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Abstract. A fundamental hypothesis for the interpretation of
the measured large-scale line-of-sight peculiar velocities of
galaxies is that the large-scale cosmic flows are irrotational.
In order to assess the validity of this assumption, we estimate,
within the frame of the gravitational instability scenario, the
amount of vorticity generated after the first shell crossings in
large-scale caustics. In the Zel’dovich approximation the first
emerging singularities form sheet like structures. Here we com-
pute the expectation profile of an initial overdensity under the
constraint that it goes through its first shell crossing at the present
time. We find that this profile corresponds to rather oblate struc-
tures in Lagrangian space. Assuming the Zel’dovich approxima-
tion is still adequate not only at the first stages of the evolution
but also slightly after the first shell crossing, we calculate the
size and shape of those caustics and their vorticity content as a
function of time and for different cosmologies.

The average vorticity created in these caustics is small: of
the order of one (in units of the Hubble constant). To illustrate
this point we compute the contribution of such caustics to the
probability distribution function of the filtered vorticity at large
scales. We find that this contribution that this yields a negligible
contribution at the 10 to 15h−1Mpc scales. It becomes signifi-
cant only at the scales of 3 to 4h−1Mpc, that is, slightly above
the galaxy cluster scales.

Key words: galaxies: formation – cosmology: theory – cosmol-
ogy: dark matter – cosmology: large-scale structure of Universe

1. Introduction

The analysis of large-scale cosmic flows has become a very
active field in cosmology (see Dekel 1994 for a recent review
on the subject). The main reason is that it can in principle give
access to direct dynamical measurements of various quantities
of cosmological interest. There are now a very large number of
methods and results for the comparison of the measured large–
scale flows with the measured density fluctuations as observed
in the galaxy catalogues. Most of these methods are sensitive
to a combination of the density of the universe in units of the
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critical density,Ω, and the linear bias,b, associated to the mass
tracers adopted to estimate the density fluctuations. The esti-
mated values ofβ = Ω0.6/b are about0.3 to 1 depending on
the method or on the tracers that are used. There are other lines
of activities that aim to estimateΩ from only theintrinsic prop-
erties of the velocity field, (i.e., without comparison with the
observed galaxy density fluctuations). All these methods ex-
ploit non-Gaussian features expected to appear in the velocity
field, either the maximum expansion rate of the voids (Dekel
& Rees 1994), non-Gaussian general features as expected from
the Zel’dovich approximation (Nusser & Dekel 1993), or the
skewness of the velocity divergence distribution (Bernardeau
et al. 1995). Yet they all also assume that the velocity field is
potential. This is indeed a necessary requirement for building
the whole 3D velocity out of the line-of-sight informations in
reconstruction schemes such as Potent (Bertschinger et al. 1990,
Dekel et al. 1994). This is also a required assumption for car-
rying calculations in the framework of perturbation theory. It
is therefore interesting to check the rotational content of the
cosmic flows at scales at which they are considered in galaxy
catalogues, that is at about 10 to 15h−1Mpc. This investigation
ought to be carried in the frame of the gravitational instabil-
ity scenario with Gaussian initial conditions. It is known that
in the single stream régime, primordial vorticity is diluted by
the expansion and that the higher order terms in a perturba-
tion expansion cannot create “new” vorticity. Hence it is natural
to assume that the vorticity on larger scales originate from the
(rare) regions where multi-streaming occurs. During the forma-
tion of large scale structures this happens first when the largest
caustics cross the first singularity, creating a three-flow region
where vorticity can be generated. As we argue in Sect. 2, analyt-
ical calculations of constrained random Gaussian fields suggest
that the largest caustics that are created are sheet-like structures,
in rough agreement with what is found in numerical simula-
tions or in galaxy catalogues. It is therefore reasonable to use
Zel’dovich’s approximation to describe the subsequent evolu-
tion of those objects.

In order to estimate the large scales vorticity distribution
we therefore proceed in five steps: first we evaluate the mean
constrained random field corresponding to a local asymmetry
of the deformation tensor on a given scale,RL; secondly we
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solve for the multi-flow ŕegime within the generated caustic,
using Zel’dovich’s approximation throughout, even slightly be-
yond this first singularity. We then evaluate the vorticity field
in that caustic. The next step involves modelling the variation
of the characteristics of typical caustics as a function of time
for different power spectra. Finally, we estimate the amount of
vorticity expected at large scales arising from large scale flow
caustics.

For the sake of simplicity and because is pedagologically
more appealing, we present calculations carried out in two di-
mensions as well as in three dimensions. The former case is in
particular easier to handle numerically.

The second section of this paper evaluates the characteris-
tics of the typical caustics expected at large–scale in a 2D or 3D
density field. The third section is devoted to the explicit calcu-
lation of the vorticity for the most typical caustics. The fourth
section provides an estimate for the shape of the tail of the prob-
ability distribution function of the modulus of the vorticity in a
sphere of a given radius. It is followed by a discussion on the
validity and implications of these results.

2. Asymmetric constrained random fields

Since it is not our ambition to solve the problem of deriving the
vorticity statistics in its whole generality the vorticity will be
estimated only within specific but typical caustics in the frame-
work of the Zel’dovich approximation.

The first step involves building an initial density field in
which a caustic will eventually appear. The initial fluctuations
are assumed to be Gaussian with a given power spectrumP (k),
characterizing the amplitude and shape of the initial fluctuations.
No a priori assumptions about the values ofΩ andΛ are made.
It will be shown that the statistics has very straightforward de-
pendences upon these parameters. The expectation values of the
random variables,δ(k), corresponding to the Fourier transforms
of the local density field,

δ(x) =

∫

d3k δ(k) exp[ik · x], (1)

are calculated once a local constraint has been imposed. This
constraint will be chosen so that the caustic-to-be will have
just gone through first shell crossing at the present time. It is ex-
pressed in terms of thelocaldeformation matrix of thesmoothed
density field. The components of the local deformation tensor
at the positionx0 are given by

Φi,j(x0) =

∫

d3k δ(k) WD(k RL) exp[ik · x0]
kikj

k2
, (2)

whereWD is the adopted window function. In what follows, we
will use the top-hat window function for which

W2(k) = 2
J1(k)

k1/2
in 2D,

W3(k) = 3
√

π/2
J3/2(k)

k3/2
in 3D, (3)

whereJν is the Bessel function of indexν. The scaleRL is the
scale of the caustic in Lagrangian space. Hereσ0 stands for the
rmsdensity fluctuation at this scale:

σ2
0 =

∫

d3k P (k) W 2
2 (k RL). (4)

For the sake of simplicity a typical caustic is chosen to be char-
acterized by the average local perturbation over a sphere of
radiusRL for which the deformation tensor at its centre given
point is fixed. We are aware that this is a somewhat drastic ap-
proximation but consider that, at large scales, the behaviour of
caustics having the mean initial profile will be representative of
the average behaviour. This is certainly not true at small scales
where the complex interactions of structures at different scales
and positions are expected to affect the global behaviour of any
given caustic. For some rare enough objects however we expect
the fluctuations around the mean profile to be small enough to
affect only weakly the global properties of the caustics. This has
been shown to be true in the early stages of the dynamics for
spherically symmetric perturbations (Bernardeau 1994a). In the
following we will, however, encounter properties (see Sect. 3.3)
that we think are not robust against small scale fluctuations. Such
properties will be ignored in the subsequent applications of our
results.

Within the frame of this calculation, the values ofδ(k) hence
correspond to the expectation values ofδ(k) for the power spec-
trum P (k) when the constraints on the deformation tensor are
satisfied. These solutions can be written as a linear combination
of the values of the deformation tensor:

δ(k) =

D
∑

i=1

−
(

C−1
)

0,i

(C−1)0,0

λi ≡
D
∑

i=1

αi λi , (5)

where the coefficientsC is the matrix of the cross-correlations
between the random Gaussian variablesΦij andδ(k) as shown
in Appendix A. In Eq. (5) the summation is made only on the
diagonal elements of the deformation tensor since it is always
possible to choose the axis in such a way that the other elements
are zero. In this instance, the diagonal elements are identified
with the eigenvaluesλi, of the matrix.

2.1. The 2D field

In 2D geometry, the two coefficientsα1 and α2 defined by
Eq. (5) are given by

α1 = (3I1 − I2)/σ2
0 , α2 = (3I2 − I1)/σ2

0 , where

Ii =
〈

δk Φii

〉

= P (k) W2(kRL)
k2

i

k2
. (6)

The brackets,
〈

.
〉

, denote ensemble averages over the initial
(unconstrained) random density field. As a result, Eq. (5) reads

δ(k) =
P (k) W2(kRL)

σ2
0

× [2 (λ1 + λ2) + 4 (λ1 − λ2) cos(2θ)] ; (7)

λ1 andλ2 are the eigenvalues of the deformation tensor and
whereθ is the angle betweenk and the eigenvector associated
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with the first eigenvalue (see Appendix A for details). Consider
the parametera defined by

a =
2(λ1 − λ2)

λ1 + λ2
. (8)

The coefficienta represents the amount of asymmetry in the
fluctuation (thusa = 0 corresponds to a spherically symmetric
perturbation). This parameter is similar to the eccentricity,e,
that was used by Bardeen et al. (1986) and more specifically by
Bond & Efstathiou (1987) for 2D fields. In these studies however
investigations were made for the shape of the peaks around the
maximum (i.e. eigenvalues of the second order derivatives of the
local density), soa ande cannot be straightforwardly identified.

The formation time of the first singularity is determined by
the maximum value of the eigenvalues,λmax. It is therefore rel-
evant to calculate the distribution function ofλmax, and the dis-
tribution function ofa onceλmax is known. From the statistical
properties of the matrix elementsΦij we derive the distribution
function of the eigenvaluesλmin andλmax (see Appendix B),
which reads

P (λmin, λmax) =
23/2

π1/2 σ3
0

(λmax − λmin)

× exp

[

− 1

σ2
0

(

3

2
J2

1 − 4 J2

)]

, (9)

with

J1 = λmin + λmax , J2 = λmin λmax. (10)

The distribution function ofλmax follows by numerical inte-
gration overλmin. Fig. (1) shows the distribution function of
λmax in units of the variance. The dashed line corresponds to
the approximation, valid atλmax/σ0 � 1:

pmax(λmax) dλmax

≈ 1.5
λmax

σ0
exp

[

−4

3

(

λmax

σ0

)2
]

dλmax

σ0
. (11)

The distribution function ofa for different values ofλmax/σ0 is
presented in Fig. (2). It turns out that the most significant value
corresponds toa ≈ 1. In the following this value is chosen as
the typical value for the asymmetry in two dimensions.

2.2. The 3D field

In three dimensions the geometry is slightly more complicated
and yields for the constrained density field (see Appendix B for
details)

δ(k) =
3 P (k) W3(k RL)

8σ2
0

(

λ1

[

1 + 5 cos(2φk)

−5 cos(2θk) − 5 cos(2φk) cos(2θk)
]

+λ2

[

1 + 5 cos(2φk) − 5 cos(2θk) − 5 cos(2φk)

× cos(2θk)
]

+ 2λ3

[

3 + 5 cos(2 θk)
]

)

, (12)

Fig. 1.The distribution function ofλmax/σ0 (solid line) in 2D dynam-
ics. The dashed line is given by (Eq. (11)):

Fig. 2. The distribution functions ofa for fixed values ofλmax/σ0 =
1, 2, 3, 4 (respectively the solid, long dashed, short dashed and long
dotted dashed lines).

whereθk andφk are polar angles of the vectork with respect
to the basis of the eigenvectors associated to the three eigen-
values,λ1, λ2, λ3. The asymmetry of the distribution is again
characterized by the values of

a = 5
2λ3 − λ1 − λ2

λ1 + λ2 + 6λ3
, and b = 5

λ1 − λ2

λ1 + λ2 + 6λ3
. (13)

Whenb only is zero Eq. (13) corresponds to a perturbation with
axial symmetry, and when botha andb are zero it is a spheri-
cally symmetric perturbation. In terms ofa andb Eq. (12) then
becomes

δ(k) =
3 P (k) W3(k RL)

8 σ2
0

(λ1 + λ2 + 6λ3) (14)

×
(

1 + a cos(2θk) + b cos(2φk)
[

1 + cos(2θk)
])

.

Let us now evaluate the distribution ofa andb from the distri-
bution function of the eigenvalues(λ1, λ2, λ3) in 3D (assuming
λ1 > λ2 > λ3) in order to identify the shape of the most sig-
nificant caustics. This distribution is given by (Doroshkevich
1970)

P (λ1, λ2, λ3) =
55/2 27

8 π σ6
0

(λ1 − λ2) (λ1 − λ3) (λ2 − λ3)

× exp

[

− 1

σ2
0

(

3J2
1 − 15

2
J2

)]

, (15)



666 C. Pichon & F. Bernardeau: Vorticity generation in large-scale structure caustics

Fig. 3.The distribution function ofλmax/σ0 (solid line) in 3D dynam-
ics. The dashed line is the analytical fit (17).

Fig. 4.The contour plot for the distribution ofa andb for a fixed value
of λmax/σ0 = 2 (dashed lines) andλmax/σ0 = 3 (solid lines). The
lines are evenly distributed in a logarithmic scale.

with

J1 = λ1 + λ2 + λ3 , and J2 = λ1λ2 + λ2λ3 + λ3λ1. (16)

From this expression we compute numerically the distribu-
tion function of the maximum eigenvalue (Fig. (3)). An analyt-
ical fit of this distribution function is provided by its behaviour
at largeλmax

pmax(λmax) dλmax ≈ 6

(

λmax

σ0

)2

× exp

[

−5

2

(

λmax

σ0

)2
]

dλmax

σ0
. (17)

This fit is accurate for the rare event tail (as shown in Fig. (3)),
which will be relevant for the derivation of Sect. 4.4. For a given
value ofλmax we compute the distribution of the other eigen-
values, and thus the join distribution function ofa andb.

The resulting contour plot corresponding toλmax/σ0 = 2
andλmax/σ0 = 3 is illustrated on Fig. (4). As for the distri-
bution of a in the previous subsection in 2D it depends only
weakly upon the adopted value ofλmax (although the position
of the maximum varies a little), and it tends to be all the more
peaked on its maximum asλmax is large. This implies that a

typical caustic will be given bya ≈ 1 with a smallb. For further
simplifications we will assume thatb = 0. Such a caustic then
corresponds to a pancake-like structure with axial symmetry.
Note that this result seems to differ from the results of Bardeen
et al. (1986) who found that the shape of the rare peaks should
be somewhat spherically symmetric or filamentary (this picture
was recently sustained by Pogosyan et al. 1996, from the result
of N -body simulations). This apparent discrepancy is due to
the constraint under which the expectation values ofa andb are
calculated. In Bardeen et al.’s work the constraint is given by
the value of the local density, i.e. the sum of the three eigen-
values, whereas in this paper we put a constraint on the largest
eigenvalue. This is a natural assumption for this investigation
since the multi-streaming occurs as soon as a singularity has
been reached in one direction. Of course, this analysis assumes
that the Zel’dovich approximation holds in order to predict the
time at which this first singularity is reached. For oblate initial
structures such as the ones obtained for the most likely values
of a (see Figs. 5 and 6), we expect that this approximation is
sufficiently accurate.

3. The geometry and vorticity of large-scale caustics

In this section we investigate the properties of the caustics that
are induced by the initial density fluctuation profiles we found in
the previous section. All the calculations are performed within
the framework of the Zel’dovich approximation, even sightly
after the first shell crossing.

3.1. The linear displacement field

In the framework of the Zel’dovich approximation the displace-
ment field can be written

x = q + D(t)/D(t0) Ψ(q) ; (18)

whereD(t)accounts for the time dependency of the linear grow-
ing mode (it is proportional to the expansion factor in case of
an Einstein-de Sitter geometry only). An important simplifica-
tion is that, at the order of the Zel’dovich approximation, this
displacement field is separable in time and space, and its space
dependence,Ψ(q), is potential, i.e., there is a velocity potential
U(q) so that

Ψ(q) = ∇q · U(q) . (19)

This velocity potential is given by

U(q) =

∫

d3q δ(k)
1

k2
exp[ik · (q − q0)] . (20)

By construction the pointq0 in Lagrangian space corresponds
to the pointx0 in real space (central position of the caustic).
Both of them will be taken to be zero. For the calculation of the
explicit expressions ofδ(k) andU(q) we will assume that the
power spectrum follows a power law behaviour,

P (k) ∝ kn, (21)
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characterized by the power indexn. From Eq. (21) the expres-
sion of the linear variance as a function of scale follows

σ(RL) ∝ R
−(n+D)/2
L . (22)

This approximation is valid within a limited scale range as will
be discussed in Sect. 5. At the scales of interest the indexn is
expected to be the range ofn ≈ −1, −2 from the constraints
obtained with the large-scale galaxy catalogues, like the APM
survey (Peacock 1991) the IRAS galaxy survey (Fisher et al.
1993) or from X-ray cluster number counts (Henry & Arnaud
1991, Eke et al. 1996, Oukbir & Blanchard 1997). In two di-
mensions there are of course no such observationally motivated
values, but we will considern of the order of−1 as an illustrative
case.

3.1.1. The 2D potential

From the Eqs. (7),(20) it is possible to calculate the expression
of the potential

U(q) = G(0, n − 2, q) + a cos(2θq)

× [G(0, n − 2, q) − 2 G(1, n − 2, q)] , with

G(ν, n, q) =

∫

d2k kn Jν(k q)

(k q)ν
W2D(k). (23)

The latter expression is given by

G(ν, n, q) = 2F1(1 + n/2, n/2, 1 + ν, q2) ,

for q < 1 , and (24)

G(ν, n, q) =
Γ(1 + ν) Γ(1 − n/2)

qn+2 Γ(ν − n/2)
2F1(1 + n/2, 1

−ν + n/2, 2, q−2) , for q > 1. (25)

The expressions for the gradients of the potential involve similar
hyper-geometric functions.

3.1.2. The 3D potential

The expression of the potential following from Eqs. (12),(20)
becomes quite complicated, but involves here only “simple”
functions. It reads

U(q) = [V (q) − V (−q)]/q3, (26)

with

V (q) = |1 + q|2−n sign(1 + q)
(

A(q) − B(q)
[

b cos(2 φ)

× [1 − cos(2 θ)] + a cos(2 θ)
]

)

, (27)

A(q) = −10 q2 + 7n q2 − n2 q2 + 5 q3 − n q3

+a
(

−1 + 2 q − n q + 2 q2 − n q2 − q3
)

, (28)

B(q) = 3 − 6 q + 3n q + 4 q2 − 4 n q2

+n2 q2 − 2 q3 + n q3 (29)

Note that the potentials in Eqs. (23) and (26) have discontinu-
ous derivative atq = 1, which is an artifact of using a top-hat

-2 -1 1 2
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x position

y position

Lagrangian 
   Caustic

Eulerian 
  Caustic

Fig. 5. The shape of the caustic for the 2D dynamics,n = −1, and
λmax ≈ 1.3. The dashed line is the shape in Lagrangian space and the
solid line the shape in real space.
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Fig. 6. The shape of the caustic for the 3D dynamics,n = −1.5 and
λmax ≈ 1.5. The external shell is the Lagrangian position of the caus-
tic, the internal one its position in real space.

window function. Note also that the potentials given here have
arbitrary normalizations. This is of no consequence for the de-
rived results since the global normalization of the initial den-
sity profile is absorbed in the discussion for the value ofλmax

(Sect. 4.4).

3.2. The shape of the caustics

A multi-flow region forms as soon as Eq. (18) has more than one
solution. The corresponding region forms the so-called caustic.
These regions are illustrated in Figs. (5) and (6) in respectively
2 and 3 dimensions for typical values of the parameters. The
solid lines show in 2D the shape of the caustic in real space, and
the dashed lines their shape in the original Lagrangian space.

For the chosen values ofa andb and for the relevantλmax

the caustics form elongated structures. These figures are plotted
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in units of the smoothing scaleRL. They suggest that the largest
dimension of the caustics are roughly of the order of magnitude
of the initial Lagrangian scale. Note that the boundaries of the
caustics correspond to surfaces (or lines in 2D) where the Jaco-
bian of the transformation between Lagrangian space and real
space vanishes, i.e.

J(q) =
∣

∣

∂x

∂q

∣

∣ = 0. (30)

The size and shape of these caustics are characterized, in 2D
and 3D (although only approximately), by two lengths, the half-
depth of the caustic,d, (that is the distance that has been cov-
ered by the shock front after the first singularity) and its half-
extensione. For instance in Fig. (5) the value ofd is about0.1
and the value ofe is about0.9 in units of the Lagrangian size
of the fluctuationRL. In the case of the 3D dynamicse corre-
sponds to the radius of the caustic since we restrict ourselves to
cylindrical symmetry.

The density in each flow “s” is given by the inverse of the
Jacobian of the transformation so that

ρ(qs) = 1/J(qs) . (31)

The total density within the caustic is then given by the summa-
tion over each flow of each of their densities,

ρ(x) =
∑

flow s

ρ(qs). (32)

3.3. The velocity field, and the generated vorticity

The velocity in each flow is given by

u(q) = Ḋ(t)/D(t0) Ψ(q). (33)

For a given Robertson Walker cosmology,Ḋ(t) obeys

Ḋ(t) = f(Ω) H0 D(t) ≈ Ω0.6 H0 D(t) . (34)

whereH0 is the Hubble constant at the present time andf(Ω)
is the logarithmic derivative of the growing factor with respect
to the expansion factor. Eq. (34) is the only place where the
Ω dependence (andΛ dependence though it is negligible) will
come into play.

In general the velocity field,u(x), is defined as the density
averaged velocities of each flow. Thus we have

u(x) =

∑

flow s ρ(qs)u(qs)
∑

flow s ρ(qs)
, (35)

where the summation is carried on all the flows that have entered
the neighborhood ofx. The vorticity is then given by the anti-
symmetric derivatives of the total velocity with respect tox:

ωk(x) =
∑

i,j

εk,j,i ∂ui(x)

∂xj

=
∑

i,j

εk,j,i

([

∑

flow s

∂ρ(qs)

∂qsl
(D−1)j,l ui(qs)

]

×
[

∑

flow s

ρ(qs)

]

−
[

∑

flow s

ρ(qs)ui(qs)

]

×
[

∑

flow s

∂ρ(qs)

∂qsl
(D−1)j,l

])

/[

∑

flow s

ρ(qs)ui(qs)

]2

, (36)

whereDi,j is the matrix of the transformation between the La-
grangian space and the Eulerian space,

Di,j =
∂xi

∂qj
, (37)

andεk,j,i the totally antisymmetric tensor. The numerical ex-
pression of the local vorticity follows from the roots of Eq. (18)
and the potentials Eqs. (23),(26).

3.3.1. The local vorticity

As illustrated in Fig. (7) (the 2D case) and (8) (the 3D case), the
vorticity is null outside the caustic. First note that the vorticity
sign changes from one quadrant to another, so that the global
vorticity is zero (as it should be), and note that within each quad-
rant the vorticity is rather smooth. Note also that the vorticity is
mainly located near the edges of the caustic. In fact the vorticity
at the edge is unbounded and the behaviour of the vorticity close
to the edges is easily estimated. Callingq0 andx0 the position
of a point on the edge in respectively the Lagrangian space and
the Eulerian space, we can expandx andq close tox0 andq0.
Since the linear term in the expansion is singular inq = q0 (by
definition of the caustic), there is one direction, orthogonal to
the edge and typeset with the subscript⊥, for which

(x − x0)⊥ ≈ −η (qi − q0)
2
⊥ , (38)

whereη is given by the second order expansion of the displace-
ment field along this direction. The minus sign accounts here
for the fact thatx0⊥ has been assumed to be larger thanx⊥.
This equation is valid for two different flows (say 1 and 2) cor-
responding to the two roots ofqi in Eq. (38). The Jacobian for
the first two flows is then

J(x) ≈ −2η (qi − q0)⊥ ≈ 2
√

η (x0 − x)⊥. (39)

Note that on the edge of the caustic,J(x)|∂ J(x)/∂x| has a
finite value,η. There is also a third flow in the vicinity ofx0

which is regular; let us callq3 the Lagrangian position ofx0 in
this flow. The velocity is then given by

u(x) ≈
(

(x0 − x)
−1/2
⊥ /

√
η u(q0) + ρ(q3)u(q3)

)

/(

(x0 − x)
−1/2
⊥ /

√
η + ρ(q3)

)

. (40)

As a result we have

u(x) ≈ u(q0) + ρ(q3)
√

η (x0 − x)
1/2
⊥ (u(q3) − u(q0)), (41)

whenx is within the caustic and

u(x) = u(q3), (42)
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Fig. 7.The map of the vorticity in a typical 2D caus-
tic (n = −1). Left panel:the local vorticity is anti-
symmetric with respect to the centre of the caustic. It
points along the Z-axis, and is positive in the second
and fourth quadrant, and negative in the first and
third. Right panels:behavior of the local vorticity
along two different lines (thick dot-dashed line on
the left panel). The top panel shows that the vorticity
is singular near the edge of the caustic. It behaves as
described by Eq. (43) and there is a non zero lineic
vorticity located on the edges (represented here by
a vertical line) due to the discontinuity of the local
velocity field. The bottom panel shows that the local
vorticity goes continuously to zero towards the axes.

whenx has crossed the caustic boundary. The local velocity
is thus discontinuous at the caustic boundary and the induced
vorticity is consequently singular atx0 with

ω(x) ≈ −ρ(q3)
√

η (x0 − x)
−1/2
⊥ (u(q3) − u(q0))‖/2. (43)

The direction‖ is a direction parallel to the caustic. There is
only one such direction in 2D, two in 3D. There is however
not only a surface (or volume) contribution within the caustic.
Because of the discontinuity of the velocity field at the edges
of the caustic, a vorticity field on the boundary of the caustic
is created (see Fig. 7 for the 2D case), whose linear or surface
density for respectively the 2D and 3D cases are given by

ωlin., surf = (u(q3) − u(q0))‖. (44)

It turns out that the two contributions tend to cancel each other.
Indeed, as we have noticed previously, the velocity increases
close to the edge of the caustic, and then has a discontinuity at
the edge. This creates a sharp peak in the vicinity of the edge of
the vorticity. The vorticity, which is obtained by differentiation
of the local velocity is then expected to be opposite on both
side of this peak. Realistically, the small scale perturbations are
going to wash out these features, and to smooth the velocity
peaks. As a result the quantities describing the behaviour of
the vorticity near the edge of the caustic are not robust and
should not be taken at face value. On the other hand, we expect
the integrated vorticity to be a more robust quantity, since it is
roughly independent of small scale fluctuations.

3.3.2. The integrated vorticity

In two dimensions, the integrated vorticity in each quadrant
can be easily obtained numerically by simple one dimensional
integrals which, from Stoke’s theorem, can be expressed as

ωquad. =

∫

quadran

d2xω(x) =

∫

edges

u · dl, (45)

wheredl describes the edge of the quadrant. One should bear
in mind that, in Eq. (45) the velocities on the edge of the caustic
are taken as the velocities of the third flow,u(q3), so that the
singular part of the vorticity is taken into account.

In three dimensions and for (almost) spherically symmetric
caustics the local vorticity is independent of the azimuthal angle,
θ. It is then convenient to calculate the integrated vorticity per
azimuthal angle in each quadrant,

ωquad. dθ =

(∫

quadran

dz r dr ω(x)

)

dθ

=

(∫

edges

r u · dl +

∫

quadran

d2xuz

)

dθ, (46)

wherer is the distance of the running point to the symmetry axis,
anduz is the velocity component along this axis. Compared to
the 2D case there is a further difficulty due to the surface integral
of one component of the velocity. Note nonetheless that this
contribution is not singular at the edge of the caustic as shown
by Eq. (41), and can thus be safely computed numerically. We
found that this second integral contributes typically to about
15% of the total for the relevant caustics.

3.3.3. Scaling laws

We now bring forward fits to describe the dependence of the
integrated vorticity with the spectral indexn andλmax. which
will allow us to characterize the most significant caustics that
contribute to the large–scales vorticity. We make explicit the de-
pendence of those quantities with respect to the size of the per-
turbationRL and the cosmological parameterΩ. Expressed in
units of the expansion factor, the displacement, in the Zel’dovich
approximation, is independent ofΩ. Thereforea andb are in-
dependent ofΩ, and are simply proportional toRL. The total
vorticity in each quadrant is on the other hand proportional to
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Fig. 8. Section of the vorticity field for
the caustic of Fig. (6). The local vorticity
is antisymmetric with respect to the cen-
tre of the caustic. In thisX −Z section,
it points along the Y-axis, and is nega-
tive in the second and fourth quadrant,
positive in the first and third.

Fig. 9.ωquad. for 2D caustics as a function ofλmax and its correspond-
ing fit for an = −1.5 (circles, solid line),n = −1 (squares, long dash
line), andn = −0.5 (triangles, short dashed line) power spectrum.

H0 andf(Ω) (defined in Eq. (34)), given that it is proportional
to the local velocity, and is clearly proportional to the volume
of the perturbation. We thus have the following scalings,

d(RL) = RL d0 (λmax − 1)αd ,

e(RL) = RL e0 (λmax − 1)αe ,

ωquad(RL,Ω) = f(Ω) RD
L ω0 (λmax − 1)α H0, (47)

where the parametersα, αd, αe, ω0, d0 ande0 are given in Ta-
ble (1) and (2) for respectively the 2D and the 3D geometry.
The accuracy of these fits is illustrated on Figs. (9)–(10). These
functions yield estimates of the geometry and vorticity gener-
ated by these large-scale caustics. From these tables one can see
that the average vorticity (in units ofH0) is roughly one within
the caustic. The amount of vorticity which is generated in the
caustics is thus found to be somewhat limited. It is also inter-
esting to note thatωquad. presents no singular behaviour when
the caustic appears atλmax ≈ 1 (i.e.α > 1).

4. The vorticity distribution at large scales

As argued previously, the calculation of the global shape of the
vorticity distribution is beyond the scope of this paper. Indeed
the lowω behaviour of the vorticity distribution is dominated

Fig. 10.ωquad. for 3D caustics as a function ofλmax and its correspond-
ing fit for an = −2 (circles, solid line),n = −1.5 (squares, long dash
line), andn = −1 (triangles, short dashed line) power spectrum.

Table 1.Fitting parameters in Eq. (47) for the 2D caustics. The quality
of those fits forω0 andα are illustrated in Fig. (9).

n ω0 α d0 αd e0 αe

−1.5 3.94 1.95 0.8 1.3 2.7 0.6
−1 1.80 1.59 0.67 1.3 1.6 0.45
−0.5 1.63 1.43 0.75 1.3 1.3 0.32

Table 2.Fitting parameters in Eq. (47) for the 3D caustics. The quality
of those fits are illustrated in Fig. (10).

n ω0 α d0 αd e0 αe

−2 0.67 1.76 0.57 1.31 1.61 0.49
−1.5 0.46 1.55 0.52 1.30 1.25 0.37
−1 0.49 1.37 0.53 1.30 1.13 0.30

by the small caustics that are not rare, and therefore not well
described by the dynamical evolution of an isolated object. The
aim of this section is to estimatethe shape and position of the cut-
off in the probability distribution function of the local smoothed
vorticity. We will therefore estimatePRs

(> ωs), the probability
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that in a circular or spherical cell of radiusRs the mean vorticity
exceedsωs. This estimation requires

(i) identifying the caustics that contribute mostly for each case;
(ii) estimating the contribution of each of those caustics.

In each case various approximations are used. In the main text
we simply spell the major highlights of the derivation. A more
detailed and explicit calculation of the vorticity distribution is
presented in Appendix C.

4.1. Identification of the caustics

We assume in what follows thatωs is large enough for the con-
tribution toPRs

(> ωs) to be dominated by large and rare caus-
tics. This assumption is the corner stone of the calculation: only
a small fraction of the caustics with specific characteristics at
some critical time will contribute.

The identification of the caustics contributing most results
of a trade off between the amount of vorticity a given caustic
can generate and its relative rarity: the higherλmax, the greater
the internal vorticity is, according to Eq. (47) and given thatα
is positive, but the rarer those caustics are (Eqs. (11) and (17)).
Obviouslyλmax should be larger than unity for any vorticity at
all to be generated. The calculation is slightly complicated by
the fact that the Eulerian size of the caustics also depends of the
value ofλmax. Let us assume here that the Eulerian size of the
caustics is substantially smaller than the smoothing length, so
that the entire integrated vorticity in a quadrant can contribute
(in Appendix C, this assumption is shown to be self-consistent).
This implies a scaling relation between the smoothing cell,ωs

andλmax,

ωs RD
s ∝ RD

L (λmax − 1)α. (48)

For a given smoothing length and a givenωs, Eq. (48) yields a
relation between the value ofλmax and the size of the caustic.
The caustics which contribute most to the vorticity are then
obtained by minimizing the ratioλ2

max/σ2(RL) which appears
in the exponential cutoff of the distribution function ofλmax

(Eqs. (11) and (17)). Given thatσ2(RL) behaves likeR−(n+D)
L

this minimization yields for the extremum value ofλmax,

λ(0)
max =

2D

2D − α(n + D)
. (49)

Note that for the values ofα we have found,λ(0)
max is always

finite and positive. This means that the filtered vorticity is indeed
expected to be dominated by caustics which have evolved for
a finite time. This provides an a posteriori justification of the
assumptions leading to this calculation.

The value ofλmax found in Eq. (49) is a robust result of
our calculations, although it cannot be excluded that this value
could be affected by the failure of the Zel’dovich approximation
after the first shell crossing.

4.2. Estimation of the caustic contribution to the vorticity PDF

In order to estimate the contribution of those caustics toPRs
(>

ωs) two other fundamental quantities have to be estimated:

(i) the number density of caustics;
(ii) the volume for which each of them contributes toPRs

(>
ωs).

These quantities have been estimated for the specific caustics
we have previously identified in Sect. 4.1.

4.2.1. The number density of caustics

Estimating the number density of caustics is, in general, a com-
plicated problem. In the case of Gaussian fields the correspond-
ing investigation was carried by Bardeen et al. (1986) for 3D
fields, and by Bond & Efstathiou (1987) for 2D fields. The num-
ber of caustics is simply determined by the number of points at
which the first derivatives of the local density vanishes. This
defines accordingly the extrema of the local density field. The
further requirements we have here on the second order deriva-
tives of the potential ensures that such points are in fact maxima
of density field. We refer here to Bardeen et al. (1986) for more
details on how to carry the investigation. A critical step involves
transforming theδDirac function in the value of the first deriva-
tives into aδDirac function in the position, thus introducing the
Jacobian of the second order derivatives of the density field.
After some algebra we find:

nRL
({λi}) dDλi = p

({

λi

σ(RL)

})

× dDλi

σD(RL)

|Jac2({λi})|
(2πσ2

1)D/2
, (50)

where the probabilityp is given either by Eq. (9) or (15) in re-
spectively 2D and 3D,Jac2({λi}) is the Jacobian of the second
order derivatives of the density field for given eigenvalues of
the deformation matrix andσ1 is the variance of the derivatives
of the local density field,

σ2
1(RL) =

∫

dDk P (k)
k2

2
W 2

D(RL). (51)

For a given geometry (i.e.given values ofa andb) Jac2 is pro-
portional toλ3

max, and it scales asR−2 D
L due to the derivatives

involved in the expression of the matrix elements. It is therefore
appropriate to re-express Eq. (50) as

nRL
({λi}) dDλi = p

({

λi

σ(RL)

})

dDλi

σD(RL)

n0({λi})

RD
L

×
(

λmax

σ(RL)

)D

where

n0({λi}) =
|Jac2({λi})|
λD

max (2π)D/2

[

σ

σ1

]D

RD
L . (52)

Note thatn0, thanks to the prefactorRD
L , is a dimensionless

quantity in Eq. (52). A further simplification is provided by the
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fact that for large enough values ofλmax, the distribution func-
tionp({λi}), at fixedλmax, allows only a small range of possible
values for the smaller eigenvalues. We therefore neglect the vari-
ations ofJac2({λi}) with respect to those variables: it is viewed
here as a function ofλmax only and calculated for fixed values
of the a-symmetry parametersa andb. The ratioσ/σ1 depends
only on the value of the power law index. Recall however (see
Bardeen et al. 1986) that this ratio is not well-defined for top-
hat window functions because of spurious divergences for some
values ofn. To avoid this problem, we used the Gaussian win-
dow function to compute this ratio. As a result, for fixed values
of a andb, n0 is a dimensionless quantity that can be explicitly
calculated in a straightforward manner. Relevant values ofn0

are given in tables in the Appendix C.

4.3. The contributing region

The region over which each caustic contributes is the surface (or
volume in 3D) of space in the vicinity of a given caustic where,
if one centers a cell in that location, the total vorticity induced
by the caustic within the cell is aboveωs.

In general the contributing surface or volume can be written,

Vcaus.(RL, Rs, {λi}, ωs)

=

∫

Θ [ωc (c, RL, Rs, {λi}) − ωs] dDc , (53)

whereΘ is the Heaviside step function,c stands for the vec-
tor pointing to the center of the sampling sphere, whileωC is
the vorticity found in that sphere intersecting the caustic with
characteristicsRs, {λi}. In its full generality,Vcaus. is a rather
complex function of the scalesRL andRs, and the eigenvalues
λi through the shape of the caustics and ofωs. Yet, since the
functional form of the rare event tail in the probability distribu-
tion function is basically fixed by the exponential in Eq. (11),
the only required ingredient for computingPRs

(> ωs) is the
scaling behaviour ofVcaus. at its takeoff – when reaching the
critical time,λ(0)

max, at which a given caustic is large enough to
start contributing. The detailed geometry of the caustic and its
vorticity field accounts only for a correction in a multiplicative
factor. Consequently we make approximations describing the
distribution of the vorticity on the caustic in order to estimate
the scaling properties ofVcaus..

4.3.1. The 2D contributing surface

In two dimensions we make the radical assumption that the
vorticity is entirely concentrated on four discrete points, which
– consistently with the hypothesis of Sect. 3.3.2, have been taken
to bear either the vorticity+ωquad. or −ωquad., depending on
which quadrant is being considered. In practice the position of
the points is chosen somewhat arbitrarily at a third of the depth
and extension of the caustic. The corresponding areaVcaus. is
therefore identically null before a critical time corresponding
to the chosenωs andRs and then takes a constant value which
can be deduced geometrically from the area of the loci of the
center of the sampling disks. In Fig. (11) we show the shape of
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Fig. 11.Sketch showing the adopted simplification for describing a 2D
caustic. Vorticity is assumed to be localized on the black dots having
either+ωquad. or−ωquad.. The dashed area representsVcaus. for ωs >
|ωquad.|.

Caustic

height

radius

Ring

Fig. 12. Sketch showing the adopted simplification for describing a
3D caustic. Vorticity is assumed to be localized on two rings (that
appear as two horizontal black segments) having a lineic vorticity of
either either+3 ωquad./e or −3 ωquad./e. The shaded area represents
dVcaus./dωs.

this location on a particular example. Under this assumption,
the functionVcaus. takes the form,

Vcaus. = V0(RL/Rs) Θ(λmax − λ(0)
max) RL Rs , (54)

whereV0 can be calculated for the values of interest ofRL and
Rs.

4.3.2. The 3D contributing volume

In three dimensions, the vorticity will be assumed to be dis-
tributed uniformly along tworings which are taken to bear the
linear vorticity3ωquad./e – with respectively prograde and ret-
rograde orientation. In practice these rings are also positioned
at a third of the depth and extension of the caustic. The mean
vorticity to be expected in a sampling sphere of radiusRs is then
given by algebraic summation over the segments corresponding
to the intersection of that sphere with the two rings. Maps of the
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sampled vorticity as a function of the centers of the sphere are
derived to computeVcaus. which according to Eq. (53) corre-
sponds to the volume in space defined by these centers yielding
a vorticity larger thanωs. Fig. (12) gives the shape of this loca-
tion for a given caustic and sampling radius. The functionVcaus.

takes the form,

Vcaus. = V0(RL/Rs)RLR2
s (λmax − λ(0)

max)
γ , (55)

whereV0 andγ can be calculated for the values of interest of
RL andRs at this critical values (see Appendix D, where it is
in particular demonstrated that whenRL � Rs, V0 asymptotes
to a fixed value andγ = 1/2).

4.4. Estimation ofPRs
(> ωs)

The tail of the probability distribution for the vorticity is now
estimated while integrating over all the caustics that might con-
tribute, and assuming that, for a fixed caustic, the probability
distribution is given by the number density of caustics times the
volume associated with each caustic. There is however a further
difficulty. The distribution of causticsnRL

is well defined for
a fixed value ofRL only, but there are actually caustics of all
sizes. To circumvent this difficulty we simply chooseRL so that
the result we obtain is maximal, i.e.,

PRs
(> ωs) ' max

RL

[∫

dDλi nRL
({λi})

× Vcaus.(RL, Rs, {λi}, ωs)

]

. (56)

Furthermore, it is fair to neglect the dependence ofn0(λi) and
Vcaus on the initial asymmetry because the overall factorp(λi)
peaks in a narrow range of relevant values for the smaller eigen-
value(s). It is then possible to integrate over those variables in-
troducing the probability distribution ofλmax in the expression
of PRs

(> ωs),

PRs
(> ωs) ' max

RL

[∫

dλmax pmax (λmax)
n0(λmax)

RD
L

×
(

λmax

σ(RL)

)D

Vcaus.(RL, Rs, λmax, ωs)

]

. (57)

We show in Appendix C that the maximum of Eq. (56) is
indeed given by caustics of size of the order ofRs at most. A
detailed account of how to perform the sum in Eq. (56) is also
given there for the two geometries. Repeated use of the rare event
approximation together with the geometrical assumptions on
the vorticity distribution sketched in Sect. 4.3.1 and Sect. 4.3.2
yields eventually an explicit expression for the tail of the prob-
ability distribution for the vorticity as a function ofωs andRs.

4.4.1. The two dimensional vorticity distribution

In two dimensions, the vorticity distribution is shown to obey
(Eq. (C9))

PRs
(> ωs) ' 0.56 n0 V0

(

λ
(0)
max

σ(Rs)

)2

fn+1
s ω(n+1)/2

s

Fig. 13.PRs(> ωs) in two dimensions for scales characterized by a
σ(Rs) of 0.5 (thick lines) and1 (thin lines) and for an = −1.5 (solid
line), n = −1 (long dash line), andn = −0.5 (short dashed line)
power spectrum.

×exp



−4

3

(

λ
(0)
max

σ(Rs)

)2

fn+2
s ω(n+2)/2

s



 . (58)

In the rare event régime, the quantity that dominates Eq. (58)
arises from the exponential cutoff. Forn = −1 we find for
instance that

log [PRs
(> ωs)] ' 3.5

ω
1/2
s

σ2(Rs)
. (59)

Ther.h.s.of Eq. (59) is roughly0.5 whenωs ≈ 10−3, σ(Rs) ≈
0.5 or ωs ≈ 0.1, σ(Rs) ≈ 1.5, hence defining a thresh-
old corresponding to a one sigma damping forPRs

(> ωs).
Eq. p2Dfinalmt is illustrated on Fig. (13).

4.4.2. The three dimensional vorticity distribution

Similarly, the probability distribution is shown in the Ap-
pendix C (Eq. (C19)) to obey in 3D:

PRs
(> ωs) = 0.48 n0 V0

(

λ
(0)
max

σ(Rs)

)7/2

f
(13+7n)

4
s ω

(13+7n)
12

s

×exp



−5

2

(

λ
(0)
max

σ(Rs)

)2

fn+3
s ω(n+3)/3

s



 , (60)

Forn = −1.5, Eq. (60) gives forlog [PRs
(> ωs)]

log [PRs
(> ωs)] ' 20.

ω
1/3
s

σ2(Rs)
. (61)
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yielding again at a one sigma level the range of relevant val-
ues forωs andσ(Rs): ωs ≈ 5 10−5, σ(Rs) ≈ 0.5 or ωs ≈
0.1, σ(Rs) ≈ 3.5. In both cases the caustics start to generate
significant vorticity only at rather small scales. Equation (60) is
also illustrated on Fig. (14). From this figure it is clear that the
amount of vorticity that we derived is below what has been mea-
sured inN -body simulations (open and filled circles). Numer-
ical measurements of this quantity are sparse, so we compared
our estimations to measurements carried out by Bernardeau &
Van de Weygaert (1996) in an adaptive P3M simulation with
CDM initial conditions (see Couchman 1991 for a description
of these simulations). The typical amount of vorticity at the10
to 15 h−1Mpc scale for which the rms of the density is below
0.5 was found to be about0.2 (in units of H0). This is well
above the values we have estimated in this paper. Though it is
quite possible that these numerical measurements are spoiled
by noise, we do not expect that it could account for all the dis-
crepancy between the measured and the predicted vorticities (as
suggested by the relative the scatter between the two methods
suggested in Bernardeau & Van de Weygaert, 1996).

There are various possible explanations for such discrepan-
cies. It could of course arise from the fact that the vorticity at
large-scales does not spring from the rare and large caustics but
from small scale multi-steaming events that cascade towards the
larger scales. Such a scenario cannot be excluded but is diffi-
cult to investigate by means of analytic calculations. It is also
possible that theN -body simulations do not address properly
the physics of the large scales multi-streaming. In particular
the two-body interactions should in principle be negligible, a
property which seems to be hardly satisfied in currentN -body
simulations. This shortcoming has been raised by Suisalu &
Saar (1995), Steinmetz & White (1997) and more specifically
by Splinter et al. (1998), where they examine the outcome of the
planar singularity in phase space. They have found in particular
that in classical algorithms the particle’s velocity dispersions are
incorrectly large in all directions. These could turn out to be a
major unphysical source of vorticity (since the Lagrangian time
derivative of the vorticity scales like the curl of the divergence
of the velocity anisotropies). Specific numerical experiments,
that follow for instance the initial density profiles given in this
paper, should be carried to address this problem more carefully.

5. Discussion and conclusions

We have estimated, within the framework of the gravitational in-
stability scenario, the amount of vorticity generated after the first
shell crossings in large-scales caustics. The calculations relied
on the Zel’dovich approximation which yields estimates of the
characteristics of the largest caustics and allows explicit calcu-
lation of their vorticity content. This analysis corresponds to one
of the first attempts to investigate the properties of cosmological
density perturbations beyond first shell-crossing. The previous
investigations (Fillmore & Goldreich 1984, Bertschinger 1985)
were carried out for spherically symmetric systems only, and ob-
viously do not address the physics of vorticity generation. The

Fig. 14.PRs(> ωs) in three dimensions for scales characterized by a
σ(Rs) of 0.5 (thick lines) and1 (thin lines) and for an = −2 (solid
line), n = −1.5 (long dash line), andn = −1 (short dashed line)
power spectrum. The filled and open circles correspond respectively
to the measured integrated PDF in a CDM simulation at15h−1Mpc
scale with the “Delaunay” or “Voronoi” methods (see Bernardeau &
Van de Weygaert 1996).

only other means of investigation for this régime is numerical
N -body simulations.

We found that large scales caustics can provide only an
extremely low contribution to the vorticity at scales of10 to
15h−1Mpc. This contribution could be significant only at rela-
tively small scales, when the variance reaches values of a few
units. This effect is even more important in three dimensions, the
difference arising mainly from the coefficient in the exponen-
tial cut-off. It is therefore unlikely that these caustics can have
produced a significant effect on the velocity at large scales. In
view of these results, it is amply justified to assume that the ve-
locity remains potential down to very small scales,i.e. typically
the cluster scale at which it is then more natural to expect the
multi-streaming ŕegime (not only three-flow régime) to play an
important role.

This result provides a complementary view to the picture
developed by Doroshkevich (1970) describing the emergence
of galaxy angular momentum from small-scale torque interac-
tions between protogalaxies (a prediction subsequently checked
by White (1984), and examined in more detail by Catelan & The-
uns, (1996 and 1997)). We rather explore here the large scale
coherence of the vorticity field that may emerge in a hierar-
chical scenario from scale much larger than the galactic size.
The effects we are exploring here does not originate from the
two-body interaction of haloes as in the picture developed by
Doroshkevich, but from the possible existence of large scale
coherent vorticity field. The conclusion of our work is however
that the efficiency with which the large-scale structure caustics
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generate vorticity is rather low. Therefore these results do not
really challenge the fact that the small scales interactions should
indeed be the dominant contribution to the actual galactic an-
gular momenta.

As a consequence, we do not expect either a significant cor-
relation of the angular momenta at large scale. In particular the
vorticity field generated in caustics does not seem to be able
to induce a significant large scale correlation of the galactic
shapes which would have been desastruous for weak lensing
measurements1.

Let us reframe this calculation in the context of perturbation
theory which has triggered some interest in the last few years as
a tool to investigate the quasi-linear growth of structures. One
key assumption in these techniques is that the velocity field is
assumed to form a single potential flow. The detailed descrip-
tion of the properties of the first singularities is by essence not
accessible to this theory: such singularities cannot be “seen”
through Taylor expansions of the initial fields. In this context it
was unclear whether the back reaction of the small scales multi-
streaming ŕegime on the larger scales (which were thought to
be adequately described by perturbation theory) could affect the
results on those scales. Such effects are partially explored here
where we find that the impact of the first multistreaming regions
is rather low on larger scales. Our results therefore support the
idea that the large scales velocity field can be accurately de-
scribed by potential flows and support our views on the validity
domain of perturbation theory calculations.

In the course of this derivation we have made various as-
sumptions. We followed in essence the approach pioneered by
Press & Schechter (1974) for the mass distribution of virialized
objects by trying to identify in the initial density field the density
fluctuations that contribute mostly to the large-scales vorticity.
The calculations have been designed to be as accurate as possi-
ble in the rare event limit, an approximation which turned out
to be crucial at various stages of the argument.

– The above estimation relies heavily on the assumption that
the caustics only contribute to large-scale vorticity indepen-
dently of each other. In other words it is assumed that the
caustics do not overlap. Moreover the dynamical evolution
of one caustic is taken to be well-described by the evolution
of the caustic having the mean profile. This can be approxi-
mately true only in the rare event limit since otherwise it is
likely that the substructures and its environment will change
the dynamical evolution of the caustics. Although it is clear
that, in the ŕegime we investigated, the caustics are rare
enough not to overlap, the effects of substructure are more
difficult to investigate. In particular we have outlined some
local features (3.3.1) of the vorticity maps that we think are
unlikely to survive the existence of substructures.

– The typical caustics are characterized in this rare event limit.
For instance the values ofa andb were found to be all the
more peaked to given values as the corresponding events

1 In these measurements background galaxy shapes are assumed to
be totally uncorrelated in the source plane, the observed correlation
being interpreted as entirely due to gravitational lens effects.

are rare. We have then estimated the vorticity such caustics
generate while assuming that slightly different geometries
are unlikely to produce very different results. This assump-
tion is somewhat suspicious, since it might turn out that
slightly different geometries could produce more vortici-
ties, and thus change the exact position of the cut-off. We
do not expect however that the conclusions we have reached
could be changed drastically in this manner.

– The contributions of each caustics toPRs
(> ωs) have also

been calculated in the rare event limit. This is in practice
a very useful approximation on large scales since it is then
natural to expect the entire distribution to be dominated by
a unique value ofλmax.

– We have finally deliberately simplified the spatial distribu-
tion of the vorticity within the caustics. Since in the rare
event limit it is natural to expect that the Lagrangian scales
of the caustics are much smaller than the smoothing scale
this detailed arrangement should be of little relevance. It cer-
tainly should not affect the scaling laws as only the value of
the overall factorV0 will change, and this has little bearing
on our conclusions.

On top of the rare event limit approximation, we have also
made a dramatic simplification by using the Zel’dovich approxi-
mation throughout. This is certainly a secure assumption before
the first shell-crossing since the geometries that we have in-
vestigated were rather sheet-like structures (and the Zel’dovich
approximation is exact in 1D dynamics). After the first shell-
crossing however, the back reaction of the large over-densities
that are created could possibly affect the velocity field. However
we do not expect that this effect should be very large so long as
λmax is moderately small (up to about 1.5), since before then the
initial inertial movement should dominate. Later on, matter is
expected to bounce back to the center of the caustics. Whether
the vorticity content is then amplified or reduced remains an
open question.
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Appendix A: average profile
of an a-spherical constrained random field

A.1. General formula

Let us evaluate here the average profile of an a-spherical con-
strained random field in both 2 and 3D. Similar calculations
as those presented in this Appendix have been investigated by
Bardeen et al. (1986) for the 3D field and by Bond & Efs-
tathiou (1987) for 2D fields. But, here, instead of the second
order derivative of the density field, we consider instead the de-
formation tensor corresponding to second order derivatives of
the potential. We also investigate the global properties that such
constraints induce on the density field.

Consider a random density field, in either 2D or 3D, having
fluctuations following a Gaussian statistics. It is then entirely
determined, in a statistical sense, by the shape of its power
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spectrum,P (k). Recall thatP (k) is defined from the Fourier
transform of the density field,

δ(k) =

∫

d3x exp(ik.x) δ(x) , with

〈

δ(k) δ(k′)
〉

= δDirac(k + k′) P (k), (A1)

where the brackets
〈

.
〉

stands for the ensemble average of the
random variables. Let us calculate theexpectationvalue ofδ(k)
when a local constraint has been set in order to create ana-
sphericalperturbation. To set such a constraint, we have chosen
to consider the deformation tensor of the density field smoothed
at a given scaleRL. This tensor reads,

φi,j =

∫

d3k δ(k) WD(k RL)
kikj

k2
. (A2)

Note that the local smoothed density is given by the trace of
this tensor. The chosen window functionWD in Fourier space
corresponds to a top-hat filter in real space and it reads,

W2(k) = 2
J1(k)

k1/2
in 2D,

W3(k) = 3
√

π/2
J3/2(k)

k3/2
in 3D, (A3)

whereJν are the Bessel functions of indexν. The matrixφi,j is
now set to be equal to a given constraint. It is obviously possible
to choose the axis so that this constraint is a diagonal matrix with
eigenvalues(λi), i = 1, D. The elements of the matrixφi,j and
δ(k) form aGaussianrandom vector,

Vc = (δ(k), φ1,1, . . . , φD,D, φ1,2, . . . , φ1,D,

φ2,2, . . . , φD,D−1) , (A4)

and the desired expectation value ofδ(k) is directly related to
the cross-correlation matrix of the components of this vector.
Consider the matrixCa,b with a = 0, · · ·D(D + 1)/2 and
b = 0, · · ·D(D + 1)/2, so that

C0,0 =
〈

δ(k) δ(k)
〉

= P (k) , (A5)

Ca,0 =
〈

δ(k) φi,j

〉

= P (k) WD(k RL)
kikj

k2
, (A6)

Ca,b =
〈

φi,j φi′,j′

〉

=

∫

d3k P (k) W 2
D(k RL)

kikjki′kj′

k4
, (A7)

where the indicesi, j (respectivelyi′, j′) for the matrix elements
φij corresponds to the(a + 1)th (respectively(b + 1)th) com-
ponent ofVc. For a given spectrum these quantities are easily
calculated and are given in the following subsections for power
law spectrum in resp. 2 and 3 dimensions. The distribution func-
tion of the components of the vectorVc then reads in terms of
Eq. (A7),

p(Vc) dVc = exp



−1

2

∑

a,b

(

C−1
)

a,b
V ca V cb





× dVc

[2πDet(C)]1/2+D(D+1)/4
. (A8)

The expectation value ofδ(k) is given by the ratio

δexpec.(k) =

∫

dδ(k) δ(k) p(V c)
∫

dδ(k) p(V c)
, (A9)

A straightforward calculation shows that this quantity is given
by

δexpec.(k) =
D
∑

i=1

−
(

C−1
)

0,i

(C−1)0,0

λi . (A10)

Note that the further constraint that the first derivative of the
density field should be zero (so that the pointx0 is actually
located on a maximum of the density field) would not change
the resulting expression ofδexpec.(k) since the cross correlation
of the first order derivatives with any other involved quantities
identically vanish.

A.2. The 2D profile

In 2 dimensions we have

Ca,b =









C0,0 C0,1 C0,2 C0,3

C0,1 3σ2
0/8 σ2

0/8 0
C0,2 σ2

0/8 3σ2
0/8 0

C0,2 0 0 σ2
0/8









, (A11)

with the variance of the smoothed density field,σ0, given by

σ2
0 =

∫

d3k P (k) W 2
D(k RL). (A12)

The required elements of the inverse of this matrix are given by

(

C−1
)

0,0
=

1

64
σ6

0/Det(C) , (A13)

(

C−1
)

0,1
= −

∣

∣

∣

∣

∣

∣

C0,1 C0,2 C0,3

σ2
0/8 3σ2

0/8 0
0 0 σ2

0/8

∣

∣

∣

∣

∣

∣

1

64 Det(C)

=
(C0,2 − 3 C0,1) σ4

0

64 Det(C)
, (A14)

(

C−1
)

0,2
=

∣

∣

∣

∣

∣

∣

C0,1 C0,2 C0,3

σ2
0/8 σ2

0/8 0
0 0 σ2

0/8

∣

∣

∣

∣

∣

∣

1

64 Det(C)

=
(C0,1 − 3 C0,2) σ4

0

64 Det(C)
. (A15)

As a result, Eq. (A10) becomes here

δexpec.(k) =
P (k) W2(k RL)

σ2
0

× (λ1 + λ2 + 2 cos(2θ)[λ1 − λ2]) , (A16)

where the angleθ were chosen so that

k1/k = cos(θ) , k2/k = sin(θ).

θ the angle between a given vector and the eigenvector associ-
ated to the first eigenvalue.
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A.3. The 3D profile

In 3 dimensions the matrixC reads,

C =







C0,0 . . . C0,6

... D
C0,6






, with D=

σ2
0

15

















3 1 1
1 3 1 0
1 1 3

1 0 0
0 0 1 0

0 0 1

















.

(A17)

From this expression of the matrix of the cross correlations it is
quite straightforward to re-express Eq. (A10) as

δexpec.(k) =
3P (k) W3(k RL)

2

(

λ1[k
2
2 + k2

3 − 4k2
1] (A18)

+ λ2[k
2
1 + k2

3 − 4k2
2] + λ3[k

2
1 + k2

2 − 4k2
3]
)

.

When the coordinates of the wave vector are expressed in terms
of the anglesθk andφk, defined by

k1 = k sin(θk) cos(φk) k2 = k sin(θk) sin(φk) and

k3 = k cos(θk) .

Eq. (A18) becomes

δexpec.(k) =
3 P (k) W3(k RL)

8 σ2
0

(λ1 + λ2 + 6λ3)

×(1 + a cos(2θk) + b cos(2φk)

×[1 + cos(2θk)]) , (A19)

wherea andb are specific combinations of the eigenvalues,

a = 5
2λ3 − λ1 − λ2

λ1 + λ2 + 6λ3
, and b = 5

λ1 − λ2

λ1 + λ2 + 6λ3
. (A20)

Appendix B: the DF of the eigenvalues
of the local deformation tensor

The derivation of the distribution function of the eigenvalues of
the local deformation tensor was carried in 3D by Doroshke-
vich (1970). We extend here the calculation to the 2D case (for
which the calculations are straightforward). Starting with equa-
tion (A11) – the cross-correlations between the elements of the
deformation tensors, one can easily get the expression of the
joint distribution function of the deformation tensor elements,

p(φ1,1, φ1,2, φ2,2) dφ1,1 dφ1,2 dφ2,2

=
8

(2π)3/2

dφ1,1 dφ1,2 dφ2,2

σ3
0

× exp

[

−1

2

(

3φ2
1,1 + 8φ2

1,2 + 3φ2
2,2 − 2φ1,2φ2,2

)

]

(B1)

The change of variables,

λ+ =
φ1,1 + φ2,2

2
+

√
∆

2
, λ− =

φ1,1 + φ2,2

2
−

√
∆

2
, with

∆ = (φ1,1 − φ2,2)
2 + 4φ2

1,2, (B2)

allows us to introduce the eigenvalues of the matrix. The Jaco-
bianJ of this transformation is given by

J−1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
2 +

φ1,1−φ2,2

2
√

∆
∼ 1

2 − φ1,1−φ2,2

2
√

∆

1
2 − φ1,1−φ2,2

2
√

∆
∼ 1

2 − φ1,1+φ2,2

2
√

∆

0 1 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
√

1 − 4 φ1,2/∆ . (B3)

As a result we have

p(λ+, λ−, φ1,2) dλ+ dλ− dφ1,2

=
8dλ+ dλ− dφ1,2

(2π)3/2σ3
0

1
√

1 − 4 φ1,2/∆

× exp

[

− 1

σ2
0

(3

2
J2

1 − 4J2

)

]

, (B4)

with

J1 = λ+ + λ− , , and J2 = λ+ λ−. (B5)

The integration overφ1,2 yields

p(λ+, λ−) dλ+ dλ− =

√

2

π

dλ+ dλ−
σ3

0

|λ+ − λ−|

× exp

[

− 1

σ2
0

(3

2
J2

1 − 4J2

)

]

. (B6)

Note that ifλ+ is a priori assumed to be greater thanλ− the
distribution should be multiplied by 2.

Appendix C: estimation of PRs
(> ωs)

In this Appendix we estimate the probabilityPRs
(> ωs) that a

sphere of radiusRs contains an integrated vorticity larger than
ωs. In order to account for caustics of all sizes we argued in the
main text thatPRs

(> ωs) was well approximated by

PRs
(> ωs) ' max

RL

[∫

dDλi nRL
(λi)

×Vcaus.(RL, Rs, {λi}, ωs)

]

. (C1)

We will now show that the maximum is indeed given by caustics
of size of the order ofRs and approximate this integral in 2 and
3D. To simplify further Eq. (C1), note first that the distribution
function of the eigenvalues is peaked in a given geometry (i.e.
a = 1, andb ' 0 in 3D) for rare caustics (large values ofλmax).
Therefore the integral in Eq. (C1) will be dominated by caustics
of this geometry and the factorVcaus. can be taken at this point
while carrying the integration over the other two eigenvalues.
As a result we have

PRs
(> ωs) ' max

RL

[

∫ ∞

1

dλmax pmax(λmax)

(

λmax

σ(RL)

)D

×n0(λmax) Vcaus.(RL, Rs, λmax, ωs)

RD
L

]

. (C2)



678 C. Pichon & F. Bernardeau: Vorticity generation in large-scale structure caustics

This integral runs from 1 to infinity since the caustics exist
only whenλmax is greater than 1. The evaluation of Eq. (C2)
requires insights into the functionVcaus.. Although there are no
real qualitative changes between the the 2D and 3D cases, we
now proceed with the computation of Eq. (C2) by distinguishing
the two geometries for the sake of clarity.

C.1. The 2D statistics

Recall that the integral Eq. (C1) will be dominated by the rare
even tail, and thus by the lowest value ofλmax that contributes
to the integral. In other words, when considering a given caustic
characterized by its Lagrangian scaleRL, one should wait long
enough so that it has grown sufficiently in order to contribute
after sampling a vorticity larger thanωs. For eachRL therefore
correspondsλ(0)

max(RL), the lowest value ofλmax for which
Vcaus. is non zero:

PRs
(> ωs) ' max

RL

[

∫ ∞

λ
(0)
max

dλmax pmax(λmax)

(

λmax

σ(RL)

)2

×n0(λmax) Vcaus.(RL, Rs, λmax, ωs)

R2
L

]

. (C3)

The lower boundλ(0)
max(RL) is reached as soon asωquad. is

larger thanπ R2
s ωs: the largest possible value of the integrated

vorticity in a cell of a given radius. It is therefore implicitly
defined by

ωs =
ωquad.

π R2
s

≡ ωM

= f(Ω)
R2

L

πR2
s

ω0 (λ(0)
max(ωs, RL) − 1)α . (C4)

Assuming thatVcaus. does not contain any exponential cutoff,
and assuming thatλmax is in the rare event tail, Eq. (C2) can be
approximatively re-expressed as

PRs
(> ωs) ' max

RL



0.56

(

λ
(0)
max

σ(RL)

)2

exp



−4

3

(

λ
(0)
max

σ(RL)

)2




×n0 Vcaus.(Rs, RL, λ
(0)
max, ωs)

R2
L

]

, (C5)

when using Eq. (11) for the distribution function ofλmax,
integrating by part and dropping the residual integral for
large enoughλ(0)

max/σ(RL) (see Appendix Appendix E: for
details). This maximum with respect toRL is then approx-
imated by the minimum of the argument of the exponential,
λ

(0)
max(RL)/σ(RL), where the minimum in the facto taken with

respect toλ(0)
max sinceσ(RL) can be thought of a function of

λ
(0)
max via Eqs. (22) and (C4). This minimum can de facto be

expressed independently ofRs. It reads

λ(0)
max =

4

4 − α(n + 2)
. (C6)

Table C1.Parameters of interest for the 2D caustics: the power index,
n, the critical timeλ(0)

max, the radial extensione(0), depthd(0) in units
of RL,scale factorf (0)

s as well as the values ofn0 andV0 for the critical
caustics.

n λ
(0)
max d(0) e(0) fs n0 V0

−1.5 1.31 0.17 1.34 0.30 0.018 0.9
−1 1.67 0.40 1.33 0.95 0.023 1.8
−0.5 2.15 0.90 1.36 1.25 0.009 3.4

Once λ
(0)
max is fixed the geometry of the caustic which will

contribute most toPRs
(> ωs) is entirely specified. The con-

dition for the existence of a minimum definingλ(0)
max is that

α(n + 2) < 4, and it is satisfied for all considered cases (see
Table (1)). This implies that we are investigating a régime where
the integral Eq. (C2) is not dominated by arbitrarily rare caus-
tics – which would have been catastrophic given the assumptions
(note that whenn is too largeλ(0)

max tend to be quite large thus
challenging the validity of quantitative results based upon the
Zel’dovich approximation). The resulting value ofRL is

RL = Rs

√

πωs

ω0 f(Ω)

(

4 − α (n + 2)

α (n + 2)

)α/2

= fs Rs

(

ωs

f(Ω)

)1/2

. (C7)

The scale factorfs is given in Table (C1) for an Einstein-de Sitter
universe (f(Ω) = 1) and different values ofn. Completing the
calculation ofPRs

(> ωs) involves relating the shape and size
of the caustic for the adopted value ofλ

(0)
max. These values are

derived from the fits (Eq. (47)) and are given in Table (C1).
Fig. (12) givesVcaus., in units of the square ofRL, as a function
of the smoothing radiusRs. From Fig. (12) it is easy to see that

Vcaus. ' V0 Rs RL , (C8)

for any values andn; the corresponding values ofV0 are given
in Table C1. Putting Eq. (C8) into Eq. (C3), using Eqs. (C6),
(C7) yields for the sought distribution

PRs
(> ωs) ' 0.56 n0 V0

(

λ
(0)
max

σ(Rs)

)2

fn+1
s ω(n+1)/2

s

×exp



−4

3

(

λ
(0)
max

σ(Rs)

)2

fn+2
s ω(n+2)/2

s



 , (C9)

Note that the power ofωs in the exponential is rather weak. The
cut-off is nonetheless strong in the régime of interest because of
the leading coefficient. Equation (C9) is illustrated on Fig. (13)
and discussed in the main text.

C.2. The 3D statistics

The threshold onλmax, from which the caustics start to con-
tribute at a given scaleRs depends on the adopted description for
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the local vorticity. We assume here as mentioned in Sect. 4.3.2
that the total vorticity is localized on two rings of radiuse/3
each, distant of2 d/3 of each other. They are assumed to bear
opposite lineic (and uniformly distributed) vorticities; in order
to get a consistent answer for the integrated vorticity in a quad-
rant, we should have

ωlin. =
3ωquad.

e
. (C10)

The maximum vorticity that can be encompassed in a sphere
then depends on its radiusRs. If Rs is larger than the radius
of the ringse/3, it is possible to have half of a ring in a sphere
(while the other ring does not intersect it at all), so that the values
of λmax (for which the maximum vorticity is sampled) is given
by

ωs =
2 e ωlin.

3

1
4π
3 R3

s

≡ ω+
M

=
3

2π
ω0 (λmax − 1)αf(Ω)

R3
L

R3
s

, if Rs > e/3. (C11)

If on the other handRs is smaller thane/3 then only a fraction
of the half ring can be put in the sphere and we have instead

ωs = 2Rs ωlin.
1

4π
3 R3

s

≡ ω−
M (C12)

=
9

2π

ω0

e0
(λmax − 1)α−αef(Ω)

R2
L

R2
s

, if Rs < e/3.

Now the local behaviour ofVcaus. near its takeoff value is well
represented (as argued below and demonstrated in Appendix D
for large enoughRs) as a function ofλmax by

Vcaus.(RL, Rs, λmax, ωs)

=

∫

Θ [ωc (c, RL, Rs, λmax) − ωs] d3c

' RLR2
sV0(λmax − λ(0)

max)
γ , (C13)

Using Eq. (17) and (52) for the distribution function
pmax(λmax), changing integration variable fromu = λmax/σ

to λ
(0)
max + u/λ

(0)
max and dropping the residual integral for large

enoughλ
(0)
max/σ(RL) (see Appendix Appendix E: for details)

yields for Eq. (C3):

PRs
(> ωs) ' max

RL





6 n0 V0Γ(γ + 1)

5γ+1

(

λ
(0)
max

σ(RL)

)4−γ

× exp



−5

2

(

λ
(0)
max

σ(RL)

)2




R2
s

R2
L



 , (C14)

From Eq. (22) and (C11), (C12), the minimum of the argument
of the exponential corresponds to:

λ+
max ≡ 6

6 − α(n + 3)
if Rs > e/3, and

λ−
max ≡ 4

4 − (α − αe)(n + 3)
if Rs < e/3, (C15)

Table C2.Parameters of interest for the 3D caustics: the power index,
n, the critical timesλ±

max, the scale factorf±
s in the two ŕegimes

(Rs < e/3 in parentheses) with radial extensione(0), depthd(0) in
units of RL as well as the values ofn0 andV0 that enter the final
expressions.

n λ+
max (λ−

max) f+
s (f−

s ) d(0) e(0) n0 V0

−2. 1.41 (1.47) 2.46 (2.09) 0.18 1.04 0.18 0.96
−1.5 1.63 (1.79) 2.10 (1.58) 0.28 1.05 0.14 1.84
−1. 1.84 (2.15) 1.78 (1.17) 0.42 1.07 0.064 3.18

Fig. C1.The functionVcaus., in units of the square ofRL, as a function
of the smoothing radius in 2D. The solid line corresponds to the case
n = −1.5, the dashed line ton = −1 and the long dashed line
to n = −0.5. In all cases the geometry of the caustic is fixed by
λmax = λ

(0)
max.

which assumes thatα(n+3) < 6 (resp.(α−αe)(n+3) < 4),
both conditions being satisfied for all values ofn considered.
The corresponding scaling relations betweenRL andRs are
given by

RL = f+
s Rs

(

ωs

f(Ω)

)1/3

if Rs > e/3 , or

RL = f−
s Rs

(

ωs

f(Ω)

)1/2

if Rs < e/3 . (C16)

The scale factorsf±
s – derived from the fits (Eq. (47)) – are given

in Table (C2) for an Einstein-de Sitter universe (f(Ω) = 1) and
different values ofn. Interestingly, as long asωs is not too
large the conditionRL > e/3 is always satisfied. In practice
at scales of about10 to 15h−1Mpc the measured vorticityωs

is expected to be indeed at most of a few tenth (Bernardeau &
van de Weygaert, 1996). It is therefore always fair to assume
that we are in the régime whereRs > e/3 which is the ŕegime
investigated hereafter.

Completing the calculation ofPRs
(> ωs) requires evaluat-

ing the correspondingn0, γ andV0. The value ofn0 is entirely
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Fig. C2.The loci of the centres of spheres contributingωs in the range
[ω+

M
(1 − ε2/2), ω+

M
[. The dashed arrow points to a centre of such a

sphere, and defines the running angle,θ, mentioned in Eq. (D2). The
two (cylindrically symmetric) shaded regions correspond to the loci of
the centre of spheres capturing almost half a ring and all or none of the
other. Two examples of such spheres are displayed for either case.

determined by the geometry of the caustics and is given in the
Tables 1 and 2. The behaviour ofVcaus. as it departs from zero
as a function ofωs for the critical ratios ofRs, e andd is locally
well fitted as a function ofωs by a power law of the form

Vcaus.(λmax, ωs) ' U0 RL R2
s

(

1 − ωs

ω+
M (λmax)

)γ

. (C17)

whereω+
M is the threshold value ofωs (Eq. (C11)). This ex-

pression is valid whenωs is close to its threshold value. On the
critical line, ωs = ω+

M , it is possible to relate the variation of
λmax to the variations ofωs. We can then rewrite Eq. (C17) as
a function of the difference betweenλmax and the critical value
λ

(0)
max, assuming this departure is small,

Vcaus.(λmax, ωs) ' RL R2
sV0 (λmax − λ(0)

max)
γ , with

V0 =
U0 αγ

(λ
(0)
max − 1)γ

. (C18)

SinceRL/Rs is only a function ofn andωs, so areV0 andγ.
In practice we take the asymptotic values ofV0 andγ given
in Appendix D and corresponding to the limitRs � RL.
Putting Eq. (C18) into Eq. (C14), using Eq. (C15) –(C17) and
(D4) yields for the vorticity distribution

PRs
(> ωs) = 0.48n0V0

(

λ
(0)
max

σ(Rs)

)7/2

f
(13+7n)

4
s ω

(13+7n)
12

s

×exp



−5

2

(

λ
(0)
max

σ(Rs)

)2

fn+3
s ω(n+3)/3

s



 . (C19)

Equation (C19) is illustrated on Fig. (14) and discussed in the
main text.

Appendix D: asymptotic behaviour ofVCaust. in 3D

For large enoughRs we derive here an asymptotic analytic ex-
pression forVCaust.. Let us first estimate geometrically the vol-
ume in space contributing almostω+

M to VCaust.. The corre-
sponding contribution is the sum of two volumes given by the
shaded area in Fig. (C2), corresponding to the loci of the centers
of spheres which capture almost half a ring and not the other,
or which capture completely one ring and almost half of the
other. In the asymptotic limit, ase/Rs → 0, the element of
volume is an infinitely thin strip and both contributions become
equal sinceθ → −θ′. The area corresponding to these loci can
be evaluated algebraically as follow: let us callε the projected
ring segment by which a sampling sphere of radiusRs fails to
encompass a ring diameter2e/3; it follows that the ratio ofωs

to ω+
M , is given by

ωs

ω+
M

= (1 − ε2

2
) . (D1)

On the other hand, for a given direction for the sphere centre
given bycos(θ) ≡ µ, within the solid angle2πdµ, the volume
element (encompassed by the two shifted spheres capturingωs

in the range[ω+
M (1 − ε2/2), ω+

M [) is given by
(

2e

3

)

4π R2
sε sin2 θdθ = 8π

e

3
R2

sε
√

1 − µ2 dµ . (D2)

Summing over all possible directions (i.e. before intersecting
the second ring) yields

8π
e

3
R2

sε

1
∫

µ0

√

1 − µ2 dµ ≡ 8 π
e(0)

3
RL R2

s εJ ,

where µ0 =

[

1 +
4d(0)2

e(0)2

]−1/2

. (D3)

Accounting for the summation over the two configurations (half
a ring captured or a full + one half ring captured), using Eq. (D1)
to eliminateε, we finally get for large enoughRs

VCaust. = 16
√

2πRL R2
s

e(0)

3

(

1 − ωs

ω+
M

)1/2

,

therefore γ∞ =
1

2
and U∞

0 = 16
√

2π
e(0)

3
J . (D4)

Appendix E: rare event approximation

Consider an integral of the form

I =

∞
∫

a

xβ(x − a)γ exp(−bx2) dx . (E1)

Changing variable tox = a + u/(2ab) Eq. (E1) reads

I =
1

2ab
exp(−ba2)

∞
∫

0

( u

2ab

)γ

aβ

[

(

1 +
u

2a2b

)β

× exp

(

− u2

2ba2

)]

exp(−u) du . (E2)
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For large enougha the square brace in Eq. (E2) is well approx-
imated by1 yielding for Eq. (E2)

I =
aβ−γ−1

(2b)γ+1
Γ(γ + 1) exp(−ba2) . (E3)

Eq. (C5) is a special case of Eq. (E1) withx = λmax/σ, a =

λ
(0)
max, γ = 0, β = 3 andb = 4/3, while Eq. (C14) corresponds

to β = 5, andb = 5/2. Note that theγ = 0 approximant can
be deduced directly by integration by parts.
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