The dehydration carousel of stratospheric water vapor in the Asian summer monsoon anticyclone - INSU - Institut national des sciences de l'Univers
Article Dans Une Revue (Article De Synthèse) Atmospheric Chemistry and Physics Année : 2023

The dehydration carousel of stratospheric water vapor in the Asian summer monsoon anticyclone

Résumé

During the StratoClim Geophysica campaign, air with total water mixing ratios up to 200 ppmv and ozone up to 250 ppbv was observed within the Asian summer monsoon anticyclone up to 1.7 km above the local cold point tropopause (CPT). To investigate the temporal evolution of enhanced water vapor being transported into the stratosphere, we conduct forward trajectory simulations using both a microphysical and an idealized freeze-drying model. The models are initialized at the measurement locations and the evolution of water vapor and ice is compared with satellite observations of MLS and CALIPSO. Our results show that these extremely high water vapor values observed above the CPT are very likely to undergo significant further freeze-drying due to experiencing extremely cold temperatures while circulating in the anticyclonic dehydrition carousel. We also use the Lagrangian dry point (LDP) of the merged backward and forward trajectories to reconstruct the water vapor fields. The results show that the extremely high water vapor mixed in with the stratospheric air has a negligible impact on the overall water vapor budget. The LDPs are a better proxy for the large-scale water vapor distributions in the stratosphere during this period.
Fichier principal
Vignette du fichier
acp-23-12935-2023.pdf (4.02 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

insu-04072198 , version 1 (17-04-2023)
insu-04072198 , version 2 (16-10-2023)

Licence

Identifiants

Citer

Paul Konopka, Christian Rolf, Marc von Hobe, Sergey Khaykin, Benjamin Clouser, et al.. The dehydration carousel of stratospheric water vapor in the Asian summer monsoon anticyclone. Atmospheric Chemistry and Physics, 2023, 23 (20), pp.12935-12947. ⟨10.5194/acp-23-12935-2023⟩. ⟨insu-04072198v2⟩
91 Consultations
42 Téléchargements

Altmetric

Partager

More