
HAL Id: insu-04054621
https://insu.hal.science/insu-04054621

Submitted on 1 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

STECKMAP: STEllar Content and Kinematics from
high resolution galactic spectra via Maximum A

Posteriori
P. Ocvirk, C. Pichon, A. Lançon, E. Thiébaut

To cite this version:
P. Ocvirk, C. Pichon, A. Lançon, E. Thiébaut. STECKMAP: STEllar Content and Kinematics from
high resolution galactic spectra via Maximum A Posteriori. Monthly Notices of the Royal Astronomical
Society, 2006, 365, pp.74-84. �10.1111/j.1365-2966.2005.09323.x�. �insu-04054621�

https://insu.hal.science/insu-04054621
https://hal.archives-ouvertes.fr


Mon. Not. R. Astron. Soc. 365, 74–84 (2006) doi:10.1111/j.1365-2966.2005.09323.x

STECKMAP: STEllar Content and Kinematics from high resolution
galactic spectra via Maximum A Posteriori

P. Ocvirk,1� C. Pichon,2 A. Lançon1 and E. Thiébaut3
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ABSTRACT
We introduce STECKMAP (STEllar Content and Kinematics via Maximum A Posteriori
likelihood), a method for recovering the kinematic properties of a galaxy simultaneously with its
stellar content from integrated light spectra. It is an extension of STECMAP (presented recently
by Ocvirk et al.) to the general case where the velocity distribution of the underlying stars is
also unknown. The reconstructions of the stellar age distribution, the age–metallicity relation
and the line-of-sight velocity distribution (LOSVD) are all non-parametric, i.e. no specific
shape is assumed. The only a priori conditions that we use are positivity and the requirement
that the solution is smooth enough. The smoothness parameter can be set by generalized
cross-validation according to the level of noise in the data in order to avoid overinterpretation.

We use single stellar populations (SSPs) from PÉGASE-HR (R = 10 000, λ = 4 000–6 800 Å,
from Le Borgne et al.) to test the method through realistic simulations. Non-Gaussianities in
LOSVDs are reliably recovered with signal-to-noise ratio (SNR) as low as 20 per 0.2 Å pixel.
It turns out that the recovery of the stellar content is not degraded by the simultaneous recovery
of the kinematic distribution, so that the resolution in age and error estimates given in Ocvirk
et al. remain appropriate when used with STECKMAP.

We also explore the case of age-dependent kinematics (i.e. when each stellar component has
its own LOSVD). We separate the bulge and disc components of an idealized simplified spiral
galaxy in integrated light from high-quality pseudo-data (SNR = 100 per pixel, R = 10 000),
and constrain the kinematics (mean projected velocity, projected velocity dispersion) and age
of both components.

Key words: methods: data analysis – methods: statistical – techniques: spectroscopic – galax-
ies: abundances – galaxies: kinematics and dynamics – galaxies: stellar content.

1 I N T RO D U C T I O N

For decades now, the spectral indices from the Lick group have
been used to study the properties of stellar populations (Faber et al.
1985; Worthey 1994; Trager et al. 1998). Since the profile and
depth of the lines involved in these spectral indices are affected
by the line-of-sight velocity distribution (LOSVD) of the stars, it
is necessary to correct the measured depths by a factor depend-
ing on the moments of the velocity distribution (Davies, Sadler &
Peletier 1993; Kuntschner 2000, 2004). The latter moments must
be determined using specialized code (Bender 1990; Kuijken &
Merrifield 1993; van der Marel & Franx 1993; Saha & Williams
1994; Merritt 1997; Pinkney et al. 2003). These kinematic decon-
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volution routines have been used for some time and have undergone
two major mutations. First, thanks to the increasing power of com-
puters, it became affordable to swap back and forth from direct
space to Fourier space, so that many disturbances such as border ef-
fects and saturation could be avoided. It became straightforward to
mask problematic regions of the data, such as dead pixels, emission
lines, etc. The second evolution of these codes allowed the use of
multiple superimposed stellar templates to match best the observed
spectrum (Rix & White 1992; Cappellari & Emsellem 2004). It
has also been proposed to use single stellar populations (SSPs) as
synthetic templates, and this approach has proved to be useful in
addressing the template mismatch problem (Falcón-Barroso et al.
2003). Moreover, this technique can save precious telescope time,
since it circumvents the need for observing template stars.

In Ocvirk et al. (2005, hereafter Paper I), we introduced
STECMAP, a method for recovering non-parametrically the stellar
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content of a given galaxy from its integrated light spectrum. Using
STECMAP requires, as a preliminary, convolving the data or mod-
els with the proper point spread function (PSF), which can be of
both physical (i.e. the stellar LOSVD) and instrumental (the instru-
ment’s PSF) origin. Adjusting the LOSVD to fit the data not only
constrains the kinematics of the observed galaxy but will also re-
duce the mismatch due to errors in the determination of the redshift
or anomalous PSF, which is ultimately a necessary step when fitting
galaxy spectra.

Here we propose to constrain the velocity distribution simultane-
ously with the stellar content, by merging the kinematic deconvo-
lution and the stellar content reconstruction into one global maxi-
mum a posteriori likelihood inversion method. Hence, STECMAP
becomes STECKMAP (STEllar Content and Kinematics via Maxi-
mum A Posteriori likelihood). In this respect, STECKMAP resem-
bles the method proposed by, for example, Falcón-Barroso et al.
(2003), except that it takes advantage of the treatment of the stellar
content by STECMAP. Together with the stellar age distribution
and the age–metallicity relation, the LOSVD is described non-
parametrically and the only a priori conditions we use are smooth-
ness and positivity.

We also tentatively address the case of age-dependent kinematics,
i.e. we try to recover the individual LOSVDs and ages of several
superimposed kinematic subcomponents. This approach is moti-
vated by the fact that galaxies often display several kinematic com-
ponents. Ellipticals and dwarf ellipticals, for instance, are known
often to harbour kinematically decoupled cores (Balcells & Quinn
1990; Bender & Surma 1992; De Rijcke et al. 2004), and spiral
galaxies are usually assumed to be constituted of a thin and a thick
disc, a bulge and a halo (Freeman & Bland-Hawthorn 2002). The
variety of the dynamical properties of the components has a coun-
terpart in their stellar content, as a signature of the formation and
evolution of the galaxy. For instance, the halo of the Milky Way is
believed to consist mainly of old, metal-poor stars, while the bulge is
more metal-rich, and the thin disc is mainly younger than the bulge
(Freeman & Bland-Hawthorn 2002). It is thus natural to let any stel-
lar subpopulation have its own LOSVD. This possibility has been re-
cently addressed by De Bruyne et al. (2004a,b), in a slightly different
framework. They use individual stars as templates for the different
components, while we propose to use synthetic SSP models. Such
a method would allow us to separate the several kinematic compo-
nents of galaxies from integrated light spectra, and to constrain, for
example, their age–velocity dispersion and age–metallicity relation.
The highly detailed stellar content and kinematic information that
can be obtained for the Milky Way or for nearby galaxies that can
be resolved into stars, such as M31 (Ferguson et al. 2002; Ibata
et al. 2004), could be extended to a larger sample of more distant
galaxies. This technique could also be useful in detecting and char-
acterizing major stellar streams in age and velocity from integral
field spectroscopy of galaxies.

In this paper we use the PÉGASE-HR SSP models (Le Borgne
et al. 2004) in order to illustrate and investigate the behaviour of the
problems through simulations and inversions of mock data. Indeed,
PÉGASE-HR, with its high spectral resolution (R = 10 000), is an
adequate choice for testing the recovery of detailed kinematic infor-
mation in the form of non-parametric LOSVDs. The problems and
methods we describe are, however, by no means specific to PÉGASE-
HR (and its wavelength coverage), and STECKMAP could be used
with any possible SSP model, depending on the type of data that is
being analysed.

We will start with the modelling of the kinematics. Then, we
will address the idealized linear problem of recovering the LOSVD

when the stellar content is known, i.e. the template is assumed to be
perfect. Section 4 deals with simultaneous age and LOSVD recon-
struction of composite populations. Finally, Section 5 investigates
the case of age-dependent kinematics in a simplified context where
the metallicity and extinction are known a priori.

2 M O D E L S O F G A L A X Y S P E C T R A

In this section we present the modelling of galaxy spectra, taking
into account the composite nature of the stellar population, in age,
metallicity and extinction, and finally its kinematics.

2.1 The composite reddened population at rest

We model the spectral energy distribution (SED) of the composite
reddened population at rest using the ingredients defined in Paper I:

Frest(λ) = fext(E, λ)

∫ tmax

tmin

�(t)B(λ, t, Z (t)) dt, (1)

where fext(E , λ) is the extinction law, �(t) is the luminosity-
weighted stellar age distribution, Z(t) is the age–metallicity relation,
and B(λ, t, Z) is the flux-averaged SSP basis of an isochrone pop-
ulation of wavelength λ, age t and metallicity Z. We recall briefly
the main properties of the PÉGASE-HR SSP basis that we use in this
paper. As mentioned earlier, spectral resolution is R = 10 000 over
the full optical domain λ = [4000, 6800] Å, sampled in steps of
0.2 Å. The models are available for metallicities Z ∈ [0.0001, 0.1]
and considered reliable between t min = 10 Myr and t max = 15 Gyr.
The initial mass function (IMF) used is described in Kroupa, Tout
& Gilmore (1993), and the stellar masses range from 0.1 M� to
120 M�. The extinction law fext was taken from Calzetti (2001).

2.2 Model kinematics

Stellar motions in galaxies define a LOSVD corresponding to pro-
jected local velocity distributions integrated along the line of sight
and across one resolved spatial element.

2.2.1 Global kinematics

The motion of the stars can to first approximation be accounted for
by assuming that the velocities of all stars of all ages along the line of
sight are taken from the same velocity distribution (hence ‘global’).
The model SED, φ(λ), is the convolution of the assumed normalized
LOSVD, g(v), defined for v ∈ [vmin, vmax] with the model spectrum
at rest Frest(λ). The convolved spectrum φ(λ) reads

φ(λ) =
∫ vmax

vmin

Frest

(
λ

1 + v/c

)
g(v)

dv

1 + v/c
, (2)

where c is the velocity of light. The above expression reads as a
standard convolution

φ̃(w) = c

∫ umax

umin

F̃(w − u)g̃(u) du, (3)

with the following reparametrization:

w ≡ ln(λ), u ≡ ln

(
1 + v

c

)
, (4)

F̃(w) ≡ Frest(e
w) = Frest(λ), (5)

g̃(u) ≡ g(c(eu − 1)) = g(v), φ̃(w) ≡ φ(ew) = φ(λ), (6)

umin = ln

(
1 + vmin

c

)
, umax = ln

(
1 + vmax

c

)
. (7)
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2.2.2 Age-dependent kinematics

We now allow the LOSVD to depend on the age of the stars. For
simplicity, we consider here only unreddened monometallic popu-
lations, i.e. fext(E , λ) = 1 and Z (t) = Z 0. We introduce the age–
velocity distribution, �(v, t), defined in [vmin, vmax] × [t min, t max],
which gives the contribution of stars of velocity and age in [v, v +
dv] × [t , t + dt] to the total observed light. Thus, for a given age t,
�(v, t) is the LOSVD of the SSP of age t. The age–velocity distri-
bution, �(v, t), is related to the stellar age distribution, �(t), by∫ vmax

vmin

�(v, t) dv = �(t). (8)

The model spectrum of such a population thus reads

φ(λ) =
∫ tmax

tmin

∫ vmax

vmin

B

(
λ

1 + v/c
, t, Z0

)
�(v, t)

dv dt

1 + v/c
. (9)

The above expression can be rewritten more conveniently as

φ̃(w) = c

∫ umax

umin

∫ tmax

tmin

B̃(w−u, t)�̃(u, t) dt du, (10)

using the same reparametrization as in Section 2.2.1 and

B̃(w, t) ≡ B(ew, t, Z0) = B(λ, t, Z0), (11)

�̃(u, t) ≡ �(c(eu − 1), t) = �(v, t). (12)

In the rest of this paper, we will use exclusively the standard
(i.e. reparametrized) convolutions as in equations (3) and (10). For
readability, we will drop the superscript ˜ and set the speed of light
to unity.

3 K I N E M AT I C D E C O N VO L U T I O N

Section 2.2.1 shows that, with proper reparametrization, the convo-
lution of a model spectrum at rest, F(w), with the stellar LOSVD,
g(u), reads as a standard convolution, given by equation (3). Finding
the LOSVD when the observed spectrum, φ(w), and the template
spectrum, F(w), are given is a classical deconvolution problem. Our
goal here is not to discuss the respective qualities of the many differ-
ent methods available in the literature to solve this problem. Most
rely on fitting the data while imposing some a priori constraint on
the LOSVD, i.e. they provide maximum a posteriori (MAP) esti-
mates of the LOSVD. Let us describe briefly our method to obtain
such a solution with the purpose of coupling it in a later step with
STECMAP.

3.1 The convolution kernel

Here we discretize equation (3) to obtain a matrix form defining the
convolution kernel. We use an evenly spaced set{

u j = umin + (
j − 1

2

)
δu; j = 1, 2, . . . , p

}
spanning [umin, umax] with constant step δu ≡ (umax − umin)/p. We
expand the LOSVD as a sum of p gate functions:

g(u) = 1

δu

∑
j

g j θ

(
u − u j

δu

)
,

where

θ (x) =
{

1 if −1
2 < x � 1

2 ,

0 otherwise.

Inserting this expansion into equation (3) leads to

φ(w) = 1

δu

j=p∑
j=1

g j

∫ umax

umin

F(w − u) θ

(
u − u j

δu

)
du,

�
j=p∑
j=1

g j F(w − u j ). (13)

Similarly, we now sample along the wavelengths by integrating over
a small δw:

φi ≡ 1

δw

∫
φ(w) θ

(
w − wi

δw

)
dw,

�
j=p∑
j=1

g j F(wi − u j ), (14)

where {wj ; j = 1, 2, . . . , m} is a set of logarithmic wavelengths
spanning the spectral range with a constant step.

Using matrix notation and accounting for data noise, the observed
SED reads

y = K · g + e, (15)

where y = (φ1, φ2, . . . , φm)T is the measured spectrum, and e =
(e1, e2, . . . , em)T accounts for modelling errors and noise. The vec-
tor of sought parameters g = (g1, g2, . . . , gp)T is the discretized
LOSVD. The vector s = K · g is the model of the observed spec-
trum, and the matrix K,

Ki j = F(wi − u j ), ∀ (i, j) ∈ {1, . . . , m} × {1, . . . , p}, (16)

is called the convolution kernel.
The convolution theorem (Press et al. 2002) states that the Fourier

transform of the convolution of two functions is equal to the
frequency-wise product of the individual Fourier transforms of the
two functions. Applying this theorem yields another equivalent ex-
pression for the model spectrum s:

s = F−1 · diag(F · F) · F · g, (17)

whereF is the discrete Fourier operator defined in Press et al. (2002)
as

Fi j = exp

[
2iπ

m
(i − 1)( j − 1)

]
, ∀ (i, j) ∈ [1, . . . m]2, (18)

F−1 = 1

m
F∗. (19)

Note that, since m is the size of the template spectrum F, the dis-
cretized LOSVD g, which is initially of size p, needs to be sym-
metrically padded with zeros to the size m in order to transform the
Toeplitz matrix into a circulant one. The diagonal matrix diag(F ·F)
carries the coefficients of the Fourier transform of the model spec-
trum at rest, F. This notation involving the Fourier operator, F ,
will be very useful for a number of algebraic derivations in the rest
of the paper. In practice, from a computational point of view, it is
more efficient to implement any forward or inverse Fourier trans-
form through a fast Fourier transform (FFT). Similarly, the product
diag(F · F) · F · g is in practice implemented as a frequency-wise
product of the individual FFTs.

3.2 Regularization and MAP

A number of earlier publications have shown that the maximum-
likelihood solution to equation (15) is very sensitive to the noise in
the data, e. Hence, in the spirit of Paper I, we choose to regularize
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the problem by requiring the LOSVD to be smooth. To do so, we
use the quadratic penalization P(g) as defined by equation (29) in
Paper I:

P(g) = gT · LT · L · g. (20)

In the rest of the paper, the penalization is Laplacian, i.e. L = D2,
where D2 is the discrete second-order difference operator, as defined
in Pichon, Siebert & Bienaymé (2002). The objective function, Qµ,
to be minimized is given by

Qµ(g) = χ2(y | g) + µP(g), (21)

where the χ 2 is defined by

χ 2(y | g) = (y − s(g))T · W · (y − s(g)). (22)

The vector y is the observed spectrum, and the weight matrix is the
inverse of the covariance matrix of the noise: W = Cov(e)−1. The
parameter µ controls the smoothness of the LOSVD through its co-
efficients, g. It can be set on the basis of simulations (as described
in Paper I) or automatically by generalized cross validation (GCV)
(Wahba 1990), according to the signal-to-noise ratio (SNR) of the
data. In the latter case, the properties of the convolution kernel can be
used to speed up the computation of the GCV function. Further regu-
larization is provided by the requirement of positivity, implemented
through quadratic reparametrization. Minimizing Qµ yields the reg-
ularized solution gµ. Efficient minimization procedures require the
analytical expression of the gradients of Qµ, given in Appendix
Section A1.

3.3 Simulations

We applied this deconvolution technique to mock data, created from
PÉGASE-HR SSPs of several ages and metallicities, with R = 10 000
at 4000–6800 Å. In a first set of experiments, the model spectrum
at rest was a solar-metallicity 10-Gyr SSP. It was convolved with
various LOSVDs, both Gaussian and non-Gaussian, with velocity
dispersions ranging from 30 to 500 km s−1. It was then perturbed
with Gaussian noise at levels ranging from SNR = 5 to 100 per pixel,
and deconvolved using the model spectrum at rest as template (i.e.
no template mismatch). In all cases, the LOSVDs are adequately
recovered. Fig. 1 shows the reconstruction of a Gaussian LOSVD,
for SNR = 10 per pixel. However, there are necessarily some biases
in the reconstruction of the sharp features of the LOSVD. This is
expected since we introduced regularization via smoothing. To illus-
trate the relationship between regularization and bias, we performed
a new set of similar simulations for a non-Gaussian LOSVD (sum
of two Gaussians) with SNR = 20 per pixel and varied the smooth-
ing parameter µ. The results are shown in Fig. 2. Panels (a) and (b)
correspond to µ = 10, while panels (c) and (d) correspond to µ =
1000. The model, median and interquartiles of 500 reconstructions
are displayed. We also plotted the whole set of 500 recovered solu-
tions, in order to show the locus of the solutions. One can see that
the biases of the median reconstruction are reduced when lowering
µ. The highest bump is correctly reproduced for µ = 10, while it
is not for µ = 1000. On the other hand, the solutions are much
more widely spread when µ = 10. This means that most solutions
taken from the set of low-µ simulations can be very far from the
model, while all the large-µ solutions lie reasonably close to the
model.

The regularization acts as a Wiener filter in the sense that it damps
the high-frequency components of the solution. Regularization im-
proves the significance of an individual reconstruction (it will nearly

−200  0  200
0.00

0.05

0.10

0.15

v[km/s]

g(
v)

Figure 1. Non-parametric reconstruction of a Gaussian LOSVD for simu-
lated data, σ v = 100 km s−1, SNR = 10 per pixel. The model spectrum at rest
is a 10 Gyr old solar-metallicity SSP with R = 10 000 at 4000–6800 Å. The
template spectrum is identical, so that no template mismatch is allowed here.
The curve is the input model. The circles and the bars show respectively the
median and the interquartiles of the recovered solutions for 500 realizations
of the noise.

always lie reasonably close to the model), at the cost of introducing
a bias.

3.4 Age and metallicity mismatch

We take advantage of the large range of ages and metallicities of
SSPs covered by PÉGASE-HR to illustrate briefly the effects of tem-
plate mismatch on LOSVD determinations. In this section we show
the results of a large number of simulations aimed at characterizing
the error made when a wrong template is chosen for the kinematic
inversion of data. For this purpose, mock data were created by con-
volving an SSP of age a0 and metallicity Z0 with a centred Gaussian
LOSVD of dispersion σv = 50 km s −1. It was perturbed by Gaussian
noise corresponding to SNR = 100 per pixel and then deconvolved,
using as template an SSP of age a1 and metallicity Z1. The spectral
resolution and wavelength range are the same as in Section 3.3. Fig. 3
shows the error on the measured velocity dispersion. The latter is
measured as the rms of the reconstructed LOSVD. If the parameters
of the template are different from those of the model, the velocity
dispersion error increases very quickly. The age–metallicity degen-
eracy is visible as a valley of smaller error, following the upper left
to bottom right diagonal of the figures. Of course, the χ2 distance
between the model and the mock data follows a similar 2D distri-
bution, and will lead to the rejection of highly mismatched LOSVD
estimates. However, in practice, it is usually not straightforward to
quantify all the sources of error. It is thus somewhat arbitrary to set
an upper limit of χ2 for the admissible solutions, and the error on
the kinematics is thus hard to quantify. This experiment illustrates
in this context the long known issue that, when the correct model is
not available, large errors on the determination of kinematics are ex-
pected. In order to reduce the error in the estimates of the kinematic
properties of a stellar assembly, it is necessary to allow for a wide
range of modulations of the template. This is naturally achieved by
making the non-parametric stellar content account for the changes
of the template, as discussed in the next section.
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(c) SNR=20   mu=1000
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Figure 2. Impact of the smoothing parameter. Reconstruction of a non-Gaussian LOSVD for simulated data with SNR = 20 per pixel for µ = 10 (top) and
µ = 1000 (bottom). Left: The curve is the input model LOSVD. The circles and the bars show respectively the median and interquartiles of the reconstructed
LOSVDs for 500 realizations of the experiment. Right: The whole set of 500 solutions is displayed, with the model as a thick white line, in order to give the
reader a sense of what individual solutions look like. The figures show the trade-off between bias and reliability of the reconstruction. For small µ, the median
reconstruction is unbiased but the individual reconstructions are very noisy. For large µ, the median reconstruction is slightly biased but all the reconstructions
are reasonable. Hence, the significance of an individual reconstruction is improved by regularization at the cost of introducing a bias.
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Figure 3. Velocity dispersion error as a function of the age and metallicity of the template SSP. Contours show regions of increasing velocity dispersion error.
In each experiment, the age and metallicity of the original model template are shown as a thick cross, and the model LOSVD is a Gaussian with zero mean and
50 km s−1 dispersion. The velocity dispersion error is minimum when the template’ s age and metallicity are similar to those of the model. The error increases
quickly when the template parameters differ from the model parameters, also in the age–metallicity degeneracy direction (upper left to bottom right diagonal).
It increases even faster in the direction orthogonal to the age–metallicity degeneracy.
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4 R E C OV E R I N G S T E L L A R C O N T E N T
A N D G L O BA L K I N E M AT I C S

The mixed inversion described in this section couples the recov-
ery of both the stellar content and the kinematics, thereby turning
STECMAP into STECKMAP. Proper application of this method
provides an interpretation of the observed object in terms of stellar
content and kinematics.

4.1 Inverse problem

For a given model spectrum at rest, Frest(λ), and an LOSVD, g(v), the
emitted SED, φ(λ), is given by equation (2). We now wish to account
also for the additional variables involved in Frest, given by equation
(1), namely the stellar age distribution, �(t), the age–metallicity
relation, Z(t), and the colour excess, E(B − V ) = E . Inserting
equation (1) into the convolution equation (3) yields the emitted
SED

φ(w) =
∫ ∫

fext(E, w − u)�(t)B(w − u, t, Z (t))g(u) dt du. (23)

Solving equation (23) for �, Z, E and g when φ, fext and B are given
is the inverse problem we are tackling here.

4.2 Discretization and parameters

Expanding the two time-dependent unknowns �(t) and Z(t) as a
sum of n gate functions and inserting into equation (1) yields the
discrete model spectrum at rest:

F = diag( f ext(E)) · B · x, (24)

This discretization is explained in detail in section 5 of Paper I.
Similarly, we develop the LOSVD g(u) as a sum of p gate functions
as in Section 3. Note that the reddened model at rest plays the role
of the stellar template in a classical kinematic convolution. Inserting
equation (24) into equation (17) thus allows us to express the model
spectrum, s, as

s = F∗ · diag(F · diag( f ext(E)) · B · x) · F · g, (25)

However, here, the template is this time modulated by the unknowns
describing the stellar content.

4.3 Smoothness and metallicity constraints

The discrete problem of finding the stellar age distribution x, the
age–metallicity relation Z, the extinction E and the LOSVD g for
an observed spectrum y and given an extinction law fext and an
SSP basis B is of course likely to be very ill-conditioned since
it arises as the combination of several ill-conditioned problems. It
therefore requires regularization. We also want the metallicity of
the components to remain in the model range. We use the standard
penalization P and the binding function C defined in Paper I to build
the penalization Pµ for this problem:

Pµ = µx P(x) + µZ P(Z) + µC C(Z) + µv P(g), (26)

whereµ≡ (µx , µZ , µC , µv). Again, we chooseL = D2 as defined in
Pichon et al. (2002), so that the penalization P is actually Laplacian.
The objective function, Qµ, is now defined as

Qµ = χ2(s(x, Z, E, g)) + Pµ(x, Z, E, g), (27)

and its partial derivatives are given in Appendix Section A2. Note
that there is in principle an additional formal degeneracy for this
inverse problem. If the set (x, Z, E, g) is a solution to (23), then

(αx, Z, E, g/α) is also a solution for any scalar α, because the age
distribution x and the LOSVD g are not explicitly normalized in this
formulation. However, the adopted regularization lifts this degen-
eracy. The penalization function P is quadratic [P(αx) = α2 P(x)].
Thus, if x or g is too large in norm, the solution is unattractive. Prac-
tically, the algorithm reaches a solution where x and g are similar
in norm. In any case, this degeneracy would easily be remedied by
adding a normalizing term to the penalization Pµ of the form ‖x‖ −
1, which would force the discretized stellar age distribution x to
have unitary norm. Following the same principle, one could equiv-
alently choose to normalize the LOSVD rather than the stellar age
distribution.

4.4 Simulations

Let us now test the behaviour of STECKMAP by applying it to
mock data. The latter were produced using an arbitrary stellar age
distribution x, an age–metallicity relation Z, an LOSVD g and an
extinction parameter E. Several simulations were performed with
various input models: bumpy age distributions, increasing or de-
creasing age–metallicity relation and extinctions, Gaussian and non-
Gaussian wide or narrow LOSVDs, in various pseudo-observational
contexts. Fig. 4 shows the results of two of these experiments. In the
top line, the model is a young metal-poor population superimposed
on to an older metal-rich population. In the bottom panels, the model
has a rather constant stellar age distribution, a non-monotonic age–
metallicity relation and a strongly non-Gaussian LOSVD. In both
cases the three unknowns are correctly recovered. In these examples,
the data quality mimics that of the best Sloan Digital Sky Survey
galaxies: the resolution is R ≈ 2000 and SNR = 30 per ≈ 1 Å pixel.
The wavelength domain of PÉGASE-HR is however narrower than
that of the SDSS. These simulations simply aim to demonstrate the
generally good behaviour of the method, and show that accounting
for the kinematics does not fundamentally weaken the constraints on
the stellar content. For a more thorough study of the informational
content of the PÉGASE-HR wavelength range, the reader can refer
to the systematic double burst simulations with variable spectral
resolution and SNR per Å performed in Paper I.

5 R E C OV E RY O F AG E - D E P E N D E N T
K I N E M AT I C S

In this section we present an implementation of the recovery of age-
dependent kinematics, i.e. the situation when each subpopulation
has its own LOSVD. In this experiment, we restrict ourselves to
the case where the stellar populations have a known metallicity and
are seen without extinction. This choice is mainly motivated by the
numerical cost of such a large inversion procedure. The modelling
is given by equation (10). Finding the age–velocity distribution �(u,
t) when the monometallic basis B and the observed spectrum φ are
given is the inverse problem. It arises as the combination of a linear
age inversion and a kinematic deconvolution.

5.1 A sum of convolutions

The age–velocity distribution, �(u, t), is expanded as a linear com-
bination of normalized 2D gate functions θ i j (u, t):

θi j (u, t) ≡ 1

δu δt
θ

(
u − ui

δu

)
θ

(
t − t j

δt

)
.

In other words, �(u, t) is represented by a 2D array v of size (p, n),
i.e. p is the size of each LOSVD and n is the number of age bins.
The linear step in u is δu and the step in t is δt.
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Figure 4. Reconstruction of the stellar age distribution, age–metallicity relation and LOSVD for simulated SDSS-like data with SNR = 30 per pixel. The
histogram is the input model. The circles and the bars show respectively the median and the interquartiles of the recovered solutions for 50 realizations.

By inserting the expansion into equation (10) we obtain

φ(w) =
∫ ∫ p∑

i=1

n∑
j=1

vi jθi j (u, t)B(w − u, t) dt du,

�
p∑

i=1

n∑
j=1

vi j B j (w − ui ). (28)

As in the previous sections, Bj (u) is a time-averaged SSP of age
t j ± 1

2 δt . We then discretize along wavelengths by averaging over
small δw:

φk = 1

δw

p∑
i=1

n∑
j=1

vi j

∫
Bj (w − ui ) θ

(
w − wk

δw

)
dw,

�
p∑

i=1

n∑
j=1

vi j B j (wk − ui ), (29)

where (wj) j∈{0,...,m} is a set of constant step logarithmic wavelengths.
The above expression also reads in matrix form as a sum of kernel
convolutions. Finally, the model SED of the emitted light reads

s =
n∑

j=1

K j · v j , (30)

where s = (φ1, φ2, . . . , φm), v j = (v1 j , v2 j , . . . , v pj ) and

K j =




K11 j K12 j . . . K1pj

K21 j K22 j . . . K2pj

...
...

. . .
...

Km1 j Km2 j . . . Kmpj


 , (31)

with

Kik j ≡ Bj (wk − ui ). (32)

With this notation, K j and vj are respectively the convolution ker-
nel and the LOSVD of the subpopulation of age tj, and the model
spectrum y is the sum of the convolution of the kernel of each sub-
population with its own LOSVD.

5.2 2D age–velocity smoothness constraints

In the previous sections, the unknowns were 1D functions of time
or velocity. Here, the unknown is a 2D distribution, and we thus
have to implement a 2D smoothing constraint. We wish to allow the
smoothness in age to be distinct from the smoothness in velocity.
We thus construct two penalizing functions, Pa and Pv , relying on
the standard function P. Pa computes the sum of the Laplacians
of the columns of v while Pv computes the sum of the Laplacians
of the lines of v. The smoothness in the direction of the velocities
(respectively ages) is set by µv (respectively µa). We define the
vectorsv j = (v1 j , v2 j , . . . , v pj) as the columns of v, i.e. the LOSVDs
of the subpopulations. We similarly define the vectors vi = (v i1,
v i2, . . . , vin) as the lines of v. With this notation, the penalization
Pµ reads

Pµ(v) ≡ µa Pa(v) + µv Pv(v),

≡ µa

p∑
i=1

P(vi ) + µv

n∑
j=1

P(v j ). (33)

The objective function, Qµ, is now fully specified as Qµ = χ2 +
Pµ. Its gradients are given in Appendix Section A3. Here we choose
the smoothing parameters,µ≡ (µa ,µv), on the basis of simulations.

5.3 Simulations of a bulge–disc system

We studied the feasibility of separating two age-dynamically dis-
tinct populations, i.e. two components that do not overlap in an
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Table 1. Projected kinematic parameters and age of the
model bulge–disc system used to produce the simulations
of Figs 5 and 6. Vc (respectively σ v) is the rotation velocity
(respectively, the velocity dispersion) projected on the line of
sight.

Vc (km s−1) σv (km s−1) Age (Gyr)

Case 1
Bulge 0 100 8
Disc 120 30 0.5
Case 2
Bulge 0 150 8
Disc 0 50 0.5

age–velocity distribution diagram, in a regime of very high-quality
model and data. We performed simulations in the idealized case of
a very simplified spiral galaxy consisting of a bulge–disc system of
solar metallicity seen without extinction at some intermediate incli-
nation, in two observational contexts. The corresponding ages and
projected kinematic parameters are given in Table 1. The resolution
of the pseudo-data is R = 10 000 at 4000–6800 Å, and the SNR is
100 per 0.2 Å pixel.

Case 1: The galaxy is resolved, and the fibre aperture is small
compared to the angular size of the galaxy. The line of sight is off-
set by a couple of kiloparsecs from the centre along the major axis.
The projected model age–velocity distribution involves two super-
imposed components: an old, non-rotating, kinematically hot pop-
ulation representing the bulge; and a young, rotating, kinematically
cold component. The model and the median of 30 reconstructions
are shown in Fig. 5. The separation of the components is clear and
their parameters can be recovered with good accuracy, considering
the difficulty of the task.

Case 2: The galaxy is unresolved. The difference from the for-
mer situation is that, because of the spatial integration, both age–
velocity distributions are centred. For a given dynamical model, the
projected dispersion of the disc component depends on its incli-
nation. Fig. 6 shows that the separation is successful and that the
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Figure 5. Model (left) and median reconstruction (right, ≈30 realizations) of a stellar age–velocity distribution from SNR = 100 per 0.2 Å pixel pseudo-data at
4000–6800 Å. The model stellar age–velocity distribution mimics that of a simplified spiral galaxy seen with intermediate inclination. The old, broad component
can account for the bulge population, while the young, narrow, rotating component represents a thin disc population. The projected kinematic parameters of
the model are given in Table 1 (Case 1). The different kinematic components are well separated and clearly identifiable.

ages and integrated kinematic properties of both components can be
measured.

6 C O N C L U S I O N S A N D O U T L O O K

6.1 Conclusions

The non-parametric kinematic deconvolution of a galaxy spectrum
is efficiently performed using a MAP formalism (Section 3). Reg-
ularization through smoothness requirements and positivity signifi-
cantly improve the behaviour of the inversion with respect to noise
in the data. This improvement occurs at the cost of introducing
some bias in the reconstructed LOSVD, but this bias remains rea-
sonable. Strong non-Gaussianities of LOSVDs are reliably detected
from mock data generated using PÉGASE-HR SSPs for SNR down to
20 per 0.2 Å pixel.

When the template does not exactly match the model spectrum at
rest, i.e. there is some template mismatch, the error on the velocity
dispersion increases very quickly (Section 3.4). For example, in our
experiments, where σv = 50 km s −1 with R = 10 000 data, the error
on the measured velocity dispersion amounts to 10–20 per cent if
the template differs from the model by more than 0.3 dex in age and
metallicity, perpendicular to the age–metallicity degeneracy.

The formal similarity between the non-parametric kinematic de-
convolution and the recovery of the stellar content allows us to merge
both processes in a ‘mixed’ inversion where the observed spectrum
is fitted by determining the stellar content and the kinematics si-
multaneously (Section 4). This circumvents the need for iterations
where kinematic and stellar content analyses are carried out one af-
ter the other, until convergence is reached; this provides an efficient
method to analyse large sets of data.

Satisfactory reconstructions of the stellar age distribution, the
age–metallicity relation, the extinction and the global LOSVD were
obtained from mock data down to R = 2000, SNR = 30 per 1 Å pixel
in the 4000–6800 Å range (simulating SDSS data in the PÉGASE-HR
range), indicating the good behaviour of the method. Since, in our
simulations, the introduction of the kinematics into STECMAP did
not affect the recovery of the stellar content, we consider that the
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Figure 6. Same as Fig. 5 but for an unresolved simplified spiral galaxy with projected and spatially integrated kinematic parameters given in Table 1 (Case 2).
The velocity dispersion of the integrated young disc component depends on the inclination angle. The bulge and the disc are well separated and clearly
identifiable. Their respective velocity dispersions and ages are reliably recovered.

error estimates and separability analysis given in Paper I remain
valid.

In a more exploratory part of this work, we showed the fea-
sibility of recovering age-dependent kinematics in a simplified
monometallic unreddened context (Section 5). We were able to sep-
arate the bulge and disc components of a simplified model spiral
galaxy in integrated light provided very high-quality data (SNR =
100 per 0.2 Å pixel in the optical domain) and models are avail-
able, i.e. we constrain both components in velocity dispersion and
age. This separation was also carried out successfully in the setup
corresponding to an unresolved galaxy.

Further investigations are needed to extend this technique to a
regime where the metallicity and extinction are unknown. We ex-
pect that letting the metallicity be a free parameter would certainly
lead to a more degenerate problem, as shown by the degradation of
the resolution in age found in Paper I compared to fixed metallicity
problems. On the contrary, we do not expect the addition of the ex-
tinction as a free parameter or a more complex form of extinction law
or flux calibration correction, possibly non-parametric, to deterio-
rate the conditioning of the problem. The results are encouraging,
and the feasibility of such age-dependent kinematics reconstruc-
tions deserves to be tackled in realistic specific pseudo-observational
regimes in the future.

As mentioned in Paper I, the SSP models were considered to
be perfect and noiseless. It still has to be investigated how instru-
mental error sources such as flux and wavelength calibration error,
additive noise, contamination by adjacent objects and, equally im-
portant, model errors can affect the robustness of such sophisticated
interpretations.

6.2 Outlook

STECKMAP will be very useful to interpret data of large spectro-
scopic surveys, complete or in progress, such as 2DFGRS,1 SDSS,2

1 http://www.mso.anu.edu.au/2dFGRS/
2 http://www.sdss.org/

DEEP2,3 or VVDS,4 especially where constraints on both the stel-
lar content and the dynamics are required. STECKMAP’ s analysis
of the spectroscopic survey data or of an SNR-selected subsam-
ple, combined with survey photometry, could provide estimates of
the stellar and dynamical masses (which must be corrected for fi-
bre aperture though), thereby allowing astronomers the prospect of
investigating the dark matter content in galaxies on a statistically
significant sample, in the spirit of Padmanabhan et al. (2004).

The application of age-dependent kinematics to integral field
spectroscopy data from, for example, SAURON (Bacon et al. 2001;
de Zeeuw et al. 2002), OASIS (McDermid et al. 2004a), MUSE
(Henault et al. 2003) or MPFS (Chilingarian et al. 2004) could sig-
nificantly boost the amount of information extracted from these
data.

The inner parts of elliptical or dwarf elliptical galaxies have shown
via adaptive optics new kinematically decoupled structures (cores or
central discs), which were previously unresolved (McDermid et al.
2004b; Bacon et al. 2001). Similarly, if decoupled structures are
unresolved and remain so, even with adaptive optics, it may still be
possible to separate components in age–velocity space. Hence, the
technique presented in Section 5 extends the range of investigation
for the inner components of galaxies even further in redshift and
distance with the current generation of instruments. The faint, gen-
eralized counterparts of kinematically decoupled cores, i.e. stellar
streams generated by minor merging and accretion of satellites, may
also be detectable by an age-dependent kinematics reconstruction
in systems that cannot be resolved into stars, provided that they are
sufficiently distinct from the bulk stars of the galaxy in the age–
velocity space. This will enlarge the sample of galaxies for which
such detailed information is available, and may make it statistically
significant.
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A P P E N D I X A : G R A D I E N T C O M P U TAT I O N S

A1 Kinematic deconvolution

In this section we derive the gradient of Qµ with respect to the
LOSVD g. First, we rewrite the χ2 term as

χ 2 = rT · W · r , (A1)

where the residuals vector r is defined by

r = y − F−1 · diag(F · F) · F · g. (A2)

The derivative of the χ 2 then reads

∂χ2

∂g
= −2F∗ · diag(F · F)∗ · F · W · r , (A3)

where the asterisk
∗

denotes the complex conjugate. Since the
stellar template and the LOSVD can play symmetrical roles in
equation (17), we can also write the derivative of χ2 relatively to
the stellar template:

∂χ2

∂F
= −2F∗ · diag(F · g)∗ · F · W · r . (A4)

This expression will be useful for later derivations of gradients for
more complex problems in the following appendices.

A2 Gradients of the mixed inversion

Here we show how to obtain the partial derivatives of Qµ = χ2 +
P µ as defined in Section 4. Given that writing the derivatives of the
penalizing functions Pµ is straightforward, in this appendix we will
focus on the gradients of χ 2. In the mixed inversion, the reddened
model spectrum at rest plays the role of the stellar template F in the
classical kinematic deconvolution of equation (15). Thus ∂χ 2/∂g
can be obtained by replacing F ← diag( f ext(E)) ·B · x in equation
(A3):

∂χ2

∂g
= −2F∗ · diag(F · diag( f ext(E)) · B · x)∗ · F · W · r , (A5)

where r = y − s is the residuals vector, with s as given by equation
(25). To obtain the other partial derivatives, we use the following
relation. For any parameter α we have

∂χ2

∂α
=

(
∂χ2

∂F

)T

· ∂F
∂α

. (A6)

The first term ∂χ2/∂F is given by equation (A4), while the second
term reads, considering each unknown,

∂F
∂x

= diag( f ext) · B, (A7)

∂F
∂Z

= diag(x) · ∂B

∂Z
· diag( f ext), (A8)

∂F
∂E

= diag

(
∂ f ext

∂E

)
· B · x, (A9)

with the same notation as in the appendix of the STECMAP paper.

A3 Gradients for the age-dependent kinematics recovery

Again, we focus on the partial derivatives of χ2. Using equa-
tion (17), the model can be rewritten using the Fourier operator

s =
n∑

j=1

F∗ · diag(F · B j ) · F · v j , (A10)
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where B j is the discretized time-averaged SSP of age [t j−1, tj]. The
derivatives of χ 2 relative to v can be derived directly from equation
(A3) since the model is just a sum of convolutions. Replacing F ←
B j and g → v j yields the gradient of χ2:

∂χ 2

∂v j
= −2F∗ · diag(F · B j )

∗ · F · W · r , (A11)

with the residuals vector r = y − s. Finally, the derivative of Qµ

relative to v is the matrix defined by

∂Qµ

∂v
=

(
∂Qµ

∂v1
,
∂Qµ

∂v2
, . . . ,

∂Qµ

∂vn

)
. (A12)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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