Pr, (> ws) in two dimensions for scales characterized by a
o(Rs) of 0.5 (thick lines) and! (thin lines) and for & = —1.5 (solid
line), n = —1 (long dash line), andk = —0.5 (short dashed line)
power spectrum.

R
L 4 (A s e
X ‘/caus.(RL7 Rs; {)\z}; Ws) . (56) Xexp _g O'(Rs) fsl Ws . (58)

Furthermore, it is fair to neglect the dependencef\;) and
Veaus ON the initial asymmetry because the overall fagtoy;) ) k
peaks in a narrow range of relevant values for the smaller eig@fiS€s from the exponential cutoff. For =
value(s). It is then possible to integrate over those variables ipstance that

In the rare eventagime, the quantity that dominates Hq.l(58)
—1 we find for

troducing the probability distribution of,,., in the expression w;/2

of Pr.(> ws), log [Pr, (> ws)] ~ 3.5 m. (59)

PR\(> ws‘) ~ max /d)\m'}x Pmax (/\Inax) M Ther.h fE 1 hI\d.5 wh ~ 10*3 R.) ~
s : Ry a RP er.h.s.of Eq. [59) is roughly.5 whenw, = , 0(Rs) =

0.5 or ws =~ 0.1, o(Rs) ~ 1.5, hence defining a thresh-

D
« (>\max ) Veans. (RL, R, Amases s)| - (57) old corrgspondﬁng to a one sigma damping fof, (> wy).
o(Ryp) Eq. p2Dfinalmt is illustrated on Fid-(13).

We show in Appendix C that the maximum of Hg-|(56) is
indeed given by caustics of size of the orderfaf at most. A 4.4.2. The three dimensional vorticity distribution
detailed account of how to perform the sum in Eq] (56) is alsq . e .
giventhere forthe two geometries. Repeated use of the raree%gmg?”é’ ?eﬁgabt'“tybdlsmglg'.on 's shown in the Ap-
approximation together with the geometrical assumptions RN (Ea )) to obey in 3D:
the vorticity distribution sketched in SeCi.413.1 and Seci#.3.2 (

yields eventually an explicit expression for the tail of the prolp,, (~ ) = 0.48n, V

ability distribution for the vorticity as a function of, and R,.

7/2
/\(0) / (1347n)  (1347n)
max fo T w7

S S
o(Ry)

2
Mo :
4.4.1. The two dimensional vorticity distribution xexp |- (a(R )> frrB Wt (60)
In two dimensions, the vorticity distribution is shown to obey
(Eq. [C9)) Forn = —1.5, Eq. [60) gives fotog [Pr, (> w;)]

2
Mox \ pntt n
PRQ(> (.US) ~ (.56 no % ( ) fs +1 wg +1)/2 10g [PR§(> wg)] ~ 20. Ws ) (61)

o(Rs)
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yielding again at a one sigma level the range of relevant val- e ST I ]
ues forw, ando(R,): ws ~ 51075, o(R,) ~ 0.5 or w, ~ E g S3Dcase 4
0.1, o(Rs) =~ 3.5. In both cases the caustics start to generate i
significant vorticity only at rather small scales. Equation (60) is
also illustrated on Figl{14). From this figure it is clear that the  o.1
amount of vorticity that we derived is below what has been mea- i
sured inN-body simulations (open and filled circles). Numer-
ical measurements of this quantity are sparse, so we compared
our estimations to measurements carried out by Bernardeaus& °-01 ¢
Van de Weygaert (1996) in an adaptivéMPsimulation with EA:
CDM initial conditions (see Couchman 1991 for a description
of these simulations). The typical amount of vorticity at 1ie

to 15 .~ 'Mpc scale for which the rms of the density is below
0.5 was found to be about.2 (in units of Hy). This is well
above the values we have estimated in this paper. Though it is
quite possible that these numerical measurements are s;poileoqloo01 B
by noise, we do not expect that it could account for all the dis- g
crepancy between the measured and the predicted vorticities (as
suggested by the relative the scatter between the two methods 0001 0.01 0:
suggested in Bernardeau & Van de Weygaert, 1996). s

There are various possible explanations for such discrep&y. 14. Px_ (> w) in three dimensions for scales characterized by a
cies. It could of course arise from the fact that the vorticity at(R,) of 0.5 (thick lines) andl (thin lines) and for a» = —2 (solid
large-scales does not spring from the rare and large causticsliog), » = —1.5 (long dash line), andh = —1 (short dashed line)
from small scale multi-steaming events that cascade towardspheer spectrum. The filled and open circles correspond respectively
larger scales. Such a scenario cannot be excluded but is diffithe measured integrated PDF in a CDM simulation " Mpc
cult to investigate by means of analytic calculations. It is al§g@!e with the “Delaunay” or *Voronoi” methods (see Bernardeau &
possible that theV-body simulations do not address properly@" d€ Weygaert 1996).
the physics of the large scales multi-streaming. In particular
the two-body interactions should in principle be negligible, gnly other means of investigation for thisgime is numerical
property which seems to be hardly satisfied in curt€rbody -body simulations.
simulations. This shortcoming has been raised by Suisalu & We found that large scales caustics can provide only an
Saar (1995), Steinmetz & White (1997) and more specificaxtremely low contribution to the vorticity at scales &if to
by Splinter etal. (1998), where they examine the outcome of thgy, 1 Mpc. This contribution could be significant only at rela-
planar singularity in phase space. They have found in particulgiely small scales, when the variance reaches values of a few
thatin classical algorithms the particle’s velocity dispersions ajigiits. This effectis even more important in three dimensions, the
incorrectly large in all directions. These could turn out to bedfference arising mainly from the coefficient in the exponen-
major unphysical source of vorticity (since the Lagrangian timgy| cut-off. It is therefore unlikely that these caustics can have
derivative of the vorticity scales like the curl of the divergencgroduced a significant effect on the velocity at large scales. In
of the velocity anisotropies). Specific numerical experimentgew of these results, it is amply justified to assume that the ve-
that follow for instance the initial density profiles given in thi$ocity remains potentia| down to very small Scaﬁ%_'typica”y
paper, should be carried to address this problem more carefui¢ cluster scale at which it is then more natural to expect the
multi-streaming &gime (not only three-flonégime) to play an
important role.

This result provides a complementary view to the picture
developed by Doroshkevich (1970) describing the emergence
We have estimated, within the framework of the gravitational ief galaxy angular momentum from small-scale torque interac-
stability scenario, the amount of vorticity generated after the fitgdns between protogalaxies (a prediction subsequently checked
shell crossings in large-scales caustics. The calculations religd/Vhite (1984), and examined in more detail by Catelan & The-
on the Zel'dovich approximation which yields estimates of thens, (1996 and 1997)). We rather explore here the large scale
characteristics of the largest caustics and allows explicit calagherence of the vorticity field that may emerge in a hierar-
lation of their vorticity content. This analysis corresponds to orehical scenario from scale much larger than the galactic size.
of the first attempts to investigate the properties of cosmologiddie effects we are exploring here does not originate from the
density perturbations beyond first shell-crossing. The previowg-body interaction of haloes as in the picture developed by
investigations (Fillmore & Goldreich 1984, Bertschinger 1983)oroshkevich, but from the possible existence of large scale
were carried out for spherically symmetric systems only, and aisherent vorticity field. The conclusion of our work is however
viously do not address the physics of vorticity generation. Thieat the efficiency with which the large-scale structure caustics

0.001 |

5. Discussion and conclusions
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generate vorticity is rather low. Therefore these results do not are rare. We have then estimated the vorticity such caustics
really challenge the fact that the small scales interactions should generate while assuming that slightly different geometries
indeed be the dominant contribution to the actual galactic an- are unlikely to produce very different results. This assump-
gular momenta. tion is somewhat suspicious, since it might turn out that
As a consequence, we do not expect either a significant cor- slightly different geometries could produce more vortici-
relation of the angular momenta at large scale. In particular the ties, and thus change the exact position of the cut-off. We
vorticity field generated in caustics does not seem to be able do not expect however that the conclusions we have reached
to induce a significant large scale correlation of the galactic could be changed drastically in this manner.
shapes which would have been desastruous for weak lensirgThe contributions of each caustics®a, (> w;) have also
measuremerils been calculated in the rare event limit. This is in practice
Let us reframe this calculation in the context of perturbation a very useful approximation on large scales since it is then
theory which has triggered some interest in the last few years asnatural to expect the entire distribution to be dominated by
a tool to investigate the quasi-linear growth of structures. One a unique value oA, ..
key assumption in these techniques is that the velocity field is We have finally deliberately simplified the spatial distribu-
assumed to form a single potential flow. The detailed descrip- tion of the vorticity within the caustics. Since in the rare
tion of the properties of the first singularities is by essence not event limit it is natural to expect that the Lagrangian scales
accessible to this theory: such singularities cannot be “seen” of the caustics are much smaller than the smoothing scale
through Taylor expansions of the initial fields. In this context it this detailed arrangement should be of little relevance. It cer-
was unclear whether the back reaction of the small scales multi- tainly should not affect the scaling laws as only the value of
streaming &gime on the larger scales (which were thought to the overall factol;, will change, and this has little bearing
be adequately described by perturbation theory) could affect the on our conclusions.

results on those scales. Such effects are partially explored hereOn top of the rare event limit approximation, we have also

where we find that the impact of the first multistreaming regions. 1o a dramatic simplification by using the Zel'dovich approxi-

is rather low on larger scales. Our results therefore support mgtion throughout. This is certainly a secure assumption before

idea that the large scales velocity field can be accurately (fl”ené first shell-crossing since the geometries that we have in-

\Xastigated were rather sheet-like structures (and the Zel'dovich

scribed by potential flows and support our views on the validi
domain of perturbation theory calculations. abjgproximation is exact in 1D dynamics). After the first shell-

In the course of this derivation we have made various a

sumptions. We followed in essence the aporoach pioneere dclgossing however, the back reaction of the large over-densities
P X bp P tggt are created could possibly affect the velocity field. However

Press & Schechter (1974) for the mass distribution of wnahque do not expect that this effect should be very large so long as

objects by trying to identify in the initial density field the densit)ﬁ\ ... is moderately small (up to about 1.5), since before then the

fluctuations that contribute mostly to the large-scales vorticity....~ = . . .
: : itial inertial movement should dominate. Later on, matter is
The calculations have been designed to be as accurate as pQssi- .
i - L : expected to bounce back to the center of the caustics. Whether
ble in the rare event limit, an approximation which turned o . : o :
. : e vorticity content is then amplified or reduced remains an
to be crucial at various stages of the argument.

open question.

— The abOV_e estimation _relies heavily on the aS_SL_*mP“O“ ﬂEcIknowledgementsCP wishes to thank J.F. Sygnet, D. Pogosyan, S.
the caustics only contribute to large-scale vorticity indepefyiombi and J.R. Bond for useful conversations. Funding from the
dently of each other. In other words it is assumed that thgiss NF is gratefully acknowledged.

caustics do not overlap. Moreover the dynamical evolution

of one caustic is tf_;lken to be WeII-de_scrlbe_d by the evo'““%bpendix A: average profile
of the caustic having the mean profile. This can be approx|
mately true only in the rare event limit since otherwise it is
likely that the substructures and its environment will change 1. General formula

the dynamical evolution of the caustics. Although it is cleq_r ) .
4 _— . . X et us evaluate here the average profile of an a-spherical con-
that, in the &gime we investigated, the caustics are rar

Strained random field in both 2 and 3D. Similar calculations
enough not to overlap, the effects of substructure are mgre o . . .
e . . . . as those presented in this Appendix have been investigated by
difficult to investigate. In particular we have outlined som :
local featured(3.3]1) of the vorticity maps that we think areardeen et al. (1986) for the 3D field and by Bond & Efs-
) X . y map tathiou (1987) for 2D fields. But, here, instead of the second
unlikely to survive the existence of substructures.

. . . o . O{der derivative of the density field, we consider instead the de-
— The typical caustics are characterized in this rare event I|n}| . . g N
ormation tensor corresponding to second order derivatives of

For instance the V?"“es ofandp were found to be _all the the potential. We also investigate the global properties that such
more peaked to given values as the corresponding events .~ - . . o
constraints induce on the density field.

1 |n these measurements background galaxy shapes are assumed t&onsider a random density field, in either 2D or 3D, having

be totally uncorrelated in the source plane, the observed correlatfifctuations following a Gaussian statistics. It is then entirely
being interpreted as entirely due to gravitational lens effects. determined, in a statistical sense, by the shape of its power

f an a-spherical constrained random field
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spectrum,P (k). Recall thatP (k) is defined from the Fourier The expectation value @fk) is given by the ratio
transform of the density field,
_ (k) 5(K) p(Ve)

5cxpcc. k) = A9
ok) = /dgxexp(ik.x) d(x), with (k) Jdé(k) p(Ve) (A9)
(6(k)S(k')) = Opirac(k + k') P(k) (A1) A straightforward calculation shows that this quantity is given
) by
where the bracket(s.> stands for the ensemble average of the b .
random variables. Let us calculate thepectatiorvalue ofd (k) sexpec. (1) — (- )OJ ) A10
when a local constraint has been set in order to create-an (k) = Z a (CY)0s0 i (A10)

sphericalperturbation. To set such a constraint, we have chosen =t

to consider the deformation tensor of the density field smoothidte that the further constraint that the first derivative of the

at a given scalé,. This tensor reads, density field should be zero (so that the paigtis actually

Kk located on a maximum of the density field) would not change
;23 . (A2) theresulting expression 6f<P<¢ (k) since the cross correlation

of the first order derivatives with any other involved quantities

Note that the local smoothed density is given by the trace igkntically vanish.

this tensor. The chosen window functib¥ip in Fourier space

corresponds to a top-hat filter in real space and it reads,

Ji(k)

is— / 4k 5(k) Wi (k Ry)

A.2. The 2D profile

Wa(k) = 2 w2 o 2D, In 2 dimensions we have
Js/a(k) Coo Co1 Co2 Cogs
W3(k) = 3\/ 77/2 k3/2 m 3D, (A3) CO,l 303/8 0_(2)/8 0

Cap = Coo 02/8 302/8 0 ’ (AL1)

whereJ, are the Bessel functions of indexThe matrixg; ; is Cos 0 0 o2/8

now set to be equal to a given constraint. It is obviously possible

to choose the axis so that this constraintis a diagonal matrix wihth the variance of the smoothed density fietg, given by
eigenvalueg);),i = 1, D. The elements of the matrix ; and

0(k) form aGaussiarrandom vector, o2 = /d?’k P(k) W3(k Ry). (A12)
Vc = (5(k)a¢1,17"~7¢D,D7¢1,27"'7¢1,Da . . . . .
bo2s . S0 1) (A4) The required elements of the inverse of this matrix are given by
and the desired expectation valuei¢k) is directly related to (C—') =~ = %ag/Det(C) , (A13)
the cross-correlation matrix of the components of this vector. ’ 6
Consider the matrixC, ; with @ = 0,---D(D + 1)/2 and . C;Ovl 0372 Cos 1
b=0,---D(D +1)/2, so that (€ ox = — 000/8 3”8/8 0_20/8 61 Det(C)
0
0070 = <(5(k) (5(k)> = P(k) B (AS) (0012 _ 30071) 0_61 (A14)
k;k; = )
Cao = (3(k) ¢13) = P(k) Wp(kRp) = 5%, (A6) 064 Dgt(C)C
C.y = b o . B 0,1 0,2 0,3 1
b = (B 0 40) —_— (C Yy = 030/8 0—30/8 2)08 61DeiC)
- /d3k P(k)W3(k Rp) =2 (A7) "0/4
~ (Co1 —3Ch2) 0y (A15)
where the indices j (respectively’, j') for the matrix elements B 64 Det(C) '
¢; corresponds to thé: + 1) (respectively(b + 1)) com-
ponent ofV. For a given spectrum these quantities are easfiy & result, EQL(ATO) becomes here
calculated and are given in the following subsections for power P(k) Wa(k Ry)
law spectrum in resp. 2 and 3 dimensions. The distribution funt- k) = - oz
tion of the components of the vectbt then reads in terms of 0
eo &) P g % (A1 + Ao +2c0s(20)[A — Aa]) . (A16)
) where the anglé were chosen so that
_ _ = —1
p(Ve)dVe = exp { 5 zb: (€™ ap VeaVer ki /k = cos(6), ks /k = sin(9).
dv, 0 the angle between a given vector and the eigenvector associ-

8 [27Det(C)]1/2+D(D+1)/4° (A8) " ated to the first eigenvalue.
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A.3. The 3D profile

In 3 dimensions the matrik' reads,

311
Coo --- Cog 131 0
_ . . o5 |113
C— : D 7V\’lth.l)—ﬁ 1 0 O
Cos 0 010
001

(AL7)
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allows us to introduce the eigenvalues of the matrix. The Jaco-
bian J of this transformation is given by

From this expression of the matrix of the cross correlations itis

quite straightforward to re-express Hq.(A10) as

3P(k) Ws(k Rr)
e (A18)

+ X[k + k3 — 4k3] + A3 kT + k3 — 4Kk3]) .

5P (k) = (A3 + k3 — 4Kki]

When the coordinates of the wave vector are expressed in terms

of the angle9;, and¢;., defined by

ki = ksin(0x) cos(dx) k2 =k sin(f) sin(¢r) and
ks = k cos(y) .
Eq. (A18) becomes
5expec.(k) _ 3P(k)8M;32(k RL) ()\1 + Ao + 6)\3)
0
X (1 + a cos(20k) + b cos(2¢y)
x[1 + cos(26k)]) , (AL9)

wherea andb are specific combinations of the eigenvalues,

L 28— A = A= Ao

=5 - = d b= —M—— .
“ /\1+)\2+6/\3’ an 5)\1+/\2+6)\3

(A20)

Appendix B: the DF of the eigenvalues
of the local deformation tensor

The derivation of the distribution function of the eigenvalues

. S (}I’RS(> ws) ~ max
the local deformation tensor was carried in 3D by Doroshke- Rp

1 + P1,1—P2.2 ~ 1 _ $1,1—P2,2
2 2VA 2 2VA
J 1l = |1 _ d11—-9202 1 ¢11t+¢202
2 2VA 2 2VA
0 1 0
= \/1—4612/A. (B3)
As a result we have
P(Af, A, d1,2) dAy dA_ dor 2
_ 8dAy dA_d¢i 2 1
(QW)S/QJS V1- 4<Z51,2/A
1,3
X exp {—Jg(QJE - 4J2)] : (B4)
with
Ji=Xxr+A,, and Ja=A; A_. (B5)
The integration ovep, » yields
2 _
PO ALY AL dA_ = f‘“*:ﬁ“m S|
Vs 00
X exp —i(éj2 —4J3) (B6)
0(2) 271 2

Note that if A\, is a priori assumed to be greater than the
distribution should be multiplied by 2.

Appendix C: estimation of Pg_(> ws)

In this Appendix we estimate the probabiliBg, (> w;) that a
sphere of radiugz; contains an integrated vorticity larger than
ws. In order to account for caustics of all sizes we argued in the
main text thatPr_ (> w,) was well approximated by

[ / P, g, (M)

vich (1970). We extend here the calculation to the 2D case (for
which the calculations are straightforward). Starting with equa-

tion (A1) — the cross-correlations between the elements of the

deformation tensors, one can easily get the expression of ¥fg Will now show that the maximumiis indeed given by caustics

joint distribution function of the deformation tensor elements®f Size of the order of?; and approximate this integral in 2 and
3D. To simplify further Eq.{CI1), note first that the distribution
(1,1, P1,2, P2,2) dd1,1 Ao 2 dga o

function of the eigenvalues is peaked in a given geometry (i.e.

X‘/caus.(RL;Rsa {Ai}aws) (Cl)

8  dei doy o dgos a = 1,andb ~ 0in 3D) for rare caustics (large valuesXf.).
- (27)3/2 ol Therefore the integral in EG{C1) will be dominated by caustics

of this geometry and the fact®t...,s. can be taken at this point
while carrying the integration over the other two eigenvalues.

1
X exp | =3 (37 1 4801 5 + 303 5 — 2012622) | (BI)
As a result we have

The change of variables, o0 A\ D
Pr,(>wy) ~ max [ [ s pOn) (255
A = $11+ P22 n @ = P11+ P22 @ with Re |1 o(RL)
2 2 , - 2 2 ’ no (/\max) V;:aus. (RLa R57 >\maxy ws)
A = (p11 — h22)* + 4(25%72, (B2) X RD } - (C2)
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This integral runs from 1 to infinity since the caustics exigtable C1.Parameters of interest for the 2D caustics: the power index,
only when,.x is greater than 1. The evaluation of EG.JC2), the critical ime'%.,, the radial extensioa®, depthd® in units
requires insights into the functidri,.s.. Although there are no of R, scale factof " as well as the values af, andV for the critical

real qualitative changes between the the 2D and 3D cases,oaestics.

now proceed with the computation of Eg. {C2) by distinguishing

the two geometries for the sake of clarity. n Moae  d© O f ng W
-15 131 017 134 0.30 0.018 0.9
C.1. The 2D statistics -1 167 040 133 095 0.023 1.8

] ] . —-05 215 090 136 125 0.009 34
Recall that the integral Eq._{C1) will be dominated by the rare

even tail, and thus by the lowest value)of ... that contributes
to the integral. In other words, when considering a given causti;ice /\I(I?QLX is fixed the geometry of the caustic which will
characterized by its Lagrangian scélg, one should wait long contribute most taPr_ (> w;) is entirely specified. The con-
enough so that it has grown sufficiently in order to contribuigiion for the existence of a minimum definingl. is that
after sampling a vorticity larger than,. For eachi,, therefore ., 4 9) < 4, and it is satisfied for all considered cases (see
corresponds\iax(Ry ), the lowest value of\y., for which Table [)). Thisimplies that we are investigatinggime where
Veaus. IS NON Z€ro: the integral Eq[{Q2) is not dominated by arbitrarily rare caus-
- , tics—whichwould have been catastrophic giventhe assumptions

Pg.(> ws) ~ max / dAmax Pmax(Amax) ( Amax > (note that whem: is too Iarge)\fffﬁLX tend to be quite large thus

' Rr [ JAQ) o(Rr) challenging the validity of quantitative results based upon the
Zel'dovich approximation). The resulting value Bf, is

- 2)\*/?
RL = Rs s ( Oé(n—i_ )>

(0
max

nO(/\max) Veaus. (RL7 RS7 >\rnax7 ws)
X R2
L

. (C3)

© _ _ wo f(Q) a(n+2)
The lower bound\yax(Ry) is reached as soon agyaq. is

1/2
larger thant R? w,: the largest possible value of the integrated  — fs Rs < Ws ) ! ) (C7)
vorticity in a cell of a given radius. It is therefore implicitly f(8)
defined by The scale factof, is givenin Table[{Cl1) for an Einstein-de Sitter
Wquad. _ universe () = 1) and different values af. Completing the
Ws = R2 = WM calculation of Pr_(> w;) involves relating the shape and size
R2 of the caustic for the adopted vaIue)n(fEx. These values are
= f(Q) Téﬁdo A (ws, Rr) — 1) (C4)  derived from the fits (Eq[{247)) and are given in Talle](C1).

Fig. (12) givesV...s., in units of the square dk;,, as a function
Assuming thafl/.,.s. does not contain any exponential cutoffpf the smoothing radiug,. From Fig.[(IP) it is easy to see that
and assuming that,,. is in the rare event tail, E4.(C2) can b

approximatively re-expressed as Vewss. = Vo Ro Ry ; (C8)

© 2 © \? for any values and; the corresponding values &f are given
)\max 4 )\max i . i i L] [ = Ll
Pr (> ws) ~ max |0.56 ( > exp ( ) in Table [C1. Putting Eq{Q8) into EG.{IC3), using Efs.](C6)
L

o(Rp) 3\ o(Ry) (C7) yields for the sought distribution

© \?
o V::aus.(RsyRLa)\I(I?z)lx,ws) -~ Amax n+1  (n+1)/2
X R% , (C5) PRS(> ws) ~ 0.56 ng V() U(RS) fs wg )/
2
when using Eq[{T1) for the distribution function of,., 4 AES;X nt2 ,2)/2| (o)
integrating by part and dropping the residual integral for XEXp 3 \o(Ry) J& ws ’

large enough\\W /o (Ry.,) (see Appendif Appendix E: for
details). This maximum with respect t8; is then approx- Note thatthe power ab, in the exponential is rather weak. The
imated by the minimum of the argument of the exponentialut-off is nonetheless strong in thegime of interest because of
A (RL)/o(Ry), where the minimum in the facto taken witrthe leading coefficient. Equatidn{IC9) is illustrated on Figl (13)
respect to\\), sinces(R.) can be thought of a function of 2nd discussed in the main text.

A9 via Egs.[22) and (G4). This minimum can de facto be

expressed independently Bf. It reads C.2. The 3D statistics

4 The threshold om\,,., from which the caustics start to con-

0) _
A (C6)  tibuteata given scalg, depends on the adopted description for

max T4 o(n+2)
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the local vorticity. We assume here as mentioned in §ectl]4.3able C2.Parameters of interest for the 3D caustics: the power index,
that the total vorticity is localized on two rings of radiug3 n. the critical timesA;;.., the scale factorf;~ in the two €gimes
each, distant of d/3 of each other. They are assumed to be&Rs < ¢/3 in parentheses) with radial extensieff’, depthd® in
opposite lineic (and uniformly distributed) vorticities; in ordeknits of Rz as well as the values ofo and 1, that enter the final

to get a consistent answer for the integrated vorticity in a quadPressIons.

rant, we should have

n )‘r-'r—mx ()‘r;ax) fs+ (.fs_) d<0) 8(0) no VO
i _ 3Wquad. (C10) —2 141 (147) 246 (209) 018 104 0.8 0.96
- e —1.5 1.63 (1.79) 2.10 (1.58) 0.28 1.05 0.14 1.84

The maximum vorticity that can be encompassed inasphe‘r%' 184 (215 178 (1.17) 042 1.07 0.064 3.18

then depends on its radiug,. If R, is larger than the radius

of the ringse/3, it is possible to have half of a ring in a sphere  ° [ — e
(while the other ring does notintersectitatall), sothatthe values [ <P case / //
of Amax (for which the maximum vorticity is sampled) is given g 7

by I s

Wg = z =w r .
3 gy M d

3 V. R}
= ——Wwo ()\max - ]-) f(Q) R7§7

2ewin. 1 n 07

o if Rs>e/3. (Cl1)

Veans/ RE
\

If on the other hand, is smaller thare/3 then only a fraction
of the half ring can be put in the sphere and we have instead I 0/

1
ERE

L
R2’

Now the local behaviour of.,,s. near its takeoff value is well

represented (as argued below and demonstrated in Appendixi® C1. The functionVea.s., in units of the square d ., as a function
for large enoughR,) as a function of\ by of the smoothing radius in 2D. The solid line corresponds to the case
S max

n = —1.5, the dashed line tm = —1 and the long dashed line
Veaus.(RLy Rsy Amax, Ws) ton = —0.5. In all cases the geometry of the caustic is fixed by

0
>\max = >\1(n<)¢x-

9 wo _
= max 1) % f(Q
7 2 (s = 1271 (5)

if R3<6/3. 0.1 : |

- L e
R./R,

= /@ [wc (C, RL, R37 >\max) - ws] dsc

~ R R2Vy(Amax — A0 )7, (C13) which assumes that(n +3) < 6 (resp.(a — a.)(n +3) < 4),
both conditions being satisfied for all valuesrotonsidered.

Using Eq.[1¥) and [(32) for the distribution functionthe corresponding scaling relations between and R, are
Pmax(Amax ), changing integration variable from= \.x/c given by

to /\I(I(BX + u/)\ﬁ?;x and dropping the residual integral for large

1/3
enoughAEﬂ%x/a(RL) (see Appendix Appendix E: for details)RL _ ft R, ( W ) / £ R>ef3, o

yields for Eq.[C3): T
1/2
14— - Ws i
~ 60 Vol (v +1) [ Al Rr = f R, ( S ) if Ry<e/3. (C16)
Pr, (> ws) =~ max 51+ o(Rg) "

The scale factorg* —derived from the fits (Eq._{47)) —are given
5 ( A0 2 R2 in Table [C2) for an Einstein-de Sitter univergé() = 1) and
5 ( ) ng ) (C14) different values ofn. Interestingly, as long as, is not too
L large the condition?;, > e/3 is always satisfied. In practice
e scales of about0 to 152~ Mpc the measured vorticity
(ijr?rr]r; Egb%gnig?%ils%&ld?t?e minimum of the argumelﬁé expected to be indeed at most of a few tenth (Bernardeau &
van de Weygaert, 1996). It is therefore always fair to assume

X exp o(Ry)

6 ; ) o e
AP = it R,>e/3, and Fhat we are in theégime whereR, > ¢/3 which is the égime
6 —a(n+3) investigated hereafter.
4 Completing the calculation dPr_(> w;) requires evaluat-

Ao = if R, <e/3, (C15)

max 4— (a0 —ae)(n+3) ing the correspondingy, v andVj. The value of is entirely
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Appendix D: asymptotic behaviour of Voaust. in 3D

For large enougtk, we derive here an asymptotic analytic ex-
pression fol/,.ust. - L€t US first estimate geometrically the vol-
ume in space contributing almosl;t[ to Vioaust.. The corre-
sponding contribution is the sum of two volumes given by the
shaded area in Fid. {C2), corresponding to the loci of the centers
of spheres which capture almost half a ring and not the other,
or which capture completely one ring and almost half of the
other. In the asymptotic limit, as/R, — 0, the element of
volume is an infinitely thin strip and both contributions become
equal since — —6’'. The area corresponding to these loci can
be evaluated algebraically as follow: let us eathe projected

. P ring segment by which a sampling sphere of radilydails to
encompass a ring diametat/3; it follows that the ratio ofu,

_ T o tow},, is given by
Fig. C2. The loci of the centres of spheres contributingin the range )

[wi; (1 — €%/2), wi;[. The dashed arrow points to a centre of such as _ (1- i)

sphere, and defines the running anglementioned in EqL{D2). The wj\} - 27"

two (cylindrically symmetric) shaded regions correspond to the loci of . . .

the centre of spheres capturing almost half a ring and all or none of ﬁ?@ the other hand, for a, given dlrectlon for the sphere centre

other. Two examples of such spheres are displayed for either casedIVen bycos(#) = p, within the solid anglerdy, the volume
element (encompassed by the two shifted spheres captuying
in the rangdw}, (1 — €2/2), wi; ) is given by

determined by the geometry of the caustics and is given in th&e i e

Tableg 1L anf2. The behaviour ... as it departs from zero ’(3) A Riesin® 0df = 87T§R§€ V1—p?dy. (D2)

as a function ol for the critical ratios ofR,, e andd is locally . . o . .
. . Summing over all possible directionsg before intersecting
well fitted as a function of; by a power law of the form . .
the second ring) yields

(D1)

w K 1
Veaus.(Amaxo ws) ~ Ug R RZ (1 — —/————] . (C17 (0
{ ) 0 TH s < w&(/\max)> (C17) 8W§R§€/mdﬂ =87 %RL R%eJ,
wherew?, is the threshold value ab, (Eq.[CI1)). This ex- Ho
pression is valid whew; is close to its threshold value. On the b B
critical line, w, = w7, it is possible to relate the variation of " "' #0 =

Amax t0 the variations ofv,. We can then rewrite EJ.(CN17) as ) ) . .
a function of the difference between, ., and the critical value Accounting for the summation over the two configurations (half

1+ (D3)

4d(0)2 71/2
e(0)2

AL assuming this departure is small aring captured or a full + one half ring captured), using Eql (D1)
) to eliminatee, we finally get for large enougR
Veaus. (Amax, ws) = Rp R2Vo (Amax — )‘Er?e)xx)ﬂy , With Ve V2rR; R? e(©) Ws 1z
v aust. = 16V27 2 (1- ,
v, — oot (c1) O BT ( w;,)

0
()\Eng,x - 1)’Y 1 6(0)
. . . therefore oo == and Ug® = 16V2r— 7. (D4)
SinceRr /R is only a function ofn andw,, so areV; and~. 2 3
In practice we take the asymptotic valuesigf and~ given ) o
in Appendix D and corresponding to the limit, < R,. APpendix E: rare eventapproximation

Putting Eq.[CIB) into EqI{C14), using Eq.{C151=(C17) andonsider an integral of the form
(D4) yields for the vorticity distribution

/\nglx ! (13470)  (13+7n) 1= /mﬂ(x —a)” exp(—ba?) dz. (E1)
Pr (> ws) = 0.48ngVp | ——— fo T w12 J
\ o(Rs)

Changing variable te = a + u/(2ab) Eq. [E1) reads

oo

2
5 (M| pnr
_ o | [max n+3,(n+3)/3]  (C19 1 gl B
T (U(Rs) fo s 1) 7 - %eXp(_b‘ﬁ)/<ﬁ> a’ {(Hm?%)
0
2
ad exp(—u)d

Equation[[C1D) is illustrated on Fig.(14) and discussed in the
main text. X XD\ T2 w. (E2)
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For large enough the square brace in EQ_(E?2) is well approxcatelan P., Theuns T., 1996, MNRAS 282, 455

imated byl yielding for Eq.[E2) Catelan P., Theuns T., 1997, MNRAS 292, 225

Couchman, H., 1991, ApJ 368, L23

Dekel A., 1994, ARA&A 32, 371

Dekel A., Rees M., 1994, ApJ 422, L1

Doroshkevich A.G., 1970, Astrofizika 6, 581
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to ﬂ — 5, andb = 5/2 Note that the}/ =0 approximant can Fisher K.B., Davis M., Strauss M.A., Yahil A., Huchra J.P., 1993, ApJ
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