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Abstract. The Copernicus Atmosphere Monitoring Service (CAMS) has recently produced a greenhouse gas
reanalysis (version egg4) that covers almost 2 decades from 2003 to 2020 and which will be extended in the
future. This reanalysis dataset includes carbon dioxide (CO2) and methane (CH4). The reanalysis procedure
combines model data with satellite data into a globally complete and consistent dataset using the European
Centre for Medium-Range Weather Forecasts’ Integrated Forecasting System (IFS). This dataset has been care-
fully evaluated against independent observations to ensure validity and to point out deficiencies to the user. The
greenhouse gas reanalysis can be used to examine the impact of atmospheric greenhouse gas concentrations
on climate change (such as global and regional climate radiative forcing), assess intercontinental transport, and
serve as boundary conditions for regional simulations, among other applications and scientific uses. The caveats
associated with changes in assimilated observations and fixed underlying emissions are highlighted, as is their
impact on the estimation of trends and annual growth rates of these long-lived greenhouse gases.
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1 Introduction

Atmospheric carbon dioxide (CO2) and methane (CH4) are
the most abundant anthropogenic greenhouse gases directly
responsible for climate change (IPCC, 2021). Their long life-
time and increasing anthropogenic emissions near the sur-
face account for their long-term trends (Friedlingstein et al.,
2022). A lot of effort has been devoted to measuring the
atmospheric concentrations from ground-based observato-
ries, e.g. the National Oceanic and Atmospheric Adminis-
tration (NOAA, https://gml.noaa.gov, last access: 18 March
2023) and the Integrated Carbon Observation System (ICOS,
https://www.icos-cp.eu, last access: 18 March 2023), which
provide the gold standard for the estimation of trends, and
more recently satellite data (Committee on Earth Observa-
tion Satellites, CEOS; Crisp et al., 2018), enhancing the spa-
tial coverage of greenhouse gas observations at the global
scale. Atmospheric measurements also sample the variabil-
ity of CO2 and CH4 coming from the weather and its as-
sociated atmospheric transport (e.g. Patra et al., 2008, 2011).
For this reason, numerical weather prediction (NWP) models
have been extensively used to represent and reconstruct the
variability of atmospheric concentrations of various tracers
(e.g. Inness et al., 2019). Here we use the Integrated Forecast-
ing System (IFS) of the European Centre for Medium-Range
Weather Forecasts (ECMWF), which has been adapted to in-
clude CO2 and CH4 in the weather forecast (Agustí-Panareda
et al., 2017, 2019), to create a greenhouse gas (GHG) re-
analysis. The reanalysis uses the data assimilation technique
to combine CO2 and CH4 satellite data from the SCanning
Imaging Absorption spectroMeter for Atmospheric CHartog-
raphY (SCIAMACHY, https://www.sciamachy.org, last ac-
cess: 18 March 2023), the Infrared Atmospheric Sounding
Interferometer (IASI, https://www.eumetsat.int/iasi, last ac-
cess: 18 March 2023), and the Thermal and Near Infrared
Sensor for Carbon Observation (TANSO, https://www.eorc.
jaxa.jp/GOSAT/instrument_1.html, last access: 18 March
2023) instruments with IFS model simulations of CO2 and
CH4 (Agustí-Panareda et al., 2022). The dataset is based on
a consistent and stable model version to provide a homoge-
nous, continuous and gapless record of the CO2 and CH4 in
the entire atmosphere since 2003.

The IFS includes a combined forecasting model and data
assimilation system. The data assimilation system also inte-
grates meteorological observations, as in the fifth generation
of ECMWF meteorological reanalyses, ERA5 (Hersbach et
al., 2020), to best constrain the atmospheric variability of
greenhouse gases (Massart et al., 2014, 2016). The forecast-
ing model provides a three-dimensional representation and
evolution of the atmospheric CO2 and CH4 and meteorolog-
ical variables (Agustí-Panareda et al., 2019). At the model
surface, the greenhouse gases are forced by a set of surface
fluxes and emissions. Such modelling configuration allows
us to produce a realistic representation of the spatio-temporal
variability of greenhouse gases in the atmosphere over a wide

range of scales from hours to seasons and from local to global
scales (Agustí-Panareda et al., 2022).

Figure 1 showcases the global evolution of CO2 and CH4
represented by the CAMS GHG reanalysis dataset over the
period 2003–2020 and the span of the used satellite data. The
seasonal averages illustrate the spatial and temporal variabil-
ity information contained in the reanalysis dataset that can
be exploited for a range of applications in atmospheric sci-
ences. A key potential use of the CAMS GHG reanalysis is
to assess the impact of greenhouse gases on climate change.
The reanalysis three-dimensional fields could be used to
investigate global and regional climate radiative forcing
(e.g. https://atmosphere.copernicus.eu/climate-forcing, last
access: 18 March 2023), serve as boundary conditions for
regional simulations, assess intercontinental transport, and
generally provide a reference for any other study focusing
on atmospheric variability of CO2 and CH4. However, care
should be taken when using the CAMS GHG reanalysis to
estimate trends and annual growth rates of these long-lived
greenhouse gases by considering the caveats associated with
the changes in the satellite retrievals of CO2 and CH4 and the
fact that neither anthropogenic emissions nor natural fluxes
are adjusted by the data assimilation system, unlike atmo-
spheric inversions (e.g. Chevallier et al., 2019).

The objective of this technical report is to document the
technical aspects of the method and input data used to pro-
duce the CAMS GHG reanalysis and to provide guidance to
potential users on the strengths and limitations of the dataset.
Section 2 describes the processing chain to produce the re-
analysis and its components. Section 3 focuses on the evalu-
ation of the CAMS GHG reanalysis using independent obser-
vations from the TCCON and NDACC networks, as well as
surface in situ networks and AirCore profiles. A list of limi-
tations and caveats of the CAMS GHG reanalysis associated
with the changes in the assimilated data and the underlying
model errors is compiled in Sect. 4. Finally, Sect. 5 provides
a summary and outlook for future CAMS GHG reanalyses.

2 Methods

This section gives an overview of the different building
blocks of the CAMS GHG reanalysis and the processing
chain that integrates the different components to produce the
reanalysis dataset.

2.1 The reanalysis cycling chain

The reanalysis production chain is illustrated in Fig. 2. It is a
cycling procedure based on a 12 h data assimilation window
that involves four main parts:

– The first part consists of satellite retrievals of CO2 and
CH4 (see Sect. 2.2), as well as NWP observations (Hers-
bach et al., 2020).
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Figure 1. (a) Reanalysis time series of global column-averaged CO2 (red) and CH4 (purple) atmospheric mole fractions (global mean
error ranges from −0.7 to +3.5 ppm based on evaluation in Sect. 3.3). (b) The span of the satellite data records for the corresponding
species. (c) CO2 and (d) CH4 seasonal total column averages (DJF: December–January–February; MAM: March–April–May; JJA: June–
July–August; SON: September, October, November) for the 2003–2020 period that illustrate the typical seasonal cycle. Note that individual
years can be affected by the large inter-annual variability of biogenic fluxes (e.g. during El Niño years).

– The second part consists of surface fluxes (see Sect. 2.3)
that constitute the sources and sinks of CO2 and CH4
in the atmosphere compiled from various sources. They
provide the surface boundary condition for the tracer
transport model.

– The third part is a model forecast (see Sect. 2.4) that
provides a four-dimensional representation of the state
of the greenhouse gases over space and time, along with
other meteorological variables, during the 12 h analysis

window (from 09:00 to 21:00 and 21:00 to 09:00 UTC).
The forecasts are initialised with the previous analysis,
except for the first forecast for the initial date, which
is initialised with atmospheric molar fractions from the
CAMS inversion dataset (Chevallier, 2020; Segers et al.,
2020a).

– The final part combines the above elements using a data
assimilation system (see Sect. 2.5) to produce an analy-
sis (Massart et al., 2014, 2016). The analysis will serve

https://doi.org/10.5194/acp-23-3829-2023 Atmos. Chem. Phys., 23, 3829–3859, 2023
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to initialise the following forecast over the subsequent
12-hourly cycle.

Details of these four different components of the reanalysis
processing chain, as well as the approach followed to monitor
the assimilation of CO2 and CH4 satellite data, are provided
in the subsections below.

2.2 Satellite GHG observations

The satellite measurements of radiances (L1 data) are pro-
cessed by satellite retrievals developed by various data
providers to derive information on the total and partial at-
mospheric column of CO2 and CH4 dry mole fraction (L2
data). In the CAMS GHG reanalysis, only L2 products were
used for CO2 and CH4. With nadir-looking satellite instru-
ment geometries the L2 data provide vertically integrated
content with vertical sensitivity functions called either aver-
aging kernels (when an optimal estimation approach is used;
Rodgers, 2000) or weighting functions, which provide infor-
mation on where the retrieval sensitivity is located along the
vertical. The satellite products assimilated in this reanalysis
are all provided with an averaging kernel and prior informa-
tion or weighting functions (Massart et al., 2014, 2016). The
rationale for selecting the CO2 and CH4 satellite products is
based on the availability of operational data in near real time
as the strategy is to extend the CAMS GHG reanalysis to the
present by eventually running it at close to real time. Table 1
provides the specification for each of the assimilated satel-
lite CO2 and CH4 products, selected as the state-of-the-art
retrievals at the beginning of 2017, when the CAMS GHG
reanalysis production started. All of the L2 satellite products
are freely available from the Copernicus Climate Change
Service (C3S) Copernicus Climate Data Store (Alos et
al., 2019; https://cds.climate.copernicus.eu/cdsapp#!/dataset/
satellite-carbon-dioxide, last access: 18 March 2023, for
CO2 and https://cds.climate.copernicus.eu/cdsapp#!/dataset/
satellite-methane, last access: 18 March 2023, for CH4). The
GHG reanalysis integrates the L2 GHG data from the follow-
ing satellite instruments.

– SCIAMACHY – Envisat. The SCanning Imaging Ab-
sorption spectroMeter for Atmospheric CartograpHY
(SCIAMACHY) instrument on board the Envisat satel-
lite was launched by the European Space Agency (ESA)
in March 2002, and it was developed by a consortium
involving the Netherlands Space Office, the German
Aerospace Center and the Belgian Federal Science Pol-
icy Office. It measures radiance variations from the ul-
traviolet to the near-visible infrared. The GHG L2 prod-
ucts use the nadir spectra of reflected and scattered solar
radiation in the near-infrared region. Satellite radiance
observations in the near-infrared spectral region with
the nadir-looking geometry are sensitive to changes in
CO2 and CH4 down to the Earth’s surface. The mea-
surements provide total column information with sensi-

tivity peaking near the surface. The ground pixel size is
typically between 30 and 60 km, and the swath width
is about 960 km. There are no across-track gaps be-
tween the ground pixels, but there are gaps in the along-
track direction as SCIAMACHY operates only part of
the time (approx. 50 %) in nadir observation mode. The
CO2 and CH4 column products are retrieved by the Uni-
versity of Bremen (Reuter et al., 2011) and the Nether-
lands Institute for Space Research (SRON) (Franken-
berg et al., 2011), respectively. Both of the L2 prod-
ucts are delivered by the ESA GHG-Climate Change
Initiative (CCI; Buchwitz et al., 2015) and the C3S Cli-
mate Data Store (https://cds.climate.copernicus.eu, last
access: 18 March 2023).

– TANSO-FTS – GOSAT. The Thermal And Near infrared
Sensor for carbon Observations – Fourier Transform
Spectrometer (TANSO-FTS) instrument on board the
Greenhouse Gases Observing Satellite (GOSAT) was
developed by the Japan Aerospace Exploration Agency
(JAXA) and launched in January 2009. TANSO-FTS
measures radiances in the short-wave infrared band
that provide information of total column CO2 and CH4
mole fractions. Similar to SCIAMACHY, the sensitiv-
ity of the total column information provided by L2
data peaks near the surface due to the spectral band
used. The ground pixel size is about 10 km, the swath
is 750 km, and it has a revisit time of 3 d. In con-
trast to SCIAMACHY, the GOSAT scan pattern con-
sists of non-consecutive individual ground pixels; i.e.
it is not a gap-free scan pattern. For a general overview
about GOSAT, see http://www.gosat.nies.go.jp/en/ (last
access: 18 March 2023). The L2 retrieval product is en-
gineered by the SRON (Schepers et al., 2012, 2016) and
delivered by the ESA GHG-CCI and the C3S Climate
Data Store (https://cds.climate.copernicus.eu).

– IASI – Metop A and B. The Infrared Atmospheric
Sounding Interferometer (IASI) instruments are on
board the Meteorological Operational satellites Metop-
A and Metop-B, launched in October 2006 and Septem-
ber 2012, respectively. The French National Centre
for Space Studies (CNES) led the design and devel-
opment of the instruments in collaboration with the
European Organisation for the Exploitation of Mete-
orological Satellites (EUMETSAT). The IASI instru-
ments measure the thermal infrared band with high
spectral resolution, enabling them to detect a wide
range of trace gas variations in the atmosphere, in-
cluding CO2 and CH4 sensitive in the middle- and
upper-tropospheric regions between 5 and 12 km al-
titude. IASI is an across-track-scanning system with
a swath width of 2200 km providing global coverage
twice a day. The field of view is sampled by 2× 2 pix-
els whose ground resolution is 12 km at nadir. Both
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Figure 2. Schematic of the reanalysis cycling procedure. The flow diagram shows the steps and elements combined in the reanalysis. Surface
fluxes are used as boundary condition for the atmospheric forecasts. Satellite data are combined with the forecast using data assimilation to
produce an analysis (corrected 4D fields) to initialise the next forecast.

CO2 and CH4 are engineered and delivered by the Cen-
tre National de Recherche Scientifique (CNRS) Labora-
toire de Météorologie Dynamique (LMD) (Crevoisier et
al., 2009a, b, 2014). The two L2 products are delivered
by the ESA GHG-Climate Change Initiative (Buchwitz
et al., 2015) and the C3S Climate Data Store (https:
//cds.climate.copernicus.eu).

2.3 Surface fluxes and prescribed sources and sinks

The emissions and surface fluxes provide the surface bound-
ary conditions for the atmospheric concentrations of CO2 and
CH4. They play a crucial role in determining the variability
and growth rate of both greenhouse gases in the atmosphere.
Errors in the budget of the total flux will result in system-
atic errors or biases in the forecast of atmospheric CO2 and
CH4. In the CAMS reanalysis, the surface fluxes (including
sources and sinks) are not optimised by the assimilation sys-
tem. This lack of surface flux optimisation can lead to biases

in the analysis when the observing system coverage is sparse
in space and time or when the observation error is large, and
the analysis is strongly influenced by the model forecast.

Table 2 lists the datasets used to produce the CAMS re-
analysis, and Fig. 3 shows the seasonal cycle and trend of the
global mean values of each type of surface flux used in the
simulations. They include the following datasets.

– The first dataset includes fire emissions derived using
the CAMS Global Fire Assimilation System (GFAS)
version 1.2 that assimilate fire radiative power observa-
tions from satellite-based sensors (Kaiser et al., 2012).
GFAS produces daily estimates of wildfire and biomass
burning emissions. The emissions are injected at the
surface and distributed over the boundary layer by the
model’s convection and vertical diffusion scheme.

– The second dataset includes anthropogenic emis-
sions from the Emission Database for Global Atmo-
spheric Research (EDGAR) version 4.2FT2010 in-

https://doi.org/10.5194/acp-23-3829-2023 Atmos. Chem. Phys., 23, 3829–3859, 2023
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Table 1. Specifications of the satellite data used in the CAMS GHG reanalysis.

Gas Instrument – Period assimilated Version (data provider) Reference Peaking
satellite (yyyymmdd) sensitivity

CO2 SCIAMACHY
– Envisat

20030101–20120324 CO2_SCI_BESD (v02.01.02, IUP-UB) Reuter et al.
(2011)

Near surface

IASI –
Metop-A

20070701–20150531 CO2_IAS_NLIS (v8.0, CNRS-LMD) Crevoisier et al.
(2009a)

Middle and upper
troposphere

IASI – 20130201–20181130 CO2_IAS_NLIS (v4.2_nrt, CNRS-LMD) Middle and upper
Metop-B 20181201–20201231 CO2_IAS_NLIS (v4.0_nrt, CNRS-LMD) troposphere

TANSO-FTS 20090601–20131231 CO2_GOS_SRFP (V2.3.6, SRON) Butz et al. (2011), Near surface
– GOSAT 20140101–20181231 CO2_GOS_SRFP (V2.3.8, SRON) Guerlet et al.

20190101–20201231 CO2_GOS_BESD (CAMS_NRT, IUP-UB) (2013), Heymann
et al. (2015)

CH4 SCIAMACHY
– Envisat

20030108–20100601 CH4_SCI_IMAP (v7.2, SRON) Frankenberg et al.
(2011)

Near surface

IASI –
Metop-A

20070701–20150630 CH4_IAS_NLIS (V8.3, CNRS-LMD) Crevoisier et al.
(2009b, 2014)

Middle and upper
troposphere

IASI – 20130201–20181130 CH4_IAS_NLIS (V8.1_nrt, CNRS-LDM) Middle and upper
Metop-B 20181201–20201231 CH4_IAS_NLIS (v4.0_nrt, CNRS-LDM) troposphere

TANSO-FTS 20090601–20131231 CH4_GOS_SRFP (V2.3.6, SRON) Butz et al. (2010), Near surface
– GOSAT 20140101–20181231 CH4_GOS_SRFP (V2.3.8, SRON) Schepers et al.

20190101–20201231 CH4_GOS_SRPR (CAMS_NRT, SRON) (2012)

Table 2. Specifications of the emission and surface fluxes used in the CAMS GHG reanalysis.

Gas Emission or flux type Data provider – version

CO2 CO2 and CH4 fire emissions GFAS Version 1.2 (Kaiser et al., 2012)

CO2 ocean fluxes Takahashi climatology (Takahashi et al., 2009)

CO2 emissions from aviation based on ACCMIP NO emissions from aviation scaled to annual total CO2
from EDGAR aviation emissions (Olivier and Janssens-Maenhout, 2012)

CO2 ecosystem fluxes bias
corrected with BFAS

based on CHTESSEL (modelled online in IFS) (Boussetta et al., 2013; Agustí-
Panareda et al., 2016)

CO2 anthropogenic emissions EDGARv4.2FT2010 (2003–2010) (Olivier and Janssens-Maenhout, 2012)

CH4 CH4 total natural emissions based on EDGARv4.2FT2010 (2003–2010) (Olivier and Janssens-Maenhout,
2012), LPJ-WHyMe wetland climatology (Spahni et al., 2011), and other natu-
ral sources and sinks (Matthews et al., 1991; Ridgwell et al., 1999; Houweling
et al., 1999; Lambert and Schmidt, 1993; Sanderson, 1996)

CH4 chemical sink monthly mean climatology of CH4 loss rate from Bergamaschi et al. (2009)

CH4 anthropogenic emissions EDGARv4.2FT2010 (2003–2010) (Olivier and Janssens-Maenhout, 2012)

ventory (Janssens-Maenhout et al., 2011; Olivier and
Janssens-Maenhout, 2012) excluding the short carbon
cycle. The anthropogenic emissions are based on an-
nual average values and include emissions from fossil
fuel combustion and leakage, agriculture, landfill and
waste, and aviation, the latter being based on the At-
mospheric Chemistry and Climate Model Intercompar-

ison Project (ACCMIP, Lamarque et al., 2013) nitric
oxide (NO) emissions scaled to the annual CO2 total
emissions from aviation from EDGAR. EDGAR pro-
duces global anthropogenic emissions for both CO2 and
CH4 at a relatively high resolution of 0.1◦ (compared to
80 km resolution of the CAMS reanalysis). The prob-
lem with EDGAR is that the latest version available at

Atmos. Chem. Phys., 23, 3829–3859, 2023 https://doi.org/10.5194/acp-23-3829-2023
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Figure 3. Monthly CO2 and CH4 surface fluxes. The CO2 fluxes (Pg CO2 per month) include modelled net ecosystem exchange (NEE)
fluxes (in green), anthropogenic emissions (in purple), ocean fluxes (in blue) and biomass burning emissions (in red). The total CH4 fluxes
(Tg CH4 per month) excluding biomass burning emissions are shown by the black line, and CH4 biomass burning emissions (Tg CH4 per
month) are depicted with the red line. The dashed lines show the 1-year running mean for each of the fluxes.

the time when the CAMS reanalysis started does not ex-
tend beyond 2010. Anthropogenic emissions of CO2 are
extrapolated from 2010 to 2014 with the time series of
country totals from EDGARv4.3 (Janssens-Maenhout
et al., 2016), and from 2015 to 2020 a persistent growth
based on the last available year (2014) is applied. CH4
anthropogenic emissions are fixed with the last year of
available gridded data (2010) from 2011 to 2020. Note
that CO2 and CH4 emissions are not adjusted for the
COVID-related emission reduction in 2020 (Le Quéré
et al., 2020).

– The third dataset includes biogenic CO2 fluxes that are
based on the online CHTESSEL module (Boussetta et
al., 2013), which relates CO2 biogenic fluxes with radia-
tion, precipitation, temperature, humidity and soil mois-
ture. CHTESSEL is used in conjunction with the bio-
genic flux adjustment system (BFAS), which improves
the continental budget of CO2 fluxes by combining in-
formation from flux estimates of a global flux inver-
sion system (Chevallier et al., 2010), land use infor-
mation and CHTESSEL online fluxes (Agustí-Panareda
et al., 2016). The two-way interaction between the at-
mospheric forecast and the surface fluxes depicts how
the forecast influences the surface fluxes and vice versa
via the coupling of the biogenic fluxes to the atmo-
spheric forecast (radiation, temperature, humidity and
soil moisture) and the influence of the resulting biogenic
fluxes on the atmospheric CO2 forecast.

– The fourth dataset includes wetland CH4 monthly mean
emissions that come from a climatology (1990–2008)
based on the LPJ-WHyMe model, which is constrained
by SCIAMACHY observations (Spanhi et al., 2011).

– The fifth dataset includes a monthly modulation for CH4
rice emissions that is implemented based on the sea-
sonal cycle of Matthews et al. (1991).

– The sixth dataset includes a CH4 chemical sink that
is represented by a monthly mean climatological loss
rate from Bergamaschi et al. (2009) based on OH fields
optimised with methyl chloroform (Bergamaschi et al.,
2005; Houweling et al., 1998) and stratospheric radicals
from the 2D photochemical Max Planck Institute (MPI)
model (Brühl and Crutzen, 1993).

– Finally, the remaining datasets include a CH4 monthly
soil sink (Ridgwell et al., 1999), CO2 and CH4 annual
mean oceanic fluxes (Houweling et al., 1999; Lambert
and Schmidt, 1993; Takahashi et al., 2009), and CH4
monthly mean fluxes from termites (Sanderson, 1996)
and wild animals (Houweling et al., 1999).

2.4 Forecast model

The CAMS GHG reanalysis has been produced using the
IFS model. The same model is used to produce operational
NWPs at ECMWF, and the CAMS global forecast and anal-
yses are used for reactive gas, aerosols and greenhouse gases
at ECMWF (Fleming et al., 2015; Agustí-Panareda et al.,
2017, 2022). The IFS model version used is IFS CY42R1,
the same as in the CAMS reanalysis for reactive gases and
aerosols (Inness et al., 2019). The forecasting model uses
a reduced Gaussian grid with a resolution of TL255, corre-
sponding to a horizontal resolution of approximately 80 km
and 60 hybrid sigma–pressure vertical levels from the sur-
face to 0.1 hPa. The tracer advection is computed using
a non-mass-conserving, semi-implicit and semi-Lagrangian
scheme (Temperton et al., 2001; Diamantakis and Magnus-
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son, 2016). This scheme leads to an error growth that can
dominate the signal in the model simulations if it is not cor-
rected. Thus, a mass fixer is required to ensure mass conser-
vation at every time step (Diamantakis and Agustí-Panareda,
2017). The mass fixer is particularly important for long-lived
greenhouse gases for which the interesting signals to mon-
itor, e.g. trends or annual growth rates and large-scale spa-
tial gradients, are weak compared to the large background
values. The transport model also includes a turbulent mix-
ing scheme (Sandu et al., 2013) and a convection scheme
(Bechtold et al., 2014). For the CH4 chemical sink in the tro-
posphere and the stratosphere, climatological loss rates de-
rived from the Max Planck Institute photochemical model are
used (Bergamaschi et al., 2009). Full documentation of the
IFS can be found at https://www.ecmwf.int/en/publications/
ifs-documentation (last access: 18 March 2023).

2.5 Analysis procedure (data assimilation)

The IFS system uses an incremental formulation of the
four-dimensional variational technique (4D-Var). The 4D-
Var technique consists of minimising a cost function that
combines the model information and the observation infor-
mation in order to obtain the best possible state of the atmo-
sphere (analysis) accounting for the model and observation
errors. The incremental 4D-Var cost function is quadratic and
is formulated as follows:

J (δx)=
1
2

(δx− δxb)TB−1 (δx− δxb)

+
1
2

(Gδx− d)R−1 (Gδx− d) , (1)

where δx is the increment, i.e. the difference between the
model state x and the first guess xg, δxb is the difference
between the background (the forecast started from the pre-
vious analysis) and the first guess, B is the background error
covariance matrix, R is the observation error covariance ma-
trix, and G is the observation operator or forward operator
that translates the information from model space to observa-
tion space. The innovation vector is d = y−Gxg, where y

is the observation vector and xg is the first guess. When the
minimisation of the cost function is complete, δx is added to
xg to provide the analysis.

xa = xg+ δx (2)

The analysis is performed over 12 h assimilation windows
from 09:00 to 21:00 and from 21:00 to 09:00 UTC. The in-
cremental 4D-Var assimilation involves the stepwise minimi-
sation of the linearised cost function (Eq. 1) by updating the
first guess xg and increasing the resolution. In the CAMS
reanalysis setup, two minimisations are completed succes-
sively at TL95 (approximately 210 km) and TL159 (approxi-
mately 110 km) spectral truncations. Once the assimilation
procedure is completed, an analysis is generated that will

serve to initialise the next forecast at the full TL255 reso-
lution.

The background errors for CO2 and CH4 were produced
from an ensemble of data assimilations (Massart et al., 2016),
which allows the calculation of differences between pairs of
background fields that have the characteristics of the back-
ground errors. The background errors for the greenhouse gas
species are univariate, which means that there is no correla-
tion between the greenhouse gas species and the dynamical
fields. Hence, each species is assimilated independently of
the others. The background errors used for both the green-
house gas species and the dynamical fields are also constant
in time. In the ECMWF data assimilation system, the back-
ground error covariance matrix is given in a wavelet formula-
tion (Fisher, 2004, 2006). This allows both spatial and spec-
tral variations of the horizontal and vertical background error
covariances globally. Figure 4 shows the global mean of the
standard deviation and average horizontal correlation length
scales for both CH4 and CO2. Following experimentation,
the correlation length scales between the background errors
were manually reduced in the atmospheric boundary layer
(1 km from the surface).

2.6 Monitoring the data assimilation system

The time series of the departures (or differences) between
the analysis (AN) and the assimilated satellite data (hereafter
referred to as observations, OBS), as well as those between
the underlying model simulation (or background, BG) and
the OBS, are used to monitor the performance of the analy-
sis system and are shown in Fig. 5 (for CO2) and Fig. 6 (for
CH4). For each satellite retrieval product, both the BG depar-
tures (OBS–BG, green lines) and the AN departures (OBS–
AN, red lines) are plotted (Figs. 5a and 6a: SCIAMACHY;
Figs. 5b and 6b: IASI-A; Figs. 5c and 6c: IASI-B; Figs. 5d
and 6d: GOSAT), together with the number of observations
assimilated monthly (blue lines). Overall, both the random
(i.e. standard deviation, dashed lines) and systematic compo-
nents of the departures (i.e. average values, solid lines) are
shown to be reduced by the assimilation process, as high-
lighted by the AN departures (red lines) being closer to zero
than the BG departures (green lines). Note that the difference
between the BG and the AN departure is equal to the anal-
ysis increments associated with the related observations (i.e.
AN–BG).

The number of observations assimilated is different for
each satellite instrument and varies with time. IASI generates
the largest number of data, with both instruments (IASI-A
and IASI-B) providing between 150 000 and 200 000 XCO2
or XCH4 data per month. The observations taken by SCIA-
MACHY oscillate between 25 000 and 50 000 data per month
for CH4 and between 5000 and 10 000 data per month for
CO2. The number of GOSAT XCO2 data fluctuates around
2500, whereas GOSAT XCH4 measurements are comprised
of between 5000 and 10 000 data per month. It is also clear
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Figure 4. Model background error for CO2 and CH4 used in the CAMS GHG reanalysis: (a, b) global mean standard deviation and
(c, d) global mean error correlation length scale across the vertical levels.

from Figs. 5a, d and 6a, d that fewer XCO2 and XCH4 data
from SCIAMACHY, IASI and GOSAT-TANSO are assimi-
lated during the winter months. A vertical dashed magenta
line in Figs. 5c, d and 6c, d indicates when the near-real-time
satellite products started to be assimilated in early 2019. This
transition produced an abrupt change in the quality and avail-
ability of both IASI and GOSAT retrievals.

The modelled XCO2 is systematically larger than the ob-
servations (leading to overall negative BG departures) be-
cause of the biases in the total fluxes (see Sect. 2.3). There-
fore, all instruments produced negative departures until 2013
(Fig. 5). From 2013 to 2019, the modelled values of XCO2
became smaller than those measured by GOSAT (Fig. 5d),
while the model continued to (slightly) overestimate the IASI
XCO2 observations in the middle to upper troposphere. This
overestimation is consistent with a drift in the IASI CO2 data
towards a growing negative bias. After 2018, part of the drift
is due to the fact that IASI (version v4.0) is saturated with

increasing atmospheric CO2. Note that this has been cor-
rected with v9.1 (available on the C3S data store). A sudden
change in the IASI-B XCO2 departures is visible in Fig. 5c
around December 2018, corresponding to the switch from
the ESA-CCI reprocessed dataset to a near-real-time LMD
dataset used operationally in the CAMS GHG analysis. The
transition to a new dataset was made necessary as the re-
analysis production was running close to real time and repro-
cessed observations were not available. After the transition to
near-real-time observations, the IASI XCO2 increments are
reduced to almost zero, as hinted to by the overlap between
the red (AN departure) and green lines (BG departure) in
Fig. 5c. At the same time, a drop in the number of assimilated
IASI XCO2 observations is observed (blue line, Fig. 5c). To-
gether with a drastic reduction in the magnitude of the in-
crements, a large negative bias of approximately 5 ppm in
both the AN and BG departures emerges. This degradation
in the quality of the IASI-B XCO2 observations in the near-
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Figure 5. Time series of the global monthly number of XCO2 satellite data (blue) and monthly mean CO2 analysis (AN) and model
background (BG) departures of the various observations (OBS) assimilated in the reanalysis (AN–OBS and BG–OBS in red and green,
respectively; see the legend). The solid lines show the monthly average of the departures, and the dashed lines show the monthly standard
deviations. The dashed magenta line indicates the switch to the near-real-time satellite products. Note that the range of values on the y axis
varies depending on the satellite product.

real-time dataset is due to the change in the correction of
the non-linearity of the detector of IASI-B that was made by
CNES and EUMETSAT on 17 August 2018 that introduced
a bias of ∼ 0.2 K into the channels used to perform the CO2
retrieval. This change has been corrected in the versions of
IASI-B MT-CO2 that are available on the C3S data store, but
these versions were not used for this reanalysis. In January
2019, there was also a transition from the ESA-CCI GOSAT
XCO2 retrievals to the near-real-time IUP-UB retrieval prod-

uct (Heymann et al., 2015; Massart et al., 2016), as shown
in Fig. 5d. Consequently, the standard deviation of both the
AN and the BG departures increases (dashed lines, Fig. 5d),
suggesting that the near-real-time data are noisier than the
reprocessed dataset from ESA-CCI.

The mean XCH4 departures (both AN and BG) of SCIA-
MACHY and IASI are relatively small (a few ppb) compared
to GOSAT (up to 10 ppb) throughout the entire time period
(see the solid red and green lines in Fig. 6). The XCH4 SCIA-

Atmos. Chem. Phys., 23, 3829–3859, 2023 https://doi.org/10.5194/acp-23-3829-2023



A. Agustí-Panareda et al.: Technical note: The CAMS greenhouse gas reanalysis from 2003 to 2020 3839

Figure 6. Time series of the global monthly number of XCH4 satellite data (blue) and monthly mean CH4 analysis (AN) and model
background (BG) departures of the various observations (OBS) assimilated in the reanalysis (AN–OBS and BG–OBS in red and green,
respectively; see the legend) for different satellite products. The solid lines show the monthly average of the departures, and the dashed lines
show the monthly standard deviations. The dashed magenta line indicates the switch to the near-real-time satellite products. Note that the
range of values on the y axis varies depending on the satellite product.

MACHY data were not used from 9 April 2012 onwards
(Fig. 6a). The standard deviation of both the AN and BG de-
partures are smaller for GOSAT (around 10 ppb, dashed lines
in Fig. 6d) than for SCIAMACHY (around 20 ppb, dashed
lines in Fig.6a), indicating that GOSAT provides less noisy
observations. Similar to what was observed for CO2, a dis-
continuity in the mean AN and BG departures of GOSAT
XCH4 emerges in January 2019, corresponding to transition
from the ESA-CCI dataset and the NRT SRON retrievals

(see the dashed magenta line in Fig. 6d). Both the AN and
the BG departures change sign, indicating that while up to
2019 both the analysis and model were underestimating the
GOSAT observations, they started to overestimate them af-
ter 2019. Since there was no modification to the model used
for the reanalysis over this period, the cause of this negative
bias emerging in both the AN and the BG departures since
2019 can only be attributed to the NRT GOSAT XCH4 ob-
servations, and in particular to the fact that they are generated
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Figure 7. Map with observation sites used in the evaluation of
the CAMS GHG reanalysis: the marine boundary layer (MBL,
blue squares) includes NOAA MBL reference sites used to com-
pute the NOAA global mean CO2 and CH4 mole fraction product
(see https://gml.noaa.gov/ccgg/mbl/mbl.html, last access: 18 March
2023, for further details), SFC (black circles) corresponds to the
in situ near-surface continuous observations of CO2 and CH4, TC-
CON and NDACC sites are depicted by red and orange triangles,
and AirCore sites are shown by cyan circles.

by using an extrapolated XCO2 value in the proxy retrieval.
In addition, the number of assimilated NRT GOSAT XCH4
observations approximately doubles (blue line in Fig. 6d).
Note that the switch to the near-real-time retrievals for IASI-
B XCH4 has a much more marginal impact on the system
(Fig. 6c).

3 Evaluation with independent observations

Validation against a set of independent observations has been
performed on the 18 years of the CAMS GHG reanalysis
span. The independent data include different types of obser-
vations (see Fig. 7): in situ near-surface continuous observa-
tions of CO2 and CH4 mole fractions from the collaborative
ObsPack datasets (Masarie et al., 2014; Schuldt et al., 2020,
2021; NOAA Carbon Cycle Group ObsPack Team, 2019; see
Table A1), dry-air column-averaged mole fractions from the
Total Carbon Column Observing Network (TCCON; Wunch
et al., 2011, 2015), tropospheric and stratospheric partial
columns for CH4 from the Network for the Detection of At-
mospheric Composition Change (NDACC; De Mazière et
al., 2018) (see Table A2), AirCore vertical profiles of CO2
and CH4 mole fractions (Karion et al., 2010; Baier et al.,
2021), and the NOAA global mean CO2 and CH4 mole frac-
tion product based on the Greenhouse Gas Marine Boundary
Layer Reference (Conway et al., 1994; Dlugokencky et al.,
1994; Masarie and Tans, 1995).

3.1 Surface and column data

3.1.1 Carbon dioxide

Overall, the error is within ±10 and ±4 ppm for most of
the near-surface and total column stations, respectively, for
the whole 18-year period (Figs. 8 and 9). Near the surface

(Fig. 8), there is a large variability in the CO2 error between
continental stations influenced by local fluxes (e.g. CDL,
FSD, AMT, HUN; see Table A1) and oceanic stations sam-
pling well-mixed air (e.g. ALT, BRW, MHD). Continental
stations show large error variations with season (e.g. CDL,
HUN) and show an underestimation of CO2 in the summer
and an overestimation in the winter, indicating an underesti-
mation of the amplitude of the CO2 seasonal cycle largely
driven by vegetation growth. Differences between stations
will be determined by the footprint of observations having
different contributions of fluxes from different biomes and
from anthropogenic emissions. The accuracy of such fluxes
can vary geographically.

Overall, there is positive bias of a few parts per million
between 2003 and 2015 in the baseline surface stations (e.g.
BRW, SMO, SPO), which is consistent with the XCO2 er-
ror at the TCCON sites (Fig. 9). This positive bias decreases
from 2007 to 2015 when IASI-A CO2 data are assimilated,
with values lower than 2 ppm, and becomes negative from
2015 to 2019 (from 0 to −2 ppm). From 2019 onwards,
there is a positive trend in the bias, and it becomes positive
(>+2 ppm) in 2020. There is consistency between the col-
umn and surface biases, with a general positive bias at back-
ground stations before 2015 and a negative bias after 2015
(up to 2019) at the surface stations, although there are no
data in 2020 from the surface stations.

The synoptic and large-scale variability of CO2 is well rep-
resented by the reanalysis (Fig. 9b). The root-mean-square
error at TCCON stations is below 0.8 ppm for XCO2. The
normalised standard deviation is around 1.0 (±0.3), and the
Pearson correlation coefficient is larger than 0.8.

3.1.2 Methane

The CH4 reanalysis fields are generally in good agreement
with surface and tropospheric column observations, with typ-
ical weekly and monthly errors within ±40 and ±25 ppb,
respectively (Figs. 10, 11 and 12). Stratospheric partial
columns compared to the NDACC data reveal a positive bias
that is of the same order as the reported measurement un-
certainty of 7 % (Fig. 10a). The averaged relative differences
in the troposphere across all NDACC sites are −0.4 % for
the reanalysis (Fig. 11b), which is well within the measure-
ment’s uncertainty. The reanalysis overestimates the column-
averaged CH4 compared to TCCON observations (Fig. 12)
for most mid- and high-latitude sites, with a relative differ-
ence of up to 2.5 %, but shows a good agreement for the low-
latitude sites at Izaña, Darwin and Wollongong. At the sur-
face the bias is overall positive up to 2007 (Fig. 10). With the
introduction of IASI, the biases are reduced. However, with
the switch to near-real-time satellite data, the bias become
negative at all sites, reaching values lower than −20 ppb.

Differences between the surface and total column biases
stem from the fact that the model suffers from large posi-
tive biases above the tropopause (between 100 and 10 hPa)
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Figure 8. (a) Mosaic plot of CO2 weekly biases (in ppm) of the CAMS GHG reanalysis compared to surface continuous observations of
CO2 mole fraction obtained from the GLOBALVIEWplus CO2 ObsPack v6.0 (Schuldt et al., 2020) listed in Table A1. Each coloured vertical
line represents a weekly mean. Vertical yellow lines depict the changes in the assimilated data documented in Figs. 1, 5 and 6. Grey shading
indicates no observations are available. (b) Taylor diagrams for the site-dependent CO2 comparison of the CAMS GHG reanalysis against
the same observations used in (a). The standard deviation is normalised by dividing the observed and modelled time series by the standard
deviation of the observations. The model has higher (lower) variability compared to the observed data if the site is plotted with a distance
larger (smaller) than 1 from the origin.
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Figure 9. (a) Mosaic plot of the CAMS GHG reanalysis biases at all TCCON sites (see Table A2) for the column-averaged dry mole
fraction of CO2 (ppm) (XCO2) averaged daily around local noon (±2.5 h). Vertical yellow lines depict the changes in the assimilated data
documented in Figs. 1, 5 and 6. Grey shading indicates no observations are available. (b) Taylor diagrams for the station-dependent XCO2
comparison of the CAMS GHG reanalysis against TCCON Fourier transform infrared (FTIR) data. The standard deviation is normalised by
dividing the observed and modelled time series by the standard deviation of the model time series. The model has higher (lower) variability
compared to the observed data if the site is plotted with a distance smaller (larger) than 1 from the origin.

of about 80–100 ppb during the months between September
and November (Figs. 5d and 6d of Verma et al., 2017) that
affect the total column average. This stratospheric bias can-
not be corrected systematically by CH4 satellite data from
SCIAMACHY, GOSAT and IASI.

For all observations (surface, partial and total columns)
CH4 shows a seasonality in the relative difference between
observations and the reanalysis. The magnitude of the dif-
ference is site dependent. During local autumn and win-
ter months the relative bias is increased (underestimation)
at most surface sites and in the tropospheric columns. This

underestimation is also seen in the TCCON time series. In
spring and summer there is an overestimation of CH4 near the
surface and in the total column. These biases are related to
errors in the seasonal cycle of surface emissions, most likely
from agriculture and wetlands, and the accuracy of the rep-
resentation of the hydroxyl radical (OH) sink, which overall
have larger values in the climatology compared to CAMS IFS
(CB05-BASCOE) atmospheric chemistry model OH (Segers
et al., 2020b; Williams et al., 2022). The XCH4 root-mean-
square error is around 1.4 ppb, and the Pearson correlation
coefficient is larger than 0.7 for XCH4 except for some out-
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Figure 10. (a) Mosaic plot of CH4 biases (in ppb) compared to surface continuous observations from GLOBALVIEWplus CH4 ObsPack v1.0
data product (Cooperative Global Atmospheric Data Integration Project, 2019) listed in Table A1. Each coloured vertical line represents a
weekly mean. Vertical yellow lines depict the changes in the assimilated data documented in Figs. 1, 5 and 6. Grey shading indicates no
observations are available. (b) Taylor diagrams for the site-dependent CH4 comparison of the CAMS GHG reanalysis against same as the
observations used in (a). The standard deviation is normalised by dividing the observed and modelled time series with the standard deviation
of the observations. The model has higher (lower) variability compared to the observed data if the site is plotted with a distance larger
(smaller) than 1 from the origin.
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Figure 11. Mosaic plot of seasonal relative CH4 biases at all FTIR sites (see Table A2) for the stratospheric columns (a) and tropospheric
columns (b) from NDACC. Vertical yellow lines depict the changes in the assimilated data documented in Figs. 1, 5 and 6. Grey shading
indicates no observations are available.

liers (Fig. 12b), indicating a good representation of the syn-
optic variability (as for XCO2).

3.2 Vertical profiles

The uncertainty in the CAMS GHG reanalysis varies with
height, and the accuracy of the analysis vertical profiles de-
pends mostly on the underlying model uncertainty, as the
satellite data assimilated in the reanalysis only provide in-
tegrated total or partial atmospheric columns. The reanalysis
has been evaluated using observations of CO2 and CH4 ver-
tical profiles (Karion et al., 2010; Baier et al., 2021) from
the NOAA AirCore dataset v20210813. It includes 133 ver-
tical profiles from the surface to the lower stratosphere (up to
around 40 hPa) from 2012 to 2020 at the seven sites listed in
Table A3.

Figure 13 shows that the largest mean errors occur (i) near
the surface with a strong influence from surface fluxes,
(ii) in the upper troposphere–lower stratosphere (UTLS) re-
gion (between 500 and 100 hPa) with a strong influence from
long-range transport, (iii) in the stratosphere (above 100 hPa)
where uncertainties associated with chemical loss of CH4
and the meteorology driving the tracer transport are largest,
and the fact that satellite data used here are not able to con-
strain the stratospheric CO2 and CH4 in the reanalysis. Near
the surface, there is a positive CO2 bias associated with an
overestimation of the total flux in the model and a negative
CH4 bias that stems from both errors in the emissions and
the chemical loss rate in the troposphere. The negative CO2
bias in the UTLS agrees with the tendency of the model to
underestimate fine-scale higher-valued CO2 streamers asso-
ciated with long-range transport. The large positive CH4 bias
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Figure 12. (a) Mosaic plot of monthly biases at all TCCON sites for the column-averaged mole fractions XCH4 (ppb) averaged daily around
local noon (±2.5 h). Vertical yellow lines depict the changes in the assimilated data documented in Figs. 1, 5 and 6. Grey shading indicates no
observations are available. (b) Taylor diagrams for the station-dependent XCH4 comparison of the CAMS GHG reanalysis against TCCON
FTIR data. The standard deviation is normalised by dividing the observed and modelled time series by the standard deviation of the model
time series. The model has higher (lower) variability compared to the observed data if the site is plotted with a distance smaller (larger) than
1 from the origin.

in the stratosphere of around 200 ppb is consistent with the
positive biases with respect to NDACC stratospheric column
(Fig. 11a) and the documented model biases with respect to
MIPAS and ACE-FTS by Verma et al. (2017). The errors as-
sociated with the stratospheric chemical sink are thought to
be the largest contributor to the stratospheric CH4 bias, as
shown by tests using the IFS CB05-BASCOE chemical loss
rate (not shown here). In general, the reanalysis underesti-
mates the CO2 vertical gradient across the tropopause. This
underestimation leads to a positive bias for CO2 in the lower
stratosphere of around 2 ppm. The analysis is not able to re-
move the large errors near the surface by only adjusting the

atmospheric mole fractions, i.e. without adjusting the emis-
sions in the data assimilation process, nor it is able to reduce
the stratospheric errors in the model (Massart et al., 2017;
Verma et al., 2017). The vertical profiles have a large vari-
ability from day to day, as shown in Fig. 14 with a sequence
of profiles at Traînou (France). The CAMS GHG reanalysis
is able to capture these synoptic variations in the vertical pro-
file, consistent with its skill in representing XCO2 and XCH4
synoptic variability (Figs. 9b and 12b). For a full catalogue
of all the individual AirCore vertical profiles used in Fig. 13,
see the Supplement.
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Figure 13. Vertical profiles of mean error (model minus observation, M–O) of CAMS CO2 (a) and CH4 (b) reanalysis with respect to
AirCore observations comprising 133 profiles at seven sites (listed in Table A3) over the period from 2012 and 2020. The blue shading shows
the ± standard deviation of M–O with respect to the mean error. The vertical dashed black line depicts the zero mean error.

Figure 14. Vertical mole fraction profiles of CO2 and CH4 from the CAMS GHG reanalysis (dashed line) and AirCore observations (solid
line) at Traînou (France; see Table A3) over the period in June 2019.

3.3 Trends

Although this reanalysis uses a consistent underlying model
and reprocessed observations of CO2 and CH4, the current
system is not able to provide an accurate enough atmo-
spheric mole fraction for use in estimating trends and atmo-
spheric growth rates as computed by the changes in global
mean CO2 and CH4 from 1 year to the next. The CO2 and
CH4 global annual means based on marine boundary layer
(MBL) reference sites are compared to the NOAA Global

Greenhouse Gas Reference Network (GGGRN) observations
(https://gml.noaa.gov/ccgg/about.html, last access: 18 March
2023; Andrews et al., 2014; Conway et al., 1994; Dlugo-
kencky et al., 1994) in Fig. 15. Changes in the assimilated
satellite data have a clear impact on the evolution of the
global annual mean values of CO2 and CH4 in the CAMS
GHG reanalysis. The reanalysis has a positive global bias in
near-surface CO2 and CH4 of a few parts per million and
around 20 ppb, respectively, from 2003 to 2007. Note that
this positive bias in the annual global mean does not imply
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that the bias will be positive everywhere, as shown by the
negative surface CH4 biases at the AirCore sites (Fig. 13)
and the large temporal and geographical variability in the
weekly bias illustrated in Figs. 8 and 10. After the intro-
duction of IASI in 2007 the global bias decreases and is at
its lowest during the period when the number of observa-
tions is largest in 2013 and 2014 (Figs. 5 and 6). Finally,
the change to the near-real-time satellite retrievals in 2019
and the incorrect trend in the emissions during the COVID-
related slowdown period in 2020 (Le Quéré et al., 2020) lead
to changes in the global bias from negative to positive for
CO2 and from positive to negative for CH4. These changes
in the global bias are consistent with the changes in the errors
with respect to total column and near-surface observations in
Figs. 8 to 12. It is important to note that the changes in global
bias associated with changes in the assimilated data are of the
same order of magnitude as the observed atmospheric growth
rates of CO2 (https://gml.noaa.gov/ccgg/trends, last access:
18 March 2023) and CH4 (https://gml.noaa.gov/ccgg/trends_
ch4, last access: 18 March 2023). For this reason, this reanal-
ysis product is not suitable for trend analysis.

4 Limitations and caveats

This section provides an overview of the shortcomings of the
CAMS GHG reanalysis that users should consider when in-
terpreting the data. The main issues documented in the pre-
vious sections are summarised below.

1. Emissions are prescribed and not adjusted by the data
assimilation system in the CAMS reanalysis (Sect. 2.3).
This leads to a growing model error for CO2 and CH4
that can be difficult to correct with a sparse observing
system and 12 h assimilation window. In addition, the
prescribed emissions are not available as near-real-time
data, which means they are either kept fixed since the
last year available (e.g. 2010 for CH4) or extrapolated
with a climatological trend as was done for CO2 (see
details in Sect. 2.3). Because of this, the CAMS GHG
reanalysis is not suitable to investigate the impact of
local emission changes, such as COVID impact stud-
ies, which require a large local emission adjustment to
the prescribed inventories (e.g. Doumia et al., 2021) and
atmospheric inversion systems to estimate the changes
(e.g. McNorton et al., 2022).

2. Changes in satellite data used with different temporal,
horizontal and vertical coverage cause changes in the
quality of the reanalysis. For example, winter seasons
have a lower number of observations because of light
conditions and the higher frequency of cloud presence.
This affects the quality of the seasonal cycle and the
inter-hemispheric gradient. Similarly, in regions where
there is no observation coverage, such as the strato-
sphere, the reanalysis is based on the underlying model

including its systematic errors (see the discussion of
stratospheric biases in Sect. 3.2).

3. Changes in satellite retrievals affect the quality of the
observations used in the CAMS GHG reanalysis. For
example, the switch from the CCI reprocessed satel-
lite products to the near-real-time products is associated
with a marked change in the bias and random error (i.e.
standard deviation) of the departures from XCO2 and
XCH4 GOSAT observations and in the bias of the depar-
tures from the XCO2 IASI-B observations. This large
increase in the bias of the assimilated CO2 and CH4
observations from 2019 onwards results in a large in-
crease in the bias of the CAMS GHG reanalysis in 2019
and 2020, which has implications for the trend analysis
(Sect. 3.3).

4. The fixed climatological chemical loss rate of CH4
(Sect. 2.3) has been shown to overestimate the atmo-
spheric CH4 chemical sink by Segers et al. (2020b). Pre-
liminary tests coupling the IFS to the atmospheric loss
rate derived from CB05-BASCOE chemistry have in-
deed shown a large reduction in the CH4 negative bias
at mid-latitudes. Systematic errors in the CH4 chemical
sink used in this reanalysis may have contributed further
to enhancing the large negative CH4 bias in the CAMS
GHG reanalysis over the last period in 2020, when the
increase in the CH4 growth rate is linked to a decrease
in chemical loss rate (Stevenson et al., 2022).

5. The large CH4 and CO2 biases in the stratosphere are
currently under investigation. The CH4 stratospheric
bias is mainly associated with the use of a climatologi-
cal loss rate (Sect. 2.3), as preliminary tests using a dif-
ferent chemical loss rate based on IFS CB05-BASCOE
simulations show that the bias in CH4 is greatly re-
duced.

6. Changes in systematic errors with time due to model
error and changes in observation coverage and quality
will affect trend analysis (see Sect. 3.3).

An up-to-date list of the known issues of the CAMS re-
analysis can be found on the online CAMS documen-
tation website (https://confluence.ecmwf.int/display/CKB/
CAMS%3A+Reanalysis+data+documentation, last access:
18 March 2023). Some of these issues will also be addressed
in the future CAMS reanalysis (planned to start production
in 2024), including the improvement of the prescribed emis-
sion trends, the consistent use of satellite retrieval products
and the use of a variable CH4 chemical loss rate.

5 Summary and conclusions

This technical report documents the first CAMS IFS reanaly-
sis of CO2 and CH4 produced by ECMWF that complements
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Figure 15. Global mean CO2 (ppm) and CH4 (ppb) from the CAMS GHG reanalysis (in red) and the NOAA global mean CO2 and CH4
(in black, https://gml.noaa.gov/ccgg/trends/global.html, last access: 18 March 2023) based on the Greenhouse Gas Marine Boundary Layer
Reference (Conway et al., 1994; Dlugokencky et al., 1994, 2021; Masarie and Tans, 1995). The global mean of the CAMS GHG reanalysis
has been computed based on the same NOAA marine boundary layer (MBL) reference sites shown in Fig. 7 (see https://gml.noaa.gov/ccgg/
mbl/mbl.html for further details). The dashed blue lines mark the years when there was a change in the observing system. The uncertainty
associated with the computation of global mean using the MBL sites is estimated to be 0.1 ppm for CO2 (Ed Dlugokencky and Pieter
Tans, NOAA/GML, https://gml.noaa.gov/ccgg/trends) and below 2 ppb for CH4 (Ed Dlugokencky, NOAA/GML; https://gml.noaa.gov/ccgg/
trends_ch4/).

the CAMS reanalysis of reactive gases and aerosols (Inness
et al., 2019). The processing chain, assimilated satellite data
and underlying model used are described, and the resulting
reanalysis is evaluated using independent in situ near-surface
observations, total column retrievals and in situ atmospheric
profile observations. The monthly systematic and random er-
rors of CO2 and CH4 typically range within 1 % from 2003 to
2020 with an overall good skill in the representation of syn-
optic spatial variability and seasonal cycle. The lowest sys-
tematic errors occur in the period with the maximum num-
ber of observations in 2013 and 2014. In 2019 there was
a switch from C3S pre-processed satellite products to the
near-real-time CAMS satellite products because at the time
of production the C3S products had not reached 2019. This
caused a jump in the quality of the satellite data and the re-
sulting CAMS GHG reanalysis. For this reason, a new rerun
of the CAMS GHG reanalysis from 2019 onwards will be
performed with consistent C3S satellite products in the near
future.

The comparison of global mean values with observations
shows variations in the bias that depend on changes in the as-
similated satellite data of around 2 ppm and 10 ppb for CO2
and CH4, respectively, which have the same magnitude as the
observed variations in their growth rate. For this reason, we
do not recommend the use of this dataset to study changes
in the atmospheric growth rate of CO2 and CH4. Similarly,
large biases in stratospheric CO2 and CH4 should also be
considered when analysing stratospheric signals and trends

in the CAMS GHG reanalyses. A list of caveats and limita-
tions that users need to be aware of is provided in Sect. 4.

The slow reduction in the lingering bias in the model back-
ground is associated with the following competing factors at
play: (i) the error growth in the model background associ-
ated with the accumulation of systematic errors in emission
and natural fluxes, (ii) the limited coverage of observations
in time and space (both horizontal and vertical), and (iii) the
localised impact of observations associated with a short data
assimilation window spanning 12 h.

In order to improve the CAMS reanalysis in future re-
leases we recommend the following actions: (i) increase the
number and coverage of satellite data assimilated from ad-
ditional satellite missions such as the Copernicus Sentinel-
5 Precursor (S5P), Orbiting Carbon Observatory 2 and 3
(OCO-2, https://www.nasa.gov/mission_pages/oco2, last ac-
cess: 18 March 2023; OCO-3, https://www.jpl.nasa.gov/
missions/orbiting-carbon-observatory-3-oco-3, last access:
18 March 2023) and Greenhouse gases Observing SATellite-
2 (GOSAT-2, https://global.jaxa.jp/projects/sat/gosat2, last
access: 18 March 2023), as well as the latest reprocessed
satellite products from C3S; (ii) improve the underlying
anthropogenic emissions and natural fluxes by using the
most recent flux data sources, with particular emphasis on
the near-real-time extrapolation of the prescribed flux data;
(iii) couple the chemical loss rate with the CAMS reanalysis
of chemical species (Inness et al., 2019); and (iv) use the IFS
inversion capability (McNorton et al., 2022) being developed
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within the CoCO2 project (https://coco2-project.eu, last ac-
cess: 18 March 2023) for future reanalyses and explore the
possibility of applying a correction to the fluxes in order to
match the observed global growth rate.

Appendix A

Table A1. List of stations with in situ continuous observations of CO2 and CH4 from GLOBALVIEWplus CO2 ObsPack v6.0 and CH4
ObsPack v1.0, respectively, used for the evaluation in Sect. 3.1.

Station, country (site name) Latitude and Elevation Data reference
longitude (m a.s.l.)

Alert, Canada (ALT) 82.45◦ N, 62.51◦W 185 Worthy et al. (2003)
Utqiaġvik, AK, USA (BRW) 71.32◦ N, 156.61◦W 11 Peterson et al. (1986)
Candle Lake, Canada (CDL) 53.99◦ N, 105.12◦W 600 Worthy et al. (2003)
Mace Head, Ireland (MHD) 53.33◦ N, 9.90◦W 5 Ramonet et al. (2010)
Fraserdale, Canada (FSD) 49.88◦ N, 81.57◦W 210 Worthy et al. (2003)
Kasprowy Wierch, Poland (KAS) 49.23◦ N, 19.98◦ E 1989 Necki et al. (2003)
Schauinsland, Germany (SSL) 47.92◦ N, 7.92◦ E 1205 Schmidt et al. (2003)
Hegyhátsál, Hungary (HUN) 46.95◦ N, 16.65◦ E 248 Haszpra et al. (2001)
Park Falls, WI, USA (LEF) 45.95◦ N, 90.27◦W 472 Andrews et al. (2014)
Puy de Dôme, France (PUY) 45.77◦ N, 2.97◦ E 1465 Lopez et al. (2015), Colomb et al. (2020)
Argyle, ME, USA (AMT) 45.03◦ N, 68.68◦W 53 Andrews et al. (2014)
Sable Island, Canada (WSA) 43.93◦ N, 60.00◦W 5 Worthy et al. (2003)
Ryori, Japan (RYO) 39.03◦ N, 141.82◦ E 260 Tsutsumi et al. (2005)
Moody, TX, USA (WKT) 31.31◦ N, 97.33◦W 251 Andrews et al. (2014)
Minamitorishima, Japan (MNM) 24.28◦ N, 153.98◦ E 8 Tsutsumi et al. (2005)
Yonagunijima, Japan (YON) 24.47◦ N, 123.02◦ E 30 Tsutsumi et al. (2005)
Tutuila, American Samoa, USA (SMO) 14.25◦ S, 170.56◦W 42 Waterman et al. (1989)
Cape Point, South Africa (CPT) 34.35◦ S, 18.49◦ E 230 Brunke et al. (2004)
Amsterdam Island, France (AMS) 37.80◦ S, 77.54◦ E 55 Ramonet and Monfray (1996)
Baring Head Station, New Zealand (BHD) 41.41◦ S, 174.87◦ E 85 Stephens et al. (2013)
Syowa Station, Antarctica (operated by Japan) (SYO) 69.01◦ S, 39.59◦ E 14 Schuldt et al. (2020)
South Pole, Antarctica (operated by the USA) (SPO) 89.98◦ S, 24.8◦W 2810 Gillette et al. (1987)
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Table A2. List of total column stations used for the evaluation in Sect. 3.1.

Station, country Latitude and longitude Network Data references

Eureka, Canada 80.05◦ N, 86.42◦W TCCON+NDACC Strong et al. (2019), Batchelor et al. (2009)
Ny Ålesund, Norway 78.9◦ N, 11.9◦ E TCCON+NDACC Notholt et al. (2019)
Thule, Greenland 76.53◦ N, 68.74◦W NDACC Hannigan et al. (2009)
Kiruna, Sweden 67.84◦ N, 20.41◦ E NDACC Bader et al. (2017)
Sodankylä, Finland 67.37◦ N, 26.63◦ E TCCON+NDACC Kivi et al. (2014), Sha et al. (2021)
Harestua, Norway 60.2◦ N, 10.8◦ E NDACC De Mazière et al. (2018)
St Petersburg, Russia 59.90◦ N 29.80◦ E NDACC Makarova et al. (2015)
East Trout Lake, Canada 54.35◦ N, 104.99◦W TCCON Wunch et al. (2018)
Białystok, Poland 53.23◦ N, 23.02◦ E TCCON Deutscher et al. (2015)
Bremen, Germany 53.1◦ N, 8.85◦ E TCCON Notholt et al. (2014)
Karlsruhe, Germany 49.1◦ N, 8.44◦ E TCCON Hase et al. (2015)
Paris, France 48.85◦ N, 2.36◦ E TCCON Te et al. (2014)
Orléans, France 47.97◦ N, 2.11◦ E TCCON Warneke et al. (2014)
Garmisch, Germany 47.48◦ N, 11.06◦ E TCCON+NDACC Sussmann and Rettinger (2018a), Sussmann et

al. (2012), Hausmann al. (2016)
Zugspitze, Germany 47.42◦ N, 10.98◦ E TCCON+NDACC Sussmann and Rettinger (2018b)
Jungfraujoch, Switzerland 46.55◦ N, 7.98◦ E NDACC Zander et al. (2008)
Park Falls, WI, USA 45.94◦ N, 90.27◦W TCCON Wennberg et al. (2017)
Rikubetsu, Japan 43.46◦ N, 143.77◦ E TCCON+NDACC Morino et al. (2016a), De Mazière et al. (2018)
Boulder, CO, USA 39.99◦ N, 105.26◦W NDACC Ortega et al. (2021)
Indianapolis, IN, USA 39.86◦ N, 86◦W TCCON Iraci et al. (2016a)
Four Corners, USA 36.8◦ N, 108.48◦W TCCON Dubey et al. (2014b)
Lamont, OK, USA 36.5◦ N, 97.49◦W TCCON Wennberg et al. (2016a)
Anmyeondo, South Korea 36.54◦ N, 126.33◦ E TCCON Goo et al. (2014)
Tsukuba, Japan 36.05◦ N, 140.12◦ E TCCON Morino et al. (2016b)
Nicosia, Cyprus 35.14◦ N, 33.38◦ E TCCON Petri et al. (2020)
Edwards, CA, USA 34.96◦ N, 117.88◦W TCCON Iraci et al. (2016b)
JPL, CA, USA 34.2◦ N, 118.18◦W TCCON Wennberg et al. (2016b)
Pasadena Caltech, CA, USA 34.14◦ N, 118.13◦W TCCON Wennberg et al. (2015)
Saga, Japan 33.24◦ N, 130.29◦ E TCCON Kawakami et al. (2014)
Hefei, China 31.9 ◦ N, 117.17◦ E TCCON Liu et al. (2018)
Izaña, Spain 28.3◦ N, 16.48◦W TCCON+NDACC Blumenstock et al. (2014), García et al. (2021)
Mauna Loa, HI, USA 19.54◦ N, 155.58◦W NDACC Hannigan et al. (2009)
Altzomoni, Mexico 19.12◦ N, 98.66◦W NDACC De Mazière et al. (2018)
Burgos, Philippines 18.53◦ N, 120.65◦ E TCCON Morino et al. (2018)
Manaus, Brazil 3.21◦ S, 60.6◦W TCCON Dubey et al. (2014a)
Ascension Island, UK 7.92◦ S, 14.33◦W TCCON Feist et al. (2014)
Darwin, Australia 12.43◦ S, 130.89◦ E TCCON Griffith et al. (2014a)
Saint-Denis, Réunion, France 20.9◦ S, 55.49◦ E TCCON+NDACC De Mazière et al. (2014)
Maïdo, Réunion, France 21.1◦ S, 55.4◦ E NDACC Zhou et al. (2018)
Wollongong, Australia 34.41◦ S, 150.88◦ E TCCON+NDACC Griffith et al. (2014b), De Mazière et al. (2018)
Lauder, New Zealand 45.05◦ S, 168.68◦ E TCCON+NDACC Sherlock et al. (2014a, b), Pollard et al. (2019,

2017), Bader et al. (2017)
Arrival Heights, Antarctica 77.83◦ S, 166.67◦ E NDACC Bader et al. (2017)
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Table A3. List of AirCore sites (from
NOAA_AirCore_data_v20210813; Baier et al., 2021) used
for the evaluation in Sect. 3.2.

Site, country Latitude and longitude

Boulder, CO, USA 40.03◦ N, 103.74◦W
Lamont, OK, USA 36.85◦ N, 98.21◦W
Lauder, New Zealand 45.50◦ S, 169.47◦ E
Sodankylä, Finland 67.41◦ N, 26.31◦ E
Park Falls, WI, USA 45.97◦ N, 90.32◦W
Edwards, CA, USA 34.65◦ N, 117.29◦W
Traînou, France 48.48◦ N, 1.16◦ E

Code and data availability. The IFS forecasting and reanalysis
system is not for public use as the ECMWF Member States are
the proprietary owners. The resulting dataset is however freely
available on the Copernicus Atmosphere Data Store. The CAMS
GHG reanalysis can be accessed through the CAMS Atmosphere
Data Store (ADS) at https://doi.org/10.24380/8fck-9w87 (Coperni-
cus Atmosphere Monitoring Service, 2021). The format is avail-
able in both GRIB and NetCDF. The data record starts on 1 Jan-
uary 2003 at 00:00 UTC and currently stops on 31 December 2020.
Recent months will be added over time as soon as the reanaly-
sis procedure and its validation are completed. The original data
were available either as spectral coefficients with a triangular trun-
cation of T255 or on a reduced Gaussian grid with a resolution of
N128. For the ease of the user, fields were interpolated from their
native representation to a regular 0.75◦× 0.75◦ latitude–longitude
grid. For sub-daily data the CAMS reanalysis is archived with a 3-
hourly time step (00:00, 03:00, 06:00, 09:00, 12:00, 15:00, 18:00,
21:00 UTC). Precomputed monthly averages are also directly avail-
able for all fields. The 3D fields are available on two different
vertical resolutions, 25 pressure levels (1000, 950, 925, 900, 850,
800, 700, 600, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20,
10, 7, 5, 3, 2, 1 hPa), and 60 hybrid σ–pressure vertical model
levels, which are described at https://confluence.ecmwf.int/display/
UDOC/L60+model+level+definitions (last access: 18 March 2023).
The data records have 18 total 2D radiation fields, two vertically
integrated atmospheric datasets of CO2 and CH4 (column-mean
mole fractions, 14 2D surface flux variables, 32 total 2D mete-
orological fields, and 16 total 3D fields including meteorological
and greenhouse gas fields). A complete listing of the variables
included in the CAMS GHG reanalysis is provided in the ADS
(https://ads.atmosphere.copernicus.eu/cdsapp#!/home, last access:
18 March 2023).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/acp-23-3829-2023-supplement.
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