Cenozoic kinematics of the Wenchuan-Maoxian fault implies crustal stacking rather than channel flow extrusion at the Tibetan plateau eastern margin (Longmen Shan)

Chenglong Ge, Philippe Hervé Leloup, Yong Zheng, Stéphane Scaillet, Laura

Airaghi, Florian Duval, Jinjiang Zhang, Haibing Li

To cite this version:

Chenglong Ge, Philippe Hervé Leloup, Yong Zheng, Stéphane Scaillet, Laura Airaghi, et al.. Cenozoic kinematics of the Wenchuan-Maoxian fault implies crustal stacking rather than channel flow extrusion at the Tibetan plateau eastern margin (Longmen Shan). Tectonophysics, 2023, pp. 229816. 10.1016/j.tecto.2023.229816 . insu-04057375

HAL Id: insu-04057375
https://insu.hal.science/insu-04057375
Submitted on 4 Apr 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Journal Pre-proof

Cenozoic kinematics of the Wenchuan-Maoxian fault implies crustal stacking rather than channel flow extrusion at the Tibetan plateau eastern margin (Longmen Shan)
G.E. Chenglong, Philippe Hervé Leloup, Yong Zheng, Stéphane Scaillet, Laura Airaghi, Florian Duval, Jinjiang Zhang, Haibing Li

PII:
DOI:
Reference:

To appear in: Tectonophysics

Received date: 27 December 2022
Revised date: 3 March 2023
Accepted date: 10 March 2023

Please cite this article as: G.E. Chenglong, P.H. Leloup, Y. Zheng, et al., Cenozoic kinematics of the Wenchuan-Maoxian fault implies crustal stacking rather than channel flow extrusion at the Tibetan plateau eastern margin (Longmen Shan), Tectonophysics (2023), https://doi.org/10.1016/j.tecto.2023.229816

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
© 2023 Published by Elsevier B.V.

Cenozoic kinematics of the Wenchuan-Maoxian fault implies crustal stacking rather than channel flow extrusion at the Tibetan plateau eastern margin (Longmen Shan).

Chenglong GE ${ }^{1,2,3}$, Philippe Hervé Leloup ${ }^{3}$, Yong Zheng ${ }^{1}$, Stéphane Scaillet ${ }^{4}$, Laura Airaghi ${ }^{4}$, Florian Duval ${ }^{4}$, Jinjiang Zhang ${ }^{2}$, Haibing Li $^{l^{*}}$
1 Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China 2 School of Earth and Space Sciences, Peking University, Beijing, China
3 Laboratoire de Géologie de Lyon, Terre, Planètes, Environnement, Lyon, Université Lyon 1; ENS de Lyon; CNRS UMR 5276, 2 rue Raphaël Dı bnis, 69622, Villeurbanne, France
4 Université Orléans, CNRS, BRGM, Institut des Science: de ì Terre d'Orléans (ISTO), UMR 7327, F-45071, Orléans, France

* Corresponding author

Keywords:
Longmen Shan, brittle/ductile faulting, fault gouge dating, Petro-geochronology, in-situ/step-heating $\left.{ }^{40} \mathrm{Ar}\right)^{39} \mathrm{Ar}$ dating, mountain building

Abstract

The Longmen Shan, eastern and steepest margin of the Tibetan plateau, is often seen as the archetype example of an orogenic system built by crustal channel flow extrusion since the Miocene. This model is controversial as other studies propose an accretionary prism mechanism. A key difference between these models resides in the kinematics proposed for the Wenchuan - Maoxian (WM) fault zone, a major tectonic structure of the Longmen Shan. We constrain the Cenozoic kinematics of the WM fault zone by combining structural observations, fault gouge K/Ar dating and ${ }^{40} \mathrm{Ar}{ }^{39} \mathrm{Ar}$ dating of syn-kinematic white mica. Normat / right lateral ductile deformation occurred at $28.0 \pm 0.9 \mathrm{Ma}$ while top-to-the eas reverse deformation at $15.4 \pm 0.2 \mathrm{Ma}$. K-Ar ages of authigenic illite from twr fan. ${ }^{1+}$ gouges show that brittle right-lateral / reverse deformation was active at $69 \pm 2.9 \mathrm{Ma}$. These ages are consistent with the relative vertical motions acro s the fault zone deduced from thermochronology. Three deformation phases ca، bt iaentified: right-lateral / normal in the Middle Oligocene ($\sim 30-25 \mathrm{Ma}$), reverse i: the middle Miocene ($25-15 \mathrm{Ma}$), and right-lateral / reverse since the upper Min ${ }^{\prime}$ ne (smce $\sim 6 \mathrm{Ma}$). The WM fault zone never experienced pure normal motion, anc , n y shortening since the Oligocene, in contrast to predictions of lower crustal ci' nnel-flow extrusion models. These results are in favor of a crustal accretionar pr sm model for the Cenozoic building of the eastern Tibetan plateau.

1 Introduction

The Tibetan plateau with an average elevation $>5000 \mathrm{~m}$ a.s.l., and a $65-80 \mathrm{~km}-$ thick crust, is the largest high plateau on earth. Geological and geophysical studies suggest it has a complex structure largely shaped by the India / Eurasia collision since $\sim 55 \mathrm{Ma}$ (e.g.: Tapponnier et al., 2001; Yin and Harrison, 2000). Various models corresponding to contrasted views of the continental lithosphere rheology have been proposed to explain the Cenozoic formation and evolution of the Tibetan plateau.

Lateral extrusion of partially molten crustal material outward from below the Tibetan plateau has been proposed for the building of the Himalaya and Eastern Tibet structure and topography. Such mechanism would be strongly coupled with high erosion focussed on the ranges slope and would explain extrusion of a piece of crust between parallel and coeval thrust at the base and normal ${ }^{{ }^{c}}$. ult at the top. Central to this model is the geophysical (seismic, magnetotelluric) - sst:vation of widespread Low Velocity Zones (LVZ) within the crust interpreted is d agnostic of present-day partial melting and thus extremely weak rheolog ((g., Nelson et al., 1996; Klemperer, 2006), that would decouple deformation n tic upper crust from that in the lower crust / upper mantle.

In the Himalaya, channel flow has been su_{8}.en ${ }^{\text {re }}$ ted to explain lower Miocene extrusion of partially molten gneisses of the Creater himalayan Sequence between the Main Central Thrust at the base of the rang ${ }^{2}$ ar 1 the South Tibet Detachment at the top (e.g.; Beaumont et al., 2001; Jamieron at al., 2004; Searle and Szulc, 2005). This popular model may be questioned ber ause the partial melting, the Main Central Thrust and the South Tibet Detachmenı are not exactly synchronous (e.g., Leloup et al., 2015). Some still favour an a retionary prism model where the structure and topography of the Himalaya rest it $\mu^{\wedge} \mathrm{m}$ crustal stacking in an accretionary prism (e.g., Bollinger at al., 2006; Kohn $\mathrm{e}^{+} _1 ., 2^{\prime}{ }^{\prime} 08$).

In any case, motion on ti. ${ }^{-}$South Tibet Detachment, and thus potential channel flow toward the south, end ${ }^{-1}$ between 13 and 11 Ma ago (e.g., Leloup et al., 2010). Since $\sim 15 \mathrm{Ma}$ (middle Mu cene) crustal flow would have veered toward the east inducing E-W extension. in Central Tibet and outward migration of the eastern Tibet topography (e.g., ' le.nn rer, 2006; Adams and Hodges, 2022). That second phase of channel flow would h. ve created the world's steepest topographic continental slope in the Longmen Shan (LMS) towering nearly 5000 m above the Sichuan basin (Fig. 1c). Lower crustal material expelled from below Tibet would inflate when buttressing against the rigid South China craton (e.g., Royden et al., 1997; Clark and Royden, 2000), generating coeval reverse fault at the bottom and normal fault at the top (Fig. 2b) (e.g., Clark et al., 2005a, b; Royden et al., 2008; Burchfiel et al., 2008). This makes of the LMS an archetype example of an orogenic system built by crustal channel flow extrusion since the Miocene. But others rather advocate thickening through crustal stacking on reverse faults where deformation in the upper crust is strongly coupled with that in the lower crust / upper mantle (e.g., Hubbard and Shaw, 2009; Hubbard et al., 2010; Li et al., 2010; Tian et al., 2013; Wu et al., 2014; Lu et al., 2016) (Fig. 2a). One of the key points to distinguish between these models is the kinematics of the Wenchuan-Maoxian (WM) fault zone located in the internal part of
the belt: in the lower crustal flow extrusion model the fault should show a normal component of motion coeval with thrusting at the front of the range (Fig. 2b).

Kinematics of the WM fault zone is however still poorly documented especially for the Miocene, at a time when lower crustal flow is thought to be dominant (e.g., Clark et al., 2005a). In this work we combine structural geology with illite K / Ar dating on fault gouges and in situ and step-heating ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ dating of mica in greenschist-facies rocks deformed along the fault system to constrain the kinematics of the WM fault zone since $\sim 30 \mathrm{Ma}$, and thus to discuss the Longmen Shan building mechanism(s).

2 Geological background.
2.1 The Longmen Shan belt.

The Longmen Shan separates the Songpan-Ganze bl cck Tibetan plateau) in the west from the Sichuan Basin in the east and is stradd' c^{\prime} nom west to east by three major sub-parallel fault zones: Wenchuan-Maoxiar (${ }^{\mathrm{VN}} \mathrm{I}$), Yingxiu-Beichuan, and Guanxian-Anxian (Fig. 1b) (e.g., SBGMR 1991) Su \cdot •face geology and geophysical studies suggest that the faults are NW-dipping, list ic and that they merge into a detachment at depth of $\sim 20-30 \mathrm{~km}$ (Feng et al., 2015; Hubbard and Shaw, 2009). In the Central Longmen Shan, three basement ce.rolexes (Pengguan (PG), Mutuo (MT) and Xuelongbao (XLB)) are comn seu of Neoproterozoic meta-granites unconformably overlain by a Neoprr ier zole meta-sedimentary cover (Sinian). They are bounded by the WM and Yingxiu seichuan faults and structured in NW dipping slices (Fig. 1b, c) (Xu et al., 20G2• Yan et al., 2011; Airaghi et al., 2017; Xue et al., 2021).

A major phase of top to the SE tr rusting is evidenced by penetrative cleavage and stretching lineation in the netajediments in the Wenchuan area, and by nappe emplacement over the stro oly iolded Late Triassic sequences in the western Sichuan foreland basin (Burchfiel t. a1., 1995; Worley and Wilson, 1996; Mattauer, 1992; Yan et al., 2011). During that ${ }_{r}{ }^{\text {b }}$ ase the metasedimentary rocks northwest of the Pengguan complex reached an ohil olite-facies metamorphic conditions at $\sim 11 \pm 2 \mathrm{kbar}$ and $\sim 620{ }^{\circ} \mathrm{C}$ (Dirks et ait 1994; Airaghi et al., 2019). These conditions were reached at ca. 224-180 Ma (C_{r} per Triassic - Lower Jurassic) (Yan et al., 2011; Airaghi et al., 2018b; 2019; Xue et al., 2021). The Pengguan complex experienced further exhumation at ca. $140-120 \mathrm{Ma}$ (Lower Cretaceous) (Arne et al., 1997; Airaghi et al., 2018a).

In the Longmen Shan, localized crustal shortening models are supported by observations of east-verging Cenozoic thrust faults in the foreland (e.g., Hubbard and Shaw, 2009; Hubbard et al., 2010) (Fig. 2a). Channel flow models are based instead on the lack of significant shortening across the belt both at short time scale according to GPS measurements (e.g., Zhang et al., 2004), and at longer time scale because of the absence of significant flexural basin of Cenozoic age (e.g., Burchfiel et al., 1995). Geophysical evidence for low velocity layers in the lower crust of Tibet suggest that the lower crust is soft enough for channel flow to occur (e.g., Yao et al., 2006, 2008; Li et al., 2009). In this view, the flow of soft lower crust would have propagated eastward during the Miocene (Fig. 2b) (Royden et al., 2008). Activation of the

Guanxian-Anxian and Yingxiu-Beichuan faults at the front of the LMS during the 2008 Mw7.9 Wenchuan earthquake implies that thrusting with a right-lateral component on NE-SW NW dipping faults is a major active mechanism in the Longmen Shan building (e.g., Xu et al., 2009) (Fig. 1b)

2.2 The Wenchuan - Maoxian fault zone.

In the Central Longmen Shan the Wenchuan-Maoxian (WM) fault zone is a ~ 120 km long, NE-SW striking, NW-dipping fault network that separates Proterozoic basement rocks in the south-east from metamorphosed Paleozoic sediments in the north-west (SBGMR, 1991). The fault zone underwent a polyphase history (e.g., Burchfiel et al., 1995) since the Paleozoic. Raman spectrometry measurements of carbonaceous material (RSCM) suggest the basement rock. never exceeded $360{ }^{\circ} \mathrm{C}$ while the Paleozoic sediments that experienced temperatl re anditions of $450-600{ }^{\circ} \mathrm{C}$ (Airaghi et al., 2018a).

Within the WM fault zone, there is evidence for bri tle deformation with fault planes, fault gouge and brecciated rocks along the WM fault (Dirks et al., 1994, Burchfiel et al., 1995; Wang et al., 2014; Airao ni, .017) (Fig. 3a). Slickensides on fault planes are dominantly horizontal but also shov. pitches up to $30^{\circ} \mathrm{SW}$, indicating right lateral / reverse motion for some auth л. (Burchfiel et al., 1995) or left-lateral for others (Dirks et al., 1994). Yet, other ut. n^{\prime}, suggest pure reverse motion (Wang et al., 2014), or a more complex hi, uy ;ith left-lateral then right-lateral motion (Airaghi, 2017). Dog-leg's river den`c.ons and possible shutter ridges suggest that the right-lateral motion is recert and pussibly still active (Burchfiel et al., 1995; Densmore et al., 2005). Some late Fi \sim istocene fluvial terraces, dated at $\sim 20-24$ ka by radiocarbon and thermolumine. $c^{\prime} \cdot \mathrm{n}$ \& methods, were uplifted above the Minjiang riverbed by $\sim 20-50 \mathrm{~m}$, sugge , th. \boldsymbol{T} a minimum Quaternary vertical thrust rate of $\sim 0.5-$ $1.1 \mathrm{~mm} / \mathrm{yr}$. across the WM iau** (Li et al., 2006; Zhou et al., 2006), and a right-lateral rate of 0.8 to $1 \mathrm{~mm} / \mathrm{yr}$. (¿hou et al., 2006). However, based on the spatial distribution of the basin-wide denu'atir n rates inferred from cosmogenic dating, Godard et al. (2010) propose that ther ? is no significant recent differential uplift across the WM fault.

Mylonites with ste p lineation are found both in the Proterozoic basement east of the brittle WM fault and in metamorphosed Paleozoic sediments in the west (Burchfiel et al., 1995, Airaghi et al., 2019; Xue et al., 2021). S/C shear criteria generally indicate top to the SE (reverse) motion, but top to NW (normal) is observed southeast of the WM fault (Xu et al., 2008; Burchfiel et al., 1995; Xue et al., 2021). $\sim 120 \mathrm{~km}$ further south in the Southern Longmen Shan, Cretaceous-Paleogene ductile top to the NW (normal) deformation is found in gneiss west of the WM fault (Tian et al., 2016). However, there are no similar structures in the Central Longmen Shan, possibly because the structural evolution of the southern Longmen Shan is markedly different from than that of the central one (Airaghi et al., 2018a). West of the WM fault, the metamorphism shows a prograde path coeval with thickening with peak metamorphism reached at $\sim 180 \mathrm{Ma}$, and retrograde evolution lasting until $\sim 120 \mathrm{Ma}$, prior to activation of the WM fault zone sometime after 100 Ma (Airaghi et al., 2018b, 2019). East of the WM fault, white micas in mylonite showing top to the west (normal)
shear criteria yield an $\left.{ }^{40} \mathrm{Ar}\right)^{39} \mathrm{Ar}$ weighted mean age of $26.2 \pm 1.0 \mathrm{Ma}$, while other samples showing similar deformation have disturbed age spectra with apparent ages between 50 and 140 Ma (Xue et al., 2021). These ages are interpreted to reflect episodic normal faulting from Lower Cretaceous to Miocene (Xue et al., 2021).

Low-temperature thermochronology across the fault constrains the vertical motion on the WM fault zone. Shen et al. (2019) estimate that the WM behaved as a reverse fault zone at $\sim 0.6 \mathrm{~mm} / \mathrm{yr}$. since $12-15 \mathrm{Ma}$. Furlong et al. (2021) infer a more complex history with the WM fault behaving as a thrust between ~ 20 and $\sim 15 \mathrm{Ma}$, then stopping before resuming at $10-6 \mathrm{Ma}$ with a vertical rate $>0.6 \mathrm{~mm} / \mathrm{yr}$.
3. Field constraints on the structural evolution of the Wenchuan-Maoxian (WM) fault zone.

3.1. Ductile kinematics.

Our study across the WM fault near Gengda do umt nts a $\sim 3 \mathrm{~km}$ wide ductile deformation belt on both sides of the brittle WM fi lt (rig. 4a, b). Within this belt, foliations trend $\mathrm{N} 164^{\circ}$ to $\mathrm{N} 150^{\circ}$ and dip $40^{\circ}-85^{\circ}$ to the NW (Fig. 4c, d). Within the Paleozoic metamorphosed sediments west of the $t_{a} \cdot \frac{1}{2}$ steep cleavage planes are cut by shallower shear planes bearing WSW-ENE tonding lineation (Fig. 4c, Fig. 5a, b). These S/C relationships suggest top to the ('st reverse) motion. At the microscopic scale shear criteria are sometime ar..igu us, but when clear they systematically suggest top the east motion (Fig. ©). These rocks have White mica + Chlorite + recrystallized Quartz in the shear plaıs and along the foliation, and Feldspar \pm Epidote porphyroclasts, with feldspa-a deforming brittlely (Fig. 5c).

Within the Proterozoic basen e^{r}, \boldsymbol{f} the Pengguan massif the lineation trend to the NNW (Fig. 4d). Shear criteris $a^{\cdot e}$ nut clear in the field but in thin section they suggest top to the NW (right-latera' / ivrmal) motion (Fig. 5f). These rocks show White mica + Chlorite + recrystalliz ${ }^{\circ}$?uartz in the shear planes and along the foliation, and Feldspar \pm Epidote $\pm t$. mpl ibole porphyroclasts in the matrix. Some of the feldspar show evidence for dutile deformation (Fig. 5f) suggesting higher deformation
 factors as the deforms tion rate can influence the mechanical behaviour of K-feldspar during deformation. Xue et al. (2021) also report top to the NW (normal) deformation along the boundary of the Pengguan east of the WM fault. The ductile deformation zone thus appears to result from two distinct deformations: top to the east (reverse) in the Paleozoic metamorphic rocks and top to the NW (normal / right lateral) at the margin of the Pengguan. No outcrop with both deformations could be found, precluding the observation of any crosscutting relationship.

3.2. Brittle kinematics.

As evoked above, some lines of evidence point to a recent dominant strike-slip motion on the brittle WM fault, with presumably a right-lateral / reverse motion (e.g., Burchfiel et al., 1995). Our own observations document brittle deformation zones at several sites along the WM fault (Fig. 3a). At site MW19-11, near Gengda, gneiss,
micaschists and calcschists are affected by ductile reverse / left-lateral deformation compatible to that seen further north, east of the brittle fault. These structures are overprinted by brecciation along faults trending $\sim N 30^{\circ}$ parallel to the WM fault (Fig. 3a). At site MW19-81 granites are brecciated and bounded by a clear fault plane trending $\mathrm{N} 25^{\circ} 61^{\circ} \mathrm{W}$ bearing striation with a pitch of $64^{\circ} \mathrm{S}$ (Fig. 3a). At site MW19-79 the WM fault crops out as a $\sim 50 \mathrm{~m}$ thick brittle fault zone, with soft, deep dark and strongly foliated gouges, framing a grey fault breccia zone with a less organized structure (Fig. 6a, d). The fault planes strike between $\mathrm{N} 38^{\circ}$ and $\mathrm{N} 65^{\circ}$, dip steeply to the NW and show slickensides with pitches of $\sim 10^{\circ}$ to 40° toward the SW (Fig. 6c). An oriented sample taken from the black fault gouge against the NW fault plane (Fig. 6b) shows angular quartz clasts surrounded by a black clay-rich matrix whose foliation orientation with respect to that of the fault plane (shear plane) indicate rightlateral shear (Fig. 6e). Similar structures and Riedel shear $\epsilon^{\prime} \cdot$ ments can be also seen at the microscopic scale (Fig. 6f. g. h). Pitch values of stria+ ${ }^{+} \sim n^{2}$:mply a component of reverse motion.

3.3. Quantitative offset estimates.

One important aspect of the WM fault zone kin -atics is that it can be constrained by bedrock geology (reflecting long-term thanges in metamorphic grade) and morphology (manifesting shorter-term chang \mathfrak{i}, active topography).

Total exhumation appears more $\mathrm{ir}_{{ }_{\mathrm{r}}} \mathrm{rru}_{\mathrm{nt}} \mathrm{SE}$ of the fault zone, where basement rocks are more widely exposed in ti a Fengguan complex (4969 m), than in the NW where such rocks only outcrop in the 'ruelongbao (5313 m) and Mutuo (3455 m) ranges (Fig. 3a). This could imply that the WM fault zone is a normal fault (e.g., Royden et al., 2008). Howeve ; a metasediments NW of the fault experienced higher temperature metamorr in $\wedge_{1},\left(450-600^{\circ} \mathrm{C}\right)$ during the Triassic than those from the Pengguan range ($\leq 360^{\circ} \mathrm{C}$, (Airaghi et al., 2018a). This rather suggests an overall reverse motion since the $\mathrm{Tr}_{\text {ri }}$ ssic. From a limited thermochronology data set Godard et al., (2009) concludec' that there was no significant vertical motion across the WM fault since $\sim 11 \mathrm{Ma}$ n'wever, from a much larger dataset Furlong et al. (2021) recently estimatea $\sim,{ }^{1}$.n more Cenozoic exhumation of the Xuelongbao than the Pengguan, implying ; reverse component of motion. Taking the base of the Sinian sedimentary cover as a piercing point across the fault suggests an apparent rightlateral offset of $\sim 27 \mathrm{~km}$ (NE of both the Pengguan and Mutuo complexes; Fig. 3a and S1-1). Maps of river channel steepness do not show a strong contrast across the WM fault, suggesting that the fault has no dip-slip motion at present (Kirby and Ouimet, 2011).

Geologic markers as well as geomorphologic offset patterns such as deflected river network (e.g., Gaudemer et al., 1989) provide insight into mid- to short-term horizontal motion accumulated along the WM fault. Using the river network may not be straightforward because rivers are not passive markers. However, in the case of deeply incised rivers, lateral motion of the river-bed is greatly limited, and those rivers may be considered as clear piercing points. This is the case for the lower reach of the major Minjiang River (Fig. 3a) which is one of the only two rivers flowing across the Pengguan range in deep gorges (Fig. 1c). Upstream, the Minjiang river is
strongly deflected toward the NE along the WM fault for $\sim 59 \mathrm{~km}$ until Maoxian town, where it suddenly veers $\sim 90^{\circ}$ to flow out of the Tibetan Plateau (Fig. 3a). Taken at face value, this piercing point would suggest a $\sim 59 \mathrm{~km}$ right-lateral offset since river incision. However, such offset does not realign the Zagunao river, the only other major river draining Tibet in this area (Fig. 3a), with any downstream counterpart. Furthermore, the implied river offset is more than twice as large than the geological one when it should be equal or smaller as it is necessarily younger. Taking the Zagunao river as the upper reach of the Minjiang prior to the onset of the WM fault instead yields a $\sim 25 \mathrm{~km}$ offset (Fig. 3b). That offset also aligns the upstream Caoba river with the downstream Yuzixi river that is the other river flowing across the Pengguan range (Fig. 3). This offset is consistent with that seen in the geology (~ 27 km) (Fig. 3a and S1-1b). The $\sim 25 \mathrm{~km}$ offset does not realign the upper reach of the Minjiang with any downstream counterpart, but with the $\cap_{\text {ianjiang river. However, }}$ these two rivers are now disconnected as they are separ2tod ly the Pengguan range (Fig. 3b). This could be due to the fact that uplift of the F คng, uan may have been too fast for the Qianjiang to entrench, disconnecting it fr sm he upstream river network while the Minjiang and the Yuzixi rivers eroded frit euvugh to cross the Pengguan. This interpretation is consistent with the detailer: z° o.netry of the river network by
 flow direction would have been inverted for five $\sim 10 \mathrm{~km}$-long river stretches (8 ' to 13') by the fast uplift of the Pengguan. Wh. ${ }^{1}$ ft ntative, such reconstruction provides the simplest scenario for the recent in er network evolution, in particular by accounting for the fact that the WM faw i, for which there is clear evidence of strikeslip motion, did necessarily offset the iver network. Integration of the river offset pattern with the finite-strain struc rral-metamorphic record is discussed further in Sections 5.1 and 5.2 based on te af -91 constraints described below.

4 Temporal constraints

4.1 K-Ar dating of fault sou e

Dating of fault gu .ge can constrain the timing of brittle deformation (Vrolijk et al., 2018). Natural fauk ouge usually contains a mixture of two illite polytypes, $2 \mathrm{M}_{1}$ and $1 \mathrm{M}_{\mathrm{d}}$. Only $1 \mathrm{M}_{\mathrm{d}}$ polytype is considered to form simultaneously with faulting and usually has a size $<2 \mu \mathrm{~m}$, in contrast to the larger $2 \mathrm{M}_{1}$ polytype inherited from wallrock material. The age of the $1 \mathrm{M}_{\mathrm{d}}$ polytype would thus tend to be closer to that of deformation while that of the $2 \mathrm{M}_{1}$ will be inherited (Haines and van der Pluijm, 2008). Considering the fine grain size of illite mineral, the $\mathrm{K}-\mathrm{Ar}$ method is more appropriate than the ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ because of recoil effects during neutron irradiation (Clauer, 2013). We present results from two fault gouge samples taken at site MW19-79 near both fault planes framing the gouge zone (Fig. 6d, see detail in table 1). The samples were disaggregated and separated via gravitational floating and centrifugation to isolate clay fraction with four sizes, 1-2, $0.5-1,0.25-0.5$ and $<0.25 \mu \mathrm{~m}$, which were then characterized using X-ray diffraction and analysed with PROFEX software to quantify illite polytypes (Bergmann et al., 1998) (Fig. S2-1, S2-2; table S2-1). Each size fraction was dated using the K-Ar method as described by Zheng et al., (2014),
and ages are plotted against the percentage of $2 \mathrm{M}_{1}$ polytype (Fig. 7, Tables S2-2, S23). Details on the analytical procedure are found in Zheng et al. (2022).

Sample MW19-79A that shows clear indication for right lateral deformation comes from the vicinity of the NW fault plane (Fig. 6e, f, g). Ages for the four fractions vary between 6.9 and 21.2 Ma , while proportion in $2 \mathrm{M}_{1}$ illite varies between 0 and 54.08% (Table S2-3). York regression of the four ages with respect to the $2 \mathrm{M}_{1}$ percentage yield a $6.5 \pm 0.7 \mathrm{Ma}$ age at the lower (0%) intercept, and $34.8 \pm 3.1 \mathrm{Ma}$ at the upper (100\%) intercept (Fig. 7).

MW19-79E sampled in the black gouge in vicinity of the SE fault plane yield ages between 9.6 and 60.2 Ma , while proportion in $2 \mathrm{M}_{1}$ illite varies between 5.64 and 51.5 \% (Table. S2-3). Regression of the four ages yield $7.3 \pm 2.8 \mathrm{Ma}$ at the lower intercept, and $109.2 \pm 12.4 \mathrm{Ma}$ at the upper one (Fig. 7).

XRD analysis of both samples show that the only K-haring minerals are illite (Table S2-1). Illites are strongly oriented by the right-later.1 de.ormation (Fig. 6g, h). For both sample the apparent ages decrease linearly wi.h tl.e $2 \mathrm{M}_{1}$ illite (inherited) content, and the two lower intercepts are identical whin error while the two upper intercept ages are clearly distinct. We interpret his as reflecting a single $1 \mathrm{M}_{\mathrm{d}}$ (authigenic) growth event at $6.9 \pm 2.9 \mathrm{Ma}$ (upper ivinane) affecting two distinct host rocks that yield ages of $109.2 \pm 12.4 \mathrm{Ma}$ in the SL_{L} ar $\mathrm{d} 34.8 \pm 3.1 \mathrm{Ma}$ in the NW. The fault gouge results from brittle deformation of the host/parent rocks at temperature \leq $200^{\circ} \mathrm{C}$, and crystallization of illite in fault ε cag : occurs between $110^{\circ} \mathrm{C}$ and $180^{\circ} \mathrm{C}$ (Duvall et al., 2011; Mottram et al., 207), We thus interpret the $1 \mathrm{M}_{\mathrm{d}}$ growth event as resulting from motion along the britt e $V \mathrm{M}$ fault, and the ages as yielding a minimum age for the onset of that fault. The fact that the ages record a common resetting age, but a distinct inherited componenı nrecludes temperature to have exceeded $\sim 260^{\circ} \mathrm{C}$ after faulting (Hunziker et al., 1؟8t,
4.2 White mica ${ }^{40} \mathrm{Ar}{ }^{39} \mathrm{Ar}$ daíng
${ }^{40} \mathrm{Ar} r^{39} \mathrm{Ar}$ is applicat ${ }^{\circ}$ a t. in situ dating of fabric-forming minerals, particularly white micas crystal izec (or recrystallized) in schistose and mylonitic rocks (Di Vincenzo et al., L^{210}, Laurent et al., 2021). Combined with conventional stepheating, the techn: e can provide temporal constraints on deformation stages recorded by composite fabrics formed near the brittle-viscous transition at greenschist-grade conditions (Beaudoin et al., 2020). We present in situ laser and step heating ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ dating of white mica for sample MW19-38A showing top to the SE deformation (Fig. 5c), and MW19-10B showing top to the NW deformation (Fig. 5f). Details on the technique are given in S3, structural information is reported in table 1.

Micaschist MW19-38A was collected in Paleozoic metamorphic rocks with S/C relationships indicating top to the SE (reverse) deformation $\sim 200 \mathrm{~m}$ NW of the brittle WM fault (Fig. 4a). Ductile quartz, white mica and chlorite layers constitute the shear bands but feldspar porphyroclasts are brittlely deformed (Fig. 5c). This suggests deformation temperature $<450{ }^{\circ} \mathrm{C}$ (Sibson 1992), more probably close to $310-350^{\circ} \mathrm{C}$ (Stöckhert et al., 1999). Using Bourdelle and Cathelineau (2015) thermometer that is accurate for temperatures $\leq 350^{\circ} \mathrm{C}$, chlorite composition yield temperature estimates between 170 and $\geq 350{ }^{\circ} \mathrm{C}$, with most data (46%) at $\sim 350^{\circ} \mathrm{C}$ (Fig. S11; table S11-1).

Quantitative composition maps of the white mica (see S 8 for the analytical procedure) shows two generations of white mica based on their celadonite (Xcel) content. One has Xcel < 0.2, while the other has higher Xcel up to 0.4 (Fig. 8a) (Fig. S4-1). In situ ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ dating yield apparent ages between ~ 10 and 600 Ma with most ages ≤ 30 Ma (Figs. 8a, c, S4-1, S4-2; Table S4-1). White micas with low Xcel (Xcel < 0.2) have younger apparent ages (<20 Ma) than the ones with higher Xcel (> 300 Ma). Among the youngest ages, forty-nine spots define an average of $15.4 \pm 0.2 \mathrm{Ma}$ $($ MSWD $=1.35)$ (Fig. 8c). The companion step heating runs yield relatively flat age spectra with ages between 10 and 23 Ma , with a large fraction of the ages consistent with the young in situ component at $\sim 15 \mathrm{Ma}$ (Fig. 8c, Table S5). Our interpretation is that the micas with Xcel >0.3 are porphyroclasts inherited from an early event $(\geq 600$ Ma) while the younger age of the Xcel <0.2 micas record a younger fluid-rock interaction event responsible for the growth of secondary white micas and chlorite between 250 and $350^{\circ} \mathrm{C}$ during top to the east deformatior. Th.t temperature is lower than the closure temperature of white micas for the $\mathrm{K}^{\prime} \mathrm{Ar}$ system of $400-445{ }^{\circ} \mathrm{C}$ (Harrison et al., 2009) and recently revised theoretical ind ?mpirical estimates (Nteme et al., 2022, 2023) implying that the $15.4 \pm 0.2 \mathrm{Ma}$ 'miuiue Miocene) age correspond to white mica crystallization, not cooling.

Micaschist MW19-10B from ~200 m SE of $\mathrm{t}_{\mathrm{L}}{ }^{2} r^{\text {rittle }}$ WM fault (Fig. 4a) shows top-to-NW right-lateral / normal shear planes minderlined by recrystallized quartz and white mica (Fig. 5f). Chemical composit ก. 1 of the white mica shows moderate variation in Xcel content between n^{2} and 0.4 \% (Fig. 8b; S6-1a). Chlorite compositions yield temperature estir ate, between 315 and $\geq 350^{\circ} \mathrm{C}$, with one outlier at $160{ }^{\circ} \mathrm{C}$, and most data (37%) at $\sim 35 \iota^{\circ} \mathrm{C}$ (Fig. S11; table S11-1). In that part of the Pengguan range RSCM data east f the WM fault suggest that temperature never exceeded $360{ }^{\circ} \mathrm{C}$ (Airaghi et al $2^{1} \mathrm{xa}$). In situ $\left.{ }^{40} \mathrm{Ar}\right)^{39} \mathrm{Ar}$ dating yield apparent ages between 30 and 140 Ma ($\mathrm{Fi}_{\circ} \mathrm{S}_{\mathrm{E}}$, d, S6-1, Table S7). The step-heating spectrum displays a flat (concordant) s. oment at $28.0 \pm 0.9 \mathrm{Ma}$ in the early gas release (4% to 48% of the total ${ }^{39} \mathrm{Ar}$), cons tent with the youngest component of the in-situ data (Fig. 8d, Table S7). Step-agas ti -n climb up to $\sim 450 \mathrm{Ma}$, indicating an inherited hightemperature componf .it. Uur interpretation is that the top to the NW (normal / right lateral) ductile de $\frown r_{1}$ ati, n occurred at $300-360{ }^{\circ} \mathrm{C}$ inducing feldspar deformation and chlorite and white mica (re)-crystallization at $28.0 \pm 0.9 \mathrm{Ma}$ (Middle Oligocene), while a previous metamorphic event occurred at $\geq 140 \mathrm{Ma}$. This deformation age is fully consistent within error with the $\left.{ }^{40} \mathrm{Ar}\right)^{39} \mathrm{Ar}$ step-heating age of $26.2 \pm 1.0 \mathrm{Ma}$ inferred to date normal deformation from white micas sampled less than 1 km away (Xue et al., 2021). The deformation temperature is below the $400-445{ }^{\circ} \mathrm{C}$ closure temperature of white micas for the K / Ar system, implying crystallization rather cooling age (see above).

5 Discussion

5.1 Timing of brittle and ductile deformation in the WM fault zone

Fault gouge K/Ar dating at site MW19-79 indicates that brittle faulting was ongoing along the WM fault at $6.9 \pm 2.9 \mathrm{Ma}$ ($\sim 7 \mathrm{Ma}$, upper Miocene). Such faulting is
dominantly right lateral with a slight reverse component (pitch between 10° and 40° S). Our $\left.{ }^{40} \mathrm{Ar}\right)^{39} \mathrm{Ar}$ data indicate that top to the east (reverse) deformation occurred in the Paleozoic schists at $15.4 \pm 0.2 \mathrm{Ma}(\sim 15 \mathrm{Ma}$, middle Miocene), while top to the northwest (normal / right lateral) took place at the margin of the Pengguan complex at $28.0 \pm 0.9 \mathrm{Ma}$ ($\sim 28 \mathrm{Ma}$, Middle Oligocene).

The right-lateral fault kinematics with a slight reverse component are compatible with the $\sim 25 \mathrm{~km}$ right-lateral offset of the river network (Fig. 3) and the higher altitude of the Xuelongbao complex with respect to the Pengguan (Fig. 1c).

The ductile top the east (reverse) shear along the WM fault zone is usually ascribed to the amphibolite-grade deformation that affected the whole Paleozoic metasediments north of the Pengguan range during the Upper Triassic and created the nappes in the external part of the Longmen Shan (Airaghi et al., 2018a; Xue et al., 2021). Our age of deformation at 15.4 ± 0.2 Ma points ${ }^{\prime}$ a clearly much younger event (middle Miocene) of reverse shear restricted to the ${ }^{1 / M}$.ault zone between the Xuelongbao and Pengguan ranges (see below).

The age of top to NW (normal) shear along the IJW boundary of the Pengguan range was poorly constrained so far and some have ropused that it could correspond to a major detachment fault (Wang et al., 2014). ${ }^{5} \mathrm{Ja}^{\circ}{ }^{\circ} \mathrm{a}$ on three white mica $\left.{ }^{40} \mathrm{Ar}\right)^{39} \mathrm{Ar}$ age spectra, Xue et al. (2021) proposed that deforı at $\%$ on occurred episodically at $141-$ $120 \mathrm{Ma}, 81-47 \mathrm{Ma}$, and 27-25 Ma. These Cret aceous and Paleocene ages are deduced from complex age spectra possibly affectec $1, y$ mixed ages (partial resetting), in the same way as the older components seen i. our data (cf. Section 4.2). In contrast, our in situ approach clearly resolves, a d ronfirms, their Middle Oligocene age with a robust estimate at $28.0 \pm 0.9 \mathrm{Ma}$. This Miocene age is further compatible with the exhumation histories of the Penggu. η and Xuelongbao ranges (see below).

5.2 Differential uplift across the 1 N . fault zone

Independent but coin nle nentary to direct dating of faults and mylonite, quantitative kinematics car be deduced from thermochronological modelling of cooling due to exhu natı n in the hanging (thrust) or footwall (normal fault) of fault systems.

During the lower Cretaceous, the Pengguan massif experienced a metamorphic event at conditions of $7 \pm 1 \mathrm{kbar}, 280 \pm 30^{\circ} \mathrm{C}$ (Airaghi et al., 2017). Low-temperature thermochronological data (ZHe, AFT, and AHe) staggered over more than 3000 m of differential height within the Pengguan range further constrain the range cooling history suggesting that slow, steady exhumation during early Cenozoic was followed by two pulses of rapid exhumation, one beginning 30-25 Myr ago and a second 10-15 Myr ago and still active today (Godard et al., 2009; Kirby et al., 2002; Wang et al., 2012) (Fig. 9). The temperature conditions estimated for sample MW19-10B at ~ 28 Ma appear to be $\sim 100^{\circ} \mathrm{C}$ higher than the cooling path of the Pengguan (Wang et al., 2012) (Fig. 9). This is probably because that path is inferred from samples located in the central and eastern Pengguan far away from the WM fault while MW19-10B is from the fault zone close to the Pengguan.

West of the WM fault, the Upper Triassic - Lower Jurassic metamorphism (11 ± 2 kbar and $\sim 620^{\circ} \mathrm{C}$) (Dirks et al., 1994; Airaghi et al., 2018b; 2019; Xue et al., 2021)
was followed by $\sim 2-4 \mathrm{~km}$ exhumation in the Early Cretaceous ($\sim 120-135 \mathrm{Ma}$) (Li et al., 2023) (Fig. 9). Cooling / exhumation resumed in the Cenozoic and Tian et al., (2013) interpreted faster Late Cenozoic exhumation rates deduced from ZHe ages in the Xuelongbao than in the Pengguan as due to out of sequence thrusting on the WMF. This was confirmed by Shen et al. (2019) who, using Pecube-based inverse modelling of ZFT, ZHe, and AHe data from two transect spanning $\sim 3300 \mathrm{~m}$ in elevation in the Xuelongbao, infer an exhumation rate of $0.9-1.2 \mathrm{~mm} / \mathrm{yr}$ from ~ 13 Ma to present. Inverse 1D modelling using the TQTec code of ZFT, AFT, and AHe data spanning nearly 3900 m of altitude, lead Furlong et al. (2021) to propose a more complex history with an earlier start of exhumation at $\sim 27 \mathrm{Ma}$, a fast exhumation at 2 $\mathrm{mm} / \mathrm{yr}$ between 17-15 Ma and a final stage at $\sim 1 \mathrm{~mm} / \mathrm{yr}$ since $\sim 6 \mathrm{Ma}$ (Fig. 9). The temperature conditions estimated for sample MW19-38A are compatible with that cooling history (Fig. 9).

Both the Xuelongbao and Pengguan massif appear to shane a nearly identical onset of Cenozoic exhumation at $\sim 30 \mathrm{Ma}$ (Fig. 9), pointing to . major regional event. Exhumation of the Xuelongbao massif ($\sim 16 \mathrm{~km}$) is ho we $\cdot \mathrm{r}$ significantly greater than that of the Pengguan Massif ($\sim 10 \mathrm{~km}$). Analysi oi ne differential exhumation between both massifs allows the timing and rate on ertical motion on the WM fault zone to be discussed. The differential vertical rate. a ross the west dipping WM fault zone calculated from the more likely models of Wang et al. (2012) for Pengguan and Furlong et al. (2021) for Xuelongbao (Fig. s) inc icate four main kinematic stages (Fig.
 with a vertical rate between $0.79 \mathrm{ar}, 0+0 \mathrm{~mm} / \mathrm{yr}(\sim 3.2 \mathrm{~km}$ of relative subsidence of the Xuelongbao). 2) A reverse motion ${ }^{n}$ ntil $\sim 15 \mathrm{Ma}$, with a maximum rate of 1.93 $\mathrm{mm} / \mathrm{yr}$ (relative uplift of $\sim 6.3 \mathrm{~km}$). .) Negligible vertical motion until $\sim 6 \mathrm{Ma}$ at ≤ 0.26 $\mathrm{mm} / \mathrm{yr}$. 4) Reverse motion sinc - $\varsigma \mathrm{Ma}$ at $0.72 \mathrm{~mm} / \mathrm{yr}$ (relative uplift of $\sim 4.2 \mathrm{~km}$). The timing of these relative $r \mathrm{rti}$ motions is strikingly similar to the deformation style and absolute timing for ${ }_{1} . \boldsymbol{\gamma}$ in this study in at least three respects.

First, the age of brittle ?ulting at ~ 7 Ma closely matches the final exhumation starting at $\sim 6 \mathrm{Ma}$. Sinc $6 \ldots$ a, the total exhumation of Xuelongbao would be of ~ 7 $\mathrm{km}, \sim 5 \mathrm{~km}$ greater $\mathrm{t}^{\text {r.au. }}$ Yungguan (Furlong et al., 2021). Preservation of the 25 km right-lateral offse. 11 the river network despite erosion suggests that it dates back to the onset of the last t xhumation event in the hanging wall (i.e. $\sim 6 \mathrm{Ma}$). This would correspond to a horzzontal strike-slip rate of $\sim 4.2 \mathrm{~mm} / \mathrm{yr}$. Brittle motion on WM fault is mostly strike-slip but involves a significant uplift of the NW compartment. The pitch angle of the slickensides measured in the field ($\sim 11^{\circ} \mathrm{S}$, Fig. 6c) is consistent with the direction of motion calculated assuming a vertical rate of $\sim 0.72 \mathrm{~mm} / \mathrm{yr}$, a horizontal rate of $4.2 \mathrm{~mm} / \mathrm{yr}$, and a fault dip angle of $65^{\circ}-70^{\circ}\left(\sim 12^{\circ} \mathrm{S}\right)$. The thrusting component is responsible for the exhumation of the western compartment (hence the entrenchment of the river network) following a ~ 9 yr long period of negligible exhumation. The actual strike-slip motion may have started slightly before the exhumation became substantial, possibly explaining why the apparent horizontal geological offset is slightly larger than the morphological one (27 vs 25 km) (Figs. 3b, S1-1b).

Second, the Miocene phase of reverse faulting starting at ~ 25 Ma peaked at 1.93 $\mathrm{mm} / \mathrm{yr}$ around $16.6-14.8 \mathrm{Ma}$, coinciding with the $15.4 \pm 0.19 \mathrm{Ma}$ age of reverse
motion recorded by our sample MW19-38A. Top to the east thrusting thus lasted until the middle Miocene ($25-15 \mathrm{Ma}$) along the ductile WM fault zone to produce $\sim 6.3 \mathrm{~km}$ more exhumation in Xuelongbao than in Pengguan. Given the average dip of the motion on the shear planes (45°, Fig. 4c), this corresponds to a shortening of $\sim 6.3 \mathrm{~km}$ in the E-W direction.

Third, normal motion on the WM fault zone from ~ 30 Ma until ~ 25 Ma at a vertical rate of $0.79-0.4 \mathrm{~mm} / \mathrm{yr}$., is coeval with deformation ages of $28 \pm 0.9 \mathrm{Ma}$ (sample MW19-10B, this study) and $26.2 \pm 1.0 \mathrm{Ma}$ (sample CX2, Xue et al., 2021) associated with ductile normal/ right lateral deformation. Given the lineation attitude (Fig. 4d), the $\sim 3.2 \mathrm{~km}$ of subsidence corresponds to $\sim 2.7 \mathrm{~km}$ of stretching in the $\mathrm{N} 350^{\circ}$ direction ($\sim 50^{\circ} \mathrm{dip}$). Such normal / right lateral motion on the WM fault zone resulted from differential motion with respect to Pengguan while both massifs were rising, most probably above a sole thrust corresponding to $t \cdot$ Yingxiu-Beichuan and Wenchuan-Maoxian faults.

5.3 Cenozoic faulting and building of Longmen Shan

The kinematic history of the WM fault zone d scu sed above shed new light on the Longmen Shan tectonics during the Cenozoic anu re accompanying deformation / uplift mechanisms.

The onset of exhumation of central Lcag ne. Shan in the Oligocene ($\sim 30 \mathrm{Ma}$) is
 Yingxiu-Beichuan fault (Hubbard aı. ${ }^{\text {d }}$ shaw, 2009; Wang et al., 2012; Shen et al., 2019). A similar timing of exhumation is reported at other locations along the eastern Tibetan margin (Cao et al., 201y, Zhu et al., submitted). This led Zhu et al. (submitted) to propose that $: \sim, j 0 \mathrm{~km}$ long thrust fault, the Yulong-Muli-Jinpingshan-Longmenshan ($\mathrm{N}_{\mathrm{i} .} \mathrm{I}$) bounded eastern Tibet before being offset by the Xianshuihe strike-slip faw i. i'ormal motion with a large right-lateral component occurred along the WM fau't zone at that time. As we show, this was linked to differential uplift, whos: etrective cause needs to be elucidated yet. What is clear however, is that sinc : th. onset of Cenozoic building of the Tibetan plateau, the WM fault never experit © $c:$: pure normal motion, and no normal motion at all since the Oligocene.

The total Cenozoic exhumation of the Xuelongbao is $\sim 16 \mathrm{~km}$ (Furlong et al., 2021). Significant top to the east thrusting occurred during the middle Miocene (27-15 Ma) along the ductile WM fault zone inducing $\sim 13 \mathrm{~km}$ of exhumation (Furlong et al., 2021) in the internal part of the Longmen Shan. At that time, exhumation (and thus probably thrusting above the sole thrust) was slower in the externally located Pengguan massif. This implies out-of-sequence thrusting with respect to the previous activation of the sole thrust in the Oligocene. Thrusting on the frontal GuanxianAnxian and Yingxiu-Beichuan is still active as shown by the Wenchuan earthquake (Fig. 1b) implying that the main locus of thrusting has migrated back to the frontal part. This implies a more complex organization of thrusting on the eastern Tibet margin than a classical external propagation model would suggest, as already proposed for the Yalong margin further south (Pitard et al., 2021; Zhu et al., submitted). This kind of thrusting pattern could be linked to the steepness of faults
such as the WM fault zone, and possibly also to a significant strike-slip component of motion. The steepness of the thrust could also explain the absence of significant flexural basin.

The recent kinematics of the WM fault are characterized by right-lateral shear with a reverse component. Such motion is consistent with the 2008 Mw7.9 Wenchuan main shock focal mechanism (USGS) which has been documented on a NE-SW striking NW dipping fault, and Yingxiu-Beichuan surface ruptures (Fu et al., 2011) (Fig. 1b). This indicates that present-day kinematics of these major faults in Longmen Shan are comparable to those having prevailed during the upper Miocene. However, the absence of surface break along the WM fault during the Wenchuan megaearthquake suggests that it could be now inactive with right-lateral motion being transferred on the parallel and more external Yingxiu-Beichuan fault.
5.4 Cenozoic building of the Tibetan eastern margin: channal tiew or crustal stacking?

Lateral extrusion of partially molten crustal materia' ou ${ }^{*}$ ward from below Tibet has been widely proposed to explain the steep boundarie n^{f} the Tibetan plateau. (e.g., Clark and Royden, 2000; Beaumont et al., 2001. Slark et al., 2005b; Cook and Royden, 2008; Adams and Hodges, 2022). Ir. the Longmen Shan, the Pengguan metamorphic complex is composed of NeoProtfro ic granites without any trace of Cenozoic melting. Crustal extrusion would es alt from growth of the deep crust in a weak layer pushing the Pengguan range in irducing thrusting along the YingxiuBeichuan fault and normal faulting al, $\mu_{1}^{\top} t_{1}{ }^{\circ}$ WM fault (Fig. 2b) (e.g., Royden et al., 1997; Clark et al., 2005a; Burchfiel. et al., 2008, Royden et al., 2008). However, we clearly document that the WM fault has . .ot been normal since the Oligocene implying that extrusion at the front of a crusta' channel flow did not occur in the Longmen Shan in the Cenozoic.

According to the rheology $\sim \mathrm{f}$ t. \cdot lower crust, numerical models of crustal channel flow do not necessarily imc ${ }^{1}$. ${ }^{4}$ ex.rusion of the crust at the surface but can result in tunnelling or formation of , nemes or nappes at depth (Beaumont et al., 2006; Jamieson et al., 2013). Some have ${ }_{\mathrm{F}}{ }^{\text {ropoposed }}$ that the Longmen Shan thrust wedge would be pushed from bellow hv a 1 r wer channel flow originated from below Tibet (Fig. 2c) (Zhang, 2013). Such hyp thesis is difficult to test from geological observations at the surface. Zones of L . h h electrical conductivity (Bai et al., 2010) and low shear wave speed (Li et al., 20n9- Yao et al., 2008) in east Tibet appear to support Channel flow. Seismic tomography confirms that the Longmen Shan is an important boundary between the thick Songpan block with its LVZ's and the thinner and more rigid Sichuan crust (e.g., Li et al., 2009; Robert et al., 2010; Liu et al., 2014). However, other geophysical experiments revealed that the LVZ are not as continuous as previously envisaged and that present-day widespread channel flow appears dubious (e.g., Hetényi et al., 2011; Yao et al., 2010; Zhao et al., 2012; Li et al., 2014). Further analysis of geophysical images shows that the LVZs are within the Songpan Block and stop $\sim 25 \mathrm{~km}$ west of the Longmen Shan (e.g., Zhao et al., 2012). Dragging of the upper crust should thus not occur below the Longmen Shan as inferred by Zhang (2013) model (Fig. 2c) but west of the WM fault where there is no reverse fault nor significant relief.

We conclude that crustal channel flow is not, and has not been at least since the Oligocene, the active mechanism that would have produced and maintained the steep LMS topography. The LMS rather results from crustal stacking in an accretionary
prism, with a large strike-slip component and out of sequence thrusting on steep thrusts.

6 Conclusions

Combining field analysis with direct deformation dating ($\mathrm{K}-\mathrm{Ar}$ on fault gouge and ${ }^{40} \mathrm{Ar} r^{39} \mathrm{Ar}$ on white micas) and thermochronology, we constrain the kinematics and exhumation history of the Wenchuan-Maowen (WM) fault zone that is key to decipher between the various models proposed for Cenozoic building of the eastern Tibetan plateau margin (Longmen Shan). The WM fault zone records onset of exhumation of the Longmen Shan in the Cenozoic with various steps across the viscous/brittle regime during progressive exhumation. Coupled structural analysis and in situ dating shows that, at the onset of exhumation in th Middle Oligocene (~ 30 25 Ma), the fault was right-lateral /normal while thrust \quad vas taking place on a deeper, more external part of the Yulong-Muli-Jinpingsh، η-I ongmenshan thrust belt. In the middle Miocene ($25-15 \mathrm{Ma}$), out-of-sequence thr, sting along the WM fault zone was active while thrusting on the basal thrust * as uecelerating, inducing $\sim 6 \mathrm{~km}$ of differential exhumation between the Xuelongl $\boldsymbol{\iota}$ nu Pengguan ranges. After a ~ 9 Myr pause, exhumation of the Xuelongbao resumed aring the upper Miocene ($\sim 6 \mathrm{Ma}$) with the activation of the brittle right lateral / $n \in v e r s e ~ W M ~ f a u l t ~ t h a t ~ a c c r u e d ~ ~ 25 ~ k m ~$ of right lateral offset, now visible in the rive ' 'et vork. Such deformation is still active in the Longmen Shan but it is unclear whe ther this is so across the WM fault today. The MW fault zone never showed pur, normal motion, dismissing a lower crustal channel flow extrusion model for bull'ing what has often been considered as one archetype example of such mec: \cdot nism: the east Tibet topographic step. This topography rather results from $\mathrm{c} u,_{\imath^{21}}$ shortening, including activation of steep out of sequence reverse faults with s_{0}^{\prime} nili: ant right-lateral component.

Acknowledgements
This work wa, s.pported by the National Science Foundation of China (41830217, 4207¿24し, 〔.1972229) and the China Geological Survey (DD20221630). The $\mathrm{Ar} / \mathrm{Ar}$ lab at ISTı) is supported by LABEX grant VOLTAIRE (ANR-10-LABX-100-01), the Région Centre grant ARGON, and the EQUIPEX grant PLANEX (ANR-11-EQPX-0036). We thank Lei Zhang, Thomas Courrier and Xiaozhou Ye for field assistance; and Marie-Luce Chevalier for discussion of fault horizontal offset. Two anonymous reviewers and the editor helped to clarify the manuscript.

Table 1
Samples location, structural information, Temperature estimates and dating results.
$\left.\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline \text { Site } & \begin{array}{c}\text { Latitu } \\ \text { de }\end{array} & \begin{array}{c}\text { Longitu } \\ \text { de }\end{array} & \text { Structure } & \begin{array}{c}\text { Measurem } \\ \text { ent }\end{array} & \text { Sample } & \begin{array}{c}\text { 40Ar/39Ar } \\ \text { Age }\end{array} & \begin{array}{c}\text { K-Ar } \\ \text { lower } \\ \text { interce } \\ \text { pt Age }\end{array} & \begin{array}{c}\text { T }\end{array} \\ \hline \text { estima } \\ \text { te }\end{array}\right]$

Fig. 1 The Longmen Shan relt (a) Location of the Longmen Shan in the frame of the India-Asia collision. (b) Tevlogical map of Longmen Shan and adjacent area (modified from Li et a1., 2 04), with three major faults: Wenchuan-Maoxian (WMF), Yingxiu-Beichuan (YBI), and Guanxian-Anxian (GAF). Focal mechanisms of Wenchuan and Lusı. η Earthquakes are shown. Basement ranges: MT, Mutuo; XLB, Xuelongbao; PG, F \sim :gguan; BX, Baoxing; BK, Bikou. (c) A-A’ cross section. Grey frame is the topography (swath profile) with average (bold), upper and lower values. Simplified geological cross section at the bottom. Double arrows indicate the minimum entrenchment of the Min Jiang river: U, upper reach, L, Lower Reach.

Fig. 2 Conceptual models for the Cenc sic Longmen Shan evolution. Adapted from Tian et al., (2013).
a) Crustal thickening through reverse faulting (e.g., Hubbard and Shaw 2009)
b) Exhumation in front of a bu yin. lower crust expelled from below the Tibetan plateau (channel flow extrusion , , equiring a normal fault along the Wenchuan Maoxian fault at the backsi le \sim the channel (e.g., Royden et al., 2008; Burchfiel et al., 2008).
c) A modified channel flow nodel. Flow of ductile lower crust drags the upper crust eastward to thicken $t^{1} _{ }^{\wedge}$ rust in the LMS through high-angle listric reverse faulting (e.g., Zhang, 201~)

WMF: Wenchuan - r'aoxian fault, YBF: Yingxiu-Beichuan fault, GAF: GuanxianAnxian fault. Note wat surface topography is exaggerated.

Fig. 3 The Wenchuan - Maoxian (WM) faiti geological offset and river network evolution. (a) Google earth image with n, io river channels, brittle faults and metamorphic complexes. River data re referenced and modified from GloRic dataset (Dallaire et al., 2019). Faul \& from Li et al. (2014) and personal mapping. Orange circles indicate brittle fault sites, stereplots show brittle fault attitude. Yellow squares and numbers indicate put:'shed brittle fault sites, 1: Dirks et al., 1994; 2: Airaghi, 2017; 3: Wang et al., $2 J^{1} \mathrm{v}$) Reconstitution prior to right-lateral faulting assuming $\sim 25 \mathrm{~km}$ right-lateral $n \mathrm{tf}$ ot along the WM fault.

Fig. 4 Ductile deformation in the WM fault zon :. a, Geological map of the Gengda area of the WM fault zone. See location on f_{g} - b. b) Geological cross section through the WM fault and shear zones. c, d) ctereonet diagram of foliations and shear planes on the western side of the fault (c) an ${ }^{1}$ on the eastern side (d).

Fig. 5 Ductile deformed rocks of the WM shear zone. a \sim, . \quad p to the SE (reverse) deformation (site MW19-38A). a) S/C structure. b) Fo, 'atic n and stretching lineation. c) Shear criteria in an oriented thin section of sample : UW19-38A. d - f) Top to the NW (normal) deformation (site MW19-10B). d) rylo itic foliation dipping to the NW. e) Stretching lineation view from above. f) Sher criteria in an oriented thin section of sample MW19-10B.

Fig. 6 Fault gouge of the Wenck ran-Mauxian fault at site MW1979; (a) Picture of the fault zone nitc:op (b) detail of the NW fault plane with sub-horizontal slickersi de; (c) stereonet plot of fault planes and slickensides; (d, Faut zone cross-section showing samples location; (e, f, g, 1, 1, views of sample MW19-79A in the XZ plane showing " S / C " mı rostructures and Riedel shear elements at various scales impleing sight-lateral shear, red lines represent shear planes; (e, f, g) pilisied slab (h, i) SEM images. e) right is a line drawing of ti. p tu e on the left, with clasts in grey and shear planes in red; i) also s 'ows the illite EDS spectrum.

Fig. 7 Illite age plot of samples MW19-79A and $\mathrm{M}^{\top}{ }^{\top}{ }^{1}$ 9-79E.

Fig. $8{ }^{40} \mathrm{Ar}{ }^{39} \mathrm{Ar}$ dating results of ductile deform atio of samples MW19-38A (a and c), and MW19-10B (b and d). (a) and (b) in . 1 t . ? aser ablation map with spot numbers. Spot colours refer to apparent ages. The $b \approx \mathrm{k}_{\mathrm{b}}=\sim$ und is thin section (reflective light) or chemical composition (X Celadonite' when available. c) age spectra (two runs) and sorted in situ ages of sample MW-こ.\&. d) age spectra and sorted in situ ages of sample MW-10B.

Fig. 9 Exhumation - cooling history of the Pengguan and Xuelongbao massifs. [1] PT estimate of Lower Jurassic metamorphism in Xuelongbao (Airaghi et al., 2018b). [2a] Lower Cretaceous P-T estimate (Airaghi et al., 2017), and [2b] Lower Cretaceous cooling path (Airaghi et al., 2017) of Pengguan. [3] Arr ant of Early Cretaceous exhumation of Xuelongbao (Li et al., 2023). [4] Exhumatinn 1 : story of the Pengguan range (Wang et al., 2012). [5] Exhumation history of the Xu longbao range (Tian et al., 2013; Furlong et al., 2021). [6]. Temperature estir ratu or the top to the northwest (right-lateral / normal) deformation (MW19-10B) ($\mathrm{t} \cdot \mathrm{ic}$, tudy), with [7] maximum estimate from RSCM (Airaghi et al., 2018a). [8] Ten.nnerature estimate of top to the SE (reverse) deformation (MW19-38A) (This tudy). [9] Gouge formation at site MW19-79 (this study). Correspondence betweer. winth and temperature assuming a geothermal gradient of $25^{\circ} \mathrm{C} / \mathrm{km}$.

Fig. 10 Kinematics of the Wenchuan-Maov en fault. (a) vertical differential exhumation across the fault according to thermnci. onological data of the Pengguan and Xuelongbao ranges (Furlong et al., 2021. Wang et al., 2012). Negative values correspond to normal motion on the NW dip ans, fault, and positive to reverse motion. (b) structural bloc diagram of Longmer Sh. η in shallow crust.

Adams, B. A.and K. V. Hodges. 2022. Potential Influences of Middle and Lower Crustal Flow on Landscape Evolution: Insights From the Himalayan-Tibetan Orogen. Treatise on Geomorphology. pp. 729-748. Academic Press.
Airaghi, Laura. 2017. Petro-chronological study of the Longmen Shan thrust belt (eastern Tibet) : geological inheritance and implication for the present geodynamics. Ph. D. Thesis, France
Airaghi, Laura, Julia de Sigoyer, Pierre Lanari, Stéphane Guillot, Olivier Vidal, Patrick Monié, Benjamin Sautter, and Xibin Tan. 2017. Total exhumation across the Beichuan fault in the Longmen Shan (eastern Tibetan plateau, China): Constraints from petrology and thermobarometry. Journal of Asian Earth Sciences. 140, 108-21.
Airaghi, L., De Sigoyer, J., Guillot, S., Robert, A., Warren, . J., and Deldicque, D. 2018a. The Mesozoic along-strike Tectonometamo ${ }_{1}$ hic segmentation of Longmen Shan (eastern Tibetan plateau). Tectonic . 3; (12), 4655-4678.
Airaghi, Laura, Clare J. Warren, Julia de Sigoyer, Pier ᄅ L: nari, and Valérie Magnin. 2018b. Influence of dissolution/reprecipitatio 11 ar ions on metamorphic greenschist to amphibolite facies mica40Ar/3y, r ages in the Longmen Shan (eastern Tibet). Journal of Metamorphic C eolc zy. 36, 933-58.
Airaghi, Laura, Emilie Janots, Pierre Lanari, Juli de Sigoyer, and Valérie Magnin. 2019. Allanite Petrochronology in Fr -Sr and Retrogressed Garnet-Biotite Metapelites from the Longmen Sha (an tern Tibet). Journal of Petrology. 60, 151-76.
Arne, Dennis, Brenton Worley, Chri 'or ner Wilson, She Fa Chen, David Foster, Zhi Li Luo, Shu Gen Liu, and Paul Li-ks. 1997. Differential exhumation in response to episodic thrustiit along the eastern margin of the Tibetan Plateau. Tectonophysics. 280, 23 r- -
Bai, D., Unsworth, M. J., Meiv, Mı .., Ma, X., Teng, J., Kong, X., and Liu, M. 2010. Crustal deformation © the eastern Tibetan plateau revealed by magnetotelluric imaging. Nature gec science, 3(5), 358-362.
Beaudoin, A., S. Scaillet, IN Niora, L. Jolivet, and R. Augier. 2020. In Situ and StepHeating (40) $\mathrm{Ar} /()^{? 1}$ ir Dating of White Mica in Low-Temperature Shear Zones (Tend، Ma sif, Alpine Corsica, France). Tectonics. 39.
Beaumont, C, Rebe 'a anne Jamieson, MH Nguyen, and B Lee. 2001. Himalayan tectonics exnle ned by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature. 414, 738-42.
Beaumont, C., Nguyen, M. H., Jamieson, R. A., \& Ellis, S. 2006. Crustal flow modes in large hot orogens. Special Publication-Geological Society Of London, 268, 91.

Bergmann, J., P. P. Friedel, and R. Kleeberg. 1998. BGMN - A new fundamental parameters based Rietveld program for laboratory X-ray sources, it's use in quantitative analysis and structure investigations.
Bollinger, L., Henry, P., and Avouac, J. P. .2006. Mountain building in the Nepal Himalaya: Thermal and kinematic model. Earth and Planetary Science Letters, 244(1-2), 58-71.
Bourdelle, Franck, and Michel Cathelineau. 2015. Low-temperature chlorite geothermometry: a graphical representation based on a T-R2+-Si diagram. European Journal of Mineralogy. 27, 617-26.

Burchfiel, B. C., Chen Zhiliang, Liu Yupinc, and L. H. Royden. 1995. Tectonics of the Longmen Shan and Adjacent Regions, Central China. International Geology Review. 37, 661-735.
Burchfiel, B. C., L. H. Royden, R. D. van der Hilst, B. H. Hager, Z. Chen, R. W. King, C. Li, J. Lü, H. Yao, and E. Kirby. 2008. A geological and geophysical context for the Wenchuan earthquake of 12 May 2008, Sichuan, People's Republic of China. GSA Today. 18.
Cao, Kai, Guocan Wang, Philippe Hervé Leloup, Gweltaz Mahéo, Yadong Xu, Pieter A. van der Beek, Anne Replumaz, and Kexin Zhang. 2019. Oligocene-Early Miocene Topographic Relief Generation of Southeastern Tibet Triggered by Thrusting. Tectonics. 38, 374-91.
Clark, M.K., L.H Royden. 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology 28, 703-706.
Clark, Marin. K., House, M. A., Royden, L. H., Whipple, K. X., Burchfiel, B. C., Zhang, X., and Tang, W. 2005a. Late Cenozoic up ${ }^{1 ;+4}$ oi southeastern Tibet. Geology. 33(6), 525-528.
Clark, Marin K., John W. M. Bush, and Leigh H. Roy'‘n. ? 005 b. Dynamic topography produced by lower crustal flow $\mathrm{a} ; \mathrm{a}_{1}{ }^{\circ c t}$ cheological strength heterogeneities bordering the Tibetan Platen. Feophysical Journal International. 162, 575-590.
Clauer, Norbert. 2013. The K-Ar and ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ retheds revisited for dating finegrained K-bearing clay minerals. Chfin نal Geology. 354, 163-85.
Cook, K.L., and L.H.,Royden. 2008. The r sle of crustal strength variations in shaping orogenic plateaus, with applic in η い Tibet. Journal of Geophysical Research -Solid Earth 113. http://dx.de o g/10.1029/2007JB005457.
Dallaire, Camille Ouellet, Bernhard Lehıっr, Roger Sayre, and Michele Thieme. 2019. A multidisciplinary framewu $-k$ to derive global river reach classifications at high spatial resolution. F iv ^ $\cap \eta m e n t a l$ Research Letters. 14, 024003.
Densmore, Alexander L, Yonc Ii, ^ichael A Ellis, and Rongjun Zhou. 2005. Active tectonics and erosion ${ }^{\prime}$ ' univading at the eastern margin of the Tibetan Plateau. Journal of Mountaiı. Science. 2, 146-54.
Di Vincenzo, Gianfranco, intonietta Grande, Giacomo Prosser, William Cavazza, and Peter G. Decurs. 2016. ${ }^{40} \mathrm{Ar}^{-39} \mathrm{Ar}$ laser dating of ductile shear zones from central (ors ca (France): Evidence of Alpine (middle to late Eocene) syn-burial sı `arıng in Variscan granitoids. Lithos. 262, 369-83.
Dirks, P.H.G.M., CI Wilson, Shefa Chen, ZL Luo, and Shugen Liu. 1994. Tectonic evolution of the NE margin of the Tibetan Plateau; evidence from the central Longmen Mountains, Sichuan Province, China. Journal of Southeast Asian Earth Sciences. 9, 181-92.
Duvall, Alison R., Marin K. Clark, Ben A. van der Pluijm, and Chuanyou Li. 2011. Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry. Earth and Planetary Science Letters. 304, 520-26.
Feng, Shaoying, Peizhen Zhang, Baojin Liu, Ming Wang, Shoubiao Zhu, Yongkan Ran, Weitao Wang, Zhuqi Zhang, Wenjun Zheng, Dewen Zheng, Huiping Zhang, and Xiao-feng Tian. 2016. Deep crustal deformation of the Longmen Shan, eastern margin of the Tibetan Plateau, from seismic reflection and Finite Element modeling. Journal of Geophysical Research: Solid Earth. 121, 76787.

Furlong, Kevin P., Eric Kirby, C. Gabriel Creason, Peter J. J. Kamp, Ganqing Xu, Martin Danišík, Xuhua Shi, and Kip V. Hodges. 2021. Exploiting Thermochronology to Quantify Exhumation Histories and Patterns of Uplift Along the Margins of Tibet. Frontiers in Earth Science. 9.
Gaudemer, Y, P Tapponnier, and DL Turcotte. 1989. River offsets across active strike-slip faults. Ann. tecton. 3, 55-76.
Godard, V., J. Lavé, J. Carcaillet, R. Cattin, D. Bourlès, and J. Zhu. 2010. Spatial distribution of denudation in Eastern Tibet and regressive erosion of plateau margins. Tectonophysics. 491, 253-74.
Godard, V., R. Pik, J. Lavé, R. Cattin, B. Tibari, J. de Sigoyer, M. Pubellier, and J. Zhu. 2009. Late Cenozoic evolution of the central Longmen Shan, eastern Tibet: Insight from (U-Th)/He thermochronometry. Tectonics. 28.
Harrison, M.T., Célérier, J., Aikman, A.B., Hermann, J., Heizler, M.T., 2009. Diffusion of 40Ar in muscovite. Geochim. Cosmoci: n. Acta 73, 1039-1051.
Haines, Samuel H., and Ben A. van der Pluijm. 2008. Clay \sim_{1} atification and $\mathrm{Ar}-\mathrm{Ar}$ dating of synthetic and natural gouge: Application to the Miocene Sierra Mazatán detachment fault, Sonora, Mexico. Jo ${ }^{\prime}$. ${ }^{\prime}{ }^{\prime}{ }^{\prime}$ of Structural Geology. 30, 525-38.
Hetényi, G., Vergne, J., Bollinger, L., and Cattin, P $2 \imath 11$. Discontinuous lowvelocity zones in southern Tibet question 'he v ability of the channel flow model. Geological Society, London, Spec al ¿י'mblications. 353(1), 99-108.
Hubbard, J., and J. H. Shaw. 2009. Uplift of .nt Jongmen Shan and Tibetan plateau, and the 2008 Wenchuan ($\mathrm{Mw}=7$. C $^{\text {(}}$ c.rt'.quake. Nature. 458, 194-7.
Hubbard, J., J. H. Shaw, and Y. Kling ı. 2v:ๆ. Structural Setting of the 2008 Mw 7.9 Wenchuan, China, Earthquak: Fulletin of the Seismological Society of America. 100, 2713-35.
Hunziker, JC, Martin Frey, Norberı Flauer, RD Dallmeyer, H Friedrichsen, W Flehmig, K Hochstrasser P , Poggwiler, and H Schwander. 1986. The evolution of illite to $m^{\cdots c c}$.e: mineralogical and isotopic data from the Glarus Alps, Switzeri. nd. Contributions to Mineralogy Petrology. 92, 157-80.
Jamieson, R. A., Beaumonı, C., Medvedev, S., \& Nguyen, M. H. 2004. Crustal channel flows: 2. Ni merical models with implications for metamorphism in the Himalayan- $1_{1 L^{\circ+} \text { an }}$ orogen. Journal of Geophysical Research: Solid Earth, 109(B6).
Jamieson, R. A., anci beaumont, C. 2013. On the origin of orogens. Geological Society of Anr rica Bulletin, 125(11-12), 1671-1702.
Klemperer, S. L. 2006. Crustal flow in Tibet: geophysical evidence for the physical state of Tibetan lithosphere, and inferred patterns of active flow. Geological Society, London, Special Publications. 268(1), 39-70
Kirby, Eric, Peter W. Reiners, Michael A. Krol, Kelin X. Whipple, Kip V. Hodges, Kenneth A. Farley, Wenqing Tang, and Zhiliang Chen. 2002. Late Cenozoic evolution of the eastern margin of the Tibetan Plateau: Inferences from $40 \mathrm{Ar} / 39 \mathrm{Ar}$ and (U-Th)/He thermochronology. Tectonics. 21, 1-20.
Kirby, E.and W. Ouimet, 2011. Tectonic geomorphology along the eastern margin of Tibet: Insights into the pattern and processes of active deformation adjacent to the Sichuan Basin. Geological Society, London, Special Publications, 353(1), 165-188.
Kohn, M. J. 2008. PTt data from central Nepal support critical taper and repudiate large-scale channel flow of the Greater Himalayan Sequence. Geological Society of America Bulletin, 120(3-4), 259-273.

Laurent, Valentin, Stéphane Scaillet, Laurent Jolivet, Romain Augier, and Vincent Roche. 2021. ${ }^{40}$ Ar behaviour and exhumation dynamics in a subduction channel from multi-scale ${ }^{40} \mathrm{Ar} r^{39} \mathrm{Ar}$ systematics in phengite. Geochimica et Cosmochimica Acta. 311, 141-73.
Leloup, P. H., Mahéo, G., Arnaud, N., Kali, E., Boutonnet, E., Liu, D., and Haibing, Li. 2010. The South Tibet detachment shear zone in the Dinggye area: Time constraints on extrusion models of the Himalayas. Earth and Planetary Science Letters, 292(1-2), 1-16.
Leloup, P. H., Liu, X., Mahéo, G., Paquette, J. L., Arnaud, N., Aubray, A., and Liu, X. 2015. New constraints on the timing of partial melting and deformation along the Nyalam section (central Himalaya): implications for extrusion models. Geological Society, London, Special Publications. 412(1), 131-175.
Li, Haibing, Xu, Z., Niu, Y., Kong, G., Huang, Y., Wang, H., and Liu, D. 2014. Structural and physical property characterization in ${ }^{\text {² }}$ Wenchuan earthquake Fault Scientific Drilling project-hole 1 (WFSD-1) Tè'onophysics. 619, 86100.

Li, Yong, Rongjun, Z, AL, D, and MA, E. 2006. Geor or,''ic evidence for the late Cenozoic strike-slipping and thrusting in Lonsm. ${ }^{\sim n}$ Mountain at the eastern margin of the Tibetan Plateau. Quaternary Crit.ces. 26(1), 40-51.
Li, H., Su, W., Wang, C. Y., and Huang, Z. 2009 Am rient noise Rayleigh wave tomography in western Sichuan and easte n , bet. Earth and Planetary Science Letters, 282(1-4), 201-211.
Li, Y., Jia, D., Shaw, J. H., Hubbard, J., Li ı, . Nang, M., and Wu, L. 2010. Structural interpretation of the \sim elo nic faults of the Wenchuan earthquake: Three-dimensional modeling ${ }^{\dagger}$ the Longmen Shan fold-and-thrust belt. Journal of Geophysical Research. Solid Earth, 115(B4).
Li, Z., Kamp, P. J., Liu, S., Xu, G., Tong, K., Danišík, M., and Wu, W. 2023. Late Cretaceous-Cenozoic the $\mathrm{rn}_{\mathrm{a}}{ }^{1}$ structure and exhumation of the Eastern Tibetan Plateau margin and its $\sim_{r}{ }^{\circ} \cdot$ ic wedge. Earth-Science Reviews, 104319.
Liu, Qi Yuan, Robert D. van 'er hilst, Yu Li, Hua Jian Yao, Jiu Hui Chen, Biao Guo, Shao Hua Qi, Jun W. ang, Hui Huang, and Shun Cheng Li. 2014. Eastward expansion of the $\mathrm{T}_{12}{ }^{\text {stan }}$ Plateau by crustal flow and strain partitioning across faults. Nature Feu ${ }^{\circ}$.ence. 7: 361-65
Lu, R., He, D., X ${ }^{\prime \prime}$, I ., at Liu, B. 2016. Crustal-scale tectonic wedging in the central Longmen $\mathrm{SII}^{\prime} \boldsymbol{\eta}$: Constraints on the uplift mechanism in the southeastern margin of the ' 'ibetan Plateau. Journal of Asian Earth Sciences, 117, 73-81.
Mattauer, M., 1992. The Songpan Garze Triassic belt of west Sichuan and eastern Tibet: a decollement fold belt on a passive margin. Tectonics. 3, 619-26.
Mottram, C. M., D. A. Kellett, T. Barresi, H. Zwingmann, M. Friend, A. Todd, and J. B. Percival. 2020. Syncing fault rock clocks: Direct comparison of U-Pb carbonate and K-Ar illite fault dating methods. Geology. 48, 1179-83.
Nelson, K Douglas, Wenjin Zhao, LD Brown, J Kuo, Jinkai Che, Xianwen Liu, SL Klemperer, Y Makovsky, RJJM Meissner, and James Mechie. 1996. Partially molten middle crust beneath southern Tibet: Synthesis of project INDEPTH results. Science. 274, 1684-88.
Nteme, J., Scaillet, S., Brault, P., and Tassan-Got, L. 2022. Atomistic simulations of ${ }^{40} \mathrm{Ar}$ diffusion in muscovite. Geochimica et Cosmochimica Acta, 331, 123142.

Nteme, J., Scaillet, S., Gardés, E., Duval, F., Nabelek, P., and Mottolese, A. 2023. Defect-controlled Ar40 diffusion-domain structure of white micas from high-
resolution $\mathrm{Ar}^{40} / \mathrm{Ar}^{39}$ crystal-mapping in slowly-cooled muscovite. Geochimica et Cosmochimica Acta, 342, 84-107.
Pitard, P., Replumaz, A., Chevalier, M. L., Leloup, P. H., Bai, M., Doin, M. P., and Li, H. 2021. Exhumation history along the Muli thrust-Implication for crustal thickening mechanism in eastern Tibet. Geophysical Research Letters, 48(14), e2021GL093677.
Robert, A., Zhu, J., Vergne, J., Cattin, R., Chan, L. S., Wittlinger, G.and Zhu, L. D. 2010. Crustal structures in the area of the 2008 Sichuan earthquake from seismologic and gravimetric data. Tectonophysics. 491(1-4), 205-210.
Royden, L. H., Burchfiel, B. C., King, R. W., Wang, E., Chen, Z., Shen, F., and Liu, Y. 1997. Surface deformation and lower crustal flow in eastern Tibet. Science: 276 (5313), 788-790.
Royden, L. H., B. C. Burchfiel, and R. D. van der Hilst. 2008. The geological evolution of the Tibetan Plateau. Science. 321, 1054 ?
SBGMR. 1991. Sichuan Bureau of Geology and Mineral R \sim © $\mathrm{u}:$:es, Regional Geology of Sichuan Province. Beijing: Geology H uuse.
Searle, M. P. and A. G. Szulc. 2005. Channel flow and du tile extrusion of the high Himalayan slab-the Kangchenjunga-Darjeeliig ${ }_{\mathrm{r}}$ rr iile, Sikkim Himalaya. Journal of Asian Earth Sciences, 25(1), 172.105,
Shen, Xiaoming, Yuntao Tian, Guihong Zhang, $\Sigma^{\text {im }} 1$ Zhang, Andrew Carter, Barry Kohn, Pieter Vermeesch, Rui Liu, and Wfi L. 2019. Late Miocene Hinterland Crustal Shortening in the Longmen Sia \& Thrust Belt, the Eastern Margin of the Tibetan Plateau. Journal of Gec $\mathrm{Ph}^{\prime}{ }^{\prime}{ }^{\prime}$ ' al Research: Solid Earth. 124, 11972-91.
Sibson, Richard H. 1992. Earthquaku far .Iting, induced fluid flow, and fault-hosted gold-quartz mineralization. in, Bavement Tectonics.
Stöckhert, Bernhard, Manfred R Bri. Reiner Kleinschrodt, Anthony J Hurford, and Richard Wirth. 1999. Th rr schronometry and microstructures of quartz-a comparison with exper:me, ${ }^{\star}$. l flow laws and predictions on the temperature of the brittle-plastic trai. ition. Journal of Structural Geology. 21, 351-69.
Tapponnier, Paul, Xu Zhiч. 7, Françoise Roger, Bertrand Meyer, and Nicolas Arnaud. 2001. Oblique Step ise Rise and Growth of the Tibet Plateau. Science. 294, 1671-77.
Tian, Y., Kohn, R. P Glıadow, A. J., and Hu, S. 2013. Constructing the Longmen Shan easterı ${ }^{T}$ 10etan Plateau margin: Insights from low-temperature thermochrorn' jgy.Tectonics,32(3), 576-592.
Tian, Yuntao, Barry P. Kohn, David Phillips, Shengbiao Hu, Andrew J. W. Gleadow, and Andrew Carter. 2016. Late Cretaceous-earliest Paleogene deformation in the Longmen Shan fold-and-thrust belt, eastern Tibetan Plateau margin: PreCenozoic thickened crust? Tectonics. 35, 2293-312.
Vrolijk, Peter, David Pevear, Michael Covey, and Allan LaRiviere. 2018. Fault gouge dating: history and evolution. Clay Minerals. 53, 305-24.
Wang, E., E. Kirby, K. P. Furlong, M. van Soest, G. Xu, X. Shi, P. J. J. Kamp, and K. V. Hodges. 2012. Two-phase growth of high topography in eastern Tibet during the Cenozoic. Nature Geoscience. 5, 640-45.
Wang, E., Meng, K., Su, Z., Meng, Q., Chu, J. J., Chen, Z., and Liang, X. 2014. Block rotation: Tectonic response of the Sichuan basin to the southeastward growth of the Tibetan Plateau along the Xianshuihe-Xiaojiang fault. Tectonics. 33(5), 686-718.

Worley, Brenton A, and Christopher JL Wilson. 1996. Deformation partitioning and foliation reactivation during transpressional orogenesis, an example from the Central Longmen Shan, China. Journal of Structural Geology. 18, 395-411.
Wu, C., Li, H., Leloup, P. H., Yu, C., Si, J., Liu, D., and Gong, Z. 2014. High-angle fault responsible for the surface ruptures along the northern segment of the Wenchuan Earthquake Fault Zone: Evidence from the latest seismic reflection profiles. Tectonophysics, 619, 159-170.
Xu, Xiwei, Xueze Wen, Guihua Yu, Guihua Chen, Yann Klinger, Judith Hubbard, and John Shaw. 2009. Coseismic reverse-and oblique-slip surface faulting generated by the 2008 Mw 7.9 Wenchuan earthquake, China. Geology. 37, 515-18.
Xu, Zhiqin, Shaocheng Ji, Haibing Li, Liwei Hou, Xiaofang Fu, and Zhihui Cai. 2008. Uplift of the Longmen Shan range and the Wenchuan earthquake. Episodes. 31.
Xue, Zhenhua, Wei Lin, Yang Chu, Michel Faure, Yan Ch~n V.'enbin Ji, and Huaning Qiu. 2021. An intracontinental orogen ex um :d by basement-slice imbrication in the Longmenshan Thrust Belt of ne Eastern Tibetan Plateau. GSA Bulletin.
Yao, Huajian, Robert D. van der Hilst, and Maarten V. de Hoop. 2006. Surface-wave array tomography in SE Tibet from ambic it se smic noise and two-station analysis - I. Phase velocity maps. Geophy,ica' Journal International. 166, 73244.

Yao, Huajian., Beghein, C. and Van Der Hils. P. D. 2008. Surface wave array tomography in SE Tibet from ...'埌. + seismic noise and two-station analysisII. Crustal and upper-mantle ${ }^{\prime} \cdot \boldsymbol{v}$-ture. Geophysical Journal International. 173(1), 205-219.
Yan, Danping, Zhou, M. F., Li, S. L and Wei, G. Q. 2011. Structural and geochronological constre n 's nn the Mesozoic-Cenozoic tectonic evolution of the Longmen Shan thr $\cdots^{-L^{\prime}} \mathrm{L}^{1}$, , eastern Tibetan Plateau. Tectonics. 30(6).
Yin, An, and T Mark Harrisc - 2600. Geologic evolution of the Himalayan-Tibetan orogen. 28, 211-80.
Zhao, G., M. J. Unsworth, Y Zhan, L. Wang, X. Chen, A. G. Jones, J. Tang, Q. Xiao, J. Wang, J. Cai '1. I., Y. Wang, and J. Zhang. 2012. Crustal structure and rheology of tie Li ngmenshan and Wenchuan Mw 7.9 earthquake epicentral area from mu_ netotelluric data. Geology. 40: 1139-42.
Zhang, PeiZhen, Zhar gkang Shen, Min Wang, Weijun Gan, Roland Bürgmann, Peter Molnar, Qi Wang, Zhijun Niu, Jianzhong Sun, Jianchun Wu, Sun Hanrong, and You Xinzhao. 2004. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology. 32.
Zhang, Pei-Zhen. 2013. A review on active tectonics and deep crustal processes of the Western Sichuan region, eastern margin of the Tibetan Plateau. Tectonophysics. 584: 7-22
Zheng, Yong, Ping Kong, and Bihong Fu. 2014. Time constraints on the emplacement of klippen in the Longmen Shan thrust belt and tectonic implications. Tectonophysics. 634, 44-54.
Zheng, Yong, Haibing Li, Junjie Li, Guohe Zhang and Jialiang Si. 2022. A comparison study of synkinematic illite isolation, quantitative X-ray powder diffraction, and K-Ar dating for direct fault gouge analyses. Acta Geologica Sinica. Doi: 10.1111/1755-6724.15001.

Zhou, Rongjun, Li Yong, Densmore A. L, Ellis M A, He Yulin, Wang Fenglin, and Li Xiaogang. 2006. Active tectonics of the eastern margin of the Tibet Plateau. Journal of Mineralogy and Petrology. 26(2), 40-51.
Zhu Chengyu, Leloup Philippe Hervé, Wang Guocan, Kai, Cao, Mahéo Gweltaz, Bernet Matthias, WangAn, ShenTianyi, Zhang Pan, Chen Yue, and Wu Guilin. Submitted. Episodic exhumation in the hanging wall of the MuliJinpingshan thrust system: Implications on the Cenozoic evolution of SE Tibet. Journal of Geophysical Research Solid Earth.

Supplementary material

S1 River network evolution around the Wenchuan-Maoxian (hM) fault
S2 Results Illite dating MW19-79A and MW19-79E
S3 Analytical procedure for ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ dating
S4 Sample MW19-38A in situ ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ data
S5 Sample MW19-38A step heating ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{~A}$. d.ta
S6 Sample MW19-10B in situ ${ }^{40} \mathrm{Ar} /{ }^{2}$ Ar data
S7 Sample MW19-10B step heating ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ data
S8 Microprobe analytical proc ${ }^{-1 u}{ }^{\bullet}$ and X map tool
S9 Microprobe results of Niv19-38A and EMPA location
S10 Microprobe resulte o. ${ }^{-1}$ W19-10B and EMPA location
S11 Temperature es. mate MW19-38A and MW19-10B

Author contributions :

Chenglong GE

Investigation, Data curation, formal analysis, resources, writing- Original Draft, writing - Review \& Editing
Philippe Hervé Leloup
Conceptualization, investigation, methodology, supervision, resources, writing review \& Editing,

Yong Zheng

Methodology, formal analysis

Stéphane Scaillet

Data curation, methodology, formal analysis, writing - Review \& Editing
Laura Airaghi
Methodology, conceptualization, formal analysis, data cu at1c 7 , writing - Review \& Editing
Jinjiang Zhang
Project administration, conceptualization
Florian Duval
Methodology
Haibing Li
Conceptualization, writing - Review \& Editi $\imath \mathrm{r}$, , roject administration, funding acquisition

Declaration of interests

\boxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
\square The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Highlights:

- First account of three Cenozoic tectonic phases along the Wenchuan - Maoxian fault.
- Direct deformation dating results coherent with thermochronology.
- No pure normal motion on the fault in Cenozoic, no normal component since 25 Ma .
- Fault Kinematics dismiss the crustal channel-flow extrusion model in Longmen Shan.

