Measurement report: Ammonia in Paris derived from ground-based open-path and satellite observations - INSU - Institut national des sciences de l'Univers Accéder directement au contenu
Article Dans Une Revue Atmospheric Chemistry and Physics Année : 2023

Measurement report: Ammonia in Paris derived from ground-based open-path and satellite observations

Résumé

Ammonia (NH3) is an important air pollutant which, as a precursor of fine particulate matter, raises public health concerns. This study analyzes 2.5 years of NH3 observations derived from ground-based (miniDOAS; differential optical absorption spectroscopy) and satellite (IASI; Infrared Atmospheric Sounding Interferometer) remote sensing instruments to quantify, for the first time, temporal variabilities (from interan- nual to diurnal) in NH3 concentrations in Paris. The IASI and miniDOAS datasets are found to be in relatively good agreement (R>0.70) when atmo- spheric NH3 concentrations are high and driven by regional agricultural activities. Over the investigated pe- riod (January 2020–June 2022), NH3 average concentrations in Paris measured by the miniDOAS and IASI are 2.23 μg m−3 and 7.10 × 1015 molec. cm−2, respectively, which are lower than or equivalent to those documented in other urban areas. The seasonal and monthly variabilities in NH3 concentrations in Paris are driven by spo- radic agricultural emissions influenced by meteorological conditions, with NH3 concentrations in spring up to 2 times higher than in other seasons. The potential source contribution function (PSCF) reveals that the close (100–200 km) east and northeast regions of Paris constitute the most important potential emission source areas of NH3 in the megacity. Weekly cycles of NH3 derived from satellite and ground-based observations show different ammonia sources in Paris. In spring, agriculture has a major influence on ammonia concentrations, and, in the other seasons, multi-platform observations suggest that ammonia is also controlled by traffic-related emissions. In Paris, the diurnal cycle of NH3 concentrations is very similar to the one of NO2, with morning enhance- ments coincident with intensified road traffic. NH3 evening enhancements synchronous with rush hours are also monitored in winter and fall. NH3 concentrations measured during the weekends are consistently lower than NH3 concentrations measured during weekdays in summer and fall. This is further evidence of a significant traffic source of NH3 in Paris.
Fichier principal
Vignette du fichier
acp-23-15253-2023.pdf (2.78 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Licence : CC BY - Paternité

Dates et versions

insu-04135233 , version 1 (20-06-2023)
insu-04135233 , version 2 (18-12-2023)

Identifiants

Citer

Camille Viatte, Nadir Guendouz, Clarisse Dufaux, Arjan Hensen, Daan Swart, et al.. Measurement report: Ammonia in Paris derived from ground-based open-path and satellite observations. Atmospheric Chemistry and Physics, 2023, 23 (24), pp.15253-15267. ⟨10.5194/egusphere-2023-963⟩. ⟨insu-04135233v2⟩
57 Consultations
62 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More