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2Institut d’Astrophysique de Paris, 98 bis boulevard d’Arago, 75014 Paris, France

Accepted 2001 August 31. Received 2001 July 5; in original form 1999 December 29

A B S T R A C T

A method for inverting the statistical star counts equation, including proper motions, is

presented; in order to break the degeneracy in that equation, it uses the supplementary

constraints required by dynamical consistency. The inversion gives access to both the

kinematics and the luminosity function of each population in three régimes: the singular

ellipsoid, the constant ratio Schwarzschild ellipsoid plane-parallel models and the epicyclic

model. This more realistic model is tailored to account for the local neighbourhood density

and velocity distribution.

The first model is fully investigated, both analytically and by means of a non-parametric

inversion technique, while the second model is shown to be formally its equivalent. The effect

of noise and incompleteness in apparent magnitude is investigated. The third model is

investigated by a 5D 1 2D non-parametric inversion technique where positivity of the

underlying luminosity function is explicitly accounted for.

It is argued that its future application to data such as the Tycho catalogue (and in the

upcoming satellite GAIA ) could lead – provided that the vertical potential and or the

asymmetric drift or w( are known – to a non-parametric determination of the local

neighbourhood luminosity function without any reference to stellar evolution tracks. It should

also yield the proportion of stars for each kinematic component and a kinematic diagnostic to

split the thin disc from the thick disc or the halo.

Key words: methods: data analysis – Hertzsprung–Russell (HR) diagram – stars: luminosity

function, mass function – Galaxy: kinematics and dynamics – Galaxy: stellar content –

Galaxy: structure.

1 I N T R O D U C T I O N

Most of our knowledge of the global structure of the Galaxy relies

on the comparison of magnitude and colour star counts in different

Galactic directions. Star counts alone do not allow us to solve the

dilemma that a star of a given apparent magnitude can be either

intrinsically faint and close by, or bright and distant. This problem

may be addressed statistically by using the century-old equation of

stellar statistics (von Seeliger 1898):

Alðm;‘; bÞ ¼

ð1

0

FlðMÞrðr; ‘; bÞr 2 dr; ð1Þ

where Alðm; ‘; bÞ dm d‘ dðsin bÞ is the number of stars that have

an apparent magnitude in the range ½m; m 1 dm�, Fl(M ) is the

luminosity function (LF), which depends on the intrinsic

magnitude, M, and the colour band l, while r(r, ‘, b ) is the

density at radius r (within dr ) along the line of sight in the direction

given by the Galactic longitudes and latitudes (‘, b ) [within the

solid angle d‘ cos(b ) db ].

This equation cannot be solved or inverted (i.e., by determining

both the stellar LF and the density law) except for a few simplified

cases. For instance, with a ‘homogeneous’ stellar sample for which

the absolute magnitudes of stars or, more precisely, their LFs are

known, the density law along the line of sight can be recovered. A

classical numerical technique (Mihalas & Binney 1981) has been

proposed – the Bok (1937) diagram – while more rigorous

treatments are required for small samples to stabilize the inversion

so as to produce smooth solutions (Binney & Merrifield 1998). The

converse situation is the determination of the LF assuming a known

density law (see, for instance, recent studies of the faint end of the

disc or halo main sequence based on deep star counts (Reid et al.

1996; Gould, Flynn & Bahcall 1998).PE-mail: pichon@astro.u-strasbg.fr
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A simple approach, developed largely in the 1980s, was to

integrate equation (1) assuming some prior information concerning

the stellar populations (see, e.g., Pritchet 1983, Bahcall, Soneira &

Schmidt 1983, Buser & Kaeser 1985 and Robin & Crézé 1986). A

frequent assumption is, for instance, to assume that the halo stars

have the same LF as some low-metallicity globular clusters.

Another approach consists in building a stellar LF from stellar

evolution tracks and isochrones of various ages. This has been

used to put constraints on the Galactic disc star formation rate

(Haywood, Robin & Crézé 1997a,b).

Stronger a priori constraints may also be derived by requiring

dynamical consistency, since the vertical kinematics of stars is

related to the flattening of stellar discs or spheroidal components.

Since star counts alone, Al(m, ‘, b ), are not sufficient to

constrain uniquely the Galactic stellar population models, it is

expected that two (or more) distinct models will reproduce the

same apparent star counts. However, this is not a real worry, since it

is likely that adding some relevant extra a priori information must

help to lift partially the degeneracy of the models.

In this paper it is shown that the degeneracy is lifted altogether

when we consider, in addition to the star counts in apparent

magnitude, the proper motions, m‘ and mb. For a relatively general

dynamically consistent model (stationary, axisymmetric and fixed

kinematic radial gradients), the statistical equation counts may be

formally inverted, giving access to both the vertical density law of

each stellar population and their LFs. This is developed in Section

2, where we show how the vertical motions are related to the

thickness of stellar components. The remaining degeneracy occurs

only for a quadratic vertical potential. Otherwise – when the

vertical component of the potential is known – the departures from

quadratic behaviour define a characteristic scale that allows us to

transform statistically the magnitudes into distances and proper

motions into velocities. Similarly, the asymmetric drift and/or the

vertical velocity component of the Sun provide a natural scale in

energy, leading to the same inversion procedure.

For ideal star counts (infinitely deep and for an infinite number

of stars), the inversion gives exactly the proportion of stars in each

kinematic component, providing a direct diagnostic to split the thin

disc from the thick disc or the halo, and its luminosity function

Fl(M ) is recovered for each kinematic stellar component. This is a

direct consequence of the supplementary constraints introduced by

the requirement for dynamical consistency.

Section 2 presents the generalized stellar statistic equation

which accounts for proper motions, and demonstrates the

uniqueness of the inversion for two families of plane-parallel

distribution functions: the singular velocity ellipsoid (Section 2.1)

and a constant ratio velocity ellipsoid (Section 2.2), while Section

2.3 presents a basic description of the epicyclic model. Section 3

illustrates the inversion procedure on a fictitious superposition of

four kinematically decoupled populations with distinct main-

sequence turn-off magnitudes for the constant ratio velocity

ellipsoid and the epicyclic models. Section 4 discusses the effects

of truncation in apparent magnitude (i.e., completeness of the

catalogue) in the recovered LF, as well as noise in the

measurements. Finally, Section 5 discusses the applicability of

the method to the Tycho-2 catalogue and to external clusters, and

concludes the paper.

2 D E R I VAT I O N

The number of stars, dN, that have an apparent luminosity in the

range ½L; L 1 dL� in the solid angle defined by the Galactic

longitudes and latitudes (‘, b ) [within d‘ d(sin b )], with proper

motions m‘ and mb (within dmb and dm‘) is given by

dN ; AlðL;ml;mb; l; bÞ dm‘ dmb d‘ cos b db dL

¼

ð ð
FQ

l ½L0;b�

ð
f bðr; uÞ dur

� �
r 4 dr db

� �
� dm‘ dmb d‘ cos b db dL; ð2Þ

where we have introduced the LF per unit bandwidth, FQ
l ½L0;b�,

which is here taken to be a function of the absolute luminosity, L0,

and of a continuous kinematic index, b. The variables r, u are the

vector position and velocity coordinates (ur, u‘, ub) in phase-space

relative to the local standard of rest, while R and V are those

relative to the Galactic Centre. The relationship between

AlðL; ml; mb; l; bÞ and FQ
l ½L0;b� involves a double summation

over b, and distance, r, along the line of sight. Here f bðr; uÞ

represents the b component of the distribution function of the

assumed stationary axisymmetric equilibrium, i.e.,

f ðr; uÞ ¼

ð1

0

f bðr; uÞ db; ð3Þ

where f is decomposed over the basis of isothermal solutions fb of

the Boltzmann equation for the assumed known potential c.

Equation (3) corresponds to a decomposition over isothermal

populations of different kinematic temperatures, s 2 ¼ 1/b. Apart

from this restriction, the shape of the distribution f(Ez) could be

anything. Note that equation (2) is a direct generalization of

equation (1), since

rbðr; ‘; b;m‘;mbÞ; r 2

ð
f bðr; uÞ dur

is by definition the density of stars (belonging to population b )

which are at position r ; ðr;‘; bÞ within dr d‘ d(sin b ), with proper

motion mb (within dmb) and m‘(within dm‘). The extra summation

on b which arises in equation (2) accounts for the fact that stars in

the local neighbourhood come from a superposition of different

kinematic populations which, as is shown later, can be

disentangled. Note that FQ
l is defined here per unit absolute

luminosity, L0, and therefore

Fl½MðL0Þ� ¼
2 logð10Þ

5
L0

ð
FQ

l ½L0;b� db; where

MðL0Þ ¼ 2
5

2

1

log 10
log

L0

L(

� �
1 M(:

Since there is no convolution on l (which is mute), it will be

omitted from now on in the derivation. In Section 3, B 2 V colours

are reintroduced to demonstrate the inversion for a fictitious HR

diagram. We shall also drop the Q superscript, but will keep in

mind that the LF is expressed as a function of the absolute

luminosity, L0.

This paper is concerned with the inversion of equation (2). We

proceed in three steps. First, a simplistic Ansatz for the distribution

function is assumed (corresponding to a stratification in height of

uniform discs with a pin-like singular velocity ellipsoid), leading to

a proof that, in this context, equation (2) has a well-defined unique

solution which can be made formally explicit. A more realistic

model is then presented, accounting for the measured anisotropy of

the velocity ellipsoid. It is shown that, in the direction of the

Galactic Centre, and if the velocity dispersions ratios are constant

for all populations, this model is formally invertible following the
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same route. Away from the Galactic Centre direction, the velocity

components of the Sun are also accounted for to recover

statistically distances via another inversion procedure related to

secular parallaxes. Finally, we illustrate the inversion on a fully

seven-dimensional epicyclic model. The detailed investigation of

this model is postponed to a companion paper (Siebert, Pichon &

Bienaymé, in preparation).

2.1 A toy model: parallel sheet model with singular velocity

ellipsoid

Let us assume here a sheet-like model for the distribution function

of kinematic temperature b:

f bðr; uÞ ¼

ffiffiffiffiffiffi
b

2p

r
exp ð2bEzÞdðvRÞdðvfÞ; ð4Þ

which corresponds to a stratification in height with a pin-like

singular velocity ellipsoid that is aligned with the rotation axis of

the Galaxy. Calling mb ; ub/ r, the energy reads in terms of the

heliocentric coordinates

Ez ¼
v2

z

2
1 czðzÞ ¼

r 2m2
b

2 cos2ðbÞ
1 a sin2ðbÞr 2 1 x½r sinðbÞ�; ð5Þ

where the harmonic component of the z potential ða z 2Þ was made

explicit while leaving unspecified the non-harmonic residual, x.

Putting equation (4) into equation (2) leads to

A ½b;mb;L� ¼

ð ð ffiffiffiffiffiffi
b

2p

r
F½Lr 2;b�

cosðbÞ

� exp 2bar 2 sin2ðbÞ2 br 2 m2
b

2 cos2ðbÞ
2 bx½r sinðbÞ�

� �
r 3 dr db;

ð6Þ

given the relationship L0 ¼ Lr 2 relating apparent and absolute

luminosities. Introducing z ¼ L 1=2r,

x ¼ a
sin2ðbÞ

L
1

m2
b

2L cos2ðbÞ
; and y ¼

sinðbÞ

L 1=2
: ð7Þ

Equation (6) then reads

L2 cosðbÞA½b;mb;L� ¼

ð ð ffiffiffiffiffiffi
b

2p

r
F½z 2;b�

� exp½2bz 2x 2 bxðzyÞ�z 3 dz db: ð8Þ

2.1.1 Harmonic degeneracy

Suppose for now that the z-potential is purely harmonic, so that x is

identically null. Calling s ¼ bz 2, the inner integral over z in

equation (8) can be rewritten as an integral over b and s:ð ð ffiffiffiffiffiffi
b

2p

r
F½z 2;b� expð2bz 2xÞz 3 dz db

¼
1

2
ffiffiffiffiffiffi
2p
p

ð ð
F½s/b;b�b23=2 db

� �
exp ð2sxÞs ds: ð9Þ

Equation (9) shows that for a purely harmonic potential the mixture

of populations (integrated over b ) is recovered from A[b, mb, L ],

which is effectively a function of x only (given by equation 7). In

this instance, the inversion does not allow us to disentangle the

different kinematic populations. In physical terms, there is a

degeneracy between the distance, luminosity and proper motion.

In contrast, when the data set extends far enough to probe the

anharmonic part of the potential, we now demonstrate that

equation (8) has formally a unique exact solution, before

exploring non-parametric means of inverting it in a more general

framework.

2.1.2 Uniqueness?

Let us assume that not too far from the Galactic plane, x(z ) is well

approximated by xðzÞ ¼ gz n, so that equation (8) becomes

L 2 cosðbÞA½b;mb; L� ¼

ð ð ffiffiffiffiffiffi
b

2p

r
F½z 2;b�

� exp ð2bz 2x 2 bgzny nÞz 3 dz db: ð10Þ

Calling

F1½U;B� ¼
1ffiffiffiffiffiffi
2p
p F½exp ð2UÞ; exp ðBÞ�

� exp {4U 1 3=2B 2 c½ð2 1 nÞU 1 2B�};

K0ðzÞ ¼ exp½cz 2 expðzÞ�; ð11Þ

and A1½X;Y� ¼ L 2 cos bA½b;mb; L� exp½cðX 1 YÞ�; ð12Þ

where

B ¼ logðbÞ; Z ¼ logðzÞ;

X ¼ logðxÞ ¼ log a
sin2ðbÞ

L
1

m2
b

2L cos2ðbÞ

� �
;

Y ¼ log
g sinnðbÞ

L n/2

���� ����; ð13Þ

Equation (10) becomes

A1½b;mb; L� ¼ A1½X; Y� ¼

ð ð
F1½Z;B�K0ðB 1 2Z 1 XÞ

� K0ðB 1 nZ 1 YÞ dZ dB: ð14Þ

The positive scalar c is left to our discretion and can be chosen so as

to yield a narrow kernel, K0 (in practice, c should be close to one).

Since r runs from zero to infinity and so does b, the integration over

B and Z will run from 21 to 1. Similarly, X and Y span ]21,1[ as

b goes from zero to p/2. Let

w ¼ 2ðB 1 nZÞ; 4 ¼ 2ðB 1 2ZÞ; ð15Þ

Equation (14) then reads

A1½X; Y� ¼ jn 2 2j
21

ð ð
F1½4;w�K0ðX 2 4Þ

� K0ðY 2 wÞ d4 dw: ð16Þ

The unique solution of equation (16) reads formally

F1½4;w� ¼ jn 2 2jFT 21 Â1½k4; kw�

K̂0ðk4ÞK̂0ðkwÞ

� �
; ð17Þ
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where

Â1½k4; kw� ¼

ð ð
exp½1 iðkwX 1 k4YÞ�A1½X; Y� dX dY and

K̂0½k� ¼

ð
exp½1 iðkXÞ�K0ðXÞ dX;

while

FT 21½ f ðkx; kyÞ� ¼
1

4p2

ð ð
exp½2 ikx4 2 ikyw�f ðkx; kyÞ dkx dky:

Both Fourier transforms are well-defined, given the span of 4, w

and X, Y. Approximating both K0 and A1 by a Gaussian of width

respectively 1=‘K and 1/‘2
N , equation (17) shows that F1 will be a

Gaussian of width 1=ð‘N 2 ‘KÞ
2.

This procedure is therefore a true deconvolution: the luminosity

function Fl[L, b ] is effectively recovered at arbitrary resolution

(in effect fixed by the signal-to-noise ratio of the data). In practice,

equation (17) is impractical for noisy finite data sets, so we shall

investigate non-parametric regularized solutions to equation (8) in

Section 3.1.1.

There is a natural scale ‘0 ¼ ða/gÞ1=ðn22Þ, given by the break in

the potential, which provides us with a means to lift the degeneracy

between faint close stars moving slowly and bright stars moving

faster farther out. This scale reflects the fact that statistically the

dynamics (i.e., the velocities) gives us a precise indication of

distances in units of ‘0. We can therefore reassign a posteriori

distances to stars in the statistical sense and deconvolve the

colour–magnitude diagram. Fig. 1 graphically demonstrates the

requirement to access the break radius of the potential in order to

derive statistical distances to the stars. It shows sections of increasing

apparent magnitude in the b, mb plane for a two-temperature model

and for a one-temperature model (corresponding to a unique

Figure 1. In each panel: Isocontour of A*(b,mb) (defined by equation 48) in the b,mb plane (b ranging from 2p=2 to p=2 and mb from 21 to 1): sections of

increasing apparent magnitude (from left to right and top to bottom) Top left: two-temperature models ½logb ¼ 22 and logb ¼ 2, log ðL0Þ ¼ 0� Top right:

same as top left, but for a unique temperature ðb ¼ 1Þmodel. The observed star counts enable us to distinguish between the one- and two-temperature models,

especially at the faint end (top left section) for significantly non-zero gð¼ 1Þ. Bottom left: Shows that even the faint end (top left section) of the observed star

counts are barely distinguishable from the two-temperature model (Bottom right: ) for small gð¼ 1=10Þ. This demonstrates graphically the requirement to

access the break radius, ‘0/1/g, of the potential to derive statistical distances to the stars.
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absolute luminosity). The observed star counts enable us to

distinguish between the one- and two-temperature models,

especially at the faint end for significantly non-zero g.

Turning back to equation (8), it remains true that for more

general x the equation can still be inverted in the least-squares

sense, but this involves a less symmetric kernel, K1ðx; yju; bÞ,

whose functional form depends explicitly on x:

K1ðx; yju;bÞ ¼

ffiffiffiffiffiffi
b

2p

r
exp ½2bu 2x 2 bxðuyÞ�u 3:

The inversion procedure, which will be described in Section 3, still

applies to such kernels.

2.2 A Schwarzschild model: accounting for the local velocity

ellipsoid anisotropy

Let us now move to more realistic models with a fully triaxial

Schwarzschild ellipsoid. Its distribution function is given in terms

of the kinematic inverse dispersions bR,bf and bz by

f bðr; uÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bRbzbf

8p3

r
exp½2ðbzEz 1 bRER 1 bfEfÞ�; ð18Þ

where

Ez ¼
1
2

v2
z 1 czðzÞ; ER ¼

1
2

v2
R and Ef ¼

1
2
ðvf 2 �vfÞ

2: ð19Þ

Here v̄f measures the mean azimuthal velocity in the local

neighbourhood (which is assumed not to depend on b ), and V ¼

ðvR; vf; vzÞ are respectively the radial, azimuthal and vertical

velocities of a given star measured in a direct cylindrical system of

coordinates centred at the Galactic Centre. These velocities are given

as a function of the velocities measured in the frame of the Sun by

vF ¼
1

R
{r( sinðbÞ sinð‘Þub 2 r( cosðbÞ sinð‘Þur 2 r( cosð‘Þu‘

1 r cosðbÞ½u‘ 2 sinð‘Þu(�1 ½r( 1 r cosðbÞ cosð‘Þ�v(};

ð20Þ

vR ¼
1

R
{½r cosðbÞ2 r( cosð‘Þ� sinðbÞub 2 r( sinð‘Þu‘

2 cosðbÞ½r cosðbÞ2 r( cosð‘Þ�ur 1 r(u(

2 r cosðbÞ cosð‘Þu( 1 r cosðbÞ sinð‘Þv(}; ð21Þ

vz ¼ sinðbÞur 1 cosðbÞub 1 w(; ð22Þ

where

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

( 2 2r(r cosðbÞ cosð‘Þ1 r 2 cosðbÞ2
q

and

z ¼ r sinðbÞ: ð23Þ

R measures the projected distance (in the meridional plane) to the

Galactic Centre, while z is the height of the star. Here u(, v(, w(

and r( are respectively the components of the Sun’s velocity and

its distance to the Galactic Centre. The argument of the exponential

in equation (18) is a quadratic function in ur via equations (20)–

(22), so the integration over that unknown velocity component is

straightforward.

In short, we show in Appendix A that equation (2) has solutions

for families of distributions obeying equation (18). Those solutions

are unique, and can be made explicit for a number of particular

cases which are discussed there. They are shown to be formally

equivalent to those found for equation (4). For instance, at large

distances from the Galactic Centre ðr(!1Þ, equation (6) along the

plane mb ¼ 0 can be recasted into

L 2 cosðbÞA2½b;‘;mb ¼ 0; L� ¼

ð ð ffiffiffiffiffiffi
b

2p

r
F½u 2;b�

� exp ð2bu 2x3 2 bz2Þu
3 du db; with x3 ¼ a

sin2ðbÞ

L
; ð24Þ

and

z2 ¼
½w( cos b 2 ðv( 2 �vfÞ sin b sin ‘�2

2 cos2ðbÞ1 2 sin2ðbÞ½jR cos2ð‘Þ1 jf sin2ð‘Þ�
;

jR ¼
bz

bR

; jf ¼
bz

bf

; ð25Þ

which is of the form described in Section 2.1.2 with n ¼ 0, x3

replacing x, and z2 replacing y. With the exception of the special

cases also described in Appendix A, the solution can be found via

x 2 minimization, as shown below in Section 3.

2.3 Epicyclic model: accounting for density gradients

The above models do not account for any density or velocity

dispersion gradients, which is a serious practical shortcoming. Let

us therefore construct an epicyclic model for which the radial

variation of the potential and the kinematic properties of the

Galaxy are accounted for.

A distribution function solution of Boltzmann equation with two

integrals of motion (energy and angular momentum) can be written

according to Shu (1969) as

f bðr; uÞ ¼ QðHÞ
Vb 3=2rDffiffiffi
2
p

p
3
2ks2

Rsz

exp 2b
ER 2 Ec

s2
R

2 b
Ez

s2
z

� �
; ð26Þ

where Q is the Heaviside function, while

V ¼
kffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2a 1 2
p ; rD ¼ r( exp

R( 2 Rc

Rr

� �
; with

Rc ¼ H
1

a11R
a

a11

(
V

2 1
a11

(
; ð27Þ

a being the slope of the rotation curve, V the angular velocity, k the

epicyclic frequency, rD the density, Rc the radius of the circular

orbit of angular momentum H, s2
R and s2

z the square of the radial

and vertical velocity dispersion, and b the kinematic index

s2
R ¼ s2

R(
exp

2R( 2 2Rc

RsR

� �
;

s2
z ¼ s2

z(
exp

2R( 2 2Rc

Rsz

� �
;

Ec ¼
a 1 1

2a
H

2a
a11R

2 2a
a11

( V
2

a11

( : ð28Þ

Here r0;V; k;sR;sz and Ec are known functions of momentum H

given by

H ¼ r( cosðbÞ sinð‘Þur 2 r( sinðbÞ sinð‘Þub 2 ½r cosðbÞ

2 r( cosð‘Þ�u‘ 1 r cosðbÞ cosð‘Þu(

1 ½r( 2 r cosðbÞ cosð‘Þ�v(: ð29Þ
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In the case of a separable potential given by

cðR; zÞ ¼ cRðRÞ1 czðzÞ; where cRðRÞ ¼
R 2aV2

(R22a
(

2a
;

czðzÞ ¼
1

2pG
S0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z 2 1 D 2

p
2 D

� �
1 reffz

2
h i

; ð30Þ

where G is the universal gravity constant, while S0, reff and D are

constants, the energies Ez and ER obey

Ez ¼
½sinðbÞur 1 cosðbÞub 1 w(�

2

2
1 czðzÞ; ð31Þ

ER ¼
½cosðbÞur 2 sinðbÞub�

2 1 u2
‘ 1 u2

( 1 v2
(

2

1 cRðRÞ2 sinð‘Þ{u‘u( 2 ½cosðbÞur 2 sinðbÞub�v(}

1 cosð‘Þ{½cosðbÞur 2 sinðbÞub�u( 1 u‘v(};

while R and z are given by

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

( 2 2r(r cosðbÞ cosð‘Þ1 r 2 cosðbÞ2
q

and

z ¼ r sinðbÞ: ð33Þ

Note that the integration over ur in equation (2) must now be

carried numerically, since r0, V, k, sk and sz are all functions of ur

via equation (29).

This model, based on the epicyclic theory, accounts for density

and velocity dispersion gradients, and is therefore more realistic

than the Schwarzschild ellipsoid model presented in Section 2.2.

The density distribution together with the distribution of the

maximum of the proper motion along the ‘ coordinate are

presented in Fig. 2 projected on to the sphere. The asymmetry

along the Galactic longitude is produced by the solar motion.

3 S I M U L AT I O N S

3.1 Method

We have chosen to implement a non-parametric inversion

technique to invert equation (2) or (8). The non-parametric

inversion problem is concerned with finding the best solution to

equation (2) or (8) for the underlying LF indexed by kinematic

temperature when only discrete and noisy measurements of

[Ab, mb, L ] are available (e.g. Titterington 1985; Dejonghe 1993;

Lucy 1994; Merritt, 1996; Fadda, Slezak & Bijaoui 1998, Pichon &

Thiébaut 1998; and references therein), and most importantly when

we have little prejudice regarding what the underlying LF should

be. In short, the non-parametric inversion corresponds to model-

fitting in a regime where we do not want to impose (say via stellar

evolution tracks) what the appropriate parametrization of the

model is. It aims at finding the best compromise between noise and

bias; in effect, it correlates the parameters so as to provide the

smoothest solution amongst all possible solutions compatible with

a given likelihood.

An optimal approach should involve a maximum-likelihood

solution parametrized in terms of the underlying six-dimensional

distribution. In practice, such an approach turns out to be vastly too

costly for data sets involving 106 measurements. Binning is

therefore applied to our ensemble of ð‘; b; m‘; mb; L; B 2 VÞ

measurements.

3.1.1 Non-parametric inversion

The non-parametric solutions of equations (8) and (14) are then

described by their projection on to a complete basis of p � p

functions

{ekðzÞelðbÞ}k¼1;…;pl¼1;…;p

of finite (asymptotically zero) support, which could be cubic

B-splines (i.e., the unique C 2 function, which is defined to be a

cubic over four adjacent intervals and zero outside, with the

extra property that it integrates to unity over that interval) or

Gaussians:

Fðz;bÞ ¼
Xp

k¼1

Xp

l¼1

FklekðzÞelðbÞ; ð34Þ

The parameters to fit are the weights Fkl. Calling x ¼
{Fkl}k¼1;…p;l¼1;…p (the parameters) and ~y ¼ {L 2 cosðbÞ

Aðxi; yjÞ}i¼1;…n;j¼1;…n (the n � n measurements, with L 2 cos(b ) a

function of xi,yi via equation (7)), equation (8) then becomes

Figure 2. Left: Aitoff projection of the normalized density distribution for the epicyclic Shu model. Right: Distribution of the maximum of the proper motion

along the galactic longitude (in arcsec yr21). The Galactic Centre is at the centre of the plot, and longitude is increasing from the centre to the left. The

asymmetry along the Galactic longitude derives from the peculiar motion of the Sun.
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formally

~y ¼ a:x; ð35Þ

where a is an ðn; nÞ � ðp; pÞ matrix with entries given by

ai; j; k; l ¼

ð ð
ekðu

2ÞelðbÞ exp½2bu 2xi 2 bxðuyjÞ�u
3 du db

� �
i; j; k; l

:

ð36Þ

For the epicyclic model the measurements are ~y ¼ {Aijklm ¼

Að‘i; bj;m‘k
mbl

;LmÞ}i¼1;…n1 ; j¼1;…n2 ;; k¼1;…n3 ;; l¼1;…n4 ;m¼1;…n5
and a

is an ðn1; n2; n3; n4; n5Þ � ðp1; p2Þ matrix with entries given by

ai; j; k; l;m; q; s ¼

ð ð ð
eqðLmr 2ÞesðbÞf bð‘i; bj;m‘k

mbl
; r; urÞr

4

�

� dr dur db

�
i; j; k; l;m; q; s

; ð37Þ

with fb given by equation (26).

Assuming that we have access to discrete measurements of Aij

(or Aijklm via binning as discussed above), and that the noise in A

can be considered to be normal, we can estimate the error between

the measured star counts and the non-parametric model by

LðxÞ;x 2ðxÞ ¼ ð ~y 2 a:xÞ’:W:ð ~y 2 a:xÞ; ð38Þ

where the weight matrix W is the inverse of the covariance matrix

of the data (which is diagonal for uncorrelated noise, with diagonal

elements equal to one over the data variance).

The decomposition in equation (34) typically involves many

more parameters than constraints, such that each parameter

controls the shape of the function only locally. The inversion

problem corresponding to the minimization of equation (38) is

known to be ill-conditioned: Poisson noise induced by the very

finite sample of stars may produce drastically different solutions,

since these solutions are dominated by artefacts due to the

amplification of noise. Some trade-off must therefore be found

between the level of smoothness imposed on the solution in order

to deal with these artefacts on the one hand, and the level of

fluctuations consistent with the amount of information in the

data set on the other hand. Finding such a balance is called

the ‘regularization’ of the inversion problem, and in effect implies

that between two solutions yielding equivalent likelihood, the

smoothest is chosen. In short, the solution of equation (35) is found

by minimizing the quantity

QðxÞ ¼ LðxÞ1 lRðxÞ;

where L(x) and R(x) are, respectively, the likelihood and

regularization terms given by equation (38) and

RðxÞ ¼ x’:K:x; ð39Þ

where K is a positive definite matrix, which is chosen so that R in

equation (39) should be non-zero when x is strongly varying as a

function of its indices. In practice, we use here

K ¼ K3#I 1 I#K3 1 2K2#K2;

where # stands for the outer product, I is the identity matrix, and

K2 ¼ D’
2
:D2, K3 ¼ D’

3
:D3. Here D2 and D3 are finite difference

second-order operators [of dimensions ðp 2 2Þ � p and ðp 2 3Þ � p

respectively] defined by

D2 ¼ Diag2½21; 2;21�;

21 2 21 0 0 …

0 21 2 21 0 …

0 0 21 2 21 …

0 0 0 21 2 …

… … … … … …

26666666664

37777777775
;

D3 ¼ Diag3½1;23; 3;21�;

1 23 3 21 0 …

0 1 23 3 21 …

0 0 1 23 3 …

0 0 0 1 23 …

… … … … … …

26666666664

37777777775
;

ð40Þ

This choice corresponds a quadratic operator whose kernel

include planes and paraboloids. The operator K is typically non-

zero [and therefore penalizes the minimization of Q(x)] for

unsmooth solutions (i.e., those leading to strong variations in the

coefficients Fkl).

The Lagrange multiplier l . 0 allows us to tune the level of

regularization. The introduction of the Lagrange multiplier l is

formally justified by the fact that we want to minimize Q(x),

subject to the constraint that L(x) should be in the range

Ndata ^
ffiffiffiffiffiffiffiffiffiffiffiffi
2Ndata

p
. In practice, the minimum of

QðxÞ ¼ ð ~y 2 a : xÞ’ :W : ð ~y 2 a : xÞ1 lx’ :K : x ð41Þ

is

x ¼ ða’ :W : a 1 lKÞ21 : a’ :W : ~y: ð42Þ

The last remaining issue involves setting the level of

regularization. The so-called cross-validation method (Wahba

1990) adjusts the value of l so as to minimize residuals between

the data and the prediction derived from the data. Let us define

~aðlÞ ¼ a : ða’ :W : a 1 lKÞ21 : a’ :W: ð43Þ

We make use of the value for l given by generalized cross

validation (GCV) (Wahba & Wendelberger 1979) estimator

corresponding to the minimum of

l0 ; GCVðlÞ ¼ minl

kð1 2 ~aÞ : ~yk
2

½traceð1 2 ~aÞ�2

( )
: ð44Þ

Note that the model equation (35) is linear and so is equation (42),

but this need not be the case when positivity is required. We would

then resort to non-linear minimization of equation (41).

3.1.2 Positivity

When dealing with noisy data sets, the non-parametric inversion

technique presented above (Section 3.1.1) may produce negative

coefficients in the reconstructed LF. In order to avoid such effects,

positivity can be imposed on those coefficients Fkl in equation

(34). A simple way to achieve positivity is to use an exponential
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transform and introduce w so that

F;F0 expðwÞ; ð45Þ

where F0 corresponds to our first guess for F (here F0;103Þ. A

first-order Taylor expansion of equation (45), together with

equation (35), yields

~y 0; ~y 2 a :F0 ¼ a :F0
:w;a :x0; ð46Þ

which defines ỹ 0 and x0. We first invert equation (46) for x0. The

algorithm is then iterative, and we invert in turn for xn
0

~y0n ¼ a : x0n; where ~y0n ¼ ~y 2 a :Fn21 and x0n ¼ Fn21
:wn;

the LF is expressed as

Fn ¼ Fn21 expðhconvx0n/Fn21Þ ð47Þ

in equation (46) for the iteration number n. In practice,

convergence is controlled via a parameter, hconv [ ½0; 1�, which

fixes the amplitude of the correction in equation (47) in order to

remain within the régime of the Taylor expansion. It should be

emphasized that using equation (46) together with equation (42)

(replacing x by x0) does not lead directly to the expected LF but to a

correction that has to be applied to F0.

We will now proceed to invert equation (10) in two régimes: the

Schwarzschild model described by equation (18), and the epicyclic

model given by equation (26). The former model is dimensionally

less demanding, while the latter is more realistic, since it accounts

for density and velocity dipsertion gradients.

3.2 Simulated Schwarzschild models

We will first focus on the inversion of equation (8), rather than (A5)

or (A8) (which were shown to be equivalent in the zero asymmetric

drift approximation) and (24) (which was also shown to be of the

same form). Special emphasis is put on the toy model described in

Section 2.1 while carrying the inversion on a superposition of four

kinematically decoupled populations with distinct main sequence

turn-off magnitudes. These are illustrated in Fig. 3, which displays

the four fictitious tracks corresponding to increasing kinematic

temperature weighted by some IMF on each track. The image in the

observed plane ðmb; b;L;B 2 VÞ of these tracks is shown in Fig. 4,

which shows isocontours of A* defined by (corresponding to

equation 12 with c ¼ 3=4Þ

A*½b;mb;L� ¼ A½b;mb; L� cosðbÞ

�
g sinnðbÞ½m2

b sec2ðbÞ1 2a sin2ðbÞ�

2L n/225=3

� �3=4

ð48Þ

in the b,mb plane for increasing B 2 V at a fixed apparent

magnitude L ¼ 1=10. The multiple kinematic components of the

redder sections display distinct extrema for opposite values of mb at

fixed Galactic latitude, b, and also as a function of b at fixed proper

motions. In all figures, g is chosen equal to 1 (unless specified

Figure 3. Left: Fictitious tracks corresponding to increasing (from left to right) kinematic temperature. Right: Decomposition of corresponding colour

magnitude diagram into its four components, weighted by the IMF on each track. The image in the observed plane ðmb; b; L;B 2 VÞ of these tracks is shown in

Fig. 4.

Figure 4. A*ðb;mb;B 2 VÞ in the b,mb plane for increasing B 2 V (from left

to right and top to bottom) at a fixed apparent magnitude L ¼ 1=10 of the

model described in Fig. 3. Interestingly, the multiple kinematic components

of the redder sections display distinct extrema for opposite values of mb at

fixed Galactic latitude, b, and also as a function of b at fixed proper motions.
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otherwise) and n equal to 3. For simplicity, we also numerically

approximate K0 in equation (11) by a Gaussian, since the matrix

elements in equation (37) are then analytic.

3.3 Simulated epicyclic models

In order to test the inversion procedure, a set of four HR diagrams

with different turn-off luminosity was constructed, assuming a

mass–luminosity relation (MLR) and a Salpeter initial mass

function (IMF). The LF of each population scales like

F0/L 2s
t ; ð49Þ

where t (the slope of the MLR on a logarithmic scale) was set to

3.2, which is characteristic of the main sequence, and s to 2.35 (the

IMF slope). The scaling factor fixes the number of stars in the

simulated galaxy. The tracks associated with those HR diagrams

were then binned on a 20 � 20 � 4 grid in the ½L0;B 2 V , beta ]

space; those HR diagrams represent the absolute luminosity

function, FB2V ðL0;bÞ. The observed counts were then computed

assuming that each track corresponds to a given kinematic index,

and that its distribution can be reproduced by the epicyclic model

of the same kinematic index, i.e.,

dN ð‘i; bj;m‘; k;mb;l; Lm;B 2 VÞ ¼ ai; j; k; l;m;q; s

� ½F0ðB 2 VÞ�q;s dm‘ dmb d‘ cos b db dL dðB 2 VÞ; ð50Þ

where ai; j;k;l;m;q;s is given by equation (37). Poisson noise was

introduced in corresponding histograms used as input for the

inversion procedure. It should be emphasized that constructing

such HR diagrams does not challenge the relevance of our physical

model, equation (26), but only our ability to recover a given LF.

The model LF need not be very realistic at this stage. The

parameters of the epicyclic model given in Table 1 were set so as to

reproduce the local neighbourhood according to Bienaymé &

Séchaud (1997) and Vergely et al. (2001). Fig. 8 shows the

assumed and reconstructed HR diagrams for the four populations

in the ½L0;B 2 V� plane for this model, while Fig. 9 shows the

reconstruction error in per cent for those two figures.

4 R E S U LT S

4.1 The Schwarzschild models

The above non-parametric inversion technique was implemented

on 19 � 19 � 19 data sets (and up to 41 � 41 � 41Þ corresponding

to measurements in X; Y ;B 2 V (equation 13). For each B 2 V

section, we recover 19 � 19 (respectively 41 � 41Þ coefficients xij

corresponding to values of U,B, which implies that our resolution

in kinematic dispersion is logarithmic. Fig. 5 shows isocontours of

the assumed and reconstructed HR diagram as its decomposition in

kinematic dispersion. In this zero-noise, no-bias régime, the

relative discrepancy between the data and the projection of the

model is less than one part in 103, while that between the model

and the inversion is lower than 10 per cent (the corresponding loss

in accuracy is characteristic of non-parametric deconvolution).

Note that the wiggly structures are a property of the model, and are

well recovered by the inversion procedure. Fig. 6 shows the actual

deprojection overlaid on top of the expected contour of the model

in the (logarithmic) (b, L ) plane for increasing values of B 2 V

(the projection of the fit in data space is not displayed, because

residuals of the fit would be too small to be seen). Errors in the

deprojection are largest for lower contours. Note that the contours

in Fig. 5 correspond to sections of the cube shown in Fig. 6 that are

orthogonal to those displayed in Fig. 6.

4.1.1 Errors in measurements and finite sample

The above results were achieved assuming infinite numbers of stars

and no truncation in apparent magnitude. The Poisson noise

induced by the finite number of stars (for which accurate

photometric and kinematic data are available), as well as the actual

error in those measurements, are likely to make the inversion of

equation (8) troublesome.

Fig. 7 shows how the error in the recovered HR diagram decreases

as a function of the signal-to-noise ratio in the data which, for the

sake of simplicity, was assumed to be constant while the noise was

taken to be Gaussian (corresponding to the large number of stars

per bin). Note that in reality the signal-to-noise ratio will clearly be

apparent-magnitude-dependent, and distance-dependent (because

of extinction and proper motion errors). Fig. 7 also shows how the

truncation in apparent magnitude induces a truncation in absolute

magnitude (here we truncate in Y, since a truncation in L induces a

truncation in Y but none in X, given equation 13).

4.2 The epicyclic models

The inversion technique has been implemented over a 36 � 9 �

7 � 7 � 10 � 20 � 4 model which corresponds to a bin size

projected on to the sphere of 10 � 10 degrees in position sampled

linearly, seven bins in proper motion ranging from 20.2 to

0.2 mas yr21, and 20 bins in apparent and absolute luminosity

corresponding to an integration over the line of sight from 0.1 pc to

4 kpc (those are also linear bins in luminosity, which correspond to

a logarithmic binning in radius). The four kinematic indexes

(ranging from 0.8 to 120) were set to reproduce a series of discs

with density scaleheights ranging from nearly 200 pc to 1 kpc (i.e.,

corresponding to thin and thick discs). The mean signal-to-noise

ration for these simulation is 2000, ranging from 20 on the giant

branches to 70 000 at the bottom of the main sequence.

Fig. 9 shows the reconstruction error in the ½B 2 V ; L0� plane

corresponding to the HR diagram shown in Fig. 8. The main

sequence and the different turn-off are well reconstructed (the error

lies well below 1 per cent for the faint part of the main sequence,

and is less than 10 per cent at the turn-offs). The red giant branch

(RGB) is also well reproduced, even though it strongly depends on

the age of the population (via b ). This can be understood if we look

at the number of stars in the different regions on the ½B 2 V ; L0�

plane. Older (younger) populations have larger (lower) number of

stars on the RGB, and the signal-to-noise ratio is increasing

(decreasing) correspondingly. We note that the four tracks are

recovered without creating any spurious structure. The LFs Fb(L0)

Table 1. Parameters used for the epicyclic model described in Section 2.3.

Distribution function Potential Solar motion

Rr¼ 2.5 kpc D¼ 240 pc R(¼ 8.5 kpc
Rr¼ 2.5 kpc S0¼ 48 M( pc22 VLSR¼ 220 km s21

RsR
¼ 10 kpc reff¼ 0.0105 M( pc23 U(¼ 9 km s21

Rsz
¼ 5 kpc a¼20.1 V(¼ 5.2 km s21

sR(
¼ 48 km s21 W(¼ 7 km s21

sz(
¼ 24 km s21

r(¼ 0.081 M( pc23
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are recovered within 1 per cent uncertainty (in mean value) for the

oldest population, and within 20 per cent for the youngest (note

that sometimes the reconstruction error increases up to 100 per cent

when no stars are recovered on the RGB).

5 D I S C U S S I O N A N D C O N C L U S I O N

The main result of this paper is a demonstration that the

generalized stellar statistic equation including proper motions,

equation (2), can be inverted, giving access to both the kinematics

and the luminosity function. The inversion was carried for two

rather specific functional decompositions of the underlying

distribution (namely, constant ratio and possibly singular

Schwarzschild ellipsoids plane-parallel models) and a more

realistic physical model (the epicyclic Shu model) which accounts

for gradients. The inversion assumes that the departure from

harmonicity of the vertical potential, and/or the asymmetric drift or

the Sun’s vertical velocity, w(, are known. Indeed, the break in the

potential yields a scale which reflects the fact that statistically

the dynamics (i.e., the velocities) gives a precise indication of

distances in units of that scale. The asymmetric drift or vertical

component of the Sun’s velocity provides another energy scale

(and therefore a distance scale). The existence of more than one

distance scale is mathematically redundant, but practically of

interest for the purpose of accounting for local and remote stars.

In a nutshell, it was shown in Section 2 that equation (2) has

solutions for families of distributions obeying equation (4)

(singular ellipsoid) or equation (18) (Schwarzschild ellipsoid).

Those solutions are unique, and can be made explicit for a number

of particular cases: equation (17) (pin-like velocity ellipsoid),

equation (A5) (constant ratio bR/bz, w( < 0Þ, equation (A8)

(constant ratio bR/bz and bf/bz, either with v( < �vf;w( < 0, or

with v( 2 �vf – 0, w( – 0 and x < 0 : statistical secular

parallaxes). In all other instances, the solution can be found via

the general non-parametric inversion procedure described in

Section 3.1.1, the only constraint being the computation of the

model matrix generalizing equation (37) (which might require

numerical integration, as shown for instance in Section 2.3); in this

more general framework it remains also to demonstrate that the

inversion will converge towards a solution which is unique. For

instance, in the régime where the epicyclic model has been tested

(Section 3.3) a unique solution seems to be well defined. The LF of

each kinematical component is well recovered throughout the HR

diagram.

More tests are required before applying the method to real data,

and are postponed to a companion paper (Siebert et al., in

preparation). For a given vertical potential, it appears that the

modelling of star counts indexed by proper motion Al(m,ml,mb;

Figure 5. Left: assumed and Right: reconstructed HR diagram together with its decomposition in kinematic temperature. Note that the wiggly structures are a

property of the model, and are well recovered by the inversion procedure. The plain, dashed, dot-dashed, short-dashed curves correspond to the four dispersions

associated with the four populations with distinct main-sequence turn-off radii shown in Fig. 3.

Figure 6. Assumed model (plain line, filled contour) and non-parametric

deprojection (dashed line) overlaid on top of the expected contours in the

ðlog 1/L, logb ) plane for increasing B 2 V sections. Errors in the

deprojection are largest for lower contours. Note that these sections are

orthogonal to those superposed in Fig. 5.
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l, b ) has a solution for most model parameters. Many different

models based on distinct priors have produced realistic magnitude

and colour star counts, but failed to predict proper motion

measurements accurately [for instance, note that the Besaņcon

model – which relies on a nearly dynamical consistent model –

produces a good fit to proper motion surveys (Ojha et al. 1994),

while dynamically inconsistent models are more problematic

(Ratnatunga, Bahcall & Casertano 1989)].

It should be emphasized that the inversion method presented in

Section 3.1.1 is a true deconvolution, and should give access to a

kinematically indexed HR diagram. Together with some model of

the time evolution of the different kinematic components (via, say,

a disc-heating mechanism), the indexing could be translated into

one on a cosmological time, hence providing a non-parametric

measurement of the local neighbourhood LF which is complemen-

tary to that obtained by evolutionary track fitting with an assumed

IMF and star formation rate (see, e.g., Hernandez, Valls-Gabaud &

Gilmore 1999). Note that, conversely, the agreement between the

standard direct method to predict the local LF and the method

presented here could be used to measure the Galactic potential.

The deepest photometric and proper motion of whole sky survey

available is the Tycho-2 catalogue (Høg et al. 2000), which is a new

reduction of the Tycho data (Høg et al. 1998). Many Tycho stars are

disc giants and subgiants covering a large range of distances; the

method developed here can be applied to these stars, and will allow

us to recover their LF without any prior information from stellar

evolution tracks. We intend in a forthcoming paper to apply the

method presented here to the Tycho-2 catalogue (Høg et al. 1998)

and to other proper motion catalogues in order to determine the LF

of stars in the solar neighbourhood. We will investigate the

limitations introduced by a magnitude-limited catalogue, by the

finite size of catalogues, and also by our limited knowledge of

the Galactic potential. Reddening is also bound to be a concern,

since it will bias apparent luminosities as a function of ‘ and b. If

Figure 7. Left panel: The mean absolute residual of the luminosity function,
P

ijjF
recov
ij 2 F

input
ij j=

P
ijjF

input
ij j versus the signal-to-noise ratio in logarithmic

coordinates. This graph demonstrates that the non-parametric inversion sketched in Section 3.1.1 is robust with respect to sampling or measurement noise.

Right panel: The effect of truncation in magnitude on the main sequence: plain line: recovered HR diagram with a truncated data set; dashed line: recovered HR

diagram without truncation. As expected, the truncation in apparent magnitude removes the information at the bottom of the main sequence.

Figure 8. Left: Assumed HR diagram for the epicyclic model. The four populations have distinct turn-off point and kinematic index. Right: Reconstructed HR

diagram. L0 is expressed in unit of L(. Note that all four populations are well recovered. The main sequence and turn-off are reconstructed within 10 per cent

error (less than 1 per cent for the lower part of the main sequence due to the large number of stars in that part of the HR diagram). The giant branch is also

recovered, although the reconstruction error is higher.
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the reddening is diffuse and the absorbing component law is

known, the kernel of e.g., equation (10) will simply be modified

accordingly. Alternatively, multicolour photometry could be

sufficient to constrain the spatial extinction law. Of course, the

dimensionality of the problem is increased by the number of colour

bands used, since the analysis must be carried while accounting for

all colours simultaneously.

The final error on the recovered LFs will depend on the

photometric errors of the observational catalogue (, 0.1 for the

Tycho-2 catalogue down to 0.013 for VT , 9, , 0:05–0:10 for

photographic surveys). It will also depend on the relative proper

motion accuracy ½dðmÞ , 2dðmÞ/sm, with sm the typical dispersion

for a stellar group at a given distances]. With the Tycho-2 catalogue

completed by proper motions (with an accuracy of 2.5 mas y21),

and for disc giants with velocity dispersions from 10 to 50 km s21

and proper motion dispersions from 2 to 10 mas y21, the accuracy

on the recovered LF will be limited to about 0.5 mag. Closer (and

fainter) stars with proper motions from photographic catalogues

will constrain the lower part of the LF with a higher accuracy.

In the next decade, sky surveys by the Fame, Diva and GAIA

satellites will probe the Galactic structure in superb detail, giving

directly access to larger volumes of the 6D stellar phase space of

the Galaxy. It will remain that farther out, only proper motions and

photometry will have sufficient accuracy and generalization of

methods such as that derived here will be used to extrapolate our

knowledge of the kinematic and LFs of the Galaxy and its

satellites. For instance, Appendix B sketches the possible inversion

of an external globular cluster LF with GAIA-quality photometry.
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Let us demonstrate that equation (2) has explicit analytic solutions

Figure 9. Left panel: Reconstruction error in the ½B 2 V ; L0� plane for the epicyclic model shown in Fig. 8. Right panel: Model versus recovered luminosity

function Fb(L0) for the four kinematic indexes corresponding to the oldest population (lower curve) to the youngest (upper curve). The LFs are plotted on a

logarithmic scale and arbitrary normalized. The curves corresponding to the two kinematic index where shifted along the y-axis. Plain lines correspond to the

model LF, while dot-dashed lines are the reconstructed LF. Note that the LF is well reconstructed for the main sequence (at low luminosity) and for the turn-off.

The total LF summed over the kinematic index is also displayed as the top thick lines. The bumps at low and high luminosity are properties of the model and

correspond to the lower part of the main sequence and to the subgiant branch of each population.
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for families of distributions obeying (18), using the inversion

procedure sketched in Section 2.1.

A1 Slices towards the Galactic Centre

For the sake of simplicity, let us first restrict the analysis to u( ¼

v( ¼ w( ¼ 0 and assume first that we have measurements only in

the direction ‘ ¼ 0. The integration over ur then yieldsð
f bðr; uÞ dur ¼

ffiffiffiffiffiffiffiffiffiffiffi
bbbf

4p2

r
� exp{ 2 1

2
½bfðu‘ 2 �vfÞ

2 1 bbu2
b�2 bzczðzÞ};

ðA1Þ

where

b21
b ¼ b21

R sin2ðbÞ1
r( 2 r cosðbÞ

R

� �2

b21
z cos2ðbÞ: ðA2Þ

Without loss of generality, let us integrate over u‘:ð ð
f bðr; uÞ dur du‘ ¼

ffiffiffiffiffiffi
bb

2p

r
exp½2 1

2
bbu2

b 2 bzczðzÞ�: ðA3Þ

At large distances from the Galactic Centre, both R and r( are large

compared to r, and equation (A2) becomes

�b
21
b ¼ b21

R sin2ðbÞ1 b21
z cos2ðbÞ: ðA4Þ

Let us now also assume that bR and bz are known monotonic

functions of a unique parameter b. We may now convolve equation

(A3) with the LF sought, F[Lr 2,b ], so that

A½b;mb; L� ¼

ð ð ffiffiffiffiffiffi
�bb

2p

r
F½Lr 2;b�

� exp{ 2 1
2

r 2 �bbm
2
b 2 bzcz½r sinðbÞ�}r 3 dr db: ðA5Þ

Equation (6) appears now as a special case of equations (A4) and

(A5) corresponding to bR!1. Even though the convolution in

equation (A5) is less straightforward than that of equation (8), and

so long as cz is not purely harmonic, equation (A5) will have a non-

trivial solution for F. In particular, if the ratio of velocity

dispersions bR/bz is assumed constant, equation (8) still holds but

with b ¼ bz, and x replaced by x0 defined by

x0 ¼ a
sin2ðbÞ

L
1

m2
b

2L cos2ðbÞ1 j2L sin2ðbÞ
; where j ¼

bz

bR

;

with A0½b;mb; L� ¼ A½b;mb; L�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 j tan2ðbÞ

p
:

Note that if v( and w( are not negligible, equation (A5) becomes

A½b;mb; L� ¼

ð ð ffiffiffiffiffiffi
�bb

2p

r
F½Lr 2;b� exp{ 2 1

2
�bb½ub 1 cosðbÞw(�

2

2 bzcz½r sinðbÞ�}r 3 dr db; ðA6Þ

and is of the form discussed below as equation (A8) with ‘ ¼ 0.

A2 Slices away from the Galactic Centre

For any direction ‘ – 0 when r(!1, the kinetic dispersion

(replacing in equation A4) along Galactic latitude is given by

b̂
21

b ¼ ðb21
R cos2‘ 1 b21

F sin2‘Þ sin2b 1 b21
z cos2b;

and equation (6) is replaced by

A ½b;‘;mb; L� ¼

ð ð ffiffiffiffiffiffi
b̂b

2p

s
F½Lr 2;b� exp{ 2 b̂b½rmb 1 cosðbÞw(

2 sinðbÞ sinðlÞðv( 2 �vfÞ�
2 2 bzcz½r sinðbÞr 3 dr db�}; ðA7Þ

which can be rearranged as (again with b ¼ bzÞ

L 2 cosðbÞA2½b;‘;mb; L� ¼

ð ð ffiffiffiffiffiffi
b

2p

r
F½u 2;b�

� exp½2bu 2x2 1 buy2 2 bz2 2 bxðuyÞ�u 3 du db; ðA8Þ

with z2 given by equation (25),

x2 ¼ a
sin2ðbÞ

L
1

m2
b

2L cos2ðbÞ1 2L sin2ðbÞ½jR cos2ð‘Þ1 jf sin2ð‘Þ�
;

ðA9Þ

y2 ¼
mb½ðv( 2 �vfÞ sin b sin ‘ 2 w( cos b�ffiffiffi

L
p

cos2ðbÞ1
ffiffiffi
L
p

sin2ðbÞ½jR cos2ð‘Þ1 jf sin2ð‘Þ�
; ðA10Þ

A2½b;‘;mb; L� ¼ A½b;mb; L�

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 tan2ðbÞ½jR cos2ð‘Þ1 jf sin2ð‘Þ�

q
;

where jR ¼
bz

bR

; jf ¼
bz

bf

: ðA11Þ

In the region where the asymmetric drift and the z-component of

the Sun’s velocity can be neglected, v( < �vf and w( < 0, y2 and

z2 vanish and equation (A8) is formally identical to equation (10);

once again the solution of equation (A8) is given by equation (17)

with the appropriate substitutions. Alternatively, in the regions

where either w( or v( 2 �vf cannot be neglected, equation (A8)

has a unique solution even if x; 0, which can be found along the

section mb ¼ 0 (note that when r(!1, we can always assume

u( ¼ 0 by changing the origin of Galactic longitude, ‘). Indeed,

equation (A8) becomes equation (24), which is of the form

described in Section 2.1.2 with n ¼ 0, x3 replacing x, and z2

replacing y; the corresponding solution is found by following the

same route. It is analogous to statistical secular parallaxes (note,

none the less, that the section mb ¼ 0 might not be sufficient to

carry the inversion without any truncation bias, since log(z2) spans

]21,Z [ when b and ‘ vary with Z as a function of jR, jF, w( and

ðv( 2 �vfÞ.

Turning back to equation (A8), it remains true that for more

general x the equation can still be inverted via the kernel,

K2ðx2; y2; z2; yju;bÞ, which depends explicitly on x:

K2 ðx2; y2; z2; yju;bÞ ¼

ffiffiffiffiffiffi
b

2p

r
� exp½2bu 2x2 1 buy2 2 bz2 2 bxðuyÞ�u 3:

Note that the multidimensionality of the kernel, K2, is not a

problem from the point of view of a x 2 non-parametric

minimisation described in Section 3.
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A P P E N D I X B : E X T E R N A L S P H E R I C A L

I S OT R O P I C C L U S T E R S

Consider a satellite of our Galaxy assumed to be well described as a

spherical isotropic cluster with an LF indexed by this kinematic

temperature. Let 4p2Alðmb; L; RÞm dm dLR dR be the number of

stars which have proper motions, m 2 ¼ m2
b 1 m2

‘, and apparent

luminosity L at radius R from the centre at the wavelength l. This

quantity is a convolution of the distribution function f(1, b )

(a function of energy, 1, and b; 1/s 2Þ and the luminosity

function, gl(L0, b ), a function of the intrinsic luminosity, L0, the

population, b, and wavelength l:

Alðm; L;RÞ ¼

ð ð ð
f ð1;bÞglðb; Lr02Þ db dz dvz; ðB1Þ

which can be rearranged as

Alðm; L;RÞ ¼ 4

ð ð ð
f ð1;bÞglðb; Lr02Þ

�
r drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r 2 2 R 2
p

d1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðc 1 1Þ2 v 2

p db; ðB2Þ

where v 2 ¼ m 2r02 is the velocity in the plane of the sky,

r02 ¼ ðr 2 2 R 2 1 r2
(Þ the distance to the observer, r( the distance

to the cluster, and r the distance to the cluster centre. The potential

can be derived non-parametrically from the projected density

(using Jeans’s equation). Indeed, the mass enclosed within a sphere

of radius r reads

Mdynð, rÞ ¼ r 2 dc

dr
¼ 2

r 2

r

dðrs 2Þ

dr
; ðB3Þ

where c(r ) is the gravitational potential, r(r ) the density, and s(r )

the radial velocity dispersion. The surface density is related to the

density via an Abel transform:

SðRÞ ¼

ð1

21

rðrÞ dz ¼ 2

ð1

R

rðrÞ
r drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r 2 2 R 2
p ;ARðrÞ; ðB4Þ

where S(R ) is the projected surface density, and R the projected

radius as measured on the sky. Similarly, the projected velocity

dispersion s2
p is related to the intrinsic velocity dispersion, s 2(r ),

via the same Abel transform (or projection)

SðRÞs2
pðRÞ ¼ 2

ð1

R

rðrÞs 2ðrÞ
r drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r 2 2 R 2
p ;ARðrs

2Þ: ðB5Þ

Note that SðRÞs2
p is the projected kinetic energy density divided by

3 (corresponding to one degree of freedom), and r(r )s 2 the kinetic

energy density divided by 3. Inserting equations (B4) and (B5) in

equation (B3) yields

Mdynð, rÞ ¼ 2
r 2

A21
r ðSÞ

dA21
r ðSs

2
pÞ

dr
;

while rðrÞ ¼
1

4pr 2

d

dr
Mdynð, rÞ and 72c ¼ 24pGr: ðB6Þ

The underlying isotropic distribution is given by an inverse Abel

from the density:

f ð1Þ ¼
1ffiffiffi
8
p

p2

ð
d2r

dc 2

dcffiffiffiffiffiffiffiffiffiffiffiffi
1 2 c
p ;

ð1

0

FðbÞ expð2b1Þ db; ðB7Þ

where an isothermal decomposition over temperature b was

assumed for the distribution function (this assumption is not

required: any parametrized decomposition is acceptable). So

FðbÞ ¼ L21½ f ð1Þ� ¼ L21{A21½A21ðSÞ�}; ðB8Þ

where L is the Laplace operator.

Calling

G½Y� ¼

ðY

0

expð2XÞ dxffiffiffiffiffiffiffiffiffiffiffiffiffi
Y 2 X
p ¼

ffiffiffiffi
p
p

Erfið
ffiffiffiffi
Y
p
Þ e2Y ;

g1ðb; Lr02Þ ¼ glðb; Lr02ÞFðbÞb23=2; ðB9Þ

equation (B2) becomes

Alðm; L;RÞ ¼ 2
ffiffiffi
2
p
ð1

0

ð1

R

G b
m 2ðr 2 2 R 2 1 r2

(Þ

2
2 cðrÞ

� �� ��

� g1½b; Lðr
2 2 R 2 1 r2

(Þ�
r drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r 2 2 R 2
p

�
db ðB10Þ

where G is a known kernel, while gl is the unknown LF sought.

Equation (B10) is the direct analogue of equation (8). It will be

invertible following the same route with GAIA photometry. (With

today’s accuracy in photometry, for a typical globular cluster at a

distance r( of, say, 10 kpc, the relative positions within the cluster

are negligible with respect to r(: r 2 2 R 2 ! r2
(; therefore

Alðm; L;RÞ ¼ 2
ffiffiffi
2
p
ð1

0

ð1

R

G b
m 2r2

(

2
2 cðrÞ

� �� �
rdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r 2 2 R 2
p

� �
� g1ðb; Lr2

(Þdb:

L is then also mute, and the inversion problem shrinks to one

involving finding the relative weights, gL[b ] of a known

distribution.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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