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Abstract 13 

In order to determine fluid-mineral reactions and the fluid budget in subduction zones, we have examined 14 

rocks from two accretionary complexes, the Kodiak (Alaska) and Shimanto (Japan), that were buried at 15 

the temperature conditions of the seismogenic zone. Maximum burial temperatures based on Raman 16 

spectroscopy of carbonaceous material in both examples range from 230 to 350℃, whereas pressures 17 

reached up to ⁓3 and ⁓4kbars (based on multi-equilibrium modelling) in the higher-grade units of the 18 

Japanese and Alaskan complexes, respectively. At 230-260℃, chlorite is interpreted as a coproduct of the 19 

lower-grade smectite-to-illite transformation. Chlorite content increases as temperature increases to 330-20 

350℃, as a result of illite-to-chlorite transformation. Other reactions include pyrite oxidation, dissolution 21 

of titanite and precipitation of anatase. Whole-rock chemistry points to the absence of systematic 22 

chemical variations in the temperature range between 250 and 350℃ and only local transport of quartz 23 

and albite from the matrix, to veins nearby, is observed. Qualitative analyses of the composition of fluid 24 

inclusions using decrepitation method show that the composition of the fluid is significantly different from 25 

the original seawater trapped in pores. In addition, the salinity of fluid inclusions in the quartz veins at 26 

230-260℃, analyzed using the Raman spectrum of water, is lower than seawater and interpreted as 27 

dilution of the original seawater by the fresh water released by the smectite-to-illite transformation. In 28 
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contrast, veins formed at 330-350℃ contain fluid inclusions with a salinity on the order of or higher than 29 

that of seawater. The increase in salinity for temperatures of 250-350℃ reflects hydration reactions, 30 

which are mostly controlled by chlorite crystallization. This study demonstrates an uptake of pore fluid by 31 

mineral reactions at temperature corresponding to the base of the seismogenic zone, which is in contrast 32 

to the general trend of dehydration reactions occurring along rock burial in subduction zones. 33 

1. Introduction 34 

Fluids are heavily involved in the majority of subduction zone processes. For instance, the presence of 35 

pore fluids highly impacts the rheological behavior of subducted lithologies (e.g., Fagereng et al., 2018; 36 

Hacker et al., 2003; Muñoz-Montecinos, Angiboust, & Garcia-Casco, 2021), and influences seismic activity 37 

via pore fluid pressure variations (Audet & Schwartz, 2013; Davis et al., 1983; Saffer & Tobin, 2011). 38 

Dehydration reactions in deeply subducted lithologies are also responsible for the generation of arc 39 

magmas due to the melting action of volatile species of the mantle (Bebout, 1991; Elliott, 2003; Hacker, 40 

2008; Stern, 2011). Because fluids are reactants or products of metamorphic reactions, their abundance, 41 

nature and chemistry change with burial. Beyond the drilling reach of ODP/IODP programs (<5 km), our 42 

knowledge of fluid composition mostly relies on studies of fluid inclusions and mineral transformations in 43 

rocks from exhumed subducted complexes (e.g., Agard et al., 2000; Herviou et al., 2021; Raimbourg et al., 44 

2018; Scambelluri et al., 2015). In veins that have trapped deep fluids as fluid inclusions, the most 45 

commonly retrieved property is salinity, converted to NaCl equivalent with the assumption that NaCl is 46 

the dominant species (Agard et al., 2000; Brantley & Fisher, 1997; Herviou et al., 2021; Kondo et al., 2005; 47 

Nishiyama et al., 2021; Raimbourg, 2015, 2018; Rossetti et al., 2006; Rowe et al., 2009; Sadofsky & Bebout, 48 

2004). However, few studies have actually analyzed the chemistry of the occluded fluid (e.g., Scambelluri 49 

et al., 2004, 2015; Yoshida et al., 2015). 50 

Sediments are the major carriers of fluids (mostly water) into subduction zones (Jarrard, 2003; Plank, 51 

2014; Stern, 2002), together with the altered and serpentinized oceanic lithosphere (Peacock, 1993; 52 

Schmidt & Poli, 2014; Reynard, 2013; Rupke, 2004). Average seafloor shales contain up to 70 vol.% of pore 53 

fluids that are chemically similar to sea water, and about 7 wt.% as crystal-bound H2O (Plank, 2014). During 54 

burial, most of the interstitial water is expelled from sediments at shallow depths by compaction and 55 

cementation processes; leaving only <10 vol.%  in pore spaces (Fagereng et al., 2018; Kastner et al., 2014; 56 

Kominz & Pekar, 2001; Saffer & Tobin, 2011). Following pore collapse, the occurrence of prograde 57 

metamorphic reactions controls the water budget (Rupke, 2004; Schmidt & Poli, 2014). The smectite-to-58 

illite transformation occurs in the temperature range 60-150℃ and releases significant amount of H2O 59 
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that is bounded in minerals, thus, it reduces the salinity of pore fluids (e.g., Kastner et al., 2014; Saffer et 60 

al., 2012). Upon further burial, several important dehydration reactions have been reported above 400℃, 61 

such as carpholite and chlorite breakdown in the blueschist facies or the glaucophane, as well as lawsonite 62 

and chlorite breakdown in the eclogite facies (Agard et al., 2001; Angiboust & Agard, 2010; Bebout, 1991; 63 

Bebout et al., 2013; Becker et al., 2000; van Keken et al., 2002; Lefeuvre et al., 2020; Muñoz-Montecinos 64 

et al., 2021; Peacock, 1993; Simons et al., 2010; Spandler et al., 2003). Beside dehydration reactions, other 65 

mineral transformations may strongly impact to the chemical composition of fluids, such as the 66 

transformation of biotite into chlorite, which is correlated to the transition of CH4-dominated to CO2-67 

dominated fluids (Dubessy et al., 1983; Ferry, 1981; Hall, 1986; Tarantola et al., 2007, 2009). 68 

Only few metamorphic reactions have been identified in subducted sediments in the range 150-350℃, 69 

such as the formation of lawsonite and Mg-Fe carpholite (Goffé & Chopin, 1986; Lefeuvre et al., 2020). 70 

Many exhumed sub-greenschist and greenschist facies rocks (peak-metamorphism at 150-350℃) contain 71 

evidence of ancient fluid pathways in form of metamorphic veins, such as the Kodiak accretionary prism 72 

in Alaska (Brantley & Fisher, 1997; Fisher et al., 1995; Fisher & Brantley, 2014; Vrolijk et al., 1988), the 73 

Shimanto Belt in Japan (Nishiyama et al., 2021; Raimbourg et al., 2015, 2018), the Franciscan Complex in 74 

California, or the Otago Schists in New Zealand (Breeding & Ague, 2002; Fagereng et al., 2011). However, 75 

the mineral reactions and the influence of reactions on the pore fluid budget is relatively poorly 76 

documented compared to deeper metamorphism (e.g., Fagereng & Cooper, 2010; Frey, 1978; Kameda et 77 

al., 2011a; Rahn et al., 1994; Raimbourg et al., 2009; Schmidt et al., 1997; Wang, 1996). 78 

The objective of this study is to fill this knowledge gap, by describing the prograde evolution of mineral 79 

assemblages, the scale of chemical transport and the fluid budget in sediments subducted and buried 80 

down to greenschist facies. To do so, we targeted two accretionary prisms: Kodiak and the Shimanto Belt, 81 

because the peak-metamorphic conditions are well preserved and constrained to 200-350℃ at both 82 

localities (Brantley & Fisher, 1997; Palazzin et al., 2016; Raimbourg et al., 2014, 2021; Rowe et al., 2009; 83 

Vrolijk et al., 1988). First, we studied changes in microstructures, mineralogy and whole-rock chemistry 84 

with increasing temperature. Mineral chemistry was then used to test the mineral equilibrium for possible 85 

estimations of the pressure-temperature conditions based on multi-phase equilibrium model (Dubacq et 86 

al., 2010; Vidal et al., 2006). Finally, we studied fluid inclusions as fluid witnesses of the deep metamorphic 87 

reactions. Based on these results, we propose several mineral reactions and evaluate fluid-rock 88 

interactions, as well as changes in the salinity among subduction-related fluids from the two paleo-89 
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accretionary complexes. Our results are of importance for quantifying the fluid budget of sediments 90 

undergoing burial in the greenschist facies realm during subduction. 91 

 92 

2. Geological settings and sampling strategy  93 

We sampled metapelites and adjacent veins along various units of the two selected accretionary prisms 94 

(Fig. 1; Palazzin et al., 2016; Raimbourg et al., 2021) to investigate the dependence of fluid-mineral 95 

reactions on peak-metamorphic temperature and pressure. The list of samples and their peak-96 

metamorphic conditions is presented in Table 1. 97 

2.1. Kodiak accretionary complex 98 

Kodiak is a paleo-accretionary complex exposed in Kodiak archipelago, southern Alaska, which consists of 99 

coherent slices of metasediments and tectonic mélanges (Fig. 1a) that decrease in age towards the 100 

modern trench (Byrne & Fisher, 1987; Connelly, 1978; Moore et al., 1983; Plafker et al., 1994). The Kodiak 101 

accretionary complex is classically divided into several trench-parallel units (Fig. 1a). The Late Cretaceous 102 

Kodiak Formation consists of deep trench sediments. The formation is subdivided into three belts 103 

(Landward, Central and Seaward Belts), which are also characterized by the peak-metamorphic 104 

temperature and structural fabric variations (Brantley & Fisher, 1997; Rowe et al., 2009; Sample & Fisher, 105 

1986; Vrolijk et al., 1988). The Kodiak Landward Belt (KLB) in Uyak Bay consists of intercalated 106 

sandstone/siltstone and mudstone beds (Fig. 2a), with occasionally disrupted strata closer to its northern 107 

boundary marked by the Uganik Thrust (Fisher & Byrne, 1987; Rowe et al., 2009). The veins from Landward 108 

Belt are Mode 1 (Mode 1 veins refer to mineralized fractures characterized by the opening direction 109 

perpendicular to the fracture plane; Bons et al., 2012) quartz-calcite veins oriented almost perpendicular 110 

to the bedding stratification (Fig. 2a) and are interpreted as forming in the sediments during 111 

underthrusting, where the maximum compressive stress (σ1) is in sub-vertical position (Byrne & Fisher, 112 

1990; Fisher & Byrne, 1990). The temperatures derived from fluid inclusions in Mode 1 quartz veins are in 113 

the range of 215-255℃ for the Landward Belt at Raspberry and Afognak islands (Vrolijk et al., 1988). The 114 

Kodiak Central Belt (KCB), investigated in Seal Bay, is characterized by a sub-horizontal bedding 115 

stratification and foliation (S1), with top-to-the-trench shear bands and recumbent folds (Raimbourg et 116 

al., 2021; Sample & Fisher, 1986; Sample & Moore, 1987). In Seal Bay, two types of veins have been 117 

observed: Shear veins at low angle to the foliation with a fibrous structure parallel to the stretching 118 

direction on foliation plane, and Mode 1 quartz veins, often in form of en échelon arrays (Fig. 2c). En 119 
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échelon veins cut across the foliation but are folded perpendicular to the foliation and are interpreted as 120 

formed at peak metamorphic conditions (Fisher & Brantley, 2014; Raimbourg et al., 2021). The Central 121 

Belt experienced the highest metamorphic conditions of the Kodiak Formation, reaching temperatures of 122 

⁓330℃ as determined from Raman spectroscopy of carbonaceous material (RSCM; Raimbourg et al., 123 

2021). Towards the southeast, the Kodiak Seaward Belt (KSB) is characterized by intercalated sandstone 124 

and shale layers. This belt experienced horizontal noncoaxial shortening with top-to-the-SE thrust faults 125 

(Sample & Moore, 1987). Vitrinite reflectance in the Kodiak Formation has an average value of 3.73 and 126 

corresponds to a temperature of ⁓225℃ (Sample & Moore, 1987). 127 

2.2. Shimanto Belt, Japan 128 

The Shimanto Belt is a paleo-accretionary wedge (Taira, 1988) exposed on the islands of Honshu, Kyushu 129 

and Shikoku in Japan. It is composed of several parallel units elongated SW-NE and stacked from the NW 130 

to the SE, this general trend is consistent with the active Nankai Trough (Fig. 1b). The Shimanto Belt in 131 

Kyushu is also divided into several units, among which two are selected for this study, the Foliated 132 

Morotsuka and the Hyuga Tectonic Mélange. 133 

The Foliated Morotsuka (FM) is composed of sheared and strongly foliated lithologies, including deep-sea 134 

sediments and basaltic lenses embedded within a metapelitic matrix. The age of the sediments range from 135 

the Cenomanian to the Turonian (Saito et al., 1996). A strong metamorphic foliation is present, along with 136 

a N-S and NNW-SSE stretching lineation (Raimbourg et al., 2009, 2014; Ujiie et al., 2018). The Foliated 137 

Morotsuka is separated from the Hyuga Group by the Nobeoka Tectonic Line (NTL; Teraoka & Okumura, 138 

1992), an out-of-sequence thrust (Kondo et al., 2005). Based on metamorphic assemblages in basaltic 139 

lenses, the pressure-temperature conditions in the FM were estimated to be 3-5 kbar and 300-350℃ 140 

(Toriumi & Teruya, 1988). RSCM yielded a maximum temperature of 345 ± 30℃ for the FM (Palazzin et 141 

al., 2016). Similarly to the veins from the KCB, the examined veins from the FM are Mode 1 fractures often 142 

arranged as en échelon arrays (Fig. 2d), cutting across the foliation and shortened perpendicular to the 143 

foliation (Raimbourg et al., 2021).  144 

The Hyuga Group is divided into Hyuga Tectonic Mélange (HTM) and Coherent Hyuga. In this study the 145 

Hyuga Tectonic Mélange is examined, which consists of strongly sheared sandstone lenses embedded in 146 

a pelitic matrix. Based on microfossil assemblages, the sedimentation age is from the Middle Eocene to 147 

the Early Oligocene (Nishi, 1988; Sakai et al., 1984). Based on RSCM, the peak-temperature of deformation 148 

was estimated to ⁓245 ± 30℃ (Palazzin et al., 2016). The dominant veins in the HTM are Mode 1 quartz-149 
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filled extension fractures oriented perpendicular to the NW-SE stretching direction of sandstone lenses 150 

(Fig. 2b; Raimbourg et al., 2014). 151 

 152 

3.  Analytical methods 153 

3.1. Whole-rock chemistry 154 

Samples for major element whole-rock analysis were crushed after removing any visible macro- and 155 

micro-veins in order to estimate the chemical composition of the pelitic matrix. Major elements were 156 

analyzed by X-ray fluorescence (XRF) at ALS lab (Loughrea Galway, Ireland; analytical code ME_XRF26). To 157 

prepare glass beads, crushed samples (⁓0.5 g) were fused using a platinum mold into a fusion disk and 158 

mixed with lithium metaborate as a flux. The disks were then analyzed by XRF, where the concentrations 159 

of major elements (oxides) were determined in conjunction with loss-on-ignition (LOI) at 1000℃. 160 

Analyzed elements and parameters are Si, Ti, Al, Cr, Fe, Mn, Mg, Ca, Na, K, P, S, Sr, Ba and LOI. Elements 161 

were calibrated in oxide weight percentage form. 162 

3.2.  X-Ray Diffraction 163 

X-ray diffraction (XRD) measurements were carried at BRGM, Orléans, France, using a BRUKER D8 Advance 164 

X-ray diffractometer equipped with a Cu Kα radiation (λ kα = 0.15406 nm) operating at 40 kV and 40 mA. 165 

X-Ray diffraction on bulk-powder was used for a first-order estimation of the mineralogy, including the 166 

nature of phyllosilicates. Samples were micronized in ethanol using an XRD Mill McCrone (Retsch), dried 167 

at 40°C and homogenized. XRD patterns were recorded on randomly oriented powder samples from 4 to 168 

90°2θ, with a step of 0.03°2θ and a step time of 480 seconds. Quantitative analyses of X-ray diffractograms 169 

were carried out using the SiroQuantTM program, version 4 (Taylor & Clapp, 1991). 170 

The <2 µm fraction was then isolated from the bulk samples. To do so, the crushed powder was firstly 171 

treated with acetate (pH = 5.0) to dissolve carbonates, secondly with 0.01 M CaCl2 to saturate interlayer 172 

space of clay minerals if present, and finally washed with pure water. Then clay particles were dispersed 173 

by ultrasonics in deionised water and the suspension was left to rest 100 minutes. Then <2 µm fraction 174 

was isolated by sampling the upper part of the suspension and deposited on a thin section. X-ray 175 

diffraction patterns were acquired firstly on the oriented deposit dried at 50°C, then saturated with 176 

ethylene glycol under vapor tension at 60°C for at least 16 hours, to identify the clay mineral varieties. 177 

XRD patterns were recorded on oriented deposits from 2 to 35°2θ, with a step of 0.03°2θ and a step time 178 

of 1.5 seconds. 179 
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3.3. SEM-Backscatter Electron images and Electron microprobe  180 

Mineral petrography was carried by optical microscopy and a Merlin Compact ZEISS scanning electron 181 

microscope (SEM) equipped with backscattered electron (BSE) detector BSD4 at the Institut des Sciences 182 

de la Terre, Orléans (ISTO). The SEM-BSE was operated at 15 kV voltage and a dwell time of 50 ms. 183 

Backscattered electron images were further processed with the software ImageJ (Schneider et al., 2012) 184 

to semi-quantify the amount of each mineral phase and to prepare phase maps. 185 

The chemical composition of the main mineral phases was determined by using a Cameca SX Five electron 186 

microprobe equipped with five wavelength-dispersive spectrometers (WDS), housed at ISTO-BRGM joint 187 

facilities in Orléans. Measurements were performed at 15 kV voltage, a 10 nA beam current and a 1 µm 188 

spot size. Analyzed elements were Si, Ti, Al, Fe, Mn, Mg, Ca, Na and K. The standards used for calibration 189 

were MgO (Mg), albite (Si, Al), andradite (Ca), orthoclase (K), MnTiO3 (Mn, Ti) and hematite (Fe). For the 190 

elemental maps, the step size and dwell time were 1 µm and 150 ms, respectively. The maps were 191 

processed using the software XMapTools (Lanari et al., 2014). 192 

3.4. Thermobarometric estimates 193 

The crystallization temperature of chlorite was estimated with the chlorite-quartz-H2O thermodynamic 194 

model and the parameters described in Vidal et al. (2006). Pressure was estimated via equilibrium with 195 

illite using the solid solution model from Dubacq et al. (2010). The approach relies on the phengite-196 

chlorite-quartz model first presented by Vidal & Parra (2000) and applied to metapelites over a wide range 197 

of conditions from LP-LT (Árkai et al., 2003; Battaglia, 2004) to HP-LT terrains (e.g., Plunder et al., 2012). 198 

In chlorite and mica, substitutions are modeled with end-members. The model accounts for the following 199 

substitutions: Fe=Mg2+; Tschermak [Si+(Mg,Fe2+)=AlIV+AlVI] in illite and chlorite; di/trioctahedral 200 

[□VI+AlVI+AlVI=3(Fe2+,Mg)] in illite and chlorite, and pyrophyllitic [(Na,K)+Al=□XII+Si] and paragonitic [K=Na] 201 

in illite (Dubacq et al., 2010; Masci et al., 2019; Vidal & Parra, 2000; Zane et al., 1998). Incorporation of 202 

water in the interlayer space of low-temperature illite is modeled via a vacancy-water [□=H2O] 203 

substitution (see Dubacq et al., 2010). The resulting set of solid solution end-members is pyrophillite (Prl), 204 

hydrated pyrophyllite (Prl∙1H2O), muscovite (Ms), Mg- and Fe-celadonite (Mg-Cel and Fe-Cel) for illite, and 205 

clinochlore (Clin), daphnite (Daph), sudoite (Sud), Fe- and Mg-amesite (Fe-Am and Mg-Am) for chlorite. 206 

Additional phases are quartz (Qtz) and H2O with an activity set at unity. With this set of phases, 124 207 

reactions may be written, out of which six are independent. Equilibrium is inferred when independent 208 

reactions appear reasonably close to one another in P-T space (e.g., less than 20℃ and 1 kbar). 209 
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3.5. Raman spectroscopy 210 

From each locality where deformation structures were studied, a thick section oriented in the X-Z plane 211 

of kinematic reference was prepared from metasedimentary samples for the purpose of RSCM. Analyzed 212 

particles were chosen far from shear bands to avoid shear-enhanced thermal maturation of carbonaceous 213 

material. 214 

A Raman Renishaw InVia Reflex micro-spectrometer was used at BRGM, Orléans. A silicon standard was 215 

used for calibration. The light source was a 514.5 nm Ar laser with a power of ⁓1 mW, focused by a Leica 216 

DM2500 microscope at a magnification of 100x. The signal was analyzed by a CCD NIR/UV detector. 15-217 

20 points were analyzed per sample on 150-200 µm thick, polished sections. The final deconvolution was 218 

made following the method of Lahfid et al. (2010), applicable for the temperature range from ⁓200℃ to 219 

⁓320℃. Raman spectra were processed with the software PeakFit 4.12 for subtracting the baseline and 220 

fitting each corrected spectrum with five Lorentzian bands. From the area below five Lorentzian bands, 221 

RA1 ratio was calculated by the equation RA1 = (D1 + D4) / (D1 + D2 + D3 + D4 + G). The final temperature 222 

was estimated following the equation T (℃) = 1217.6 × RA1 - 450.66 (Lahfid et al., 2010). The uncertainty 223 

of the method is ⁓30℃ (Lahfid et al., 2010). Fifteen to twenty points were analyzed in each sample, 224 

average values and standard deviations (1σ) are reported in Table 1. 225 

The Raman spectrum of water originates from OH stretching vibrations, which vary as a function of salinity 226 

(e.g., Caumon et al., 2014, 2015). The salinity of water-rich fluid inclusions was estimated using a Raman 227 

Renishaw InVia Qontor micro-spectrometer at CEMHTI CNRS, Orléans. A silicon standard was used for the 228 

calibration, and the light source was a 514.5 nm solid state laser. Applied power was 50 mW, focused on 229 

standards or fluid inclusions with Leica DM2700 microscope at a magnification of 100x (0.9 NA). The signal 230 

was acquired by a CCD NIR/UV “centrus” detector. Acquiring time was 60 s for each point. For calibration, 231 

12 solutions with known NaCl molarity were prepared (0.125 M, 0.25 M, 0.375 M, 0.5 M, 0.625 M, 0.75 232 

M, 0.875 M, 1 M, 1.25 M, 1.5 M, 1.75 M and 2 M). The solutions were placed into the borosilicate circular 233 

capillaries with outer and inner radius of 0.33 and 0.2 mm, respectively. Borosilicate capillaries are 234 

transparent to Raman signal. The Raman spectrum of the OH stretching vibrations can be divided into two 235 

sub-bands (Sun et al., 2010), strong- (HBs, with the peak centered around 3200 cm-1) and weak-hydrogen 236 

band (HBw, with the peak centered around 3450 cm-1). For each solution, the deconvolution process is 237 

made following the method of Sun et al. (2010) using the software PeakFit 4.12. After the baseline was 238 

subtracted, two Gaussian sub-bands were used to fit the obtained Raman Spectrum (Fig. 3a). Based on 239 
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the intensity (I) and full width at half maximum (FWHM) of each band, the equilibrium constant is 240 

calculated as:  241 

𝐾′ =  
(

𝐼
𝐹𝑊𝐻𝑀

)
𝐻𝐵𝑤

(
𝐼

𝐹𝑊𝐻𝑀)
𝐻𝐵𝑠

 242 

Finally, the linear correlation between K’ value and salinity of prepared solutions (Fig. 3b) leads to a 243 

formula for the salinity estimation in fluid inclusions: 244 

Cl- Molarity (M) = -0.6843*(K’)2 + 5.6135*K’ – 6.3693. 245 

Fluid inclusions were analyzed with the same conditions as the standards. To avoid biases due to the effect 246 

of host mineral birefringence (Caumon et al., 2015), circular polarization was applied to the beam. 247 

Additionally, the salinity of 22 fluid inclusions with wide range of salinities determined by Raman 248 

Spectroscopy were also measured by microthermometry  by using a Linkam THMSG600 heating-cooling 249 

stage (Fig. 3c), wherein the salinity was estimated using the last ice-melting temperature (Bodnar, 1993). 250 

3.6. Decrepitation of fluid inclusions 251 

Qualitative chemical analysis of major cations and anions in individual fluid inclusions was carried out from 252 

evaporate mounds after decrepitating fluid inclusions, following the method by Kontak (2004). Double-253 

polished quartz sections were rapidly heated by THMS-600 Linkam stage to 500-600℃ and quenched for 254 

5-15 minutes, until decrepitation was observed. The system was then rapidly cooled down to room 255 

temperature. The chemical maps of evaporate mounds were acquired by SEM-EDS at the voltage of 15 kV 256 

and a dwell time of 25 ms. In addition, the chemical composition of individual evaporate crystals was 257 

determined by using a Cameca SX Five electron microprobe, housed at ISTO-BRGM Orléans, that is 258 

equipped with five wavelength-dispersive spectrometers (WDS).  The conditions used for individual crystal 259 

analyses were a 15 kV voltage, a 10 nA beam current and a 1 µm spot size. Up to 10 points were analyzed 260 

in each mound. Results were recalculated by removing SiO2 as it is recognized as from the host quartz, 261 

and then normalizing the totals to 100%. However, acquired results are semi-quantitative due to 262 

devolatilization and loss of certain species during the decrepitation process. 263 

4. Results 264 

4.1. Raman Spectroscopy of carbonaceous material 265 
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Peak-metamorphic temperatures obtained by RSCM are reported in Table 1 and examples of 266 

deconvoluted spectra are provided in Fig. 4.  267 

Temperatures for two samples from the Kodiak Landward Belt from Uyak Bay are 251 ± 9℃ (KO17A) and 268 

240 ± 9℃ (KO17E). Samples from the Kodiak Central Belt show narrow range of temperatures from 327 269 

to 340℃. For three samples from the Kodiak Seaward Belt determined peak-temperatures are 300 ± 19℃ 270 

(KO11), 348 ± 28℃ (KO12B), and 344 ± 16℃ (KO45C). 271 

A sample HN65 from the Hyuga Tectonic Mélange has a recorded temperature of 228 ± 16℃, whereas 272 

samples from the Foliated Morotsuka (Samples 18NOB13, 18NOB22A, HN143, HN243, HN247, and 273 

HN285) experienced peak-temperatures of 339 ± 26℃. The results acquired as part of this study for 274 

samples from the Shimanto Belt are consistent with previously reported RSCM results (Palazzin et al., 275 

2016; Raimbourg et al., 2017, 2018). 276 

Peak temperatures obtained for higher-grade samples (from the Kodiak Central Belt and Foliated 277 

Morotsuka) are around or slightly above the range of the method of Lahfid et al. (2010). However, due to 278 

the presence of the D4 band and the absence of the D2 band in the Raman spectra (Fig. 4), the method of 279 

Lahfid et al. (2010) is more suitable than of Beyssac et al. (2002).  280 

Therefore, the Kodiak Landward Belt (KLB) and the Hyuga Tectonic Mélange (HTM) are grouped as lower-281 

grade units, whereas the Kodiak Central Belt and the Foliated Morotsuka represent higher-grade units. 282 

4.2. Microstructures and mineral petrography  283 

4.2.1. Lower-grade units 284 

In Kodiak and the Shimanto Belt, lower-grade metapelites (230-260℃) show three different 285 

compositional and microstructural domains: pelitic matrix, quartz ribbons, and extensional veins (Fig. 5a). 286 

Phyllosilicates are the most abundant phases in the matrix, with clusters of fine-grained illite (illite hereby 287 

refers to minute dioctahedral aluminous phyllosilicates with composition on the muscovite-pyrophillite 288 

binary; Dubacq et al., 2010) and chlorite (Fig. 5b-c). The grain size of chlorite varies between 2.5-60 µm 289 

(Fig. 5b), and increases up to 100 µm when in contact with quartz ribbons. The grain size of illite is in the 290 

range 1-24 µm (Fig. 5b) in the matrix, whereas aggregates of illite up to 120 µm are present close to quartz 291 

ribbons. Detrital plagioclase and quartz are present in the matrix (Fig. 5b), as well as accessory phases 292 

such as framboidal pyrite, calcite, apatite and Ti-oxides. The foliation (S1) in the pelitic matrix is defined 293 

by compositional layering (scaly fabrics; Ramirez et al., 2021; Vannucchi, 2019), enriched in fine-grained 294 

phyllosilicates, sulfides, Ti- and Fe-oxides (Fig. 5a, 5d). Occasionally, thin shear bands composed principally 295 
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of elongated individual crystals of chlorite (Fig. 5c) and to a lesser extent illite and/or quartz grains, cut 296 

the main foliation at low angles. These shear bands form an anastomosing network and indicate non-297 

coaxial shearing (Fig. 5a).  298 

Extensional veins, commonly oriented perpendicular to the foliation, are made of blocky quartz and to a 299 

lesser extent calcite (Fig. 6a). Quartz crystals in lower-grade veins occasionally display growth rims, with 300 

crystal facets oriented towards the center of the vein. Occasionally quartz crystals are elongated parallel 301 

to the foliation (Fig. 6b). Bulging, as a mechanism of dynamic recrystallization, is observed sparsely. Calcite 302 

display characteristic undeformed twinning (Fig. 6a; Type I according to Ferrill et al., 2004). Ribbons 303 

containing quartz ± calcite ± small flakes of chlorite are elongated parallel to the main foliation (Fig. 5a). 304 

Calcite, when present, occurs as late fill of the vein and is mildly altered. 305 

4.2.2. Higher-grade units 306 

In higher-grade samples of the KCB and FM (Table 1; 330-350℃), the main mineral phases forming the 307 

matrix are illite, chlorite, quartz and plagioclase. The foliation (S1) is penetrative and underlined by 308 

phyllosilicates (Fig. 5g-h), and it is locally disturbed by 5-20 µm thick shear bands containing illite, chlorite, 309 

Ti-oxides, and sulfides. Whenever present, plagioclase and quartz crystals are flattened and elongated 310 

parallel to the foliation (Fig. 5h). A secondary crenulation cleavage (S2) is present only in the vicinity of 311 

shear bands. The average grain size in the pelitic matrix of higher-grade samples is larger than in lower-312 

grade samples. In the KCB for instance, chlorite crystals are generally in the range of 5 to 400 µm and up 313 

to 775 µm in length when in contact with shear bands, whereas illite crystals reach 1-80 µm in the matrix 314 

and up to 320 µm closer to shear bands (Fig. 5e-f). In the FM, matrix illite and chlorite have significantly 315 

larger grain size than in the KCB, ranging between 30-500 µm and 50-700 µm, respectively (Fig. 5f). 316 

Accessory phases in the matrix are apatite, pyrite, calcite, anatase and titanite. Sulfides are locally oxidized 317 

into goethite, with preserved pyrite crystal shapes. Scaly fabrics are enriched in micrometric anatase, 318 

apatite and Fe-oxides (Fig. 5i-j), and occasionally act as shear planes displacing the main foliation and 319 

quartz ribbons.  320 

In higher-grade units, quartz ribbons are boudinaged and occasionally folded. The neck of boudins is 321 

composed of illite, chlorite and elongated quartz crystals. Shear veins and Mode 1 quartz veins cutting 322 

across the foliation are dominantly made of quartz and display crack-seal microstructure (Fig. 6c). Bulging 323 

is recognized as a dominant mechanism of dynamic recrystallization in quartz from higher-grade veins. 324 

Subgrain rotation is observed and is more prominent in the FM than in the KCB. In addition to quartz, 325 
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veins contain calcite, chlorite, and albite (Fig. 6e-f). Deformed calcite is characterized by curved and 326 

lensoid twins (Fig. 6d; Type III according to Ferrill et al., 2004). In a few of the studied veins, clusters of 327 

vermicular chlorites are sparsely distributed, as well as euhedral albite crystals (Fig. 6f). 328 

Locally, mineralogical variations are observed in correspondence with the microstructures. In the matrix 329 

in the contact with some shear bands, quartz and plagioclase grains are almost completely absent (Fig. 330 

5e-f). Fig. 6f shows the host rock with few micrometric albite crystals, whereas larger crystals (up to 0.2 331 

mm) are found in the shear band. Similar features were observed in the veins from the KCB, with veinlets 332 

apparently located on one side of the main vein (Fig. 7a). On the side with veinlets, the crenulation 333 

cleavage (S2) is found close to the contact (Fig. 7c), and disappears further from the shear band (Fig. 7d). 334 

The amount of quartz decreases towards the vein, and quartz is absent from the zone with crenulation 335 

cleavage (Fig. 7e). Anatase also appears to be formed synchronously with crenulation cleavage (Fig. 7g), 336 

as it is concentrated in crenulation cleavage planes with apatite. However, in zones where only the main 337 

foliation present titanite is found (Fig. 7h). 338 

4.3. Whole-rock chemistry 339 

Whole-rock major element compositions are presented in Table 2. In samples from the Kodiak complex, 340 

oxide concentrations and LOIs are in the following ranges: SiO2 - 54.76% to 69.90%; TiO2 - 0.60% to 1.00%; 341 

Al2O3 - 12.22% to 20.27%; Fe2O3 - 6.87% to 8.82%; MgO - 1.94% to 3.29%; CaO - 0.33% to 1.28%; Na2O - 342 

0.97% to 2.77%; K2O - 1.48% to 3.61%; SO3 - 0.02% to 0.37%; and LOI - 3.16% to 5.23%. Major elements 343 

and LOI in samples from the Shimanto Belt are in the range of: SiO2 - 61.72% to 75.83%; TiO2 - 0.34% to 344 

0.70%; Al2O3 - 10.30% to 18.15%; Fe2O3 - 5.41% to 7.34%; MgO - 1.49% to 2.44%; CaO - 0.06% to 0.88%; 345 

Na2O - 1.11% to 3.33%; K2O - 1.44% to 3.29%; SO3 - 0.01% to 1.89%; and LOI - 2.61% to 5.08%.  346 

No clear trend is apparent in major element compositions as a function of temperature, except for weak 347 

positive correlation for K2O, MgO and Fe2O3, and strong negative correlation for SO3. The normalization 348 

of oxides to TiO2 (assumed as an immobile oxide) as a function of temperature of metamorphism, reveals 349 

no clear trends as well (Fig. 8).  350 

 351 

4.4. X-Ray diffraction and phase quantification 352 

X-Ray diffraction on bulk rocks confirmed the major phases observed using optical and electronic 353 

microscopy (Table 3; Fig. S1): illite, quartz, plagioclase and chlorite, and provide evidence of smectite-illite 354 
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mixed layers in lower-grade samples and in the higher-grade sample 18NOB23B. Accessory phases are 355 

calcite and pyrite, and serpentine in three lower-grade samples and in one higher-grade sample (Sample 356 

HN243). Magnesite, siderite and kaolinite are detected in individual samples (Table 3). 357 

Quantitative phase proportions based on the method of Rietveld (1969) reveal that the main rock-forming 358 

mineral phases of lower temperature samples (230-260℃) are illite/mica (23-48%), quartz (17-43%), 359 

plagioclase (10-20%), chlorite (0-14%) and smectite-illite mixed layers (0-8%). Minor phases include 360 

serpentine (detected in three samples, 1.6-3.4%) and kaolinite (only in one sample - HN64, 4%). Higher 361 

temperature samples (⁓330-350℃) show similar proportions of main phases: illite/mica (21-42%), quartz 362 

(16-34%), plagioclase (5-25%) and chlorite (15-24%). The amount of smectite-illite mixed layers in the 363 

sample 18NOB23B is estimated as 1.5% and 1.8% of serpentine is estimated in the sample HN243. 364 

4.5. Mineral composition 365 

Representative analyses of illite and chlorite, as well as calculated structural formulas are listed in Table 366 

S1, whereas all acquired analyses are listed in Table S2 of the Supplementary information. In all lower- 367 

and higher-grade samples plagioclase is albitic (XAb>0.98), with only traces of K and Ca. In contrast, K-368 

bearing phyllosilicates and chlorites show compositional variations correlated with peak-metamorphic 369 

temperatures. 370 

4.5.1. K-bearing phyllosilicates 371 

More than 20 grains of mica were analyzed in the matrix of each sample. Calculation of structural formulae 372 

on the basis of 11 oxygen atoms shows that analyses correspond to dioctahedral mica, which is in 373 

agreement with XRD data. The sum of the interlayer cation is variable, ranging between 0.45 and 0.95 in 374 

lower-grade samples, and between 0.77 and 0.95 in higher-grade samples (Fig. 9a). Values lower than 1.0 375 

indicate that illite-smectite mixed layers are probably present.  376 

In lower-grade samples (from KLB and HTM units), K is the dominant alkali (KLB: 0.43-0.81 apfu; HTM: 377 

0.43-0.88 apfu), with secondary Na (KLB: 0.02-0.38 apfu; HTM: 0.01-0.32 apfu; Fig. 9a). Micas contain 0.27 378 

vacancies pfu in average for KLB (0.09-0.44 pfu) and 0.26 pfu for HTM (0.05-0.55 pfu). Higher-grade 379 

samples (from KCB and FM units) show homogenous compositions among samples (Fig. 9e). The 380 

proportion of K increases in comparison with lower-grade samples (KCB: 0.74-0.89 apfu; FM: 0.74-0.96 381 

apfu), whereas the amount of Na decreases (KCB: 0.01-0.04 apfu; FM: 0.01-0.06 apfu). Remaining 382 

interlayer vacancies are estimated to be around 0.09-0.22 pfu for the KCB and 0.1-0.24 pfu in the case of 383 

FM (Fig. 9a). 384 
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Octahedral sites are dominantly occupied by Al, without correlation to temperature (lower-grade: KLB av. 385 

1.79 apfu, range 1.55-1.92; HTM av. 1.82 apfu, range 1.62-1.92; higher-grade: KCB av. 1.77 apfu, range 386 

1.64-1.82; FM av. 1.73 apfu, range 1.54-1.81). Remaining octahedral position is occupied by Fe and Mg. 387 

In KLB, Fe is more abundant than Mg (av. FeO 2.25 wt.% and av. MgO 1.6 wt.%), whereas in HTM the 388 

proportion of Fe and Mg are similar (av. FeO 1.4 wt.% and av. MgO 1.45 wt.%). There is similar amount of 389 

Fe and Mg in higher-grade samples (KCB: av. FeO 1.71 wt.% and av. MgO 1.73 wt.%; FM: av. FeO 2.2 wt.% 390 

and av. MgO 1.9 wt.%). 391 

In the tetrahedral site, there is no systematic changes in the Al-Si substitution with increasing 392 

temperature. The average SiO2 content in lower-grade samples is 49.62 wt.% (3.13-3.65 apfu) and 49.74 393 

wt.% (3.11-3.67 apfu) for KLB and HTM, respectively, whereas SiO2 in higher-grade samples shows 394 

narrower concentration variations - 49.32 wt.% in average (3.24-3.37 apfu) for the KCB and 47.57 wt.% in 395 

average (3.10-3.37 apfu) for the FM.  396 

4.5.2. Chlorite 397 

The structural formulae of chlorite are calculated on the basis of 14 oxygen atoms. Chlorite in lower-grade 398 

samples exhibits chemical variations (Table S1 in the Supplementary information), with the magnesium 399 

number (XMg) generally in the range of 0.3-0.45 (Fig. 9d). Higher-grade chlorite has similar XMg compared 400 

to lower-grade chlorite but appears more homogenous. Lower-grade chlorite contain a greater number 401 

of vacancies (0.23 ± 0.08 and 0.21 ± 0.06 pfu in KLB and HTM, respectively) than in higher-grade chlorite 402 

(0.09 ± 0.06 pfu and 0.08 ± 0.06 pfu for KCB and FM, respectively; Fig. 9c). Tetrahedral Al increases with 403 

temperature from 0.60-1.27 to 1.02-1.39.  404 

All analyzed grains in higher-grade samples show high clinochlore (Xclin 0.24 ± 0.01 and 0.21 ± 0.03 for the 405 

KCB and the FM, respectively), daphnite (Xdaph 0.35 ± 0.01 and 0.34 ± 0.01 for the KCB and the FM, 406 

respectively), and amesite (Xam 0.34 ± 0.06 and 0.38 ± 0.11 for the KCB and the FM, respectively) 407 

proportions, with a low sudoite proportion (Xsud 0.07 ± 0.06 and 0.03 ± 0.03 for the KCB and the FM, 408 

respectively; Fig. 9f). 409 

4.5.3. Multi-phase equilibrium model for the higher-grade units 410 

In lower-grade samples, the multi-phase equilibrium model did not permit the identification of 411 

equilibrium pairs, and hence pressure-temperature conditions could not be estimated. In higher-grade 412 

samples, equilibrated pairs of illite and chlorite have been identified (Fig. 10a). Fig. 10c shows the 413 

pressure-temperature conditions for equilibrium of illite-chlorite pairs sampled from Fig. 9e-f. The results 414 
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from samples from the KCB spread over the range 250-350℃ and 2-4 kbar, with a global average of 327 ± 415 

21℃ and 3.0 ± 0.4 kbar. In the FM, the results spread over the range 300-350℃ and 3-4.5 kbar, with 416 

average values of 320 ± 14℃ and 3.9 ± 0.4 kbar (Fig. 10c). 417 

4.6. Fluid inclusions 418 

4.6.1. Petrography of fluid inclusions 419 

Quartz in the veins is characterized by high abundance of fluid inclusions (Fig. 11a-b). Veins from lower-420 

grade units contain two types of primary fluid inclusions (Fig. 11c) interpreted to be the result of fluid 421 

immiscibility (Raimbourg, 2015; Vrolijk et al., 1988): (1) One-phase CH4-rich fluid inclusions with a size of 422 

up to 20 µm and negative crystal shapes. These CH4-rich fluid inclusions are randomly oriented in the host 423 

quartz. (2) Smaller (<10 µm) two-phase H2O-rich fluid inclusions with various shapes including round, 424 

squared to irregular (Fig. 11c). The small vapor bubble is dominated by CH4 (Raimbourg et al., 2018). In 425 

zones characterized by stretched quartz, fluid inclusions (both CH4-rich and H2O-rich) appearing as 426 

pseudo-secondary and are commonly in fracture healing planes perpendicular to the orientation of the 427 

elongation direction of quartz (Fig. 6b; Palazzin et al., 2016; Raimbourg et al., 2018).  428 

In the higher-grade quartz veins, only one set of primary fluid inclusions is observed. The primary fluid 429 

inclusions contain two phases and are H2O-rich with a V/L ratio of 0.1-0.15 (Fig. 11d). A size of inclusions 430 

rarely exceeds 10 µm. The vapor bubble contains minor amount of CO2 and CH4 (Raimbourg et al., 2018). 431 

Secondary fluid inclusions are common, aligned as healed fractures or trails of tiny one-phase fluid 432 

inclusions without systematic orientation of trails. 433 

4.6.2. Fluid inclusion salinity 434 

The salinity of the fluid inclusions has been estimated in primary two-phase fluid inclusions and in a few 435 

secondary fluid inclusions (Fig. 12). In veins formed at lower temperatures, the salinity of primary fluid 436 

inclusions is often lower than ⁓3.5 wt.% NaCl eq., which is the salinity of seawater (Fig. 12). In KLB for 437 

instance, primary fluid inclusions in samples: KO17A and KO17H yield average salinities of 2.1 ± 0.9 wt.% 438 

NaCl eq. and 2.1 ± 1.1 wt.% NaCl, respectively. Similarly, primary fluid inclusions in samples NOB_11C and 439 

NOB_8B of the HTM yield average salinities of 2.2 ± 0.9 wt.% NaCl eq. and 1.2 ± 0.6 wt.% NaCl eq., 440 

respectively. A small proportion (<10%) of measured primary fluid inclusions show higher salinity than 441 

seawater. On the other hand, in higher-grade veins the average salinity of primary fluid inclusions is more 442 

variable and higher than in those of lower-grade veins, often exceeding the salinity of seawater (Fig. 12). 443 

This is the case in the KCB, for which primary fluid inclusions in samples KO32F, KO32A, KO32B, and 444 
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KO33A2 yield average salinities of 5.2 ± 2.5 wt.% NaCl eq., 2.9 ± 0.9 wt.% NaCl eq., 3.9 ± 1.8 wt.% NaCl 445 

eq., and 3.5 ± 1.4 wt.% NaCl eq., respectively. In the FM, samples NOB_23B, NOB_13F and NOB_4C yield 446 

average salinities of 3.7 ± 1.4 wt.% NaCl eq., 3.4 ± 1.3 wt.% NaCl eq., 3.3 ± 0.7 wt.% NaCl eq., respectively. 447 

The salinity of secondary fluid inclusions from both localities is below 1 wt.% NaCl eq., in average 0.5 ± 0.3 448 

wt.% NaCl eq. (Fig. 12). 449 

4.6.3. Fluid inclusion chemistry 450 

SEM-EDS analyses of fluid inclusions in evaporite mounds (Fig. S2) in lower-grade veins show the presence 451 

of Na, K, Ca, Mg and Fe as cations, and Cl and S as anions (Table S3; Fig. 13a). EPMA point analysis revealed 452 

that the Ca/Na ratio is dominantly >1 (Fig. 13b), except for the sample NOB_13F and one evaporate mound 453 

in the sample NOB_23B where NaCl is the dominant compound (Fig. 13a). The amount of Fe and Mg varies 454 

between each analyzed mound (Fig. 13a), ranging from ⁓1.5 to ⁓47% and from ⁓1.5 to ⁓42%, respectively. 455 

As shown in Fig. 13, S and Cl are dominant anions, and the largest group of evaporate mounds (⁓75%) are 456 

characterized by SO2/Cl ratio equal or higher than 1 (Fig. 13c). 457 

 458 

5. Discussion 459 

5.1. Changes in mineralogy as a function of temperature 460 

Our analyses from Kodiak and Shimanto reveal that metapelites of two studied accretionary prisms 461 

underwent a similar evolution of mineral proportions with peak-metamorphic temperature. In both cases, 462 

the most prominent mineral change is an increasing proportion of chlorite relative to other phyllosilicates 463 

with increasing temperature (Table 3; Fig. 14a). Ramirez et al. (2021) also reported an increase in the 464 

chlorite/phyllosilicates ratio with increasing temperature in metapelites of the Mugi and Makimine 465 

mélanges from the Shimanto Belt, which experienced peak-metamorphic temperatures of ⁓150-350℃. 466 

Additionally, Kameda et al. (2011a) described an increasing chlorite content from undeformed to 467 

deformed metasediments of the Kitagawa Group in the Shimanto Belt, which evolved in tandem with 468 

more pervasive foliation. Because both the undeformed and deformed part of the Kitagawa Group 469 

experienced the same metamorphic temperatures (Kameda et al., 2011a), the crystallization of chlorite 470 

must be facilitated not only by a temperature increase, but also by deformation. The same conclusion was 471 

reached by Casciello et al. (2011) and Famin et al. (2021) for the transformation of smectite into illite, 472 

which is enhanced in deformation microstructures within metapelites even at isothermal conditions.  473 
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The last important mineral reaction observed is the oxidation of pyrite. Pyrite is present in both lower- 474 

and higher-grade samples. In addition, in higher-grade samples pyrite  is partly or completely oxidized to 475 

goethite. The main question is whether sulfide oxidation occurred during metamorphism or due to the 476 

samples being exposed at the surface. Goethite is reported to be hydrothermal phase (e.g., Makvandi et 477 

al., 2021), which is further supported by experimentally derived work wherein goethite is stable under 478 

low to moderate pressures compatible with the metamorphic conditions of the present work (Majzlan et 479 

al., 2003). The oxidation of pyrite at peak conditions is also further supported by the precipitation of Fe-480 

oxides within the scaly fabrics that formed during metamorphism (Fig. 5i-j; see also Ramirez et al., 2021). 481 

Finally, sulfide oxidation is matched by a significant drop of SO3 on whole-rock scale with increasing 482 

temperature (Fig. 8). The remobilization of iron at depth by dissolution of pyrite within the fluid is also 483 

attested by our analysis of the composition of the metamorphic fluid. In decrepitated mounds from the 484 

higher-grade veins, S is detected qualitatively by the SEM-EDS maps as well as in EPMA point analysis, and 485 

in many analyzed mounds it is predominant over chlorine (Fig. 13). 486 

The progressive breakdown of pyrite in metasedimentary units is described as a result of a change in the 487 

redox state of the rocks (Dubessy et al., 1983; Ferry, 1981; Frey et al., 1980; Hall, 1986). Similar 488 

observations to those of the present study are reported in the external part of the Central Alps, where 489 

upon temperature increase, the gas dissolved within the metamorphic fluid changed from CH4 to CO2 and 490 

H2O, in connection to reduction reactions in the Fe-bearing phases, biotite and pyrite (Tarantola et al., 491 

2007, 2009). Such a transition in the nature of the gas is proposed to occur at temperatures ⁓270℃ 492 

(Tarantola et al., 2009), and we observed it as well in fluid inclusions from both Kodiak and Shimanto 493 

(Raimbourg et al., 2018; Fig. 11).  494 

As previously discussed, the main mineralogical change in the metapelites that occurred with an increase 495 

in temperature is an increase in chlorite relative to other phyllosilicates (Fig. 14a). Chlorite is the dominant 496 

Fe-Mg phase in the metapelites and an important question is whether the local Fe and Mg source is 497 

sufficient to support the transformation of phyllosilicates into chlorite, or if an external supply of Fe and 498 

Mg is needed. It is reported that diagenetic chlorite can form as a coproduct of the smectite-to-illite 499 

transformation during burial at temperatures as low as 70℃ (Ahn & Peacor, 1985; Drief & Nieto, 2000; 500 

Hower et al., 1976; Muffler & White, 1969), or by the breakdown of smectite and kaolinite to form chlorite 501 

and illite (Boles & Franks, 1979). In both of the reactions described above, illite is the predominant product 502 

along with ⁓30% chlorite (Boles & Franks, 1979; Hower et al., 1976). These reactions can explain the 503 

formation of chlorite in lower-grade samples from this study (below 260℃), wherein the chlorite content 504 
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is 19-27% of all phyllosilicates (Table 3) and illite-chlorite intergrowth is observed (Fig. 5b). Also, among 505 

the minor phases detected by XRD are smectite-illite mixed layers, serpentine and kaolinite in lower-grade 506 

samples (Table 3), which are proposed to be the precursor for chlorite (Boles & Franks, 1979). Kameda et 507 

al. (2011a) proposed that chlorite crystallized from Fe-bearing berthierine, a category of inherited 508 

serpentine minerals that are metastable under low-metamorphic conditions. In this study, we have 509 

detected serpentine by XRD in lower-grade samples (Table 3). We propose that the chlorite in samples 510 

corresponding to temperatures of 230-260℃ is inherited from earlier smectite-to-illite transformation as 511 

well as a product of destabilization of serpentine. 512 

As smectite-illite mixed layers transform into illite-muscovite during prograde metamorphism with 513 

increasing temperatures, the occupancy of interlayer site increases with as pressure and temperature 514 

increase and hence additional potassium is required (Fig. 9a). Taking the illite composition from Table S1 515 

(Samples KO17A and KO33 as representatives), the following reaction is observed: 516 

1.03 K0.61Na0.15Al1.72Mg0.18Fe0.17Si3.35Al0.65O10(OH)2 + 0.23 K+ =  517 

K0.86Na0.02Al1.74Mg0.15Fe0.1Si3.31Al0.69O10(OH)2 + 0.07 Fe2+ + 0.12 SiO2 + 0.13 Na + 0.03 Mg + 0.02 H2O + 0.28 518 

O2    (Eq. 1) 519 

A small fraction of iron, magnesium and water is released during the smectite-to-illite transformation. 520 

However, this reaction alone cannot explain the increase in the amount of chlorite at higher temperatures, 521 

nor the textural observations, such as chlorite rims around pelitic matrix or an enrichment in the 522 

crenulation cleavage zones (Fig. 5e, 6e). Several studies report the chloritization of micas during 523 

interaction with hydrothermal fluids (e.g., De Parseval et al., 1994; Komninou & Sverjensky, 1995; 524 

Tarantola et al., 2007, 2009), where muscovite or biotite react with Fe2+, Mg2+ and H2O, creating chlorite 525 

and releasing significant amount of K+ and H+. During this study, we observed chlorite only as bimineralic 526 

chlorite-illite rims at the contact of the veins with the matrix (Fig. 5e, 6f). These rims are consistent with 527 

fluids acting as catalyzers of chlorite crystallization. As there is no systematic Mg and/or Fe increase in the 528 

host rock with temperature, the source of both elements is likely local. From the chemical composition of 529 

illite and chlorite from the zone with chlorite rims presented in Fig. 6f (Sample KO33), the crystallization 530 

of chlorite appears to proceed through the following reaction: 531 

1.18 K0.88Na0.02Al1.74Mg0.19Fe0.1Si3.31Al0.68O10(OH)2 + 2.5 Fe2+
 + 1.6 Mg2+

 + 6.23 H2O = 532 

Fe2.63Mg1.82Al1.43Si2.71Al1.43O10(OH)8 + 1.04 K+ + 0.02 Na+ + 1.2 SiO2 + 6.82 H+  (Eq. 2) 533 
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where illite reacts with water, Fe and Mg creating chlorite and releasing Si, K and Na into the fluid. Because 534 

more K is required in illite in higher-grade samples (Fig. 9a), the amount of K released during this reaction 535 

is likely incorporated into remaining or newly formed illite (Eq. 1). 536 

5.2. Mass transfers 537 

Even though several mineral reactions were recognized, whole-rock chemistry (Fig. 8) revealed no 538 

significant chemical variations in the pelitic matrix as a function of peak-metamorphic temperatures 539 

(except for a large decrease in SO3), therefore elements were redistributed between metamorphic 540 

minerals. However, specific zones of the matrix, such as in the vicinity of the veins, are characterized by 541 

changes in mineralogy that imply mass transfer at a small scale. In such zones, as presented in Fig. 6 and 542 

7, the matrix in contact with veins is characterized by the absence of quartz and a lower proportion of 543 

albite than in unaffected zones. Mass-balance calculations for specific zones of the higher-grade samples 544 

(zones with crenulation cleavage in the contact with veins and further from veins; Table S4), presented 545 

after normalization to TiO2 (e.g., Fig. 8), show a decrease in SiO2 and Na2O counterbalanced by an increase 546 

in FeO, MgO, K2O and LOI. Hence, SiO2 loss is the result of the removal of SiO2 from the matrix and 547 

preservation of other mentioned elements. This can be interpreted as a result of dissolution of quartz and 548 

albite and the crystallization of chlorite and illite (e.g., Fig. 7; Fisher et al., 1995;  Fisher & Brantley, 1992). 549 

Other zones in the pelitic matrix where mass transfer occurred are the scaly fabrics (Fig. 5d, 5i), as they 550 

are enriched in Fe- and Ti-oxides with fine-grained illite and chlorite and depleted in quartz and albite. 551 

Similar observations were made in metapelites from the Shimanto Belt (Kawabata et al., 2007; Ramirez 552 

et al., 2021), where the progressive formation of scaly fabrics (their abundance and depletion in mobile 553 

elements) is described as being facilitated by the temperature increase in addition to deformation. For 554 

the elements depleted in scaly fabrics, such as SiO2 or Na2O, Ramirez et al. (2021) proposed that the mass 555 

transfer occurred along the planes of the scaly fabrics to the veins, where quartz and albite precipitated. 556 

A similar process is observed in the present work, wherein the mass transfer occurs from the host rock in 557 

the immediate vicinity of the vein towards the vein itself, which is interpreted as a site of dilation and 558 

preferential precipitation by Brantley & Fisher (1997).  559 

Additionally, because the two proposed reactions (Eq. 1 and Eq. 2) release SiO2, one can wonder whether 560 

this source of silica is a major contribution to produce the quartz veins observed in the field (Fig. 2). For 561 

100 g of the matrix, if 10% of the illite transformed into chlorite (with the chemical composition from 562 

Table S1) approximately 3 g of SiO2 will be released. Comparing this value with the dissolution of quartz 563 

and albite observed in the matrix contacting the veins, such as in Fig. 5e and Fig. 7, the complete 564 
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dissolution of quartz and albite (both constituting between 10 and 20% of the rock) releases about 17 to 565 

34 g of SiO2. Therefore, most of the silica precipitated in the veins stems from the dissolved quartz and 566 

albite in the host rock, whereas the production of SiO2 by metamorphic reactions is only a secondary 567 

factor. Taken together, both sources can produce 20 to 37 g of free SiO2 in 100 g of the matrix. Thus, the 568 

mass of reactive matrix is estimated as three to five times the one of crystallized veins.  569 

Given the spacing between adjacent veins, it appears that local redistribution of silica is in most instances 570 

sufficient to precipitate the quartz veins observed in the field without any requirement for an external 571 

source of silica. The zones with noticeably different mineralogy are limited to a thickness of <2 cm from 572 

the contact with the veins. Even though the length of diffuse mass transfer is difficult to trace, mass 573 

balance calculations as well as textural observations, in the examined samples are consistent with mass 574 

transfer being limited to a mm- to cm-scale. Unlike in examples of similar lithologies where an external 575 

fluid is required, such as the Otago Schist (Breeding & Ague, 2002) or the Catalina Schist (Bebout, 1991, 576 

1993; Penniston-Dorland et al., 2012), this work supports the idea of locally derived material forming the 577 

veins in the Kodiak complex and the Shimanto Belt (Brantley & Fisher, 1997; Fisher et al., 1995; Ramirez 578 

et al., 2021).  579 

 580 

5.3. P-T conditions of metamorphism 581 

Due to difficulties such as small grain size or the lack of equilibrium between newly formed phases, 582 

estimating pressure-temperature conditions in low-grade metamorphic rocks is often challenging. Despite 583 

these challenges, our study succeeded in estimating peak-metamorphic temperatures in the metapelites 584 

from two independent techniques, RSCM and chlorite thermometry. Both techniques yield similar results 585 

and confirm that chlorite formed at peak-temperatures (Fig. 10c). The illite-chlorite multi-phase 586 

equilibrium model indicates that both phases are metamorphic and not inherited. Additionally, textural 587 

observations are consistent with the precipitation of albite in veins at peak-metamorphic conditions, 588 

because it has been observed within chlorite rims (Fig. 6f). Furthermore, newly formed chlorite and albite 589 

are found at the contact with and in the crack-seal veins, which indicates that the precipitation of chlorite 590 

and albite occurred contemporaneously with deformation. This confirms that the quartz in crack-seal 591 

veins also crystallized at peak conditions, as inferred from structural analysis of the veins (Fisher & 592 

Brantley, 2014; Raimbourg et al., 2021). Consequently, the crack-seal structures described in these veins 593 

(Raimbourg et al., 2021; Ramirez et al., 2021) were also formed at temperatures ⁓300-350℃. 594 
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The RSCM temperature results in the KLB are ⁓250℃, which is upper limit for homogenization 595 

temperatures (215-255℃) derived from fluid inclusions (Vrolijk et al., 1988). For the KCB, our estimate of 596 

2.5-3.5 kbar, 300-340°C is slightly higher than the average temperature of 280℃ obtained by Brantley & 597 

Fisher (1997) using δ18O thermometry on quartz, mica, and chlorite (Brantley & Fisher, 1997). A possible 598 

explanation to this discrepancy is that δ18O thermometry is more sensitive to low-temperature re-599 

equilibration, due to intermineral oxygen diffusion (e.g., Sharp & Kirschner, 1994), than RSCM and chlorite 600 

thermometry. In the case of the Shimanto Belt, our P-T estimate of 3.5-4.5 kbar and 300-350℃ for the FM 601 

(Fig. 10c) is consistent with Toriumi & Teruya (1988) who proposed peak-metamorphic conditions at 3-5 602 

kbar and 300-350℃ based on mineral assemblages in metamafic rocks from the same unit. 603 

 Pressure and temperature results for the KCB estimated during this study point to a geotherm that is 604 

close to 30℃/km, which is in agreement with the previously proposed arguments for a warm geotherm 605 

in the subduction zone during the Cretaceous-Paleogene (Fisher & Byrne, 1992; Sample & Moore, 1987; 606 

Vrolijk et al., 1988). This geotherm is attributed to a ridge subduction less than 12 million years after the 607 

accretion of thick turbiditic sequences. Based on coexisting H2O- and CH4-rich fluid inclusions in 608 

extensional veins, Vrolijk et al. (1988) estimated a geothermal gradient of ⁓20-25℃/km in the Uyak 609 

Complex, Kodiak and Ghost Rocks Formations, and concluded that these units were buried to a depth of 610 

10-14 km. Our geotherm estimate suggests that the KCB has been buried to a depth of 10-12 km. 611 

Furthermore, if the geothermal gradient remained constant during accretion, all of the units from the 612 

Kodiak complex in this study were buried to a depth of 7-12 km, depending on the peak-metamorphic 613 

temperature. 614 

 615 

5.4. Effect of mineral reactions on fluid composition and the fluid budget 616 

Initially during sediment burial, compaction and cementation reduce the porosity from several tens of 617 

vol.% to a few vol.% (e.g., Saffer & Tobin, 2011). Simultaneously, the pore fluid (originally seawater) 618 

becomes diluted by reactions such as smectite-to-illite transformations, which release fresh water (e.g., 619 

Colten-Bradley, 1987; Kastner, 1981; Kastner et al., 2014; Moore & Vrolijk, 1992; Perry & Hower, 1970; 620 

Spinelli, 2004). These transformations mostly occur in the temperature range 50-150℃, but may extend 621 

up to 250℃ (Kameda et al., 2011b; Kastner et al., 2014). In several examples of metasedimentary rocks 622 

from paleo-accretionary complexes experiencing temperatures of ⁓250℃, fluid inclusion salinities in syn-623 

subduction veins are lower than seawater (Herviou et al., 2021; Raimbourg et al., 2018; Fig. 12, 14b), 624 
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which confirms this progressive dilution of the pore fluid during burial. Raimbourg et al. (2018) point to a 625 

difference in both salinities of fluid inclusions of rocks subducted to shallower and deeper than brittle-626 

plastic transition. With increasing burial, another major change in the fluid composition occurs at the 627 

brittle-plastic transition at a temperature of ⁓300-350°C (e.g., Mullis et al., 1994; Raimbourg et al., 2018; 628 

Tarantola et al., 2007, 2009). At depth below this rheological limit, pore fluid salinities, as inferred from 629 

fluid inclusions in various subduction zones worldwide, become highly variable and are often higher than 630 

seawater (Herviou et al., 2021; Raimbourg et al., 2018 and references therein). This increase and 631 

scattering of salinities shallower than the brittle-plastic transition, from ⁓250℃ to 300-350℃, is not 632 

explained to date. To interpret the increase in salinity, two possibilities can be considered: (1) Infiltration 633 

of external fluids with a high salinity; (2) Hydration reactions and uptake of low-Cl- water in the minerals. 634 

The increase of salinity as a result of brine infiltration has been proposed for metasedimentary units in 635 

the Western Alps and explained as  the infiltration of fluid from blocks of margin units containing 636 

evaporites (Herviou et al., 2021). However, in the case of the Kodiak complex and the Shimanto Belt, no 637 

evaporites have been reported and the majority of units are made of deep-trench sediments (Byrne, 1982; 638 

Fisher & Byrne, 1987; Nishi, 1988; Sakai et al., 1984; Sample & Moore, 1987). Our fluid inclusion analyses 639 

show that the salinity increase and scattering also occurs in the metapelites of Kodiak and Shimanto (Fig. 640 

12). Thus, our mineralogical and chemical results allow us to propose an explanation for these salinity 641 

variations. Indeed, for the pelitic rocks of the two accretionary prisms, burial between 230-260°C and 330-642 

350°C was accompanied by an increase in chlorite proportion as previously discussed.  643 

An important issue related to chlorite crystallization is that chlorite hosts more water than smectite-illite; 644 

⁓13 wt.% compared to ⁓6-7 wt.%, respectively (Table S2). Analyzed illite in lower-grade rocks contains 645 

about 7 wt.% of water. During formation of about 10% of chlorite, it is assumed that water from illite is 646 

incorporated into chlorite; however, there is still a need for additional water. In 100 g of a rock with 647 

composition the same as that of sample KO38 (Table S1), 10% of newly formed chlorite contains ⁓1.3 648 

wt.% H2O. Potentially inherited water from 10% of illite is ⁓0.7 wt.% H2O, hence there is a deficit of 0.6 649 

wt.%, or 1.62 vol.% H2O. Therefore, some of the pore fluid has to provide H2O for chlorite crystallization 650 

and as a result the salinity of pore fluid increases (Fig. 12, 14b). The amount of pore water incorporated 651 

into chlorite is highly dependent upon the initial porosity and amount of illite in the metapelite protolith, 652 

which explains the scattering of salinity increases toward high-T samples. This amount of water 653 

incorporation by illite-to-chlorite transformation is also smaller than the variability of the initial water 654 

content of metapelite, which likely, along with the amount of the carbonates in the rock, masks any 655 

correlation between LOI and temperature (Fig. 8).  656 
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The oxidation of pyrite into goethite requires water as well. As an order of magnitude estimate, the 657 

amount of initial pyrite is estimated to be roughly as 0.5-1% (Table 3). Since goethite contains ⁓10 wt.% 658 

of crystal-bound H2O, the transformation of 0.5-1% of pyrite into goethite requires 0.05-0.1 wt.% H2O, or 659 

0.14-0.27 vol.%. Due to low abundance of pyrite, this reaction does not significantly affect the water 660 

budget. Combining the two described hydration reactions, the quantity of required fluid and the observed 661 

increase in salinity (⁓40%), the initial pore space is estimated at 4.4-4.7 vol.% and decreases down to 2.6-662 

2.8 vol.%.  663 

Beside the influence of hydration/dehydration reactions (i.e., uptake/release of H2O from/into the pore 664 

fluid), the salinity might also reflect the uptake/release of solutes out of/into the pore fluid. During this 665 

study, qualitative analysis of evaporite mounds of fluid inclusions revealed the large variability in the 666 

chemical composition of the pore fluid (Fig. 13). In evaporate mounds, instead of Na predominance 667 

(except for one analyzed evaporate mound; 23_B mound1 in Fig. 13a), Ca is the predominant cation with 668 

various amount of Na, K, Mg and Fe (Fig. 13). Additionally, S is present in equal amount to Cl or is the 669 

predominant anion (Fig. 13). This enrichment is the consequence of pyrite oxidation. This is also supported 670 

by iron oxides localization in shear planes and a significant decrease in S in whole-rock compositions. In a 671 

similar manner, an increase of S content in the fluid inclusions along the prograde path has been described 672 

in metasedimentary rocks from the Central Alps (Rauchenstein‐Martinek et al., 2016), as a result of 673 

prograde devolatilization reactions. 674 

Another implication of our findings is that the composition of pore fluids in subducted sediments is not 675 

exclusively controlled by the release or uptake of water in minerals. The chemical evolution of fluids in 676 

sediments undergoing subduction is often simplified as a suite of salinity changes occurring in response 677 

to the release or uptake of pure water by mineral reactions, assuming NaCl as the dominant species in 678 

solution (Herviou et al. (2021) and references therein). Our study shows that other reactions, such as the 679 

oxidation of pyrite, may profoundly change the composition of pore fluids, and that S may become the 680 

dominant species in solution. Because S is a highly reactive species under certain redox conditions, this 681 

drastic evolution in the chemistry of pore fluids may generate other reactions, for instance with 682 

carbonates. Further work is required to investigate and quantify these reactions and their effect on the 683 

composition of subducted fluids. 684 

A final implication of our study is that the transformation of illite into chlorite and the oxidation of pyrite 685 

are two reactions that transform pore water into structural water. By consuming pore fluids, these 686 

hydration reactions contribute to decrease the porosity of metapelites undergoing subduction. Because 687 
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these reactions occur in the 250-350°C temperature range, they also strongly contribute to trapping water 688 

in minerals, and thus to restrict fluid circulation in the realm of the brittle-plastic transition. As opposed 689 

to large-scale circulation and infiltration of external fluids described in several exhumed blueschist and 690 

eclogite facies complexes (Angiboust et al., 2011, 2014; Herviou & Bonnet, 2023; Muñoz-Montecinos, 691 

Angiboust, & Garcia-Casco, 2021; Spandler & Pirard, 2013; Taetz et al., 2016), results from this study 692 

support a model wherein the brittle-plastic transition is the limit between a domain of large-scale 693 

circulation of external fluids below it, and a domain of small-scale transfers of local fluids above it 694 

(Fagereng et al., 2018; Hyndman & Wang, 1993; Oleskevich et al., 1999; Raimbourg et al., 2018). 695 

6. Conclusions 696 

The present results show well-identified mineral equilibrium in higher-grade samples (at temperatures 697 

>300℃), whereas at lower-grade equilibrium is not achieved (at temperatures <300℃). Chlorite 698 

thermometry revealed similar temperature of crystallization as RSCM, consistent with the occurrence of 699 

mineral reactions at peak-metamorphic conditions. 700 

Our study shows that during prograde metamorphism of subducted metapelites, in the range of 230-701 

260℃ to 330-350℃, the major mineralogical change is an increase in chlorite/illite ratio as a result of illite-702 

to-chlorite transformation. Other reactions include the oxidation of pyrite into goethite and dissolution 703 

of titanite and precipitation of anatase. 704 

The bulk composition of the rock is not significantly modified at a temperature range from 230-260℃ to 705 

330-350℃, which suggests limited mass transfer. Local mass transport is nevertheless observed in the 706 

vicinity of veins that formed at peak conditions. There, the matrix is depleted in quartz and albite, which 707 

is counterbalanced by their precipitation in the veins. The growth of phyllosilicates is enhanced in the 708 

vicinity of the veins. Textural observations point to all reactions occurring during the main deformation 709 

event. 710 

The salinity of fluid inclusions in quartz veins that experienced 230-260℃ is consistently lower than that 711 

of seawater, as a result of freshening of the fluid from smectite-to-illite transformation. At higher 712 

temperatures the salinity is closer or higher to the seawater. Crystallization of chlorite is a possible 713 

explanation for this salinity increase as chlorite requires additional water. 714 

Observed mineral reactions, such as illite-to-chlorite transformation, affect the water budget in subducted 715 

sediments along the seismogenic zone where the pore fluid is transformed into crystal-bound water, 716 

potentially influencing the proportion of pore fluid and consequently pore fluid pressure. 717 
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FIGURE CAPTIONS 1125 

Figure 1. Geological map of (a) the Kodiak accretionary complex, Alaska, and (b) the Shimanto Belt on 1126 

Kyushu, Japan, with the locations of samples used in this study. 1127 

Figure 2. Field pictures of metasediments and veins used in this study from the Kodiak accretionary 1128 

complex (a and c) and from the Shimanto Belt (b and d). (a) Mode 1 quartz veins in coherent portion of 1129 

the Kodiak Landward Belt (Alaska). Note that veins are restricted to sandstone/siltstone layers and absent 1130 

in mudstone. (b) Photograph of a polished rock slab from the Hyuga Tectonic Mélange (Shimanto Belt, 1131 

Japan). Quartz veins are located in the sandstone lenses in strongly sheared shales. (c) Top-to-the-NW 1132 

shear veins in shale-dominated zone cutting across the foliation S1, Kodiak Central Belt. (d) Example of en 1133 

echelon vein arrays in shale-rich zone of the Foliated Morotsuka (Shimanto Belt, Japan). Blue arrows point 1134 

to the sampled veins, whereas red arrows indicate shear bands and displacement directions.  1135 
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Figure 3. (a) Example of a H2O Raman spectrum from fluid inclusion, decomposed into two Gaussian 1136 

bands. (b) Calculated K’ value from the standard solutions with known Cl- molarity. (c) Salinity of 22 fluid 1137 

inclusions estimated by Raman spectroscopy and microthermometry, showing the good agreement 1138 

between the two independent measurements. 1139 

Figure 4. Representative Raman spectra of carbonaceous material from (a) the Kodiak Landward Belt and 1140 

(b) the Kodiak Central Belt. The spectra were deconvoluted following the method of Lahfid et al. (2010). 1141 

Figure 5. Main microstructures and mineral phases in lower- and higher-grade samples of the Kodiak 1142 

accretionary complex and the Shimanto Belt: (a) Photomicrograph of intercalated quartz ribbons and 1143 

pelitic matrix rich in fine-grained phyllosilicates, plagioclase and quartz (Sample HN299C, Shimanto). (b) 1144 

SEM-BSE image showing intertwined illite and chlorite (sample KO17E, Kodiak). (c) Photomicrograph 1145 

(cross-polarized view) of chlorite shear band at low angle to the main foliation (Sample HN299A, 1146 

Shimanto). (d) SEM-BSE image of a pelitic matrix with scaly fabrics enriched in Ti-oxides and sulfides 1147 

(Sample HN299A, Shimanto). (e) Photomicrograph and (f) SEM-BSE image of the contact between a shear 1148 

vein and the surrounding matrix. Note the rim of increasing crystal size in the matrix in immediate contact 1149 

with the vein compared to the host rock further away (sample KO38, Kodiak). (g) Optical photomicrograph 1150 

(left: plain-polarized view; right: cross-polarized view) of illite+chlorite layers separated by scaly fabrics 1151 

(Sample HN285, Shimanto). (h) BSE image of strongly foliated metapelite with the alignment of plagioclase 1152 

and quartz parallel to the foliation (Sample HN247, Shimanto).  (i) SEM-BSE image and (j) A mask image of 1153 

EDS Ti and Fe maps of a shear zone enriched in titanium and iron (Sample HN145, Shimanto). 1154 

Abbreviations: Qz – quartz; Pl – plagioclase; Chl – chlorite; Ilt – illite; Ap – apatite.  1155 

Figure 6. Characteristic vein textures in lower- and higher-grade samples: (a) A Mode-1 quartz-calcite vein 1156 

with blocky and elongated quartz. (b) Elongated quartz with trails of pseudo-secondary fluid inclusions 1157 

perpendicular to the stretching direction. (c) A sample slab with two extensional shear veins (Sample 1158 

KO33C, Kodiak). (d) Deformed calcite in shear vein. (e) A part of shear vein characterized by crack-seal 1159 

texture. (f) SEM-BSE image (left) and mask image (right) of an extensional vein connected to a shear vein 1160 

from (c), showing chlorite rim along the contact between vein and matrix. Note albite crystals in the vein 1161 

and its absence in the matrix. 1162 

Figure 7. (a) A field photo of an example of quartz vein with veinlets only on the northwestern side (Site 1163 

KO30, Kodiak). (b) Scan of the thin section from the vein of Fig. 7a. (c) SEM-BSE image of the host rock 1164 

closer to the vein characterized by the presence of a foliation (S1) and a crenulation cleavage (S2), whereas 1165 
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away from the vein (d) only the foliation (S1) is present. (e-f) Mask images of (c-d). Note that away from 1166 

the vein quartz is still present in the host rock, whereas closer to the vein it is completely absent. (g-h) 1167 

Mask images of Ti- and Ca- bearing phases: titanite, anatase and apatite. In zones showing crenulation 1168 

cleavage, titanite is partly dissolved and anatase precipitates as indicated by white arrows, whereas 1169 

titanite is still present in the host rock away from the vein. 1170 

Figure 8. Major and minor element results analyzed by X-ray fluorescence normalized by TiO2 versus 1171 

peak-metamorphic temperature. SO3 and LOI are plotted without normalization. 1172 

Figure 9. Chemical composition of illite and chlorite: SiIV (apfu) in illite versus (a) total alkali (apfu) and (b) 1173 

magnesium number (XMg). Si apfu in chlorite versus (c) sum at octahedral position and (d) magnesium 1174 

number (XMg = Mg2+/(Fe2++Mg2+)). (e) Composition of phyllosilicates shown in ternary diagram Si/4 – 1175 

(Na+K+2Ca) – (Mg+Fe2+) according to Velde (1985). (f) Composition of chlorite in amesite (Am) – sudoite 1176 

(Sud) – clinochlore+daphnite (Clin+Daph) ternary diagram. 1177 

Figure 10. Examples of illite-chlorite equilibrium calculations in samples from (a) the Kodiak Central Belt 1178 

(KO38, Kodiak) and (b) the Foliated Morotsuka (HN285, Shimanto). Bold lines represent independent 1179 

reactions: (1) (PrlH)Phg = (Prl)Phg + H2O; (2) 4 Qtz - (Mg-Am)Chl = 2 (PrlH)Phg + 2 (Sud)Chl; (3) - 2 (Mg-Cel)Phg + 1180 

15 Qtz + 2 (Ms)Phg = 4 (Prl)Phg + (Sud)Chl; (4) - 5 (Mg-Cel)Phg + (Clin)Chl = (Fe-Am)Chl + 4 (Fe-Cel)Phg + (Ms)Phg; (5) 1181 

- 4 (Mg-Cel)Phg + 4 (Daph)Chl = 5 (Fe-Am)Chl + (Mg-Am)Chl + 4 (Ms)Phg; (6) 4 (Mg-Cel)Phg + (Daph)Chl = 5 (Fe-1182 

Cel)Phg - (Mg-Am)Chl + (Ms)Phg. (c) Pressure-temperature results from each of equilibrated illite-chlorite pair. 1183 

(d) Comparison of the peak-metamorphic temperatures inferred from RSCM and the chlorite 1184 

thermometry using the method by Vidal et al. (2006).  1185 

Figure 11. (a) Quartz with high fluid inclusion density from the Kodiak Landward Belt (Sample KO17H). (b) 1186 

Quartz from higher-grade shear vein from the Kodiak Central Belt (Sample KO32F). Dashed lines represent 1187 

trails of secondary fluid inclusions. (c) Two types of coexisting fluid inclusions in lower-grade veins: One-1188 

phase CH4 and two-phase H2O-rich with CH4-CO2 vapor bubble (Kodiak Landward Belt, sample KO17H). (d) 1189 

two-phase H2O rich fluid inclusions from quartz vein in the Kodiak Central Belt. Vapor bubble is composed 1190 

of CO2. 1191 

Figure 12. Box plots of estimated salinities of primary fluid inclusions and to a lesser extent of secondary 1192 

inclusions in all the studied samples. Points next to each box plot correspond to the salinity of individual 1193 

fluid inclusions in a given sample.  1194 



45 
 

Figure 13. (a) Relative proportions of Na2O, MgO, CaO, K2O, FeO, SO2 and Cl in evaporate mounds from 1195 

decrepitated fluid inclusions. Each line represents the average composition from 3-10 points analyses 1196 

acquired by EPMA in individual evaporate mounds. (b) Ca/Na vs. K/Na binary diagram and (c) Ca/Na vs. 1197 

SO2/Cl binary diagram of each individual point analysis in all examined evaporate mounds. 1198 

Figure 14. (a) The chlorite / (smectite + illite + muscovite) ratios based on XRD results. Note that for both 1199 

localities there is an increase of the proportion of chlorite as a function of temperature. (b) Box plots of 1200 

fluid inclusion salinities in quartz veins from this study as well as from previous studies concerning salinity 1201 

in the Kodiak accretionary complex and the Shimanto Belt in Japan. Compilation of literature: Big Waterfall 1202 

mélange, Kodiak (Rowe et al., 2009); Kodiak Formation, Alaska: pink – Afognak transect, red – Kodiak 1203 

transect (Brantley & Fisher, 1997); Mugi mélange (Sakaguchi, 1999); Makimine mélange (Nishiyama et al., 1204 

2021). 1205 

Figure S1. X-ray diffraction patterns of samples from the Kodiak Formation (Alaska), the Foliated 1206 

Morotsuka, and the Hyuga Tectonic Mélange (Japan). 1207 

Figure S2. SEM-EDS maps of evaporate mounds after the decrepitation method in (a) lower-grade quartz 1208 

vein (Sample NOB_11C) and (b) higher-grade quartz vein (Sample KO30D).  1209 
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TABLES 1239 

Table 1. Sample locations and pressure-temperature estimates based on Raman Spectroscopy of 1240 

Carbonaceous Material and multi-phase equilibrium model. Literature references: 1Palazzin et al. (2016); 1241 

2Raimbourg et al. (2018); 3Raimbourg et al. (2021).  1242 

 
Sample Longitude Latitude RSCM        Multi-phase equilibrium   Ref. 

Kodiak     T (℃) SD T (℃) SD P (kbar) SD  

Landward Belt KO17A -153.9843 57.6094 251 09     This study 

 KO17B -153.9843 57.5093 256 10     This study 

 
KO17E -153.9841 57.6119 240 09     This study 

Central Belt KO29A -152.218 58.3774 327 07 349 17 3.5 0.8 This study 

 
KO30 -152.2228 58.3542 331 13 310 21 3.1 0.4 This study 

 
KO32A -152.245 58.3893 330 16     This study 

 
KO32F -152.245 58.3893 330 16     This study 

 
KO33C -152.2568 58.3576 333 19 306 26 2.9 0.3 This study 

 
KO36A -152.2586 58.3661 330 29     This study 
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KO38 -152.2865 58.3889 340 28 329 16 3.0 0.4 This study 

Seaward Belt KO11 -152.4386 57.6516 300 19     This study 

 
KO12B -152.4764 57.6875 348 28     This study 

 
KO45C -152.4385 57.8393 344 16     This study 

Shimanto Belt 
          

Hyuga Tectonic Mélange  HN65 131.4036 32.5452 240 06     1 

 HN85 131.3148 32.4287 242 11     This study 

 
HN299 131.279 32.4033 228 16     This study 

Foliated Morotsuka 18NOB13 131.5433 32.7211 323 19     This study 

 
18NOB22A 131.8556 32.7552 349 06     This study 

 
18NOB23 131.8786 32.7614 338 10 

    
3 

 
HN61 131.8559 32.7202 348 06 

    
2 

 
HN143 131.5583 32.6137 322 28 301 04 3.9 0.3 This study 

 
HN243 131.2075 32.4094 335 26 330 03 3.7 0.4 This study 

 
HN247 131.2026 32.3095 327 33 

    
This study 

 
HN285 131.2392 32.4200 329 27 324 13 4 0.4 This study 1 
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Table 2. Major element compositions of metapelites expressed in wt.% from the Kodiak accretionary 1244 

complex and the Shimanto Belt of Japan.  1245 

 Kodiak Landward Belt  Central Belt Seaward Belt 
 

Hyuga Tectonic Mélange 
 

Foliated Morotsuka 

Sample KO17B  KO17C  KO17D  KO17E  KO33A  KO36A  KO38  KO11C  KO43C  HN64  HN85  HN299  NOB_23B  HN145 HN243 

SiO2 69.9 59.23 62.98 57.67 65.7 59.69 54.76 58.53 59.32 61.72 75.83 66.14 64.65 67.69 62.89 

TiO2 0.60 0.89 0.71 0.95 0.73 0.83 1.00 0.97 0.94 0.67 0.34 0.56 0.53 0.56 0.70 

Al2O3 12.22 18.24 15.72 17.95 14.1 16.78 20.27 17.54 17.40 17.22 10.3 14.80 15.57 14.62 18.15 

Cr2O3 0.04 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.01 0.01 0.02 0.02 0.02 0.01 

Fe2O3 7.00 7.92 7.33 8.82 6.87 8.36 8.82 7.76 7.85 7.06 5.41 6.06 7.34 6.43 6.53 

MnO 0.04 0.08 0.10 0.12 0.09 0.11 0.11 0.10 0.13 0.07 0.15 0.07 0.35 0.08 0.13 

MgO 1.94 2.26 2.08 2.18 2.83 3.08 3.19 3.29 2.85 1.98 1.49 1.80 2.44 2.07 1.74 

CaO 0.33 0.79 0.88 1.20 1.00 0.96 0.99 1.28 1.18 0.74 0.62 0.88 0.86 0.06 0.07 

Na2O 2.37 1.81 1.60 2.03 2.77 0.97 2.03 2.25 2.38 1.34 1.56 1.12 1.44 1.11 3.33 

K2O 1.48 2.84 2.37 2.62 1.94 3.29 3.61 2.82 2.63 3.29 1.44 2.80 3.04 3.08 3.00 

P2O5 0.16 0.26 0.22 0.28 0.22 0.25 0.27 0.44 0.36 0.10 0.08 0.09 0.09 0.07 0.11 

SO3 0.35 0.36 0.37 0.18 0.04 0.02 0.04 0.14 0.10 1.89 0.12 1.50 0.01 0.03 0.11 

SrO 0.02 0.02 0.02 0.02 0.03 0.02 0.01 0.02 0.03 0.02 0.01 0.02 0.02 0.01 0.01 

BaO 0.05 0.11 0.08 0.10 0.12 0.14 0.15 0.11 0.12 0.07 0.03 0.06 0.05 0.06 0.06 

LOI  3.36 5.15 4.47 5.23 3.16 4.62 4.90 4.11 4.24 5.08 2.61 4.32 3.43 3.59 3.29 

Total 99.96 100.1 99.05 99.53 99.72 99.24 100.3 99.51 99.7 101.35 100.05 100.35 99.97 99.59 100.20 

 1246 

Table 3. Mineral phase proportions based on X-Ray Diffraction patters using the Rietveld method 1247 

(Rietveld, 1969). I/S stands for smectite-illite mixed layers. 1248 
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 1249 

 1250 

 1251 

 1252 

Formation Landward Belt Central Belt  Seaward Belt HTM Foliated Morotsuka 

Sample KO17B KO17C KO17E KO33A KO36A KO38 KO45C KO11C HN299 HN64 HN85 23B 61 HN243 HN246 

Major phases                          

Illite/muscovite 23.2 42.1 47.6 21 40.7 42.4 25.5 36.5 42.4 39.3 36.4 38.6 38.1 31.1 31.2 

Chlorite 8.0 11.5 12.7 16.2 23.7 24.1 19.2 19.1 10.2 0.0 13.9 21.6 15.4 10.2 8.1 

I/S 1.8 2.6 4.0 0.0 0.0 0.0 0.0 0.0 4.5 2.3 1.4 0.9 0.0 0.0 0.0 

Quartz 43.1 27 17.3 34.2 25.7 15.8 29.4 22.7 27.7 32.9 35.1 23.9 25.2 30 30.0 

Plagioclase 19.5 13.1 16.2 25.2 5.2 16.0 22.2 17.7 10.1 13.3 12.6 11.5 20.2 26.3 26 

K feldspar 0.0 0.0 0.0 3.3 4.7 1.7 2.4 3.8 0.0 0.0 0.0 2.4 0.0 2.3 2.2 

Phyllosilicates 33 56.2 64.3 37.2 64.4 66.5 44.7 55.6 57.1 41.6 51.7 61.1 53.5 41.3 39.3 

Chl / (Chl+mus) 24.2 20.5 19.8 43.5 36.8 36.2 43.0 34.4 17.9 0.0 26.9 35.4 28.8 24.7 20.6 

 I/S / phs 5.5 4.6 6.2 0.0 0.0 0.0 0.0 0.0 7.9 5.5 2.7 1.5 0.0 0.0 0.0 

Accessory phases                      
Calcite 0.9 

 
0.6 

    1.2   0.5 <0.5 < 0.5 0.9 
   

Magnesite                   0.8  
 

Serpentine 3.4 2.8           1.6 
     

1.8 
 

Pyrite < 0.5 0.9 < 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 1.5 0.9 < 0.5    
< 0.5 < 0.5 

Dolomite              1.1 1       
Siderite               6.1       
Kaolinite               4       


