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2. C, N, and S patterns reflect both mixing and separation at watershed scales  29 
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Abstract 33 

Excess nutrients from agricultural and urban development have created a cascade of ecological crises 34 

around the globe. Nutrient pollution has triggered eutrophication in most freshwater and coastal 35 

ecosystems, contributing to a loss in biodiversity, harm to human health, and trillions in economic 36 

damage every year. Much of the research conducted on nutrient transport and retention has focused on 37 

surface environments, which are both easy to access and biologically active. However, surface 38 

characteristics of watersheds, such as land use and network configuration, often do not explain the 39 

variation in nutrient retention observed in rivers, lakes, and estuaries. Recent research suggests subsurface 40 

processes and characteristics may be more important than previously thought in determining watershed-41 

level nutrient fluxes and removal. In a small watershed in western France, we used a multi-tracer 42 

approach to compare surface and subsurface nitrate dynamics at commensurate spatiotemporal scales. We 43 

combined 3-D hydrological modeling with a rich biogeochemical dataset from 20 wells and 15 stream 44 

locations. Water chemistry in the surface and subsurface showed high temporal variability, but 45 

groundwater was substantially more spatially variable, attributable to long transport times (10–60 years) 46 

and patchy distribution of the iron and sulfur electron donors fueling autotrophic denitrification. Isotopes 47 

of nitrate and sulfate revealed fundamentally different processes dominating the surface (heterotrophic 48 

denitrification and sulfate reduction) and subsurface (autotrophic denitrification and sulfate production). 49 

Agricultural land use was associated with elevated nitrate in surface water, but subsurface nitrate 50 

concentration was decoupled from land use. Dissolved silica and sulfate are affordable tracers of 51 

residence time and nitrogen removal that are relatively stable in surface and subsurface environments. 52 

Together, these findings reveal distinct but adjacent and connected biogeochemical worlds in the surface 53 

and subsurface. Characterizing how these worlds are linked and decoupled is critical to meeting water 54 

quality targets and addressing water issues in the Anthropocene. 55 

  56 
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1 Introduction 57 

Excess nutrients from human activities have created a cascade of ecological crises that 58 

threaten humankind and ecosystems around the globe. The nutrients that have constrained 59 

primary productivity and heterotrophic growth for most of Earth’s history—nitrogen (N) and 60 

phosphorus (P)—now saturate many environments along the terrestrial-aquatic-marine gradient, 61 

including soils, rivers, lakes, groundwater, and oceans (Pinay et al 2018, Van Meter et al 2018, 62 

Kolbe et al 2019, Jane et al 2021, Dai et al 2023, Davidson et al 2023). This widespread nutrient 63 

overload (eutrophication) causes immense damage to ecological food webs and human society, 64 

making it one of the most pressing and costly environmental issues of our day (Diaz and 65 

Rosenberg 2008, Steffen et al 2015b, Le Moal et al 2019, Ward et al 2018). Globally, 66 

approximately 80% of freshwater and coastal ecosystems are experiencing some level of 67 

anthropogenic eutrophication (Galloway et al 2003, Frei et al 2020, Stoddard et al 2016, 68 

Brahney et al 2015, Dai et al 2023). 69 

In response to this nutrient crisis, progress has been made in some regions to stem the 70 

flood of anthropogenic nutrients, largely through the control of nutrient point sources such as 71 

wastewater discharge from humans and livestock (Abbott et al 2018b, Ehrhardt et al 2019, Yang 72 

et al 2019). Additionally, many countries have implemented practical and regulatory measures to 73 

reduce nutrient pollution, though the results remain mixed (Poisvert et al 2017, Dupas et al 2018, 74 

Van Meter et al 2018, Sabo et al 2021b). However, as human activities now directly affect 77% 75 

of the ice-free land surface (Watson et al 2018, Abbott et al 2019a), nutrient concentrations and 76 

fluxes continue to rise in much of the world (Seitzinger et al 2010, Bouwman et al 2013, 77 

Stoddard et al 2016, Le Moal et al 2019, Frei et al 2021). 78 
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To identify effective solutions to the eutrophication crisis, we need to understand the 79 

sources and fates of nutrients added by humans to the Earth system. For example, agricultural 80 

activities account for approximately 85% of the human nutrient load globally (Smil 1999, 81 

Galloway et al 2004, Bouwman et al 2009, Campbell et al 2017). However, only half of the 82 

nutrients applied in fertilizers is taken up by crops (Smil 1999, Liu et al 2010, Foley et al 2011), 83 

with most of the nutrient waste occurring in areas of intensive agriculture in Asia, Europe, and 84 

North America (Foley et al 2011, Sabo et al 2021b). In agricultural areas where nutrient inputs 85 

exceed nutrient uptake of harvested crops, there are three general fates for excess nutrients: 86 

accumulation in the soil, leaching into groundwater or surface water, or conversion to gaseous 87 

forms via denitrification for N (Aquilina et al 2012a, Sebilo et al 2013, Van Meter et al 2016, 88 

Poisvert et al 2017, Minaudo et al 2019, Peterjohn and Correll 1984). While understanding the 89 

relative importance of these fates in different socio-ecological contexts is crucial to solving 90 

eutrophication, it is also exceedingly difficult at medium to large scales. On one end of this 91 

scaling problem, plot-scale experiments in a single component of the watershed (e.g., the riparian 92 

zone or soil layer) are often unrelated to watershed-level fluxes (Pinay et al 2015, 2018, Heiner 93 

et al 2022, Ebeling et al 2021, Basu et al 2022). On the other end, watershed-scale observations 94 

often do not have the spatial resolution to identify what characteristics or practices are effective 95 

at reducing nutrient waste (Abbott et al 2018b, Thomas and Abbott 2018, Frei et al 2020, Van 96 

Meter et al 2021). 97 

While most interventions to improve water quality are associated with surface or near-98 

surface environments (e.g. riparian zones, surface waters, and soils), there is growing evidence 99 

that catchment-level nutrient retention is strongly influenced by subsurface characteristics 100 

(Aquilina et al 2018, Kolbe et al 2019, Frei et al 2020, Pauwels et al 2000, Böhlke 2002, Duncan 101 
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et al 2015, Fan et al 2020, Nguyen et al 2022a, Lupon et al 2023). Because hydrological 102 

residence time in the subsurface far exceeds the surface (Gleeson et al 2016, Cook and Herczeg 103 

2012, Green et al 2011), time lags or “legacies” are created between the input and output of 104 

excess nutrients (Van Meter and Basu 2017, Ehrhardt et al 2019, Guillaumot et al 2021, Basu et 105 

al 2022). This provides extended opportunities for physical and biological processes to take up 106 

or transform nutrients and other solutes traveling through aquifers (Oldham et al 2013a, Abbott 107 

et al 2016, Dehaspe et al 2021). However, subsurface environments have long been considered 108 

as less dynamic than surface environments (Li et al 2017), where rapid biogeochemical 109 

processes are easily observable (McClain et al 2003, Bernhardt et al 2017). This paradigm of a 110 

“quiet world beneath” has recently been challenged on multiple fronts. 111 

Advances in hydrological modeling, inferential methods, and direct observations now 112 

show that the subsurface is biogeochemically active and temporally dynamic (Ben Maamar et al 113 

2015, Long et al 2016, Marçais et al 2018, Kolbe et al 2019, Bochet et al 2020). However, the 114 

relative influence of subsurface and surface activity on watershed-scale nutrient dynamics 115 

remains uncertain. Because of logistical challenges and disciplinary divides (Li et al 2017, Kolbe 116 

et al 2019, Krause et al 2022), relatively few studies characterize biogeochemistry in both the 117 

surface and deep subsurface (e.g., >10 m) at watershed scales, complicating direct comparison of 118 

the spatiotemporal dynamics and dominant processes in these environments. Yet, there is 119 

evidence from the shallow subsurface that these interactions are important across scales (Krause 120 

et al 2014, Helton et al 2015, Lee‐Cullin et al 2018, Wen et al 2020, Guillaumot et al 2021, 121 

Lupon et al 2023). 122 

In this context, we collected water samples over several years from streams and aquifers 123 

in small watersheds (<50 km2) in a region of intensive agriculture in western France. Using a 124 
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multi-proxy framework combined with previous hydrological research from this area (Abbott et 125 

al 2016, Kolbe et al 2016, Marçais et al 2018, Thomas et al 2019), we investigated the 126 

interaction of hydrological residence time, land-use, and biogeochemical processing in surface 127 

and subsurface environments. We were motivated by three general questions. First, how do 128 

spatial and temporal variability regimes differ between the surface and subsurface environments 129 

in this region? Second, what processes regulate nutrient dynamics as water travels through 130 

various watershed components (i.e., streams, vadose zones, and aquifers)? Third, what are the 131 

management implications of these observations of watershed-scale ecohydrology in the surface 132 

and subsurface? To address these questions, we focused on the transport and transformation of 133 

nitrate (NO3-), one of the most common nutrients associated with eutrophication and one of the 134 

costliest regarding environmental remediation, particularly in this region (Thomas et al 2019, 135 

Abbott et al 2018b, Heiner et al 2022, Dupas et al 2018). We analyzed a broad range of elements 136 

(e.g., carbon, sulfur, and silicon), proxies (e.g., isotopes, dissolved gases, and rare earth 137 

elements), and other data (e.g., historical land use, 3-D hydrological modeling, and reconstructed 138 

nutrient inputs) to characterize the surface and subsurface at the watershed scale. 139 

2 Methods 140 

2.1 Site description and experimental design 141 

This study was conducted within the Zone Atelier Armorique research area, which is part 142 

of the Long-term socio-ecological research (LTSER) network (Thomas et al 2019). The history, 143 

socioecological characteristics, and available data from this LTSER are described in detail by 144 

Thomas et al (2019). The research area is in northeast Brittany in northwestern France. Brittany 145 

has a temperate oceanic climate (category “Cfb”: temperate, no dry season, warm summer, 146 

following Kottek et al 2006) and extensive livestock and row-crop agriculture (Thomas et al 147 
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2019, Frei et al 2020, Poisvert et al 2017). The study catchment occurs on the Armorican massif, 148 

which is composed of metamorphic and igneous rock, primarily granite, schist, and micaschist 149 

(Aquilina et al 2012a, Goderniaux et al 2013b, Kolbe et al 2016). The mean annual temperature 150 

is 11.2°C, and the mean annual rainfall is 910 mm, which is relatively well distributed 151 

throughout the year, and mean potential evapotranspiration is 690 mm (Thomas et al 2019). 152 

Because of the high infiltration capacity and relatively gentle precipitation, there is little artificial 153 

drainage (e.g., tile drains), but there are ditches and hedgerows around many fields, some of 154 

which have been present since Medieval times(Thomas and Abbott 2018, Baudry et al 2000, 155 

Forman and Baudry 1984). The main land use is agriculture, with around 80% of the region 156 

covered by row crops, pastureland, and indoor animal husbandry (pigs, poultry, and cows). This 157 

gives Brittany one of the highest densities of livestock in France and Europe (Gascuel-Odoux et 158 

al 2010, Poisvert et al 2017, Kim et al 2019). The intensive agriculture in this region has created 159 

widespread and persistent eutrophication of streams, estuaries, and groundwater (Dupas et al 160 

2018, Moatar et al 2017, Minaudo et al 2019). However, improved nutrient management, 161 

particularly the reduction of point sources (e.g., wastewater and feedlot effluent) and decreases in 162 

fertilizer application have resulted in declining N and P concentrations in many Brittany 163 

watersheds (Dupas et al 2018, Poisvert et al 2017, Aquilina et al 2012b, Gu et al 2021, Abbott et 164 

al 2018b). 165 

To characterize the dominant hydrological and biogeochemical processes in the surface 166 

and subsurface, we collected samples for chemical analysis from 16 agricultural wells (28-94 m 167 

deep; hereafter deep wells), 4 research piezometers (<10 m deep; hereafter shallow wells), and 15 168 

surface water locations within Le Guyoult and the Couesnon watersheds (Fig. 1). From 169 

December 2014 to April 2016, we performed seven sampling campaigns to capture temporal 170 
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variability in the surface and subsurface. To maximize the spatial extent of surface and 171 

groundwater sampling, not all the sites were visited during every campaign, and the mean 172 

number of return visits per site was four. 173 

 174 

Figure 1. Map of the study area near the Zone Atelier Armorique Long-term socio-175 

ecological research (LTSER) site. Le Guyoult watershed to the west is a tributary of the 176 

larger Couesnon watershed to the east. The white lines indicate the subcatchment 177 

boundaries based on topographic delineation. 178 

 179 
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2.2 Estimating nitrate removal 180 

Nitrate removal was estimated based on the concentration of excess N2 dissolved in the 181 

groundwater. The detailed procedure for calculating nitrate removal is described fully in Kolbe et 182 

al 2019 and Vautier et al 2021. Briefly, in a groundwater environment, the concentration of 183 

excess N2–i.e., above the expected concentration—can indicate the amount of NO3- removed by 184 

denitrification because equilibration with the atmosphere is not possible (Aeschbach-Hertig et al 185 

1999, Ayraud et al 2006, Böhlke 2002). After correcting for atmospheric partial pressure and 186 

temperature with the observed Ar concentration, the sum of the excess N2 and remaining NO3- 187 

allow calculation of the concentration of NO3- that reached the water table (Kolbe et al 2019, 188 

Böhlke 2002). Combined with estimates of groundwater residence time, this can allow the 189 

reconstruction historical NO3- inputs (Kolbe et al 2019, Aquilina et al 2012b).  190 

Though land use in specific parcels of the catchment has varied substantially in the past 191 

(Barbe et al 2020), crop rotations have created a reasonably uniform N input time series at the 192 

catchment scale (Kolbe et al 2019). Because this method only accounts for NO3- removed after 193 

the water lost contact with the atmosphere (i.e., in the saturated zone), it accounts implicitly for 194 

biogeochemical removal or retention in the unsaturated zone (Thomas and Abbott 2018, Basu et 195 

al 2022). For our purposes, this is an advantage over more common nutrient surplus estimates, 196 

which account for overall disequilibrium in N and P but not vadose-zone removal (Van Meter et 197 

al 2016, Sebilo et al 2013, Poisvert et al 2017).  198 

2.3 Proxies of hydrology and biogeochemistry 199 

To assess the degree of biogeochemical attenuation of nutrients and the relative 200 

importance of nutrient loading versus nutrient removal, we measured the concentrations and 201 
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stable isotope ratios of NO3- (δ15N and δ18O) and SO42- (δ34S). Stable isotopes can indicate the 202 

nutrient source and the degree of biogeochemical processing (Lehmann et al 2003, Mariotti et al 203 

1981, Malone et al 2018). NO3- isotopes have been widely analyzed because NO3- is a dominant 204 

form of nitrogen in nutrient saturated ecosystems (Aber et al 1998), organic and industrial 205 

fertilizers have distinct initial δ15N and δ18O (Lohse et al 2013, Denk et al 2017, Bedard-Haughn 206 

et al 2003), and denitrification (both heterotrophic and autotrophic) strongly fractionates NO3- 207 

isotopes, increasing the residual δ15N and δ18O relative to the initial values prior to denitrification 208 

(Hosono et al 2014, Malone et al 2018, Ayraud et al 2006, Pauwels et al 2010). Therefore, we 209 

predicted that watersheds with isotopically enriched NO3- would have higher N attenuation 210 

(Lehmann et al 2003) or alternatively that they would have received primarily organic fertilizer 211 

(Bedard-Haughn et al 2003).  212 

Sulfur isotopes have been used extensively in geochemical studies of processes ranging 213 

from the evolution of the Earth’s atmosphere to bacterial and archaeal dissimilatory SO42- 214 

reduction (Canfield 2001, Farquhar and Wing 2003). For the purposes of this study, we were 215 

particularly interested in δ34S, which can be increased by SO42- reduction after depletion of NO3- 216 

(e.g., in highly reduced wetland habitats) and decreased by SO42- production in aquifers during 217 

autotrophic denitrification (Hosono et al 2014, Abbott et al 2016). Consequently, we predicted 218 

that δ34S of SO42- would be higher in watersheds where surface processes dominate NO3- 219 

removal, whereas δ34S would be lower when groundwater processes were relatively more 220 

important. 221 

We used a combination of tracers to assess water residence time, including 222 

chlorofluorocarbons (CFCs), sulfur hexafluoride (SF6), and dissolved silica (DSi). CFCs and 223 

SF6 have been commonly used as tracers of water age due to their high detectability and low 224 
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reactivity in aqueous environments (Abbott et al 2016, Cook and Herczeg 2012, Busenberg and 225 

Plummer 1992, Wilson and Mackay 1996). However, these anthropogenic gases cannot be used 226 

to quantify the age of surface waters because they readily equilibrate with the atmosphere when 227 

groundwater resurfaces. DSi has been shown to strongly correlate with subsurface residence time 228 

(Marçais et al 2018, Becker 2013) and has been used to measure surface water ages in previous 229 

studies in this area (Frei et al 2020). Though the concentration of DSi can be influenced by 230 

terrestrial and aquatic plant uptake in surface waters, we assumed conservative transport given 231 

the short residence time and relatively high concentration of DSi in these headwater streams 232 

(Marçais et al 2018, Delvaux et al 2013, Carey et al 2019, Abbott et al 2018b).  233 

2.4 Gas sampling and analysis 234 

CFC and SF6 measurements were taken at the Plateform Condate Eau from University of 235 

Rennes 1. We collected water in steel ampoules (40 ml for CFC and 300 ml for SF6) by pumping 236 

with a MP1 Grunfoss pump in the borehole. After stabilization, we measured the conductivity, 237 

pH and dissolved O2 using a custom sensor manifold preventing contact with the atmosphere 238 

(Hach, Loveland CO, USA; model HQ440d multi; Fig. S1), and the ampoules were rinsed with 239 

three times their volume of water and closed (Labasque et al 2014). CFC and SF6 concentrations 240 

were determined by a purge and trap extraction coupled to a GC/ECD (Busenberg and Plummer 241 

1992, 2000, Labasque 2020). Uncertainties are around 3% for young groundwaters for CFC, 242 

10% for SF6, and 20% for CFC on old (>50 years) groundwaters. The major dissolved gases 243 

(He, Ne, Ar, N2, CO2, CH4) were sampled in 500 ml glass flasks and analyzed by headspace 244 

extraction followed by µGC/TCD measurements, following (Sugisaki and Taki 1987). 245 

Uncertainties are around 5% for Ne and He and 3% for other gases.  246 

 247 
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2.5 Solute and isotope collection and analysis 248 

At each site, we collected a 5 L sample of water for immediate sensor readings and eight 249 

smaller samples for laboratory analyses. For the laboratory analyses, we immediately filtered 250 

subsamples using a 50 mL syringe and two 250 mL filter towers. We used a 0.2 µm cellulose 251 

acetate syringe filter to prepare samples for the analysis of cations, rare earth elements (REE), 252 

and NO3- isotopes. Molybdate reactive phosphorus (MRP) concentration was determined 253 

colorimetrically via reaction with ammonium molybdate (Murphy and Riley, 1962), with a 254 

precision of ± 4 μg l−1 (Gu et al 2018). Nitrate isotope samples were frozen immediately and 255 

shipped to the UC Davis Stable Isotope Facility for analysis of δ15N and δ18O of NO3- by 256 

bacterial denitrification assay (McIlvin and Casciotti 2011). Isotope ratios of δ15N and δ18O were 257 

determined by measuring N and O using a ThermoFinnigan GasBench + PreCon trace gas 258 

concentration system connected to a ThermoScientific Delta V Plus isotope-ratio mass 259 

spectrometer (Bremen, Germany) with a precision of ± 0.4‰ and 0.5‰ for δ15N and δ18O, 260 

respectively. Cations were analyzed by inductively coupled plasma mass spectrometry (ICP-MS; 261 

Agilent 7700×, Santa Clara, USA, relative uncertainties ± 5%). We quantified dissolved organic 262 

carbon (DOC; Shimadzu TOC-5050A, Kyoto, Japan, precision ± 5%), which is often considered 263 

a master variable influencing physicochemical conditions in aqueous environments (Zarnetske et 264 

al 2018, Abbott et al 2016). Because DOC is the electron donor for both aerobic respiration and 265 

heterotrophic denitrification (Hosono et al 2014, Sebilo et al 2019), high DOC can enhance NO3- 266 

removal, and high NO3- can accelerate DOC oxidation (Abbott et al 2016, Kolbe et al 2019). 267 

This two-way interaction contributes to the strong negative stoichiometric relationship between 268 

NO3- and DOC observed in surface and groundwaters globally, including in this region (Taylor 269 

and Townsend 2010, Frei et al 2020) 270 
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 To determine SO42- isotopes, we filtered water samples on a MilliporeTM system using 271 

0.45 μm cellulose acetate filters. Filtered solutions were then heated to 70°C and a 5% solution 272 

of barium chlorate was added drop-to-drop to precipitate dissolved SO42- as barium sulfate 273 

(BaSO4). Sulfur isotope composition of SO42- was measured using a VarioPYROcubeTM 274 

elemental analyzer in combustion mode interfaced in continuous-flow mode with an IsoprimeTM 275 

isotope ratio mass spectrometer at the Laboratoire de Géologie de Lyon (CNRS UMR 5276, 276 

University Claude Bernard Lyon 1). BaSO4 from water samples was analyzed by weighing 3 277 

aliquots of 250 μg in tin foil capsules. Measurements were calibrated against the three BaSO4 278 

international standards NBS127, IAEA-SO-5 andIAEA-SO-6. The standard deviation of δ34S 279 

measurements was close to 0.3‰. Data are reported as δ34S vs. V-CDT. 280 

2.6 Spatial analysis 281 

Using detailed land-use time series from the LTSER (Barbe et al 2020), we calculated the 282 

dominant land use type for each parcel from 1993 to 2013 (except 1995; Fig. 1). We converted 283 

all the land use shapefiles to raster files with a cell size of 15 m. We then used “majority” in cell 284 

stat to calculate the value of the most common land use through time. For the cells that had no 285 

historical data, we used the 2013 values (i.e., the most recent values). Similar land-use types 286 

were clustered into 4 groups: row crops, developed land, natural landscapes, and pastureland. 287 

The row crops category included corn, wheat, and other ploughed crops. Developed land 288 

included asphalt roads, unpaved roads, buildings, and railroad tracks. Natural landscapes 289 

consisted of forested and riparian areas. The last category pastureland consisted of grazing 290 

pastures and abandoned lands. 291 

We intersected the land use raster with contributing watershed area for stream locations 292 

and the contributing area of the deep wells, which had been calculated in previous work (Kolbe 293 
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et al 2016). We excluded the shallow wells from this analysis because all the sampling points 294 

were contained in the same subcatchment and therefore could not be differentiated by land use 295 

(see Thomas et al 2019 for a detailed analysis of the shallow wells). 296 

2.7 Statistical analysis 297 

We used Pearson and Spearman correlations to quantify relationships among and within 298 

biogeochemical and landscape parameters (Malone et al 2018). We calculated both parametric 299 

(r) and nonparametric (rho) correlation coefficients for different reasons. The Spearman 300 

correlations (rho) are rank based, providing a robust metric of the overall association across sites. 301 

Conversely, the Pearson correlations (r) provide full weight to extreme values, which can be 302 

influential in determining overall watershed behavior. For example, small portion of the 303 

watershed (i.e., a single or a few sites) can control source or sink dynamics for a given parameter 304 

(Bernhardt et al 2017, McClain et al 2003, Abbott et al 2018a, Lee et al 2022). For both 305 

Spearman and Pearson correlations, we used a decision criterion of α = 0.05. To compare 306 

variability in surface and subsurface environments, we calculated the mean and its standard error 307 

of the spatial and temporal coefficients of variation (CV) for each parameter. This allowed us to 308 

compare whether there was more variation for a given parameter in the surface or in the 309 

subsurface. We conducted all analysis and visualizations in the R statistical computing software 310 

environment (R Core Team 2022).  311 

3 Results  312 

3.1 Spatiotemporal dynamics in the surface and subsurface  313 

The water chemistry of wells and streams indicated both contrasts and connectivity of the 314 

surface and subsurface water. The subsurface showed larger variations in most physicochemical 315 



   
 

15 
 

parameters compared to the surface sites, except for temperature, pH, and DOC, which are 316 

strongly influenced by seasonal drivers at the surface (Fig. 2). For most parameters, including the 317 

nutrients which are the focus of this study, the stream values fell between the deep and shallow 318 

wells (Fig. 2). The N parameters grouped closer to deep wells, but the P, S, and Si parameters 319 

grouped closer to shallow wells, suggesting a combination of mixing and biogeochemical 320 

attenuation at watershed scales. 321 

Separating the combined variability shown in Figure 2 into spatial and temporal CV 322 

revealed several surprising patterns (Fig. 3). Throughout the watershed and through time, stream 323 

chemistry showed relatively less variation, with no parameters exceeding a mean CV of 75% 324 

(Fig. 3). Conversely, the shallow wells and especially the deep wells showed greater spatial and 325 

temporal variability, including several parameters with >100% variation (Fig. 3). We note that 326 

CV is expressed as a percentage, representing proportional change rather than absolute change. 327 

For example, stream environments showed more absolute range in DOC concentration (Fig. 2), 328 

but because the mean DOC was much higher than in the subsurface sites, the DOC CV was 329 

lower in streams (Fig. 3). 330 
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 331 

Figure 2. The distribution of several physicochemical parameters in the streams, shallow 332 

wells, and deep wells sampled in this study. The parameter and units are shown above 333 

each plot. The boxplots represent the median, interquartile range (IQR), points within 334 

1.5-times the IQR, and outliers beyond 1.5-times the IQR. Because each site and 335 

sampling event are included as individual points, the ranges represent the combined 336 

spatial and temporal variability. 337 
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  Spatial variation generally exceeded temporal variation across site types (i.e., most 338 

parameters plotted below the 1:1 line in Figure 3), though this was notably not the case for NO3- 339 

in deep wells and SO42- and water age in all wells (see section 3.3 for detailed water age results). 340 

N and S isotopes tended to be substantially less variable than N and S concentrations, suggesting 341 

that hydrological dilution rather than changes in nutrient source or processing accounted for 342 

variability in concentrations. 343 

 344 

 345 

Figure 3. The spatial and temporal coefficients of variation for physicochemical 346 

parameters in streams, shallow wells, and deep wells (mean ± SE). 347 

 348 

Mapping NO3- concentration and removal showed the contrasts in spatial patterns 349 

between the surface and subsurface more explicitly (Fig. 4). In the stream network, NO3- 350 

concentration was relatively homogeneous, increasing gradually from the forested uplands in the 351 

south to the more intensively cultivated landscapes in the north of the watershed (Fig. 4). 352 

Conversely, groundwater NO3- concentration showed extreme variation throughout the 353 

watershed, with sites only meters apart showing up to 70 mg/L differences in concentration. 354 
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Similarly, the percentage of NO3- removed was much more variable for groundwater, while the 355 

stream network showed a moderated pattern similar to the groundwater mean (Fig. 4). 356 

 357 

 358 

Figure 4. NO3- concentration (A) and percent removal (B) in subsurface (left) and 359 

surface (right) environments. Average across time for each site, showing spatial variation 360 

of chemical parameters. NO3- removal was calculated based on the difference between the 361 

reconstructed NO3- input and the observed concentration (methods). 362 



   
 

19 
 

3.2 Isotopic and dissolved tracers 363 

The isotopes and solutes provided clues about the causes of the surprising spatiotemporal 364 

patterns. There were opposite relationships between isotope signatures and NO3- removal in the 365 

streams and deep wells, with mixed patterns in the shallow wells (Fig. 5A & 5B). In the deep 366 

wells, NO3- removal was positively correlated with δ15N, as expected due to fractionation during 367 

denitrification. The opposite pattern existed in the surface water where δ15N was negatively 368 

correlated with NO3- removal, though the correlation was only significant for the Pearson 369 

coefficient, indicating that a few extreme values were driving the relationship (Fig. 5A & 5B). 370 

Indeed, the low NO3- and low δ15N stream sites occurred in the forested south of the watershed 371 

(Fig. 4), likely indicating a non-fertilizer N source (e.g., atmospheric deposition or natural N 372 

fixation). We note that the percentage N removal for these sites was likely overestimated because 373 

our reconstructed N input assumed similar land use for each subcatchment, which is not the case 374 

for forested sites that have never been under cultivation.  375 

In general, δ34S was a better proxy of NO3- concentration and removal, with δ15N 376 

showing fewer and weaker relationships (Fig. 5). δ34S was positively correlated with NO3- 377 

removal in the surface but negatively correlated in the deep wells (Fig. 5C & 5D), in line with 378 

our hypotheses about S reduction in the surface and S release from autotrophic denitrification in 379 

the subsurface. 380 
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  381 

Figure 5. Relationships of δ15N and δ34S with NO3- concentration and removal. Linear fit 382 

lines are shown for convenience to indicate a significant relationship—either Pearson (r) 383 

or Spearman (rho)—at α = 0.05. 384 
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Contrary to our predictions, DOC was not correlated with most NO3- and SO42- 385 

parameters, and when correlations existed, they were typically weak (Fig. S2). Across site types, 386 

there was a significant negative correlation between δ34S and SO42- concentration (Fig. 6). Some 387 

of the highest δ34S values we are aware of were observed in the shallow well sites that occurred 388 

in the riparian wetland (Fig. 1). Together these patterns suggest that different processes are 389 

controlling nutrient retention in the surface and subsurface, with heterotrophic denitrification and 390 

sulfur reduction dominating in the surface and autotrophic denitrification in the subsurface. 391 

 392 

Δ  393 

Figure 6. The relationship between δ34S and SO42- for streams, shallow wells, and deep 394 

wells. The two subsurface site types showed more variation in δ34S, bracketing the stream 395 

water samples, which resembled a mix of the two contributing flow paths (i.e., deep 396 

groundwater and shallow soil/riparian water). 397 

 398 
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3.3 Residence time and nutrient removal 399 

We combined gaseous and dissolved residence time tracers to allow estimation of mean 400 

water age in both the surface and subsurface. There was a high correlation (r = 0.96, rho = 0.95) 401 

between water residence times derived from DSi concentrations with residence times calculated 402 

using CFCs and SF6 (Fig. 7). This allowed us to use DSi to estimate mean residence time in 403 

surface water environments where gaseous tracers are not effective. 404 

 405 

 406 

Figure 7. Estimates of mean water age. Because the dissolved anthropogenic gas 407 

measurements are only effective in the subsurface, we calculated the relationship between 408 

silica-derived and CFC-derived water ages for shallow and deep groundwater 409 

environments only. 410 

 411 

The deep wells showed the longest residence time, with a median age of 42 years and a 412 

mean age of 36 years. Shallow well water was the youngest, with a median age of 23.5 years and 413 
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a mean age of 20.5 years (Fig. 7B). The stream water was slightly older than the shallow well 414 

water with a median age of 25 years and a mean age of 24.4 years, indicating a mix of shallow 415 

and deep groundwater sources. The streams were more homogeneous in age (interquartile range 416 

of 20-28 years) than either the shallow (2-30 years) or deep wells (17-46 years; Fig. 7). 417 

 418 

Figure 8. Relationships between mean water age and SO42- and NO3- isotopes and 419 

concentrations in stream, shallow groundwater, and deep groundwater environments. 420 

 421 



   
 

24 
 

NO3- tended to be higher in younger water, i.e., there was a negative correlation between 422 

mean water age and NO3- concentration in shallow and deep wells (Fig. 8A). This implies that 423 

either NO3- loading has increased through time or that older sites have less NO3- because of 424 

cumulative removal. The latter is suggested by the positive correlation between water age and 425 

δ15N in deep wells, though the relationship is less clear in shallow wells and streams (Fig. 8B). 426 

For streams and shallow wells, water age was positively correlated with NO3- removal (Fig. 9). 427 

We note that because the stream water comes from shallow and deep groundwater in this system, 428 

the stream removal values are cumulative (i.e., most of the removal is happening in the deep and 429 

shallow wells before flowing into the stream; Fig. 9). 430 

 431 

 432 

Figure 9. NO3- removal versus mean water age for streams, shallow wells, and deep 433 

wells. NO3- removal represents the cumulative removal along the flow path starting with 434 

input of NO3- to the water table. 435 

 436 
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3.4 Nutrient sources 437 

In stream environments, NO3- concentration was positively correlated with percentage of 438 

row crop agriculture in the subcatchment and negatively correlated with the amount of natural 439 

land cover types (Fig. 10). However, no such relationships were detected in deep wells, where 440 

NO3- concentration was not correlated with land use in the contributing area (Fig. 10). This lack 441 

of correlation could be due to a combination in uncertainty in the determination of contributing 442 

areas, temporal changes in land use over the ~40 years of transit time, and heterogeneous rates of 443 

removal of NO3- during transit through the aquifer. 444 

 445 

 446 

Figure 10. Correlation of NO3- and the percent of land-use cover for streams and deep 447 

wells. Shallow wells were omitted from this analysis as all shallow wells were contained 448 

within one subcatchment. Land-use coverage in the streams was calculated for the 449 

contributing subcatchment area. Land-use for deep wells was calculated from the well’s 450 

contributing area based on prior hydrogeological modeling (Kolbe et al 2016). 451 

 452 
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4 Discussion 453 

In this study we characterized biogeochemical and hydrological processes in the surface 454 

and subsurface at the same spatiotemporal scales to explore watershed-level controls on nutrient 455 

retention and removal. We used a multi-proxy approach to identify dominant NO3- removal 456 

processes and characterized spatiotemporal variation in streams and groundwater. We observed 457 

highly distinct but linked biogeochemical “worlds” above and below the surface, which 458 

interacted to determine watershed-level nutrient dynamics. In the following paragraphs, we 459 

compare these results with studies from this and other regions and explore potential management 460 

implications. 461 

4.1 Deepening our thinking to address water-energy-food crises 462 

Because of disciplinary differences in methods and processes, groundwater and surface 463 

water environments are often considered individually, especially at watershed scales (Bochet et 464 

al 2020, Abbott et al 2018a, Leibundgut et al 2009, Krause and Bronstert 2007, Duncan et al 465 

2015, Knee et al 2018). Groundwater biogeochemistry and hydrology have long been areas of 466 

focus in hydrogeology and critical zone science, but they have not received as much attention in 467 

ecosystem ecology and nutrient management (Chorover et al 2007, Krause et al 2022, 468 

Goderniaux et al 2013a, Li et al 2021, 2017, Brookfield et al 2021). Because attaining surface 469 

water quality goals depends on the overall watershed response (including the subsurface), this 470 

disconnect needs to be addressed (Van Meter et al 2021, Vautier et al 2021, Heiner et al 2022, 471 

Basu et al 2022, Lupon et al 2023). Additionally, global water security and aquatic habitat 472 

conservation increasingly depend on hydrochemical understanding of groundwater-surface water 473 

interactions (Hartmann et al 2021, Jasechko and Perrone 2021, Wine 2022, Gleeson et al 2020).  474 
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Given how different the skillsets are for surface and subsurface measurements and 475 

modeling, we believe the best way to deepen our watershed approaches is through 476 

collaborations. We call on researchers and research-funding agencies to encourage such 477 

collaboration. There are many watershed-focused projects from around the world that can be 478 

used as models for next steps in integrating surface and groundwater hydrochemistry, ecology, 479 

and sustainability in the Anthropocene (Oldham et al 2013b, Mu et al 2020, Krause et al 2022, 480 

Lee‐Cullin et al 2018, Marçais et al 2022, Musacchio et al 2020). However, many watershed 481 

observatories and interdisciplinary approaches are threatened or underfunded (Laudon et al 2017, 482 

Arènes et al 2018, Brooks et al 2015, Linton 2008, 2014, Thomas et al 2019). Increased 483 

investment is needed not only for basic research but also (and perhaps primarily) for community 484 

participation and education (Abbott et al 2018b, 2023, Ben-zvi-Assarf and Orion 2005, Basu et 485 

al 2022). In the Anthropocene, the lack of understanding of watershed processes is a major 486 

obstacle to achieving sustainable practices central to the water-energy-food nexus (Albrecht et al 487 

2018, Zhang et al 2018, Biggs et al 2015, Abbott et al 2019b). 488 

4.2 Integrated sampling reveals contrasted but connected worlds above and below 489 

An important theme from collaborative work linking surface and subsurface 490 

environments is that the world beneath is not stable or calm. Groundwater environments are 491 

commonly characterized as homogeneous and slow, lacking the diversity and energetic gradients 492 

to support dynamic biogeochemistry (Bochet et al 2020, McClain et al 2003, Cardenas 2015). 493 

Evidence from work around the world shows that the view of a quiet world beneath is not 494 

accurate (Marçais et al 2022, Ben Maamar et al 2015, Zhang et al 2015, Jasechko et al 2017, 495 

Green et al 2011). Indeed, there is a growing consensus that catchment-level nutrient removal 496 

may depend largely or primarily on subsurface characteristics that are often temporally dynamic 497 
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(Aquilina et al 2018, Kolbe et al 2019, Frei et al 2020, Bochet et al 2020, Long et al 2016, 498 

Brookfield et al 2021, Hosono et al 2014). 499 

For the watersheds in our study, the subsurface appears to be the epicenter of 500 

denitrification rather than a biogeochemical afterthought, likely because of the combination of 501 

longer residence times and relatively abundant electron donors (Oldham et al 2013b, Pu et al 502 

2014). Groundwater environments are home to most of Earth’s bacterial and archaeal biomass 503 

(Bar-On et al 2018), and the combination of biological and hydrological factors can create 504 

extreme spatial and temporal variation in groundwater reaction types and rates (Bochet et al 505 

2020, Ben Maamar et al 2015). Because groundwater and surface-water environments are 506 

constantly exchanging water, energy, and material, the failure to adequately characterize 507 

subsurface processes likely explains some of the difficulties in predicting nutrient fluxes and 508 

recovery patterns at watershed scales (Kolbe et al 2019, Frei et al 2021, Van Meter et al 2018, 509 

Brookfield et al 2021). 510 

The relatively low variance we observed for many surface parameters demonstrates 511 

another interesting implication of surface-subsurface interactions. In Brittany, as in many 512 

temperate regions, surface water is comprised of water mixing from the shallow and deep 513 

groundwater (Marçais et al 2018, 2022, Thomas and Abbott 2018). While the processes and 514 

solute concentrations in the groundwater system are highly variable, they become mixed as they 515 

enter the surface environment through riparian zones and diffuse groundwater flux to streams 516 

(Krause et al 2022, Pinay and Haycock 2019, Le Moal et al 2019, Cardenas 2015). Given the 517 

short transit times in the surface, this results in a homogenized signature; as the surface water 518 

travels farther and faster, it integrates a larger spatial scale and reflects a larger landscape patch 519 

(Abbott et al 2018a, Dupas et al 2019). While this reduces the ability of streams to mitigate high 520 
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nutrient loading (i.e., stream and riparian retention cannot offset watershed-wide nutrient 521 

excess), it reinforces the role of streams as integrators of watershed processes, creating valuable 522 

sentinels of change, particularly when monitored in a quantitative, multi-proxy way (Moatar et al 523 

2020, Frei et al 2020, Helton et al 2011, Pinay et al 2018, Brookshire et al 2009, Cole et al 2007, 524 

Shogren et al 2021, Casas-Ruiz et al 2023, 2017).  525 

4.3 Context-dependence of biogeochemical proxies in surface and subsurface environments 526 

Biogeochemical proxies and tracers are indispensable tools to evaluate hydrological and 527 

ecological processes across scales (Pinay et al 2015, Bernardie et al 2018, Frei et al 2020). 528 

Particularly when working at the watershed scale or when investigating groundwater 529 

environments where extensive physical exploration is impossible, proxies can reveal processes 530 

that are otherwise unobservable, including microbial metabolism, hydrological residence time, 531 

and weathering processes (Marçais et al 2018, Kolbe et al 2019, Leibundgut et al 2009). Because 532 

proxies such as solutes, isotopes, and physicochemical attributes (e.g., temperature, pH, etc.) can 533 

reveal mass flux and processing, they have been used extensively to investigate the sources of 534 

nutrient pollution and to compare reactivity in different components of a watershed (Sebilo et al 535 

2013, Covino 2017, Thomas and Abbott 2018).  536 

However, one of the fundamental assumptions about interpreting a tracer is that it will 537 

retain or conserve a portion of the signal imbued by the environment of interest as it travels to 538 

the location where it can be sampled (Abbott et al 2016, Aravena and Robertson 1998). If the 539 

tracer is completely consumed or modified, it can communicate no information about its source 540 

and the reactions it experienced during transport—unless, of course the product of its 541 

consumption can be measured, such as excess N2 in this study (Kolbe et al 2019). Specifically, 542 

the limitations of using δ15N as a tracer for identifying nitrogen sources and transformations has 543 
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been well documented (Choi et al 2017, Robinson 2001). The δ15N signal is often used as an 544 

indicator of not only nitrogen cycles but also nitrogen origin. Our results suggest that δ34S is a 545 

more effective overall tracer of denitrification than δ15N as it is resilient to the conflicting signals 546 

and destructive interference that complicate δ15N. Sulfur and nitrogen cycles are connected in 547 

many ways, including through autotrophic denitrification and through redox dependence of both 548 

denitrification and sulfur reduction (Pu et al 2014, Aquilina et al 2018, Abbott et al 2016). It is 549 

therefore not surprising that information contained in δ34S could shed light on multiple aspects of 550 

NO3- transport and degradation.  551 

            In this study, we observed that even in cases of strong hydrological connectivity (Thomas 552 

and Abbott 2018, Vautier et al 2021), the biogeochemical signature of shallow wells, streams, 553 

and deep wells remained distinct. This was evidenced in the opposite relationships between δ34S 554 

and NO3-, Cl-, and NO3-, as well as the contrasting spatiotemporal variability regimes for many 555 

parameters in the surface and subsurface. While we are not surprised that distinct 556 

biogeochemical reactions and physical conditions dominate surface and subsurface environments 557 

(Frey et al 2014, Ben Maamar et al 2015, Aquilina et al 2018, Li et al 2021), we were surprised 558 

by the abruptness of the transitions between these environments, even where we know 559 

hydrological connectivity exists (Kolbe et al 2016, Le Lay et al 2019b). Four non-exclusive 560 

hypotheses that could account for this disconnect are: 1. Surface-subsurface interfaces erase or 561 

substantially modify biogeochemical signatures (Krause et al 2014), 2. Biogeochemical 562 

signatures persist across interfaces but are blurred by contrasting conditions in the new 563 

environment (Helton et al 2011), 3. The mass balance of surface-subsurface exchanges is 564 

insufficient to substantially influence the conditions in either; i.e., inputs are diluted (Pinay et al 565 

2018, Le Moal et al 2019), and 4. The groundwater contributing to the streams is different than 566 
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the groundwater measured in wells dispersed across the aquifer; i.e., streams are deriving their 567 

water and solutes from near-stream rather than catchment-wide sources (Ågren et al 2010, Gu et 568 

al 2017). 569 

Regardless of the cause, the contrasting chemistry of the surface and subsurface 570 

represents an ecological paradox and practical challenge. On the ecological side, these 571 

observations may suggest that surface and subsurface environments are largely disconnected and 572 

compartmentalized. Even in these wet watersheds in western France with relatively high 573 

hydrological connectivity, the interaction between groundwater and stream water chemistry is 574 

complex (Kolbe et al 2016, Le Lay et al 2019a). On the practical side, these observations 575 

demonstrate that proxy reactivity and hence information content are extremely context dependent 576 

(Abbott et al 2016). This was, predictably the situation for the dissolved gases, which quickly 577 

equilibrate with the atmosphere after emerging to the surface (Ayraud et al 2008, Vautier et al 578 

2021). However, we did not expect the same to hold for nutrients such as NO3-, DSi, and SO42- 579 

(Lajtha 2019, Lovett et al 2018, Heiner et al 2022). Together, these observations highlight how 580 

biogeochemical and physical processes can modify ecological signals on short timescales and 581 

medium spatial scales in surface environments and long timescales and small spatial scales in 582 

subsurface environments. 583 

4.4 Was it my neighbor or my grandparents? 584 

Understanding where nutrients originate and how they are transported through watersheds 585 

has ecological and interpersonal implications. Debates about who is responsible for water 586 

pollution in the surface and subsurface are likely as old as agriculture and urbanization (Snow 587 

1856). This is certainly the case in Europe, where local, national, and E.U. targets and 588 

regulations can have real environmental and legal consequences (Musacchio et al 2020, Ebeling 589 
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et al 2021). Indeed, this issue was raised at a meeting with a farmer from this LTSER when he 590 

realized the importance of legacy nutrient loading in determining current-day water quality. 591 

During a landowner-researcher dinner, he exclaimed something along the lines of, “So you’re 592 

telling me I have high nitrates because of my grandparents, not my neighbors?” 593 

The integrated surface and subsurface sampling from our study and the Zone Atelier 594 

Armorique LTSER more broadly provides some perspective on these questions of nutrient 595 

legacies and pollutant transport (Thomas et al 2019). Because of its low residence time and high 596 

lateral connectivity, the stream network acts much more like an equitable commons, where 597 

pollutant sources and sinks average out to create consistent conditions. Conversely, the 598 

subsurface is decidedly inequitable, with some areas laden with nutrient legacies that will last 599 

decades (Vautier et al 2021), and other areas endowed with high nutrient removal capacity that 600 

will protect water quality despite high contemporary or historical loading (Aravena and 601 

Robertson 1998). This highlights the challenge of assessing nutrient vulnerability or even 602 

characterizing four-dimensional nutrient sources and sinks (Hartmann et al 2021, Kolbe et al 603 

2016). However, the linked nature of the subsurface and surface also illuminates a commonsense 604 

shortcut to reducing eutrophication, which we explore in the following section (Koh et al 2018, 605 

Basu et al 2022, Pinay et al 2015, Frei et al 2021, Poisvert et al 2017, Sabo et al 2021b). 606 

4.5 Living within our nutrient means: focus on reducing nutrient loads 607 

Since the Great Acceleration of the mid-20th century, humanity’s capacity to create, collect, 608 

and distribute reactive nutrients has far exceeded the Earth system’s ability to retain or remove 609 

them (Steffen et al 2015b, Elser and Bennett 2011, Vitousek et al 1997, Steffen et al 2015a). This 610 

global nutrient overload is at the root of many of the “syndromes” of the Anthropocene (Hale et al 611 

2016, Meybeck 2003, Foley et al 2011). Rather than reducing our overuse, it is tempting to try to 612 
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reengineer the environment to tolerate our excesses. However, supercharging nutrient retention 613 

and removal has multiple limitations and side effects. For example, while the overapplication of 614 

fertilizer is relatively straightforward to monitor using national and regional nutrient inventories 615 

(Poisvert et al 2017, Sabo et al 2021a), we do not have reliable methods for predicting nutrient 616 

retention capacity at watershed or regional scales (Seitzinger et al 2010, Pinay et al 2015). At these 617 

scales, there are orders-of-magnitude variations in hydrological residence time and nutrient 618 

removal rates that do not correlate with known proxies (Hartmann et al 2021, Burt 2001, Burt and 619 

Pinay 2005, Thomas et al 2015, Bernhardt et al 2017). The physical, chemical, and biological 620 

peculiarities of each watershed and watershed component—especially in the subsurface—621 

precludes prediction of nutrient resilience or vulnerability (Pinay et al 2015, Bernardie et al 2018, 622 

Frei et al 2020, Wolters et al 2022). Even if we were able to measure nutrient retention reliably at 623 

a moment in time, this would not necessarily allow us to set sustainable nutrient loading thresholds 624 

because nutrient release depends on contemporary and historical conditions. For even a small 625 

watershed, nutrient transit times are often in the decades or centuries, creating a situation that is 626 

ecologically and politically untenable because of the lag between policy changes and ecosystem 627 

response (Sebilo et al 2013, Basu et al 2022, Van Meter et al 2021, Nguyen et al 2022b, Ascott et 628 

al 2021). Seeking to supercharge removal by augmenting electron donors or modifying hydrology 629 

entails risks and tradeoffs as well (Pu et al 2014, Roley et al 2016, Aravena and Robertson 1998). 630 

Finally, relying on microbial processes to remove excess NO3- can exacerbate climate change if 631 

the NO3- is partially denitrified into the greenhouse gas N2O and not to the inert N2 (Hallberg et al 632 

2022, Lu et al 2022, Gerber et al 2016). 633 

These complexities indicate that relying on nutrient retention and removal to resolve 634 

nutrient pollution is a partial solution at best. Protecting natural zone of denitrification (e.g., 635 
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groundwater aquifers and riparian zones) is highly desirable because of the multiple cobenefits 636 

(Pinay et al 2018, Cheng et al 2020), but it is clear that our capacity to load ecosystems with 637 

reactive nutrients far exceeds their ability to remove them. Reducing NO3- input into the soil and 638 

water is the most prudent action to reduce eutrophication (Wan et al 2022). This can and should 639 

be done by implementing best management practices, and potentially limiting fertilizer 640 

application to cultivation of human food rather than feed for animal agriculture, decorative 641 

plants, and biofuels (Frei et al 2021, 2020). In this case, the proverb holds: “An ounce of 642 

prevention is worth a pound of cure.” 643 
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