
HAL Id: insu-04117945
https://insu.hal.science/insu-04117945v2

Submitted on 30 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The IASI NH3 version 4 product: averaging kernels and
improved consistency

Lieven Clarisse, Bruno Franco, Martin van Damme, Tommaso Di Gioacchino,
Juliette Hadji-Lazaro, Simon Whitburn, Lara Noppen, Daniel Hurtmans,

Cathy Clerbaux, Pierre-François Coheur

To cite this version:
Lieven Clarisse, Bruno Franco, Martin van Damme, Tommaso Di Gioacchino, Juliette Hadji-Lazaro, et
al.. The IASI NH3 version 4 product: averaging kernels and improved consistency. Atmospheric Mea-
surement Techniques, 2023, 16 (21), pp.5009-5028. �10.5194/amt-16-5009-2023�. �insu-04117945v2�

https://insu.hal.science/insu-04117945v2
https://hal.archives-ouvertes.fr


Atmos. Meas. Tech., 16, 5009–5028, 2023
https://doi.org/10.5194/amt-16-5009-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

The IASI NH3 version 4 product: averaging kernels
and improved consistency
Lieven Clarisse1, Bruno Franco1, Martin Van Damme1,2, Tommaso Di Gioacchino1, Juliette Hadji-Lazaro3,
Simon Whitburn1, Lara Noppen1, Daniel Hurtmans1, Cathy Clerbaux3,1, and Pierre Coheur1

1Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing,
Université libre de Bruxelles (ULB), Brussels, Belgium
2Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
3LATMOS/IPSL, Sorbonne Université, UVSQ, CNRS, Paris, France

Correspondence: Lieven Clarisse (lieven.clarisse@ulb.be)

Received: 4 March 2023 – Discussion started: 26 May 2023
Revised: 5 September 2023 – Accepted: 12 September 2023 – Published: 30 October 2023

Abstract. Satellite measurements play an increasingly im-
portant role in the study of atmospheric ammonia (NH3).
Here, we present version 4 of the Artificial Neural Network
for IASI (ANNI; IASI: Infrared Atmospheric Sounding In-
terferometer) retrieval of NH3. The main change is the in-
troduction of total column averaging kernels (AVKs), which
can be used to undo the effect of the vertical profile shape
assumption of the retrieval. While the main equations can be
matched term for term with analogous ones used in UV/Vis
retrievals for other minor absorbers, we derive the formal-
ism from the ground up, as its applicability to thermal in-
frared measurements is non-trivial. A large number of other
smaller changes were introduced in ANNI v4, most of which
improve the consistency of the measurements across time
and across the series of IASI instruments. This includes a
more robust way of calculating the hyperspectral range index
(HRI), explicitly accounting for long-term changes in CO2 in
the HRI calculation and the use of a reprocessed cloud prod-
uct that was specifically developed for climate applications.
The NH3 distributions derived with ANNI v4 are very similar
to the ones derived with v3, although values are about 10 %–
20 % larger due to the improved setup of the HRI. We ex-
clude further large biases of the same nature by showing the
consistency between ANNI v4 derived NH3 columns with
columns obtained with an optimal estimation approach. Fi-
nally, with v4, we revised the uncertainty budget and now re-
port systematic uncertainty estimates alongside random un-
certainties, allowing realistic mean uncertainties to be esti-
mated.

1 Introduction

Atmospheric ammonia (NH3) primarily originates from agri-
culture and related activities. Its presence in the atmosphere
leads to a reduction of life quality and to millions of prema-
ture deaths via its contribution to particulate matter (Pozzer
et al., 2017). As one of the main forms of reactive nitrogen
(Galloway et al., 2021), NH3 is also a key element in the
global nitrogen cycle with devastating effects on the environ-
ment when deposited in excess (Sutton et al., 2014).

Satellite measurements of NH3 abundances have in the
past decade contributed to our understanding of its global
distribution, spatiotemporal variations, emission sources,
concentration trends, transport patterns, chemistry and depo-
sition levels. Currently, the two most widely used satellite
datasets are those derived from observations of the Cross-
track Infrared Sounder (CrIS) (Shephard et al., 2020) and the
three Infrared Atmospheric Sounding Interferometers (IASI)
(Van Damme et al., 2021). The CrIS product relies on opti-
mal estimation, while the IASI product is based on the con-
version of a spectral NH3 index to a total column.

The first version of the IASI-NH3 product (Van Damme
et al., 2014) used look-up-tables (LUT) for the conver-
sion. The LUTs were replaced with a more flexible neu-
ral network (NN) in Whitburn et al. (2016). Since then,
the Artificial Neural Network for IASI (ANNI) retrieval
approach underwent a series of incremental improvements
that are documented in Van Damme et al. (2017), Franco
et al. (2018) and Van Damme et al. (2021). In Franco et
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al. (2018, 2019, 2020, 2022) and Rosanka et al. (2021) the
ANNI retrieval framework was expanded for the retrieval of
other minor trace gases from IASI observations. A similar
retrieval approach was also recently adopted for isoprene re-
trievals from CrIS (Wells et al., 2022).

Returning to ANNI-NH3, in Van Damme et al. (2017),
a reanalysis product was introduced. This product differs
in the origin of the input parameters that are used for the
NN. Whereas the baseline product (also called near-real-time
(NRT) product) uses operational IASI Level 2 (L2) informa-
tion on the pressure, humidity and temperature profiles, and
a climatology characterizing the boundary layer height, the
reanalysed product uses ERA5 model output for these pa-
rameters (Hersbach et al., 2020), interpolated in time and
space to match the observations. The resulting product is
temporally more consistent as it removes the effect of the
several changes that occurred in the L2 products throughout
the years. Both NH3 products include several empirical cor-
rections to counter small differences observed between the
three IASI instruments and small biases that occurred as a
result of sporadic changes to the IASI instrument or in the
L0 to L1c processing of the spectra.

The IASI NH3 product is widely used by the scien-
tific community. However, the absence of averaging kernels
(AVKs) has in the past hampered model comparison and as-
similation. This paper presents version 4 of the ANNI re-
trieval framework, with the most important change being the
introduction of AVKs. After a brief recapitulation of the re-
trieval algorithm in Sect. 2, the AVK framework is presented
in Sect. 3. This includes its theoretical basis, practicalities
related to how the AVKs are calculated within ANNI and a
discussion on how they can be used in measurement-model
comparison and assimilation. Other changes that were intro-
duced in ANNI v4 are detailed in Sect. 4 (for those related to
temporal consistency) and Sect. 5 (for all other changes). In
Sect. 6, an evaluation of the NH3 product is presented, com-
paring the v3 with the v4 product and the neural network out-
put with retrievals based on optimal estimation. In the final
part of this paper, we present the revised uncertainty budget
of the ANNI retrieval.

2 ANNI retrieval overview

Here, we give a brief overview of the ANNI algorithm and
refer to the previously cited papers on the NH3 product for a
detailed description and the rationale behind the different re-
trieval choices. Table 1 summarizes the most important quan-
tities and symbols used in this paper.

The retrieval consists of two independent computational
steps. The first one characterizes the NH3 signal strength in
a spectrum L, via the so-called hyperspectral range index
(HRI), which relies on a mean spectrum L and associated
covariance matrix S constructed from a set of spectra with

no observable NH3 spectral signatures. It is defined as

HRI=NKTS−1 (L−L
)
, (1)

with N a normalization constant and K an NH3 Jacobian.
By construction, the HRI has a mean of zero on the spec-
tra from which L and S are constructed. The normalization
factor guarantees that the HRI has a standard deviation of 1
spectra containing only background levels of NH3.

The second part of the algorithm relies on a neural network
to link the measured HRIs to estimates X̂a of the true NH3
total columns X, via a scaling factor SFa :

X̂a =
HRI
SFa
+B, (2)

with B an NH3 background column corresponding to L. As
in previous versions of ANNI, we will assume a zero back-
ground column for NH3 for ANNI v4. However, in what fol-
lows, we develop the theory for an arbitrary background col-
umn B, so that the recipe can be applied to the other tracers
retrieved from IASI with ANNI (e.g. CH3OH or PAN). Re-
trieved quantities will be indicated with a hat, as in X̂. Su-
perscripts refer to the assumed or modelled vertical profile
shape. In the ANNI retrieval framework, the scaling factor
SFa is the quantity that is calculated with an NN, for each
individual observation, based on the state of the atmosphere
(temperature and water vapour profile, surface pressure), the
surface temperature and emissivity, the zenith angle, the HRI
and an assumed vertical profile shape. For NH3, the volume
mixing ratio (VMR) vertical profile is modelled as a Gaus-
sian,

VMR(z)= VMR(z0)e
−
(z−z0)

2

2σ2 , (3)

with z the altitude about ground level, z0 the peak altitude
and σ the width of the profile. Over land, the peak altitude is
set at the surface, with a width σ equal to the boundary layer
height. Over ocean, the peak altitude is set to 1.4 km with a σ
of 0.9 km. In general, X̂a 6=X because of instrumental noise,
errors in the assumed vertical profile, imperfect knowledge of
one of the other input parameters and errors in the spectro-
scopic parameters or forward model. The NN is trained from
a large set of forward modelled spectra. Appropriate pre- and
post-retrieval flags accompany the retrieval. The pre-filter re-
moves respectively measurements with erroneous L1 or ex-
cess cloud coverage. The post-filter flags retrievals with lim-
ited or no sensitivity to the measured quantity, satisfying

1
|SF|

> 1.5× 1016 molec.cm−2, (4)

and retrievals whose HRIs are either too noisy or for which
the assumed vertical profile is incompatible with the mea-
sured HRI, satisfying

|HRI|> 1.5 and X̂a < 0. (5)
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Table 1. Summary of the main quantities and associated symbols that are used in the AVK formalism.

Name Symbol Notes/variations

Total column X X̂a , X̂m (retrieved with a or m profile); Mm, M̂a (modelled or retrieved-modelled profile)
Partial column Xz X =

∑
Xz

Confined column X̂|z retrieval assuming the entire total column is localized at altitude z
Background column B B =

∑
Bz

Normalized a priori profile az az = (X̂
a
z −Bz)/(X̂

a
−B)

Normalized modelled profile mz mz = (M
m
z −Bz)/(M

m
−B)

Total scaling factor SF SFa , SF|z (a priori or confined profile)
Local scaling factor SFz SF=

∑
zSFz(Xz−Bz)/(X−B), SFa =

∑
zSFzaz

Averaging kernel Aaz Aaz = SFz/SFa

Vertical partitioning of signal V az V az = A
a
zaz with

∑
V az = 1

Note that this filter only removes a fraction of the negative
columns (see Clarisse et al., 2019; Whitburn et al., 2016 for a
discussion on why it is important to keep these). Via propaga-
tion of uncertainty, a total retrieval uncertainty is calculated
for each individual measurement alongside the retrieved col-
umn.

3 Averaging kernels

The general AVK framework that we introduce below bears
a lot of similarity to the total column AVK formalism (Es-
kes and Boersma, 2003) developed for the DOAS retrieval
approach of weakly absorbing species (see also Palmer
et al., 2001; Rodgers and Connor, 2003; Boersma et al.,
2004, 2016; Cooper et al., 2020). In the DOAS retrieval ap-
proach, the total column X is retrieved as

X̂a =
SCD

AMFa
, (6)

with SCD the slant column density and AMF the air mass
factor which accounts for the atmospheric conditions and as-
sumed vertical profile. Equation (6) has the same functional
form as the main formula (Eq. 2) of the ANNI retrieval for-
malism, with the SCD corresponding to the HRI and the
AMF to the SF provided by an NN.

One key element on which the total column AVK formal-
ism of Eskes and Boersma (2003) relies is linearity and addi-
tivity of the spectrum with respect to changes in the trace gas
amount. Linearity is a consequence of the curve of growth
of spectral lines for low optical depths (Thorne et al., 1999)
and in the DOAS approach also implies that the SCD is pro-
portional to the trace gas abundance. Additivity represents
the fact that the effect of different atmospheric layers can be
summed up independently from each other. Given the defi-
nition of the HRI and the effects of thermal emission of the
atmosphere, it is not obvious that these hold in the infrared
spectral domain, and for this reason, we derive both proper-
ties below.

3.1 On the linearity and additivity of the HRI

Let LBν be the radiance at the sensor for a scene with cli-
matological background levels B of the target trace gas and a
corresponding HRI of zero. Dividing the atmosphere in n ap-
propriately spaced layers z, we denote by Bz the correspond-
ing partial columns (B =

∑
zBz). We can then calculate LBν

from the following sequence of equations: (Rodgers, 2000;
Petty, 2006)

LB1ν = t1ν(L0ν −B1ν)+B1ν (7)

LB2ν = t2ν(L1ν −B2ν)+B2ν (8)
...

LBν = tnν
(
L(n−1)ν −Bnν

)
+Bnν . (9)

Forward substitution of the above relations yields LBν as a
function of the surface term L0ν . Here tzν are the layer trans-
mittances that account for the absorption of all atmospheric
species. The z dependence of this parameter is related to
vertical variations in the atmospheric constituents and the
pressure and temperature dependence of the line intensities.
Bzν = Bν(Tz) corresponds to the Planck’s blackbody func-
tion for an averaged layer temperature Tz.

For this scene, we now introduce an additional trace
amount X−B and write the corresponding observed radi-
ance as Lν . In each layer, the transmittance will decrease by
a factor tXz−Bzzν = e−τzν ≈ 1− τzν , with τzν the small optical
depth caused by the excess Xz−Bz. With this, the sequence
of equations becomes

L1ν = t1ν (1− τ1ν)(L0ν −B1ν)+B1ν (10)
L2ν = t2ν (1− τ2ν)(L1ν −B2ν)+B2ν (11)
...

Lν = tnν (1− τnν)
(
L(n−1)ν −Bnν

)
+Bnν . (12)

For optical thicknesses of the target trace gas τzν well below
one, the second (τiντjν) and higher order terms in optical
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Figure 1. Numerical demonstration of the linearity and additivity of
the HRI as a function of a change in partial column. In the blue and
green scenario, NH3 was varied at one fixed altitude. In the red sce-
nario, partial columns in both layers were varied simultaneously.
The solid black lines represent linearity, whereas the dash-dotted
line, being the sum of the green line and blue line, represents addi-
tivity.

depth can be neglected. Combining both sets of equations,
one can verify that

L1ν = L
B
1ν − τ1ν (L0ν −B1ν) t1ν (13)

L2ν = L
B
2ν − τ1ν (L0ν −B1ν) t1ν t2ν − τ2ν (L1ν −B2ν) t2ν (14)

...

Lν = L
B
ν −

n∑
z=1

τzν

(
LB(z−1)ν −Bzν

) n∏
j=z

tjν . (15)

Each of the terms in the sum expresses the effect of the ab-
sorption in one layer due to the excessXz−Bz and the atten-
uation by the layers above. Note that the absorptions are pro-
portional to both the optical depth and the local thermal con-
trast

(
LB(z−1)ν −Bzν

)
, which are two parameters that drive

the measurement sensitivity in the infrared (Bauduin et al.,
2017). The optical thickness in turn is proportional to the par-
tial column of the target species τzν ∝ (Xz−Bz) and thus

Lν = L
B
ν −

∑
z

czν(Xz−Bz) . (16)

The constants czν depend on the state of the atmosphere at
level z and above, but are independent of the excess trace gas
amount X−B.

The HRI is by definition a linear combination of spectral
channels ν, from Eq. (1),

HRI=
∑
ν

wνLν +C , (17)

with C and wν numerical constants. Using Eq. (16) and
the fact that the HRI is zero on the background (HRI=∑
νwνL

B
ν +C = 0), we find

HRI=
∑
ν

wνL
B
ν −

∑
ν,z

wνczν(Xz−Bz)+C (18)

=−

∑
ν,z

wνczν(Xz−Bz) . (19)

This equation implies that for optically thin absorbers, the
HRI can be written as a weighted sum of the partial col-
umn enhancements. This linearity and additivity of the NH3
HRI as a function of partial columns is illustrated in Fig. 1
by means of simulations with a radiative transfer code. The
blue line illustrates the nearly linear increase in HRI for in-
creasing NH3 columns in the first atmospheric layer of the
model. Starting from about 7× 1016 molec. cm−2, slow de-
parture from linearity is observed. The green line shows the
same for the second atmospheric layer. The overall larger
HRI in this second layer results from higher thermal con-
trast (TC) higher up in the atmosphere. Finally, the red line
represents the HRI when NH3 is increased simultaneously in
both layers. The dash-dotted line is the sum of the blue and
green curve and for low columns is almost indiscernible from
the simulated HRI, illustrating additivity in the optically thin
limit.

To make the link with Eq. (2), Eq. (19) can be rewritten as

HRI=
∑
z

SFz(Xz−Bz) (20)

=

∑
z

SFz
Xz−Bz

X−B
(X−B) (21)

= SF(X−B), (22)

with SFz local scaling factors and

SF=
∑
z

SFz
Xz−Bz

X−B
, (23)

total scaling factors that depend on the scene conditions
(e.g. surface temperature, atmospheric temperature and pres-
sure profiles, vertical profile of the target species). We note
that whereas SF depends on the normalized vertical profile
shape Xz−Bz

X−B
, both SFz and SF are independent of the total

column for a fixed profile shape.
Finally, introducing

HRIz = SFz(Xz−Bz), (24)

we see from Eq. (20) that the HRI can be decomposed in
different partial HRIz:

HRI=
∑
z

SFz(Xz−Bz)=
∑
z

HRIz. (25)

Atmos. Meas. Tech., 16, 5009–5028, 2023 https://doi.org/10.5194/amt-16-5009-2023
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These HRIz quantify how much each layer contributes to the
total HRI and they are, again in the optically thin limit, inde-
pendent from each other.

3.2 Total column averaging kernels

Equation (22) motivates the NN retrieval formula,

X̂a =
HRI
SFa
+B, (26)

with SFa an estimated scaling factor which depends on the
best estimates of all the dependencies of SF, including the
vertical profile of the target species. As we have just shown,
in the optically thin limit SFa is independent of the total col-
umn amount. This is no longer the case for strong absorptions
when non-linear effects become increasingly important. In
the ANNI retrieval framework this is taken care of by includ-
ing the HRI as an input parameter in the calculation of the
SF. In what follows, we will first derive the AVK formalism
in the optically thin limit, assuming both linearity and addi-
tivity (and therefore SF that are independent of the (partial)
column). In Sect. 3.5 we will then show how to correct for
small errors that arise when these conditions are not met.

The quantities X̂z−Bz express the local enhancement of
the trace gas column at an altitude z, and it is their relative
proportions that are constrained in the retrieval by the use of
an a priori profile shape. We write

az =
X̂az −Bz

X̂a −B
(27)

for the normalized a priori vertical partial column profile,
or partial column profile shape, with X̂az the partial columns
corresponding to the retrieved X̂a and

∑
zaz = 1. In the pre-

vious section we demonstrated that in the optically thin limit,
the scaling factor SFa equals the weighted sum of the differ-
ent local scaling factors defined by the profile shape:

SFa =
∑
z

SFz
Xaz −Bz

Xa −B
=

∑
z

SFzaz . (28)

Defining the averaging kernel as

Aaz =
SFz
SFa
=

SFz∑
zSFzaz

, (29)

we can express X̂a as a function of Xz by eliminating the
HRI from Eqs. (20) and (26):

X̂a =
HRI
SFa
+B (30)

=

∑
zSFz(Xz−Bz)

SFa
+B (31)

=

∑
z

Aaz (Xz−Bz)+B . (32)

As can be seen from this equation, the averaging kernel
Aaz fully characterizes the measurement, and can be used to

mathematically map the true profile Xz to the measured total
column X̂a .

Two example AVKs for an NH3 retrieval are shown in the
middle panel of Fig. 2, for a retrieval over land and over
ocean, with a priori profiles shown in the left panel. Both
AVKs logically increase with altitude, as the temperature dif-
ference between the surface and a given atmospheric layer,
and therefore the scaling factor, increases with altitude. Apart
from a multiplicative constant (1/SFa), the AVKs are inde-
pendent from the a priori profiles, which explains why both
land and ocean AVKs increase similarly with altitude. The
multiplicative constant determines the altitude for which the
AVK is one. This altitude can be interpreted as an equivalent
effective NH3 altitude, where all NH3 can be thought to be
located. For the ocean and land retrieval, this altitude is lo-
cated respectively around 1.6 and 0.7 km, consistent with the
a priori profiles shown in the left panel.

3.3 Interpretation

It is instructive to compare the total column averaging kernel,
as defined above, with the one arising in optimal estimation
retrievals (Rodgers, 2000):

X̂a
= (I−A)Xa

+AX . (33)

Here, we use matrix and vector notation, with X and X̂ re-
spectively the true and retrieved partial columns and A the
AVK matrix. I is the identity matrix. Both Eqs. (32) and (33)
allow simulating the retrieval process for any hypothetical X

(e.g. from a model, or an independent measurement). How-
ever, this is largely where their similarity ends, as there are
important differences when it comes to interpreting these two
types of AVK.

The first difference is the role of the a priori. For the to-
tal column retrieval, the a priori fixes only the vertical profile
shape, while for the optimal estimation retrieval, the a priori
affects both the vertical profile shape and the retrieved value
at each altitude separately. Equation (33) expresses that the
retrieved profile is a weighted sum of the a priori and the true
profile, with the weights provided by the AVK. When the in-
formation content of the measurement is low or the retrieval
is too heavily constrained, the AVK will tend toward zero
and the solution will remain close to the a priori. Conversely,
when the information content is high or the retrieval loosely
constrained, the AVK will approach the unit matrix. The op-
timal estimation AVK is therefore a measure of how much
information is extracted from the measurement, with its trace
commonly denoted “degrees of freedom for signal”. By con-
trast, the total column averaging kernels introduced above are
not a measure of how much information is extracted from the
measurement, as they accompany an unconstrained retrieval.
A perfect measurement would correspond to an all-ones vec-
torAz = 1 for all z. However, inherent to (infrared) sounding,
sensitivity varies as a function of thermal contrast, and thus
altitude, so this ideal can never be met.

https://doi.org/10.5194/amt-16-5009-2023 Atmos. Meas. Tech., 16, 5009–5028, 2023
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Figure 2. A priori vertical profile az, averaging kernel Aaz and vertical partitioning of signal V az .

The second important difference relates to the fact that a
vertical profile is retrieved in the optimal estimation type re-
trievals. The rows of A express the vertical resolution of the
retrieval, where the ideal is a narrow function that peaks at
its corresponding altitude. As no vertical information is ex-
tracted in the total column retrievals, this interpretation also
does not apply. Az is a (normalized) vector that shows which
layers of the atmosphere offer in principle the greatest sensi-
tivity. It naturally peaks high up in the atmosphere, irrespec-
tive of the location of the trace gas. However, combining the
total column AVK with the a priori profile does allow ex-
tracting a vector which characterizes the vertical sensitivity,
as we now show. Starting from Eqs. (26) and (28) we have

HRI= SFa
(
X̂a −B

)
(34)

=

∑
z

SFz
(
X̂a −B

)
az (35)

=

∑
z

SFz
(
X̂az −Bz

)
(36)

=

∑
z

ĤRIaz , (37)

where we defined ĤRIaz = SFz
(
X̂az −Bz

)
similarly to

Eq. (24) where we defined HRIz = SFz(Xz−Bz). A retrieval
that assumes a given a priori vertical profile az therefore
implicitly assumes that the HRI (the trace gas signal) can
be decomposed into partial ĤRIaz corresponding to spectral
change at each altitude. Note that while HRI=

∑
zĤRIaz =∑

zHRIz, the same does not necessarily hold for each indi-
vidual level ĤRIaz 6= HRIz, as the assumed profile can differ

from the actual profile. With this we can define the normal-
ized assumed HRI profile or, equivalently, the probable ver-
tical partitioning V az of the signal:

V az =
ĤRIaz
HRI

,=
SFz

(
X̂az −Bz

)
SFa(X̂a −B)

= Aazaz. (38)

From the first equality, it follows that
∑
zV

a
z = 1 (and also

follows the last term and Eq. 29). The three profiles az, Aaz
and V az are illustrated in Fig. 2 for a typical NH3 retrieval.
As can be seen, the maximum of V az is shifted upwards com-
pared with az, due to the more favourable thermal contrast
higher up in the atmosphere.

3.4 AVK application

There are two alternative ways in which averaging kernels
can be exploited to remove the impact of the vertical profile
assumption of the retrieval (Palmer et al., 2001; Eskes and
Boersma, 2003; Cooper et al., 2020).

3.4.1 Method 1: simulating measurements of the
modelled columns

Let Mm
z be a modelled profile with corresponding total col-

umn Mm and normalized profile (enhancement):

mz =
Mm
z −Bz

Mm−B
. (39)

Atmos. Meas. Tech., 16, 5009–5028, 2023 https://doi.org/10.5194/amt-16-5009-2023



L. Clarisse et al.: The IASI NH3 version 4 product 5015

We can simulate what would have been retrieved if the mod-
elled profiles were observed using Eq. (32):

M̂a
=

∑
z

Aaz (M
m
z −Bz)+B . (40)

This M̂a is directly comparable with X̂a as the same a priori
profile shape az is used for both retrievals. However, in case
the a priori profile significantly differs from the truth, both
X̂a and M̂a can deviate far from the truth.

3.4.2 Method 2: using modelled vertical profiles as
a priori

Rather than altering the modelled column, an attractive alter-
native is to alter the retrieved column to use instead of the
a priori vertical profile, the modelled profile (see Boersma et
al., 2016, Appendix D):

X̂m =
HRI
SFm
+B (41)

=
SFa(X̂a −B)∑

zSFzmz
+B (42)

=
X̂a −B∑
zA

a
zmz
+B . (43)

The averaging kernel associated with X̂m is

Amz =
SFz
SFm
= Aaz

SFa

SFm
. (44)

This X̂m can be directly compared with Mm, as both employ
the same profilemz. Note that X̂m depends only on the shape
of the modelled profile, not the total column. This method
can be used to obtain an improved retrieval by using a mod-
elled profile that approaches the reality better than a static
a priori profile. Since it was first applied to NH3 (Whitburn
et al., 2016), the ANNI retrieval has been capable of using
modelled profiles by adapting the input parameters to the net-
work. However, when the modelled profiles were changed,
the entire retrieval process had to be redone. Using Eq. (43)
and the provided AVKs, changing the a priori profile can be
done a posteriori by the data users. An important practical
note is that the post-filter of the retrieval (see Sect. 2) in-
cludes a threshold on the scaling factor, and that this filter
should be reevaluated for X̂m using SFm.

Both methods can be summarized as

Mm method 1
−−−−−→ M̂a to be compared with X̂a (45)

X̂a
method 2
−−−−−→ X̂m to be compared with Mm. (46)

Equations (39), (40) and (43) can be combined as

X̂m =
(X̂a −B)(Mm

−B)∑
zA

a
z (M

m
z −Bz)

+B (47)

=
(X̂a −B)(Mm

−B)

M̂a −B
+B, (48)

or

X̂m−B

Mm−B
=
X̂a −B

M̂a −B
, (49)

which shows that, when the goal is to compare the ratio be-
tween model and retrieved columns, both methods are equiv-
alent (Cooper et al., 2020).

3.5 Practical considerations

In the ANNI retrieval formalism, the total scaling factor SFa

is calculated directly by the NN, not via intermediate SFz
and application of Eq. (28). However, these SFz, which are
required to calculate the AVKs, can be estimated by exploit-
ing the flexibility of the NN. For NH3, the NN is trained for
a wide variety of Gaussian profiles, with peak altitudes rang-
ing from 0 to 20 km and σ from 100 m to 3 km. The SFz can
be estimated from the network using the input parameters
zpeak = z and σ = 100 m for the Gaussian profile. For this
calculation, an HRI input parameter is also required and the
choice was made to use the observed HRI. The correspond-
ing column that can be calculated from this satisfies

X̂|z =
HRI
SF|z
+B , (50)

where X̂|z is the retrieved total column assuming all the trace
gas enhancement is situated in the narrow Gaussian band
around altitude z. SF|z is the corresponding total scaling fac-
tor, which is used to approximate the local scaling factor SFz.
With this the AVK can be constructed as

Aaz =
SFz
SFa
≈

SF|z

SFa
=
(X̂a −B)HRI

(X̂|z−B)HRI
=
X̂a −B

X̂|z−B
. (51)

The formulas provided above are exact in the linear limit,
but for large columns, SFa and SF|z have an increasingly high
dependence on the value of the HRI. The NN takes into ac-
count this dependence so that Eqs. (2) and (50) are always
good approximations of the true X, provided that either the
assumed a priori profile is correct or that the tracer is con-
fined to a narrow layer. However, there is no guarantee that

SFa ?
=

∑
z

SFzaz, (52)
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Figure 3. AVK normalization factors (N ) for 1 day (17 June 2015, a) and for 1 year (2015, b) of IASI observations. In both cases, data
originates from the morning overpass of IASI-A. The insets show the respective normalized histograms.

or thus that
∑
zA

a
zaz equals one. A consistent AVK can be

obtained, however, as

Aaz =
1
N

X̂a −B

X̂|z−B
, (53)

with N =
∑
zA

a
zaz a normalization factor. This factor also

guarantees that applying the averaging kernels on the a priori
vertical profile returns the retrieved column:

∑
z

Aaz

(
X̂az −Bz

)
+B =

∑
z

Aazaz

(
X̂a −B

)
+B = X̂a . (54)

The normalization factors are shown in Fig. 3 for 1 day and
1 year of global measurements. The histograms shown in
the insets indicate average values around 0.98–0.99 (±0.03–
0.04), illustrating the consistency of the approach and the
fact that non-linear effects are modest. The areas where the
normalization factors are furthest from 1 are affected by low
clouds (e.g. off the west coast of South Africa) or sea ice.

The necessity of using normalization factors follows from
the fact that in the non-linear regime, the SFz are not uniquely
defined, depending on the concentration in the layer z (non-
linearity) and the other layers (non-additivity). However, as
we have shown, in the neighbourhood of the solution, a fully
consistent AVK can be obtained after renormalization. It is
this AVK that is recommended when applying method 1 in
model comparisons. However, in case method 2 is employed
and when the modelled profile concerns a narrow layer at
high altitude (e.g. a pyro-convective fire plume) or signifi-
cantly deviates from the a priori, it can be better not to renor-
malize. In particular, when we have a narrow modelled pro-
file layer at an altitude z′, withmz = δzz′ , the second method,

without renormalization, yields the expected

X̂m =
X̂a −B∑
zA

a
zδzz′
+B (55)

=
X̂a −B

Aa
z′
+B (56)

=

(
X̂|z

′

−B
)
+B (57)

= X̂|z
′

. (58)

The output files of the ANNI retrieval contain X̂a , X̂|z, Bz
and N . With this, Aaz can be calculated if required from
Eq. (51) or renormalized via Eq. (53).

4 Temporal consistency

4.1 Pseudoinverse

The generalized error covariance matrix S plays a key role in
the calculation of the HRI. As a symmetric matrix, S has real
eigenvalues λi and can be decomposed as

S=
n∑
i=1

λisisi
T, (59)

with all si orthogonal to each other. It follows that its inverse
can be written as

S−1
=

n∑
i=1

1
λi

sisi
T. (60)

This expression leads to an intuitive interpretation of the HRI
(Clarisse et al., 2013): it can be seen as a weighted projec-
tion of the spectrum onto the Jacobian, with the directions
that usually exhibit the most variability carrying the lowest
weight.

The distribution of the eigenvalues of the covariance ma-
trix used for the NH3 HRI (with a spectral range covering
812–1126 cm−1) is shown in Fig. 4. Three domains can be
distinguished: (i) the 30 highest values corresponding to the
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Figure 4. Eigenvalue spectrum of the covariance matrix S used for
the calculation of the HRI of NH3. The eigenvalues are ordered
from largest to smallest.

principal components, (ii) around 1200 values corresponding
mainly to instrumental noise and (iii) around 20 very small
eigenvalues. These smallest eigenvalues are of the order of
the numerical precision at which the covariance matrix is
calculated and, in essence, correspond to directions not oc-
curring in IASI spectra. While random instrumental noise
would be expected to occur in all directions, apodization and
L1 post-processing remove some. Such directions carry the
most weight in S−1, but as they are not found in real spectra
they do not contribute much to the total HRI (as can easily
be verified numerically).

However, small changes to the instrument calibration or
post-processing can alter the contribution of these directions
in the IASI spectra, and because they carry such a large
weight in the HRI, they can affect its value considerably. This
explains why the HRI in the past has been found to be very
sensitive to such changes (Van Damme et al., 2021). It also
explains the occurrence of (small) biases between the differ-
ent instruments. The solution is fortunately simple (Rodgers
and Connor, 2003; Eaton, 2007) and is obtained by disre-
garding the terms corresponding to the very small eigenval-
ues in Eq. (60). As we will show later, using such a pseu-
doinverse does not eliminate the effects of L1C changes com-
pletely but reduces their magnitude considerably.

After the pseudoinverse was implemented, an unexpected
change was observed in the value of the HRIs on spectra from
the period on which the covariance matrix was built. It turns
out that while the scalar product of observed IASI spectra
with the eigenvectors corresponding to the lowest eigenval-
ues LT si/λi is near zero, this is not the case for spectra gen-
erated with the forward model. This is due to small discrep-
ancies between spectra generated by the forward and actual
spectra that are magnified by the 1/λi factors. Hence, syn-
thetic HRIs calculated on the training set of the neural net-
work have in the past been overestimated, resulting in low

biases in the retrieved columns. As we will show in Sect. 6,
the magnitude of this bias was around 18 % in ANNI-v3.
For the retrieval of other trace gases presented in Franco et
al. (2018), especially those operating on a smaller spectral
range, the bias has been evaluated to be much smaller.

4.2 Carbon dioxide

As the mean spectrum and covariance matrix that are used for
the HRI are calculated from spectra measured within 1 ref-
erence year (2013), long-term changes in atmospheric com-
position that affect the spectral region of interest can have
unwanted effects on the HRI. This was first noted in Van
Damme et al. (2021), where a spurious trend was seen in the
HRI NH3 data over remote regions. It was attributed to the
increase in global carbon dioxide (CO2) concentrations, be-
cause of the presence of a weak CO2 absorption band in the
920–990 cm−1 spectral region (Whitburn et al., 2021) where
NH3 has its strongest absorption. A linear correction on the
HRI of the order of 0.03 yr−1 was introduced to compensate
for this effect. However, because of seasonal variations, and
possible temperature dependence of the interference an HRI
which is less sensitive to CO2 changes is preferable. One op-
tion is to build the covariance matrix from spectra spanning
the entire period of IASI measurements.

An alternative approach is to account directly for the ef-
fects of CO2 in the calculation of the HRI. The HRI formula
is related to generalized least squares estimation and can be
expanded to include multiple variables that are simultane-
ously estimated (Walker et al., 2011; Theys et al., 2022). In
our case, the Jacobian vector becomes a two-column matrix,
one column corresponding to NH3 and the other to CO2. The
HRI formula Eq. (1) remains formally identical (with only
the first component of the two-element HRI vector of inter-
est). The effect of this change on the long-term trend of the
HRI is detailed in Sect. 4.4.

4.3 Cloud clearing

The ERA5 model output replaces satisfactorily the IASI L2
for all input parameters, except for the surface temperature
and cloud cover. These are spatially and temporally too vari-
able for model output to be representative for an IASI foot-
print at a given time. All previous reanalysed ANNI-NH3
products still relied on different versions of the IASI L2
cloud product. Recently, Whitburn et al. (2022) developed an
NN-based cloud flag. Trained with data from the latest ver-
sion (v6.5) of the official L2 cloud product, it inherits all its
advantages as a proven and well-validated product. The NN
utilizes carefully selected IASI channels as input (exclud-
ing channels affected by long-lived tracers CO2, N2O, CH4,
CFC-11 and CFC-12) and was shown to be temporally con-
sistent, and coherent across the three IASI instruments. The
network presented in Whitburn et al. (2022) was trained to
distinguish completely clear scenes (0 % cloud cover) from
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Figure 5. Monthly average HRI time series over 10 remote regions for the three IASI instruments separately. The top panel shows the
uncorrected time series, and the other panels, from top to bottom, show the effects of the corrections that are applied consecutively.

the rest. For the NH3 processing, two additional networks
were trained to distinguish scenes with a cloud cover below
10 % and 25 % respectively. With this, three cloud flags are
available and these have now been integrated in v4 of the
reanalysed ANNI-NH3 product. The results presented in the
rest of this paper utilize the flag corresponding to the 10 %
threshold.

4.4 Residual bias corrections

The stability of the HRI was evaluated over 10 remote re-
gions where only background columns of NH3 are expected.
Their average monthly HRI is shown in Fig. 5 for the three
IASI instruments separately. The top panel shows the av-
erage as obtained with the HRI setup as described above,
i.e. with pseudoinverse and with a CO2 Jacobian. As with
previous versions of the product, a spurious linear trend is
observed, but thanks to the introduction of the CO2 Jacobian,
its magnitude is reduced to about 0.01 yr−1, compared with
0.03 yr−1 previously. A slightly steeper decrease is observed
for Metop B. We correct for these trends by adding a time-
dependent offset as in Van Damme et al. (2021). The result
after correction is shown in the second panel of Fig. 5.

A detailed analysis was made of this time series to detect
offsets between the different instruments and shifts that co-
incide with known changes in the IASI L1C data. The largest
of these shifts is the offset of 0.11 seen between IASI-C and
the two other instruments. Small offsets in the HRI time se-
ries of IASI-A were found in 2010, 2015 and 2017, and in

the HRI of IASI-B in 2015. For each of these, offset cor-
rections were calculated in the range of 0.01–0.03. Thanks
to the pseudoinverse, their magnitude is drastically reduced.
Previously, offsets as large as 0.6 were observed. The result-
ing corrected time series is shown in the third panel. This
time series is temporally stable and shows an excellent con-
sistency between the three instruments, but it exhibits a weak
seasonal cycle, likely due to the combined effect of seasonal
changes in the concentrations of H2O and volatile organic
compounds that absorb in the same spectral range as NH3. To
remove this seasonality an offset depending on latitude and
month of the year was calculated from 2012 to 2014 IASI-
A data and applied on all data. The HRI after correction is
shown in the bottom panel of Fig. 5. Thanks to the improved
setup of the HRI, and the new cloud product, the magnitude
and therefore also uncertainty of all these corrections is lower
than in the previous product, which results in much improved
temporal consistency.

5 Other changes to the retrieval network

An additional change in the setup of the HRI concerns the
choice of the spectra used for determining the mean back-
ground spectra and its associated covariance matrix. As be-
fore (Franco et al., 2018) we use a random selection of IASI
spectra from the year 2013, but now with a proportionally
larger number of spectra from selected parts of the Sahara,
Arabian, Great Australian and Namib deserts. It was found
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Figure 6. An NH3 seasonal average derived from 0.5◦× 0.5◦ monthly averages of the reanalysis product of ANNI v4. Data include all
measurements from IASI-A (October 2007 to December 2019), IASI-B (March 2013 to September 2022) and IASI-C (September 2019 to
September 2022), with a cloud fraction below 10 %.

that this was an efficient way for countering the small nega-
tive biases that are seen over these areas and associated with
surface emissivity variations. It also leads to a better detec-
tion of NH3 transport over deserts.

Since ANNI v2 (Van Damme et al., 2017), the reanaly-
sis product relies on a surface temperature retrieved from a
custom-built neural network, rather than the IASI L2 surface
temperature. With ANNI v4, this network has been retrained
from data that were generated using the latest version (v6.5)
of the IASI L2 algorithm. The input parameters of the NN for
the retrieval of surface temperature include 60 selected base-
line channels (a subset of the channels used in the cloud NN),
surface altitude, total water vapour column and the three out-
put values of the cloud NNs. Mean and standard deviation of
the difference between the L2 surface temperature and that
retrieved from the network are of the order of 0.5 and 1.5 K
respectively for cloud fraction up to 25 %.

A final series of changes concern the network architecture
and training database. In previous versions, separate neu-
ral networks were employed for the retrieval over land and
ocean. These networks were trained respectively with Gaus-
sian a priori profiles peaking at the surface, and a more gen-
eral one, with profiles peaking at different altitudes. How-
ever, a careful comparison showed that the more general net-

work performed as well as the network trained specifically
for profiles peaking at the surface. For this reason, only one
network was trained for version 4, for a priori profiles peak-
ing at altitudes z0 from 0 to 20 km, with a width σ in the
range of 0.1–3 km. In view of the averaging kernel calcula-
tion, 20 % of the profiles of the training database have an
NH3 profile with a σ of 100 m.

6 Evaluation

6.1 Comparison with version 3

As outlined before, v4 has an improved temporal consistency
compared with v3. In this section, we provide a short as-
sessment of the new NH3 spatial distributions and how they
compare with previous versions. As an illustration of the new
product, a seasonal average over 2007–2022 is presented in
Fig. 6. The distributions follow closely the ones of previous
versions (Van Damme et al., 2015). Comparisons with ver-
sion 3 are provided in Figs. 7 and 8. The main differences
are: (1) overall larger columns, especially in areas with high
columns. As explained in Sect. 4.1, this is due to the more
robust way of calculating the HRI, which makes it less sen-
sitive to small errors in the forward model. Comparing in-
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Figure 7. Comparison between retrieved columns with ANNI v3
and v4 for all morning observations of 17 June 2015.

dividual observations, the new version is about 10 % (for
low HRI) to 20 % (for high HRI) larger. (2) A notable im-
provement over high latitudes thanks to the improved bias
correction (see Sect. 4.4). Averaged columns were clearly
overestimated in ANNI v3 for such observations, especially
over Greenland and Antarctica but also Canada and Russia.
(3) Slightly higher concentrations over deserts, partly due to
the overall increase in v4 and partly due to the larger weight
of deserts in the construction of mean background spectra
and associated covariance matrix (see Sect. 5). In v3, neg-
ative HRIs were consistently observed over certain deserts,
resulting in negative average columns or low biases. This
problem is not entirely gone (e.g. the average HRI over parts
of the Arabian desert is still negative), but much improved,
resulting in more consistent pronounced transport patterns
over, for example, the Sahara Desert. (4) Overall larger con-
centrations over oceans. The improved bias correction (last
step of the HRI correction presented in Sect. 4.4) enables
removal of practically all negative values on a long-term av-
erage. Average columns over remote ocean are now around
7× 1014 molec. cm−2 almost everywhere. An adverse effect
of the correction might be overestimated columns over the
Red Sea, Persian Gulf and Mediterranean Sea.

The most obvious remaining artefact in the v4 distribution
concerns the continuity of the land–sea transitions. While
they are reasonable for some regions of outflow (Gulf of
Mexico, Mediterranean Sea), off the west coast of Africa,
over the Arabian Sea, Gulf of Bengal or Yellow Sea, the tran-
sition is too abrupt to be realistic. The origin of this problem
is that different NH3 profiles are used for land and ocean.
With the introduction of the AVKs, this does not constitute a
problem in model comparison or assimilation. However, for
stand-alone use of the product, it would be desirable in the

future to improve the parametrization of the a priori vertical
profile shape.

6.2 Comparison with an optimal estimation retrieval

Given the low bias in ANNI NH3 v3, it is important to ex-
clude the presence of other biases related to the HRI calcula-
tion. Here, we present the results of an independent intercom-
parison that was conducted between the ANNI v4 retrieval
output and that of an optimal estimation approach which re-
lies on spectral fitting.

For the optimal estimation retrieval, the Atmosphit for-
ward and inverse model was used (Coheur et al., 2005),
which is the same tool whose forward model is used for the
construction of the ANNI training database. The optimal es-
timation was set up as follows: the retrieval range was set to
900–975 cm−1. Total columns of NH3 were retrieved with a
fixed vertical profile, using the same parametrization as in
ANNI NRT. The NH3 variance was set to 1000 %, corre-
sponding to an almost unconstrained retrieval. Together with
NH3, H2O was retrieved in 10 partial columns, with the a pri-
ori coming from the IASI L2. Total columns of CO2, O3
and CFC-12 were retrieved as well as the surface tempera-
ture. Spectral emissivity was taken from Zhou et al. (2013).
Before presenting the results, it should be emphasized that
despite the similarities in both retrieval approaches (same
input parameters, vertical profiles, forward model), no per-
fect agreement is expected because of (1) use of a narrower
spectral range in the optimal estimation retrieval, (2) differ-
ent propagation of instrumental noise to the retrieval result,
(3) limitations of the fitting model (e.g. with respect to fitting
water vapour or surface emissivity) and (4) errors related to
the imperfect training of the neural network.

For the comparison, 2 days were selected, one over Eu-
rope and one over North America, with relatively high
NH3 columns. The results are shown in Fig. 9. Inter-
cepts, mean and median differences are all of the order of
1015 molec. cm−2 or below. Regression slopes, calculated us-
ing iteratively reweighted least squares to remove the im-
pact of outliers, are 0.97 and 1.05. While the scatter around
the 1–1 lines is not negligible (with standard deviation of
the differences around 3–4×1015 molec. cm−2), these num-
bers demonstrate the overall consistency of both retrieval ap-
proaches and do not indicate a significant bias. Note that the
ANNI retrieval approach has numerous advantages over op-
timal estimation, as discussed in Whitburn et al. (2016).

The last detailed global validation of the IASI NH3 prod-
uct was based on a comparison of ground-based FTIR mea-
surements of NH3 with the LUT-based NH3 product, where
a low bias around 35 % was found (Dammers et al., 2016).
Since then, two independent validation studies have been
conducted. One study (Guo et al., 2021) compared IASI
ANNI v3 with in situ measurements in Colorado, USA, and
found regression slopes ranging from 0.78 to 1.1 and in-
tercepts of the order of 1–2× 1015 molec. cm−2. A second
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Figure 8. Comparison between the NH3 columns of the near-real-time products of ANNI v3 (a) and v4 (b) on a 0.5◦× 0.5◦ grid. The inset
shows the difference between the two maps. Data include all morning IASI-A data from 2008–2018, with a cloud fraction below 10 %.
Parallels are drawn every 15◦ and meridians every 30◦.
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study (Wang et al., 2020) compared IASI NH3 columns with
columns obtained from FTIR measurements in Hefei, China.
Here, mean differences around 3.5×1015 molec. cm−2 (IASI
being lower) were found and regression slopes close to one.
Given the results of the comparison with the optimal esti-
mation method, we do not expect any significant bias in v4
for columns above 1×1016 molec. cm−2 in comparisons that
correct for the vertical profile assumption of the retrieval.
A comprehensive validation of the v4 product is foreseen
within the framework of ESA’s CCI+ precursors for the
aerosol and ozone ECV project, which should confirm this,
as well as assess the performance of the algorithm on low
columns. Apart from validation of the columns in an abso-
lute or relative sense, comparison with FTIR columns will
also allow evaluating regional NH3 trends derived from IASI
data. Such an evaluation could also be made with bottom-
up inventories or with data derived from in situ measured
concentrations. However, in that case, there is the additional
difficulty that long-term trends of other inorganic pollutants
(NO2, SO2) affect NH3 columns differently than emissions
or local concentrations (e.g. Lachatre et al., 2019), necessi-
tating the intervention of a (chemistry transport) model.

7 Uncertainties

7.1 Propagation of uncertainty

In previous ANNI versions, an estimated uncertainty σ
X̂

was
calculated for each individual measurement X̂ via (Ku, 1966)

σ 2
X̂
=

∑
i

(
∂X̂

∂pi

)2

σ 2
pi
, (61)

with σpi the uncertainties of the different input parameters
pi . This equation assumes uncorrelated uncertainties, but as
this cannot always be justified, in ANNI v4, we switch to the
more general (Tellinghuisen, 2001)

σ 2
X̂
= J TSpJ , (62)

with Sp the error covariance matrix of the input parameters
(with covariances Sp,ij = σpipj ) and J the Jacobian of the

retrieval, with components ∂X̂
∂pi

.
In the ANNI retrieval framework, the input parameters in-

clude the skin temperature, the surface pressure, the HRI, the
surface emissivity, the zenith angle, the width and the peak
of the Gaussian vertical NH3 profile, the temperature profile
(15 levels) and the water vapour profile (7 levels). After some
preliminary analysis, it was concluded that only the corre-
lations between the uncertainties in the temperature profile
cannot be neglected. We therefore employ a block diagonal
covariance matrix, block diagonal for the elements pertain-
ing to the temperature profile, and diagonal for all other in-
put parameters. As for uncertainty on the vertical profile, this

source of uncertainty is removed when applying averaging
kernels. For this reason, uncertainties are reported with and
without the vertical profile uncertainty, to be used according
to whether AVKs are applied.

7.2 Random and systematic uncertainties

In total, we report four types of uncertainty for each obser-
vation: random or systematic, and with or without the verti-
cal profile uncertainty included. Reporting random and sys-
tematic uncertainties separately is a generally recommended
practice (Boersma et al., 2004; Merchant et al., 2017; Sayer
et al., 2020). Random uncertainties describe errors specific
to a single measurement, and assuming a normal distribu-
tion, these average out over many repeated measurements.
Systematic uncertainties are those that exhibit correlations in
time or space, and are thus associated with more than one
measurement. This type of error can lead to biases in the
measurement dataset. In ANNI v4, both random σrX̂ and sys-
tematic σsX̂ uncertainties are calculated using Eq. (62) and
estimates of the random and systematic uncertainties and co-
variances of the input parameters.

Random and systematic uncertainties can be combined
and averaged in different ways according to the needs of the
user. In particular, for a given measurement X̂, a total un-
certainty estimate can be obtained as (Gomez-Pelaez et al.,
2013)

σ 2
X̂
= σ 2

rX̂
+ σ 2

sX̂
. (63)

An average measurement uncertainty can be associated with
an average X of a series of n measurements X̂i as

σ 2
X
= σ 2

rX + σ
2
sX (64)

=

n∑
i=1

(
σrX̂i
n

)2

+

(
n∑
i=1

σsX̂i
n

)2

. (65)

For the special case where all random and systematic uncer-
tainties are the same, we obtain

σ 2
X
=

1
n
σ 2

rX + σ
2
sX, (66)

which tends to the expected σX = σsX for large n.

7.3 Uncertainties of the input parameters

As most input parameters come without an uncertainty bud-
get, let alone covariances, we made best-effort estimates of
the co(variance) based on the limited information that is
available. For now, the same (co)variances were used for the
near-real time as for the reanalysed NH3 product. It is also
important to note that the systematic uncertainties of the in-
put parameters vary according to the time and space scales
that are considered (Boersma et al., 2004; Merchant et al.,
2017; Sayer et al., 2020). Temperature profiles, for example,
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Figure 9. Comparison between ANNI v4 NH3 columns and retrievals based on optimal estimation for two scenes, one over Europe (a–
c: 18 April 2013, Metop A morning overpass) and North America (d–f: 6 May 2021, Metop B morning overpass). Panels (a) and (d) depict
the optimal estimation retrieved columns. Panels (b) and (e) are scatter plots between the two retrievals, where each observation is colour
coded according to thermal contrast (brightness temperature of the surface minus the temperature at half the boundary layer height). Panels (c)
and (f) summarize the comparison by means of histograms of the differences.

may be more biased monthly than annually. Here, we esti-
mate systematic uncertainties with a typical L3 gridded data
product in mind, i.e. for spatial scales of the order of 1◦ lati-
tude and longitude or less, and for time periods of the order
of 1 month or less.

The (co)variances, summarized in Table 2, were deter-
mined as follows:

HRI By definition, the random uncertainty on the HRI
equals one. We estimate a systematic uncertainty of 0.1
due to potential and residual interferences (e.g. surface
emissivity, other species). To account for potential bi-

ases in the spectroscopy and generalized error covari-
ance matrix, we add to this an additional 10 % on the
calculated HRI value.

Skin temperature Random and systematic uncertainties
were set to 1.5 and 0.5 K respectively. These values are
in line with the difference between the IASI L2 skin
temperature product and the dedicated neural network
used for the reanalysis product of ANNI (see Sect. 5).

Emissivity For emissivity, which originates from the
monthly climatology of Zhou et al. (2013), an uncer-
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Table 2. Estimated random and systematic uncertainties of the input
parameters.

Component Random σr Systematic σs

HRI 1 0.1 + 10 %
Surface temperature (K) 1.5 0.5
Emissivity 0.01 0.005
Temperature profile, land (K) 1–2 0.5 – 1
Temperature profile, sea (K) 0.5–1 0.5 – 1
Surface pressure (Pa) 500 Pa 250 Pa
Water vapour profile 10 %– 20 % 5 %–10 %

NH3 profile peak altitude (m) 200 100
NH3 profile width (m) 200 100

tainty of 0.01 and 0.005 was assumed for respectively
the random and systematic components.

Temperature profile Variances were set based on valida-
tion results of the IASI level 2 (EUMETSAT, 2021):
systematic uncertainties of 1 K for the surface level and
0.5 K for the other levels; random uncertainties of 2 K
for the surface level and 1 K for the other levels for
land observations, and 1 K for the surface level and
0.5 K for the other levels for ocean observations. Co-
variance matrices were then built by appropriate scal-
ing of correlation matrices. These were built based on
a statistical analysis of the differences between collo-
cated ERA5 and IASI L2 profiles. Correlation coeffi-
cients were set to 0.5 between neighbouring levels and
0.25 between levels that are two levels apart. Above
10 km, no strong correlations were observed, and the co-
variance was therefore assumed to be diagonal for these
levels.

Water vapour profiles Relying again on the IASI level 2
validation report (EUMETSAT, 2021), random uncer-
tainties were set to 10 % below 3 km and 20 % above.
Systematic uncertainties were set to half these numbers.

Surface pressure A random and systematic uncertainty of
500 and 250 Pa was used.

NH3 profiles The uncertainties related to the NH3 profile
arise from uncertainties associated with the width and
the peak of the Gaussian shaped vertical profile. Ran-
dom and systematic uncertainties of 200 and 100 m
were used for both parameters. Given the short lifetime
of NH3 in the atmosphere, these are likely of the right
order of magnitude. To obtain better estimates in the fu-
ture, a thorough analysis using in situ measurements or
modelled profiles would be desirable.

7.4 Uncertainty budget of NH3

It is useful, remembering the general form X̂a = HRI/SFa+
B of the retrieval, to rewrite the propagation of uncertainty
in terms of the uncertainty of the nominator and denomina-
tor (see also Boersma et al., 2004; van Geffen et al., 2022).
Neglecting the small dependence of the SF on the HRI, we
obtain

σ 2
X̂
=

(
∂X̂

∂HRI

)2

σ 2
HRI+

(
∂X̂

∂SF

)2

σ 2
SF (67)

=
σ 2

HRI

SF2 +
σ 2

SF

SF2 (X−B)
2 . (68)

Taking into account both random and systematic uncertain-
ties, we see from Table 2 that the uncertainty on the HRI
has an absolute (constant) and a relative (proportional to the
value of the HRI) component, so that

σ 2
X̂
=
σ 2

abs,HRI

SF2 +
σ 2

rel,HRI

SF2 +
σ 2

SF

SF2 (X−B)
2 (69)

=
12
+ 0.12

SF2︸ ︷︷ ︸
σ 2

abs

+

(
0.12
+
σ 2

SF

SF2

)
(X−B)2︸ ︷︷ ︸

σ 2
rel

. (70)

7.4.1 Absolute uncertainty contribution

The first term is in the optically thin limit independent of the
HRI and thus the column, and solely depends on the scene
conditions:

σabs =
σabs,HRI

|SF|
=

√
1+ 0.12

|SF|
≈

1
|SF|

. (71)

It is this term that is used as part of the post-filter to deter-
mine whether there is enough intrinsic sensitivity (thermal
contrast) to make a valid measurement, i.e. one whose un-
certainty is not completely overwhelmed by the instrumen-
tal noise. Currently, the post-filter threshold is set to σabs <

1.5×1016 molec. cm−2. Note also that a scene-dependent de-
tection threshold of the measurements (typically taken as
HRI> 3) is conveniently expressed in terms of the absolute
uncertainty as Xthres = 3σabs.

The absolute uncertainty contribution is illustrated in the
left panels of Fig. 10 for the IASI morning overpass (land
observations between 60◦ S and 60◦ N) as a function of ther-
mal contrast (TC). As before, we define TC as the bright-
ness temperature of the surface minus the temperature at half
the boundary layer height. The absolute uncertainty starts
from around 1×1015 molec. cm−2 and increases as expected
with decreasing thermal contrast, with a global median of
4× 1015 molec. cm−2. Observing the inverse proportionality
with thermal contrast, the following empirical formula can be
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Figure 10. Illustration of the absolute (left) and relative (right) components of the retrieval uncertainty. The top panels illustrate their
dependence on thermal contrast, the bottom panels show the normalized count. Data in this plot originate from IASI-B observations on
15 January, April, July and October 2021, morning overpass, land only and between 60◦ S and 60◦ N. The approximations from Eqs. (72)
and (76) are shown in black in the top panels.

used to obtain ballpark estimates of the absolute uncertainty
or sensitivity of the IASI NH3 retrieval (for positive thermal
contrasts):

σabs =
3.6× 1016

TC
molec.K

cm2 . (72)

The constants were determined from a fit of the data shown in
Fig. 10. Expressed in terms of Q20 and Q80 quantiles the es-
timated absolute retrieval uncertainty of IASI (mid-latitude,
land, morning overpass) can also be summarized as

σabs = [2.5− 6.6]× 1015 molec.cm−2. (73)

7.4.2 Relative uncertainty contribution

The term σrel is proportional to the column and hence ex-
presses a relative uncertainty for fixed atmospheric condi-
tions,

σrel =

√
0.12
+
σ 2

SF

SF2 (X−B)≈
σSF

|SF|
(X−B), (74)

or
σrel

(X−B)
=
σSF

|SF|
. (75)

This term is illustrated in the right panels of Fig. 10. Again,
we observe an inverse proportionality with thermal contrast,

which can be approximated as

σrel =

(
0.07+

1.6K
TC

)
NH3. (76)

For typical morning land observations, the relative contri-
bution to the uncertainty starts from around 14 % (corre-
sponding to a TC of 20 K). Expressed in terms of Q20 and
Q80 quantiles, the estimated relative retrieval uncertainty of
ANNI (mid-latitude, land, morning overpass) can be summa-
rized as

σrel = [19− 36]%NH3. (77)

8 Conclusions

In this paper, we presented v4 of the NH3 ANNI retrieval.
The most important change is the introduction of averaging
kernels, which will greatly ease future model assimilation
and comparisons with independent measurements or model
output. Most other changes to ANNI v4 contribute to the
overall consistency of the product. An example is the in-
corporation of the temporally consistent cloud flag. The im-
proved way of calculating the HRI makes the product more
robust across the different IASI instruments and more tem-
porally harmonious. Importantly, the HRI became also less
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sensitive to small errors in the forward model related to the
instrumental line shape function. Previous versions were bi-
ased low by some 10 %–20 % due to such errors. Theoreti-
cally we can now exclude the existence of large biases of this
sort. We also demonstrate this with an optimal estimation ex-
periment. In addition to the AVKs, we revised the uncertainty
calculation and now provide better and more comprehensive
information on the expected error of the measurement. We
also show how the retrieval uncertainty contains a part pro-
portional to the column and a part that is independent of the
column. In the near future, the most important changes will
gradually be implemented for all the other tracers retrieved
with ANNI (AVKs, the use of generalized covariance matri-
ces and the better treatment of uncertainties).
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