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Abstract

The Southern Indian Ocean (20-120°E, 70-30°S) hosts an exceptional biodiversity that contributed to
the inscription of the French and Australian natural reserves on the UNESCO World Heritage List. This
region is a “hot spot” for ocean heat uptake and already experiences intense marine heat waves (MHW),
as evidenced in 2011/2012 over the Kerguelen Plateau. In the coming decades, this region is also
expected to face supplemental anthropogenic warming, depending on future greenhouse gas emissions,
with unknown consequences for its marine ecosystems. Here, we present a regional analysis of ocean
warming and MHW based on the analyses of historical observations and Coupled Model
Intercomparison Project Phase 6 (CMIP6) climate projections. Consistent with observations over the
last decades, we find an intensification through the 21st century of surface warming and MHW over a
band located between 40°S and 55°S within the Antarctic Circumpolar Current region. CMIP6 models
also project much faster climate velocities (i.e. the speed and direction at which isotherms drift in the
wake of climate change) in the mesopelagic (200-1000m) than at the surface (0-200m). Lastly, a
comparison between the two Shared Socioeconomic Pathways (SSP1-2.6 and SSP2-4.5) analysed in
this study shows much larger changes in the second half of the 21st century for the higher emission
scenario. These results suggest that the subantarctic islands will probably be mostly affected by
warming and MHW under both scenarios, although committing to SSP1-2.6 could substantially
alleviate the pressure on ecosystems in the long term. This study also highlights the need to consider a
tri-dimensional environment that may evolve at different paces when designing efficient conservation

measurcs.
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1 Introduction

Ocean circulation. The Southern Indian Ocean (20-120°E, 70-30°S) is characterized by dynamic jets
and a system of fronts associated with the Antarctic Circumpolar Current (ACC). The ACC is a strong
eastward current (Donohue et al., 2016), driven by strong westerly winds (Rintoul and Naveira
Garabato, 2013). As the ACC encounters the Kerguelen Plateau, it divides in several branches, with
most of the ACC transport passing north of the Plateau (Park et al., 1991,1993, 2009). A strong jet is
also observed through the Fawn Trough, a deep passage across the Plateau at 56°S (Park et al., 2008;
Roquet et al., 2009; Van Wijk et al., 2010; Vivier et al., 2015; Figure 1). Northwest of the Southern
Indian Ocean, the Agulhas Current, a western boundary current, flows southward along the east coast
of Africa. At around 40°S, this flow is split with the Agulhas Return Current transporting water eastward
(Lutjharms et al., 2006) and the Agulhas leakage transporting water to the South Atlantic (Schmidt et
al., 2021). Generally, the frontal system and the circulation in the Southern Indian Ocean is an important
biogeographical driver of phytoplankton and zooplankton communities which are at the basis of rich
ecosystems (Hunt et al., 2001; Matsuno et al., 2020; Mishra et al., 2020; Venkataramana et al., 2020;

Cotte et al., 2022).

Conservation efforts to protect a rich biodiversity. The Southern Indian Ocean region hosts several
endemic species, including large populations of megafauna of high patrimonial and economical value
like king penguins, yellow-nosed albatrosses, southern elephant seals, krill, toothfish, and many others
(Delord et al., 2014). To protect the rich biodiversity of the Southern Indian Ocean, conservation
measures have been implemented both in the exclusive economic zones (EEZs) of the subantarctic
islands and in the areas under the Commission for the Conservation of Antarctic Marine Living

Resources (CCAMLR). Part of EEZs of the following territories, Prince Edward, Crozet, Kerguelen
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and Heard and McDonald’s islands, are managed through Marine Protected Areas (MPAs). The French
national natural reserve (i.e. managed area with zones under strong or integral protection) within Crozet,
Kerguelen and Saint-Paul and Amsterdam EEZ was created in 2006 and extended in 2016. The South
African MPA around Prince Edward Islands have been officially implemented in 2013 and according
to CCAMLR it contributes to a representative system of MPAs, to be used as a scientific reference for
future management plans, to foster the recovery of Patagonian toothfish populations and to reduce the
bycatch of toothfish fishery on marine seabirds. The Australian MPA around Heard and McDonald
Islands was created in 2002 and has been extended in 2014. In total, 5.8% of the Southern Indian Ocean
is covered by MPAs and only within EEZs. The new frontier for conservation is now the vast open
ocean region that extends beyond EEZs (Della Penna et al. 2017), known as the “High Seas”. A
workshop held in 2019 organized by the CCAMLR Scientific Committee developed a scientific work
program for pelagic spatial planning in the eastern subantarctic region to investigate the relevance of
adding new subantarctic spatial conservation tools in the High Seas of the CCAMLR area (Makhado et

al., 2019).

Conservation and climate change. One key step in the design of a conservation plan is the evaluation
of threats, including climate change (Meredith et al., 2019). The sector directly northward and within
the Antarctic Circumpolar Current (ACC), corresponding to the latitudinal band 30°-50°S, in the
Southern Indian Ocean is one of the regions of the world that has experienced the largest increase in
ocean heat content in recent decades (Llovel & Terray, 2016; Roemmich et al., 2015; Sallée, 2018; Fox-
Kemper et al., 2021). This large heat content increase has been explained by an increased heat uptake
in the subpolar region transported northward by Ekman transport and subducted within and north of the
ACC (Armour et al., 2016; Frolicher et al., 2015; Morrison et al., 2016; Sallée, 2018). In addition to
large-scale processes (> 100 km), finer scale processes (1-100 km), which are key for the Southern
Indian Ocean circulation (Kostianoy et al., 2004) and can be expected to intensify (Martinez-Moreno
et al., 2019; Martinez-Moreno et al., 2021), could also potentially modulate climate change signal

locally, maybe inducing important spatial heterogeneity in the temperature trends (e.g. anomalous
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vertical heat transport driven by submesoscale fronts altering oceanic heat uptake, Siegelman et al.,

2020).

In the Southern Indian Ocean, species distributions are strongly shaped by the large meridional
temperature gradient characterizing the region, which covers a transition zone from the subtropic to the
Antarctic. Some species are even living close to their thermal tolerance limit (e.g., icefish, Kock &
Everson, 2003; Collins et al., 2010) and it has been observed that warming could have a negative impact
on the abundance of subantarctic krill, flagellates and Notothenioid fish (Constable et al. 2014) or even
potentially on the juvenile recruitment of Patagonian toothfish (Belchier and Collins, 2008). Climate
velocity, that is, the speed and direction at which isotherms drift in the wake of climate change (Loarie
et al., 2009), can be a useful tool to study biodiversity redistributions due to climate change (Garcia
Molinos et al., 2016). Although there is no specific studies on the Southern Ocean using this tool, there
are global studies that tend to show that the Southern Ocean may be a generally « slow-moving » basin
compared to other regions (Burrows et al., 2014) but also that there may be an important spatial

heterogeneity of this indicator (Brito-Morales et al., 2020).

Given the rich biodiversity and the observed and projected warming trends in the Southern Indian Ocean
(Fox-Kemper et al., 2021), there is an urgent need to integrate climate change in biodiversity
conservation and management. However, if climate change is increasingly presented as one of the
threats on biodiversity in conservation plans, such a threat is rarely quantified and no associated actions
are indicated. This issue will also likely be raised in line with the momentum fostered by the
negotiations of a treaty on the conservation and sustainable use of marine biodiversity in areas beyond
national jurisdiction (BBNJ), notably for the development of MPAs in the High Seas (Ban et al., 2014;
Maxwell et al., 2020; Crespo et al., 2020). Despite an increasing awareness that climate change might
hinder conservation measures efficiency and despite increasing literature on the need to develop new
dynamical tools (Tittensor et al., 2019; Crespo et al., 2020), conservation policies seem to remain only
focused on managing direct anthropogenic pressures as long as policy-makers have no concrete and

operational courses of action to take into account the impacts of climate change (Wilson et al., 2020).
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Current lack of relevant knowledge on climate change for policy-makers. Levers for potential
action remain today unclear at the regional level and require a better understanding of climate change
related hazards at relevant spatial and temporal scales for conservation (Wiens and Bachelet, 2010 ;
Carr et al., 2011; Butt et al., 2016; Jones et al., 2016). Today, a gap remains in a systematic description

of local observed and future changes over the entire Southern Indian Ocean.

In this study, we aim at addressing this shortcoming, by presenting a regional analysis of past and future
ocean warming based on historical observations and climate projections under different scenarios. Here,
we use a combination of decadal observations and CMIP6 simulations over the entire Southern Indian
Ocean to estimate current trends and analyse projections to help identifying areas that are most likely
to undergo significant temperature changes under two future emission scenarios: Shared
Socioeconomic Pathways (SSPs) 1-2.6 (high mitigation scenario) and 2-4.5 (modest mitigation
scenario; projected to lead to a global warming in 2100 similar to modelled pathways assuming
continuation of policies implemented by the end of 2020; IPCC, 2022). We estimate the average
temperature trends and extreme events, both listed as “climatic impact-drivers” of marine ecosystems
according to the [IPCC Assessment Report 6 (Chen et al., 2021; Cooley et al., 2022). We document
average temperature trends in terms of warming patterns (°C/decade) as well as climate velocities
(km/decade). This analysis is performed for the ocean surface (0-200 m) and for the mesopelagic (200-
1000 m) regions. Extreme events are characterized in terms of marine heatwaves (MHW, Hobday et
al., 2016; Frolicher et al., 2018). Su and co-authors (2021) characterized MHW but focusing only on
the northern part of the Kerguelen Plateau. Our study extends the MHW analysis to the Southern Indian

Ocean and uses CMIP6 models to project the evolution of MHW throughout the 21st century.

Figure 1: Ocean circulation in the Southern Indian Ocean. The mean geostrophic velocity between 1993
and 2020 using AVISO product (https://doi.org/10.48670/moi-00148) is shown (grey arrows). Some

specific currents are indicated in blue and the Antarctic Circumpolar Current (ACC) fronts, the Northern
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Boundary (NB), Subantarctic Front (SAF), Polar Front (PF), Southern ACC front (SACCF) and the

Southern Boundary (SB) are shown in brown (constructed from mean dynamic topography, source:

Park and Durand, 2019, Park et al., 2019).

2 Material and Methods

2.1

Data

2.1.1 Observations

The Operational Sea Surface Temperature and Ice Analysis (OSTIA) system run by the UK’s Met

Office (Good et al., 2020) provides daily sea surface temperature free of diurnal variability at a 0.05deg.

X

0.05deg.

horizontal

grid

resolution

between

1982

and

2019

(available

at
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https://marine.copernicus.ew/). This product combines satellite measurements from both infrared and

microwave radiometers with in-situ measures from ships, and drifting and moored buoys.

The National Oceanic and Atmospheric Administration Daily Optimum Interpolation Sea Surface
Temperature (NOAA OI SST V2 High Resolution) dataset, provided by the NOAA PSL (available
from their website at https://psl.noaa.gov), combines sea surface temperature observations (SST at 0.2
m) from different platforms (satellites, ships, buoys and Argo floats) with a 0.25deg x 0.25deg
horizontal grid resolution between 1982 and 2019 (Reynolds et al. 2007; Banzon et al. 2016). Contrary
to OSTIA dataset, OISST does not include satellite measurements from microwave radiometers as SST

inputs (Yang et al., 2021).

2.1.2 Global climate models — CMIP6

Models from the Coupled Model Intercomparison Project 6 (CMIP6; Eyring et al., 2016) are used in
this study (Table 1). These are coupled ocean-atmosphere models developed by 49 different climate
modelling groups! that have been used to carry out historical and projection simulations notably to

investigate how the Earth system responds to forcing (Eyring et al., 2016).

" https://werp-cmip.github.io/CMIP6_CVs/docs/CMIP6_institution_id.html
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Table 1: CMIP6 models used, using yearly data over multiple depths and daily data at the surface and

scenarios  associated. @~ CMIP6  models outputs are  available at https://esgf-
node.llnl.gov/projects/cmip6/.

Yearly data — | Daily data - | Ocean horizontal | References
multiple surface resolution (before
depth levels interpolation)

ACCESS-CM2 Historical,sspl | Historical, 1° Bi et al., 2020
26,ssp245 ssp126, ssp245

ACCESS-ESM1-5 Historical, Historical, 1° Ziehn et al., 2020
ssp126, ssp245 | sspl126, ssp245

BCC-CSM2-MR Historical, Historical, 1° Wu et al., 2019
sspl126,ssp245 | sspl26, ssp245

CAMS-CSM1-0 Historical, / 1° Rong et al., 2019
sspl126,ssp245

CanESMS5 Historical, Historical, 1° Swart et al., 2019;
sspl26, ssp245 | sspl126, ssp245 Christian et al.,

2021

CanESM5-CanOE | Historical, / 1° Swart et al., 2019;

ssp126, ssp245 Christian et al.,
2021
CESM2 Historical, Historical, 1° Danabasoglu et

sspl126, ssp245

ssp126, ssp245

al., 2020
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CESM2-WACCM Historical, Historical, 1° Danabasoglu et
sspl26, ssp245 | sspl126, ssp245 al., 2020
CMCC-CM2-SR5 Historical, Historical, 1° Cherchi et al.,
sspl26, ssp245 | ssp126, ssp245 2019
CMCC-ESM2 Historical, Historical, 1° Lovato et al., 2022
ssp126, ssp245 | ssp126, ssp245
CNRM-CM6-1 Historical, Historical,ssp12 | 1° Voldoire et al.,
sspl26, ssp245 | 6,ssp245 2019
CNRM-CM6-1-HR |/ Historical,sspl2 | 0.25° Voldoire et al.,
6,ssp245 2019
CNRM-ESM2-1 Historical, Historical, 1° Séférian et al.,
ssp126, ssp245 | ssp126, ssp245 2019
GFDL-CM4 Historical, Historical, 0.25° Held et al., 2019;
ssp245 ssp245
Dunne et al., 2020
GFDL-ESM4 Historical, / 0.5° Dunne et al., 2020
sspl26, ssp245
HadGEM3-GC31- | Historical, / 1° Kuhlbrodt et al.,
LL sspl126,ssp245 2018; Andrews et
al., 2020
EC-Earth3 / Historical, 1° Doéscher et al.,

ssp126, ssp245

2021

10
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EC-Earth3-CC Historical, / 1° Doéscher et al.,
ssp245 2021

EC-Earth3-Veg Historical, / 1° Doscher et al.,
sspl26, ssp245 2021

IPSL-CM6A-LR Historical, Historical, 1° Boucher et al.,
ssp126, ssp245 | ssp126, ssp245 2020

MIROC-6 / Historical, 1° Tatebe et al., 2019

ssp126, ssp245

MIROC-ES2L Historical, / 1° Hajima et al., 2020
ssp126, ssp245

MPI-ESM1-2-HR Historical, Historical, 0.4° Miiller et al.,
ssp126, ssp245 | ssp126, ssp245 2018; Mauritsen et

al., 2019

MPI-ESM1-2-LR Historical, Historical, 1.5° Mauritsen et al.,
sspl126, ssp245 | sspl126, ssp245 2019

MRI-ESM2-0 Historical, Historical, 1°x0.5° Yukimoto et al.,
ssp126, ssp245 | ssp126, ssp245 2019

NESM3 Historical, Historical, 1° Caoetal., 2021
sspl126, ssp245 | ssp126, ssp245

UKESM1-0-LL Historical, / 1° Sellar et al., 2019
ssp126, ssp245

189
190
11
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Historical and projection simulations from the ScenarioMIP experiments are used. Historical
simulations cover the period 1850-2014 and use historical forcing, mostly based on observations, that
includes among others greenhouse gas, aerosol concentrations and solar forcing (Eyring et al., 2016).
Projection simulations from the ScenarioMIP experiments cover 2015-2100 and over multiple emission
trajectories, described through so-called Shared Socioeconomic Pathways (SSPs). More specifically,
SSPs describe development pathways according to different economic and political strategies (O Neill
et al., 2017), and subsequent forcing levels similar to the ones used in CMIPS, that are the
Representative Concentration Pathways (RCPs). However, SSPs represent an improvement in the sense
that those scenarios include updated data on recent emission trends (O’Neill et al., 2016) and allow to
explore the implication of different climate change mitigation policies (Riahi et al., 2017). In this study,
for all analyses, two projection scenarios are considered: the SSPs 1-2.6 and 2-4.5. The SSP1-2.6
describes a world that shifts to a more sustainable path leading to an estimated warming of 1.8 °C by
the end of the century (as compared to pre-industrial) whereas SSP2-4.5 represents a path in which
socio-economic trends do not shift significantly from the historical patterns, with an estimated warming
of 2.7 °C by the end of the century. The focus on those two scenarios allows the comparison between
two possible futures whose occurrence will depend on countries' commitments to reduce their net

greenhouse gas emissions (Hausfather & Peters, 2020).

Depending on the analysis, the variable considered is either thetao (sea temperature across different
depth levels) or fos (sea surface temperature) as only fos was available daily. Each model output is
regridded to the same regular 1°-1° horizontal grid using distance weighted average remapping (using
climate data operators « cdo » remapdis) as in Kwiatkowski et al., 2020. Each model output is also
regridded vertically following the World Ocean Atlas standard discretization (33 vertical intervals from

the surface (0 m) to the abyssal seafloor (5500 m)).

There are several ways to combine the results from multiple models. The traditional approach used by
the IPCC, which is the main method used here, is to use a model ensemble mean, all models being
weighted equally, and then to study the projections for fixed future periods. For changes in temperature

and projected MHW characteristics, future periods of 20 years are considered: the near term (2021-

12
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2040), the mid term (2041-2060) and the long term (2081-2100) as in the [PCC Assessment Report 6
(Chen et al., 2021). An alternative method is also considered to further support the projected trends
obtained with the traditional method: the time-shift approach (Herger et al., 2015; Chen et al. 2021; Lee
et al., 2021). Instead of specifying a fixed time period, this approach specifies a fixed global warming
value compared to pre-industrial, typically 1.5°C, 2°C and 3°C (hereafter referred to as « global
warming levels » or GWL 1.5°C, 2°C and 3°C, respectively). These GWLs are in general reached at
different time periods depending on the models and on the scenarios. This method allows to account for
the different climate sensitivities of the models and facilitates the comparison between global warming
and regional spatial patterns. For each model and under each SSP, warming levels are defined as 20-
year running means of globally averaged atmospheric surface temperature anomaly compared to the
pre-industrial period (1850-1900). Then the change in a given metric (temperature, MHW indicator) is
estimated using a climatology of 20 years centred on the first year for which the warming level exceeded
a given threshold (e.g., 1.5°C), relative to the 1850-1900 reference value. These results are then
averaged over the model ensemble and over the SSPs considered, all simulations being weighted
equally. This method is applied to estimate the spatial patterns in warming and in MHW intensity for
GWL 1.5°C, GWL 2°C and GWL 3°C. To be able to investigate GWL 3°C, given that not all models
for SSP1-2.6 and SSP2-4.5 may reach this threshold, outputs from SSP5-8.5 are also used

(Supplementary Figure S1).

Models are also confronted with observations over the historical period for evaluation purposes. More
precisely, we evaluate how well the spatial patterns and mean trends are reproduced by the models and
compared to observations. This comparison is used as an indicator of what processes affecting trends
may be or may not be reproduced by the model ensemble. Such information contributes to the
interpretation of projections and uncertainties. Models and observations warming rates and MHW mean
intensity are compared respectively over 1982-2019 (to account for natural interannual variability) and
1984-2014 (MHW analysis requiring 30 years of data). CMIP6 historical outputs are thus completed

with SSP2-4.5 outputs until 2019, since SSP2-4.5 is most representative of today’s emission pathway
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(Fricko et al., 2017; Hausfather and Peters, 2020). The temperature trends significance is determined
using the coefficient of determination (R?) of the linear regression as well as a signal-to-noise ratio
(SNR) comparing the trend to the interannual variability of the anomaly between the expected (from

the linear regression) and observed temperature, as defined in Auger et al., 2021.

To quantify the impact of natural variability on the projected trends, we also exploit additional
simulations using the IPSL-CM6A-LR model, which exhibits an important centennial climate
variability (Bonnet et al., 2021), through the analysis of the temperature trends of 11 members (rlilp1fl,
r2ilplfl, r3ilplfl, rdilplfl, rSilplfl, r6ilplfl, rl0ilplfl, rllilplfl, rl4ilplfl, r22ilplfl,
r2511p1fl). These members were all initialized in 1850, but with distinct initial conditions, mostly
covering different states regarding the initial trend of the Atlantic Meridional Overturning Circulation
(Bonnet et al., 2021). First, the temperature trends over the historical period (1975-2015) of the different
members are compared. Second, projected changes in surface temperature for the near, mid and long
term periods are compared. Finally, Pearson correlation coefficients between spatial patterns of changes
in surface temperature for each member simulation relative to the rlilp1fl simulation over each year
between 2015 and 2100 in SSP2-4.5 are estimated. The aim is to determine whether the initial
conditions of the simulations and natural variability still play an important role in determining the

regional characteristics of the projected trends compared to the radiative forcing.

2.2 Climate velocity

For climate velocity we use the classical definition as the ratio between the warming rate and the local

spatial gradient of a variable as in Loarie et al., 2009 and Brito-Morales et al., 2018. The intensity of

horizontal climate velocity v for temperature (T) is thus here defined as

aT
T

)|
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By convention, v is positive in case of a warming (E>O) and negative in case of a cooling.

The climate velocity vector v is then defined as

aT aT
> _ —0T a > ay

= . U .
at | ||vT||? "+||VT||2 y

By convention, uax(longitudinal unit vector) is positive eastward and uqy (latitudinal unit vector) is

positive northward. v points to the direction to follow to remain at the same temperature.

For CMIP6 outputs, climate velocity is estimated over different historical periods of 50 years (1850-
1900, 1950-2000, 1955-2005 and 1965-2015) to check the sensitivity of the pre-industrial or historical
climate velocity that could be used as a baseline for comparison with the projected climate velocities.
Then climate velocity is estimated over 2015-2065 and 2050-2100 for SSP1-2.6 and SSP2-4.5,
respectively. Climate velocity is estimated for different depth zones: surface (0-200 m) and mesopelagic
(200-1000 m). The average temperature weighted by the thickness of each standard depth layer is used
to calculate a horizontal climate velocity. The climate velocities obtained from each model are then

averaged to get the mean-ensemble results.

2.3 Marine heatwaves

The definition of a marine heatwave (MHW) as a "discrete prolonged anomalously warm water event"
was introduced in Hobday et al., 2016 to allow for comparison with other studies increasingly adopting
this standardized definition. In this work, a MHW is detected when the temperature is above a given
threshold for at least 5 days. This threshold is defined as the 90" (for model evaluation) or the 99

percentile (for projections, to focus on the most intense events) of the data distribution. The climatology
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and threshold are estimated for each grid point of the region of interest and for each day of the year
using an 11-day window. The threshold is also smoothed by applying a 30-day moving average. The
climatology is estimated over at least 30 years of data, in order to smooth out climate mode of variability

(e.g., ENSO, AMO; Scannell et al., 2016).

MHW can be quantified by different metrics. The definition of MHW intensity varies and can be
determined relative to the seasonal climatology or to a chosen threshold (Hobday et al., 2016). Here we
define MHW intensity relative to the threshold (90th percentile for model evaluation, 99th percentile
for projections) and the mean intensity is weighted by the number of days affected. In addition, the
mean number of days affected by MHW per year, also called mean annual MHW days, has been found
strongly correlated to some observed ecological performance in the marine environment (e.g., seagrass
density, Smale et al., 2019). The two metrics, mean MHW intensity and mean MHW annual days, are

therefore used here to characterize MHW as potential climatic impact-drivers of marine ecosystems.

3 Results

3.1. Historical warming trends and marine heatwaves

3.1.1. Warming trends

The mean warming rate observed over the Southern Indian Ocean (20°-120°E, 70°-30°S) between 1982
and 2019 is 0.03°C/decade (£0.08°C/decade, spatial standard deviation), as estimated by a linear
regression of observation-based sea surface temperature from the OSTIA product, and 0.07°C/decade
(£0.09°C/decade) using OISST dataset (See Section 2.1.1). Such regional averaged temperature trend
hides important east/west contrasts (Figure 2, also for OISST as shown in Supplementary Figure S2)
with warming trends north of the area and east of the Kerguelen Plateau between 0.1 and 0.3 °C/decade

that are found significant (R? between 0.4 and 0.5, SNR>1). The cooling pattern west of the Kerguelen
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Plateau is not found significant, but has also been obtained on different observational datasets (Yang et

al., 2021), suggesting high temporal variability in this area.

In comparison, the 24-single-member-CMIP6-models produces an ensemble mean warming rate from
1982 to 2019 close to the one obtained with OISST dataset (0.085 + 0.053 °C/decade, spatial standard
deviation). A majority of CMIP6 models (17 over 24) simulate higher mean warming rates than the
observed one with OISST dataset but none shows an averaged cooling in the region (Figure 2,
Supplementary Figure S3). The simulated spatial patterns of temperature trends are quite different
between different model simulations, but also between different ensemble members of the same model
(IPSL-CM6A-LR, Supplementary Figure S5A). The initial conditions of the simulations as well as
decadal and/or multidecadal variability might thus play an important role in the regionalisation of

temperature trends over the historical period.

Historical warming rates from the multimodel ensemble are more homogeneous than from any
individual models or observations, despite greater warming rates being found between 40° and 50°S
north and west of Prince Edward, Marion and Crozet islands (Figure 2). The multimodel ensemble mean
underestimates warming trends north of the ACC and east of the Kerguelen Plateau. It shows a general
warming throughout the area. A lower signal and/or lower agreement between models is found south

of the Kerguelen Plateau near the Antarctic shelves.

Figure 2: Warming rates between 1982 and 2019 in the Southern Indian Ocean, using linear regression
on surface temperature, using OSTIA observations (A) and a 24-single-member-CMIP6-model
ensemble (B). Hatching indicates areas where the intermodel standard deviation of the warming rate is
greater than the mean value, suggesting a low change or a low robustness of the output. For each model
and for the 24-model ensemble, the mean warming rate over the area is also calculated and compared
to the mean warming rates estimated from the OSTIA and OISST datasets (C). Bars colored in red
indicate a higher warming rate than the one derived from OISST (gray bar) and in blue if it is a lower

rate.
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3.1.2. Climate velocity

The mean climate velocity over the Southern Indian Ocean is 4.9 km/decade (+27 km/decade, spatial
standard deviation) using OSTIA dataset and 10.64 km/decade (+34 km/decade) using OISST dataset
between 1982 and 2019 (see Sections 2.1.1 and 2.2). An east/west contrast is observed similar to what
is found in section 3.1.1. East of the Southern Indian Ocean (70°-120°E, 70°-30°S), the mean climate

velocity is around 12 km/decade using OSTIA dataset and around 18 km/decade using OISST dataset.

3.1.3. MHW intensity

The regional mean MHW intensity observed over the Southern Indian Ocean between 1984 and 2014
is 0.35°C above the 90th percentile of the local temperature distribution using the OSTIA dataset

(Figure 3). Detection of MHW from the OSTIA dataset highlights a pattern of greater MHW intensity
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north of the Kerguelen Plateau, in the region of influence of the ACC (Figure 3, pattern also identified
in Su et al., 2021). The 19-model ensemble, reproduced the spatial pattern with greater mean MHW
intensity north of the Plateau, notably over the Crozet Plateau, and the less intense MHW west of the

Kerguelen Plateau (Figure 3, Supplementary Figure S4).

However, the multimodel mean underestimates the intensity of MHW north of the ACC compared to
observations. The mean MHW intensity between 40°S and 30°S obtained from the multimodel mean is

26% lower than the one obtained from observations.

Figure 3: Mean Marine Heatwaves (MHW) intensity as defined by the anomaly above the threshold
(90th percentile) between 1984 and 2014 in the Southern Indian Ocean using OSTIA observations (A)
and a 19-single-member-CMIP6-model ensemble (B). Hatching indicates areas where the intermodel
standard deviation of the MHW intensity is greater than the mean value, suggesting a low robustness

of the output.

Mean MHW intensity - 1984-2014
A OSTIA B 19 CMIP6 models

35°S

55°S

|
0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
°C (90th percentile)

3.2 Projected warming trends and marine heatwaves

3.2.1 Theimpact of natural variability on the projected temperature trends
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To quantify the impact of natural variability on the projected temperature trends, we first focus our
analysis on one model (IPSL-CM6A-LR), for which we use an ensemble of simulations and investigate
the similarity between members of the simulated patterns for historical and projected warming (see

Section 2.1.2).

The mean warming rate over the Southern Indian Ocean varies from 0.031°C/decade to 0.11°C/decade
over 1975-2015 between the 11 members of IPSL-CM6A-LR (Supplementary Figure S5). Important
differences regarding the spatial patterns are found, with members producing a general warming
throughout the region (e.g. r6ilplfl), others showing a cooling north of the area (e.g. r3ilplfl,

rdilplfl, 122ilp1fl) or a cooling east of the Kerguelen Plateau (e.g. r2i1p1fl,r14ilp1fl,r25i1p1fl).

Across the ensemble members, the mean change in surface temperature over the Southern Indian Ocean
in SSP2-4.5 ranges from 0.15°C to 0.44°C in the near term (2021-2040), from 0.43 to 0.66°C in the mid
term (2041-2060) and from 0.83°C to 1.06°C in the long term (2081-2100), as compared to the historical
period (1995-2014, Supplementary Figure 5B). The timeseries of Pearson correlation coefficient
relative to rlilp1fl member pinpoints the increased similarity between the members’ patterns, notably
from 2050 onward (correlation coefficient mainly over 0.5, Supplementary Figure 5C). It could be that
the remaining differences between the members’ projections is to be attributed to a non-deterministic

component in ocean response, notably intrinsic ocean variability (Dijkstra, 2016).

This suggests that over the historical period the natural variability is strong and drives a large spread of
temperature trends between ensemble members. With increasing radiative forcing, this spread
decreases, suggesting that the projected long term spatial patterns are not dependent on natural

variability.

3.2.2  Projected warming

Over the Southern Indian Ocean and for SSP2-4.5, the projected warming is 0.29°C (£0.06°C,

intermodel variability) in the near term (2021-2040), 0.58°C (£0.09°C) in the mid term (2041-2060)
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and 1.05°C (£0.15°C) in the long term (2081-2100), compared to the historical period (1995-2014).
While the mean surface temperature change is similar in both scenarios in the near term, it is 1.2 and

1.7 times higher for SSP2-4.5 than for SSP1-2.6, in the mid and long term, respectively (Figure 7).

Using the 24-model ensemble, a larger warming is simulated between 40°S and 50°S and up to 55°S,
thus in regions including the Indian Ocean subantarctic Exclusive Economic Zones (EEZs, see Figure
4). This latitudinal band of large warming is located in the ACC and expands southward with time and

in SSP2-4.5.

Between 35° and 40°S, warming is lower than in the latitudinal band encompassing the subantarctic
island’s EEZs (warming of 0.3-0.4°C in SSP2-4.5 mid term). South of 55°S, surface temperature
changes remain below 1°C even in the long term in SSP2-4.5. The region south of the ACC has been
shown to experience lower warming due to the local circulation and stratification change (Armour et

al., 2016; Haumann et al., 2020).

Figure 4: Surface temperature change from the historical period (1995-2014) for the mid-term (A and
B) and long term (C and D) projected periods under SSP1-2.6 (A and C) and SSP2-4.5 (B and D) using
CMIP6 multimodel mean. Contour lines of similar temperature change are indicated in cyan. Hatched
areas indicate where the intermodel standard deviation of the temperature change is higher than the

mean value, suggesting a less robust output.
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3.2.3  Projected climate velocity

For the Southern Indian and in SSP2-4.5, the average climate velocities over 2015-2065 is 38.53
southward (+5.8, intermodel variability) and 47.43 (+8.1) km/decade at the surface and in the
mesopelagic, respectively. When averaged over 2050-2100, it is 31.62 (£5.6) and 57.46 (£9.8)
km/decade, at the surface and in the mesopelagic, respectively. At the end of the century, surface
(mesopelagic) climate velocities are expected to be 5.3 times (1.8 times) faster in SSP2-4.5 as compared
to SSP1-2.6 (Figure 7). Mesopelagic climate velocities under both scenarios are also about 5 times

faster for the period 2015-2065 compared to the historical period 1955-2005.

Negative surface climate velocities (i.e. northward) over 2050-2100, are found around 35°S in SSP1-

2.6 (Figure 5), meaning that this area is expected to cool towards the end of the 21st century. This
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cooling is only found at the surface and not at depth under SSP1-2.6, and is not projected under SSP2-

4.5.

Important differences are found between surface and mesopelagic climate velocities. Mesopelagic
conditions might undergo faster climate velocities than at the surface and that, already over 2015-2050
(Figure 7). For the two projected periods and for both scenarios, mesopelagic climate velocities
averaged over the Southern Indian Ocean are between one and four times faster than surface climate
velocities. In contrast, for different periods of 50 years between 1850 and 2015, surface climate
velocities are found between 1.5 and 3.1 faster than mesopelagic climate velocities. Those differences
between climate velocities in the mesopelagic and at the surface are accentuated in some areas. Those
differences can reach up to 160 km/decade southwest of Australia, 120 km/decade west of Kerguelen
Plateau or vary between 40 and 70 km/decade north of Crozet Plateau in SSP2-4.5. Faster climate
velocities in the mesopelagic compared to the surface for a same location (Figure 5) can be due to the

weaker spatial temperature gradients at depth as it is for instance the case west of the Australian coast..

Figure 5: Surface (0-200m, A and B) and mesopelagic (200-1000m, C and D) climate velocities, defined
as the ratio between the warming rate and the temperature spatial gradient between 2050 and 2100 using
multimodel means under SSP1-2.6 (A and C) and SSP2-4.5 (B and D). It can be interpreted as the
velocity an individual should adopt to remain at the same temperature. By convention, positive climate
velocities correspond to warming trends and negative ones to cooling trends. Black arrows indicate the

direction of the climate velocity.
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3.2.4  Projected marine heatwaves

In the Southern Indian Ocean, the projected mean MHW intensity is 0.28°C (above 99th percentile
threshold) in the near term for both scenarios and 0.39°C or 0.63°C in the long term, respectively in
SSP1-2.6 or SSP2-4.5. The areas most affected by this intensification in the long term are located
between 40°S and 55°S and in particular over Prince Edward, Marion, Crozet, Kerguelen and Heard
and McDonald Islands (Figure 6). The spatial pattern of mean MHW intensity in SSP2-4.5 for the near
term is similar to the historical pattern (Figure 3). North of the ACC, mean MHW intensity, for this
scenario and time horizon, varies between 0.3 and 0.4°C. In the long term under SSP2-4.5, a maximum
MHW intensity of 0.97°C is found over Crozet Plateau and the zonal maximum MHW intensity is found

to be 0.81°C at 48°S. The pattern obtained is similar to the pattern of surface temperature change (Figure
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4), suggesting that the detected MHW might be caused by a mean shift of the temperature distribution

rather than a change in the spread of the temperature distribution (as in Oliver et al., 2019a).

Additional analyses, investigating the daily temperature distribution shift in SSP2-4.5 relative to the
historical period, show that the relative shift in the mean of the temperature distribution south of 50°S
is much larger than the changes in the spread of the distribution, whereas north of 50°S similar orders
of magnitude of relative change are found in terms of increased mean temperatures and increased
distributions spread (Supplementary Figure S6). In particular, the area between 35° and 40°S shows a
larger relative change in the spread of the distribution than in the mean of the distribution, with increases

of respectively 9.98% and 7.60% in the long term compared to the historical period.

In the Southern Indian Ocean, the projected mean annual MHW days is 46.1 days/year in the near term
and 119.3 days/year in the long term in SSP1-2.6. These values increase to 42.8 days/year and 206
days/year respectively in SSP2-4.5 (Figure 6). Annual MHW days under both scenarios are similar in
the near term but it is 23% higher in the mid term and 73% higher in the long term in SSP2-4.5 compared
to SSP1-2.6 (Figure 7). Similar as for MHW intensity, the most impacted area is generally the latitudinal
zone between 40°S and 55°S in the ACC region. In SSP2-4.5, in the near term, the zonal number of
annual MHW days is maximum between 40°S and 55°S varying between 44.5 and 62.9 days, the
maximum being reached at 50°S. In the long term, the zonal number of annual MHW days is maximum
between 40°S and 57°S varying between 194 and 290 days, the maximum being reached at 51°S. A
permanent state of MHW is almost reached over the Kerguelen Plateau (312 days west of the Plateau).
When considering the relationship between changes in surface temperatures and MHW annual days for
the three projected time periods, it appears that over the whole area a permanent state of MHW could
be reached for a 2°C regional mean surface temperature change relative to the historical period

(Supplementary Figure S7).

Figure 6: Projected mean MHW intensity (as defined by the anomaly above the threshold of 99th

percentile relatively, A and C) and projected mean number of days per year affected by MHW (B and
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D) under SSP2-4.5 using a 19-single-member-CMIP6-model ensemble for both 2021-2040 (A and B)
and 2081-2100 (C and D). MHW were detected relative to a historical seasonally-varying climatology
(1984-2014). Contour lines of similar metric are indicated in cyan. Hatching indicates areas where the
intermodel standard deviation of the metric is greater than the mean value, suggesting a low robustness

of the output.
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Figure 7: Synthesis of the different climate impact drivers metrics over the Southern Indian Ocean (20°-
120°E 70°-30°S) : change in surface temperature (A, relative to 1995-2014); the annual number of day
affected by MHW as defined using the 99th percentile threshold (C); average surface (B) and
mesopelagic (D) climate velocities. The error bars correspond to the intermodel standard deviation for

each metric.
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3.3 Patterns of warming-related climatic impact-drivers for GWL 1.5°C, 2°C and

3°C

Patterns of warming-related climatic impact-drivers are also investigated using a timeshift approach
(see Section 2.1.2). Not only is this method used to confirm the robustness of the spatial patterns
obtained through the traditional approach, but this method also contributes to describing future changes
in accordance with targets defined in the Paris Agreement?, regardless of the mitigation pathway (Chen

etal., 2021).

2htms://unfccc.int/sites/default/ﬁles/english paris_agreement.pdf
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The mean sea surface temperature change over the Southern Indian Ocean is 0.6°C ( 0.2°C, intermodel
variability), 0.7°C (£ 0.2°C) and 1.1°C (£ 0.3°C) greater than in 1850-1900 for global warming levels
(GWLs, see Section 2.1.2) of 1.5°C, 2°C and 3°C, respectively, as computed from the CMIP6 model
ensemble (Figure 8; we remind that GWLs are defined in respect to pre-industrial temperatures and not
in respect to the present). In the three cases, the patterns are similar, only the amplitude increases with
increasing global warming. Surface temperature changes are warmer than 0.8°C between 40° and 50°S
for GWLs 1.5°C and 2°C and warmer than 1.2°C for GWL 3°C at the same latitudes. Surface
temperature changes stay below 0.4°C and 0.6°C near the Antarctic, respectively for GWLs 2°C and

3°C.

The mean MHW intensity is 0.37°C (£ 0.037°C, intermodel variability), 0.43°C (£ 0.050°C) and
0.43°C (£ 0.050°C) , for GWLs 1.5°C, 2°C and 3°C, respectively (Figure 8). For GWL 1.5°C, the most
intense MHW are found in the subtropical region and north of the ACC (40°-45°S, 20°-90°E) varying
between 0.5°C and 0.6°C. For GWLs 2°C and 3°C, mean MHW intensity between 40° and 50°S can be
warmer than respectively 0.5°C and 0.8°C. For both warming trends and MHW characteristics, the
patterns obtained here using GWLs are similar to the ones obtained using projections on fixed future

periods (Section 3.2).

Figure 8: Change in surface temperature for global warming levels (GWLs) 1.5°C (A), 2°C (B) and 3°C
(C) and mean MHW intensity for GWLs 1.5°C (D), 2°C (E) and 3°C (F) warming world relative to the
pre-industrial period (1850-1900) using a time-shift approach and CMIP6 mean ensembles. The number
of simulations used (using SSP1-2.6, SSP2-4.5 and SSP5-8.5) in each case is indicated in
parentheses. Contour lines of similar temperature change or MHW intensity are indicated in cyan.
Stapling indicates areas where the intermodel standard deviation is higher than the mean value,

suggesting a less robust output.
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4 Discussion

4.1. Regional characteristics of temperature-related climatic impact-drivers

This study presents a regional analysis of current and projected trends of temperature-related climatic
impact-drivers in the Southern Indian Ocean : temperature change, temperature-driven climate

velocities and marine heatwaves (MHW). Our main findings can be summarized as follows.

Warming patterns are spatially heterogeneous in the region. Global ocean surface warming rates
have been estimated at around 0.08°C/decade between 1880 and 2020 (NOAA, 2022) and the IPCC
Assessment Report 6 has indicated a 0.60°C increase in global SST from 1980 to 2020 (Fox-Kemper et

al., 2021). In the Southern Indian Ocean, a greater warming north of the Antarctic Circumpolar Current
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(ACC) of around 0.11°C/decade has been observed between 1950 and 2012, while cooling patterns
have been observed near the Antarctic (Armour et al., 2016; Sallée et al., 2018). The mean warming
trend here in the Southern Indian Ocean between 1982 and 2019 is lower, between 0.03°C/decade and
0.07°C/decade (Figure 2, Supplementary Figure S2). Observed warming trends are significant in the

northern part of the region and east of Kerguelen Plateau and could vary between 0.1 and 0.3°C/decade.

Climate velocities are faster over Kerguelen Plateau as compared to global ocean averages. The
global ocean median climate velocity has been estimated around 13 km/decade over 1900-2010 (Gupta
etal., 2015) or 12 km/decade over 1955-2005 (Brito-Morales et al., 2020) at the surface and around 6.3
km/decade in the mesopelagic layer over 1955-2005 (200 - 1000 m). The mean surface climate velocity
over the Southern Indian Ocean is found between 4.9 and 10.6 km/decade between 1982 and 2019 using
OSTIA and OISST datasets. In particular, surface climate velocities are particularly fast over Heard and
McDonalds Islands EEZ (20.3 km/decade, using OSTIA dataset ; 44.0 km/decade, using OISST
dataset), Saint-Paul and Amsterdam EEZ (12.9 km/decade ; 24.4 km/decade) and Kerguelen EEZ (11.8
km/decade ; 27.4 km/decade) while they are slower than global estimates or more variable over Crozet
EEZ (-2.6 km/decade ; 18.2 km/decade) and Prince Edward Islands EEZ (-5.8 km/decade ; 5.9). Crozet
and Prince Edward Islands EEZ are located in the area which seems to undergo a local cooling that
could be associated with high temporal variability (Figure 2, Supplementary Figure S2). However, the
analyses using [PSL-CM6A-LR members (see Sections 2.1.2 and 3.2.1) suggest that in the long term,
radiative forcing will likely dominate warming trends compared to internal variability, and an important

warming as well as fast climate velocities are projected over the Crozet Plateau (Section 3.2).

MHW events are particularly intense at the ACC northern boundary between 20°E and 95°E
(north of the Kerguelen Plateau). The patterns of MHW mean intensity between 1984 and 2014
obtained with the OSTIA dataset (Figure 3) are consistent with past estimates (Su et al., 2021).

However, zooming out from the northern part of the Kerguelen Plateau shows not only that the MHW
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are more intense at the northern boundary of the ACC, but also that MHW are generally more intense
northward up to the subtropical zone. The global ocean mean intensity of MHW estimated from NOAA
observations and defined as the anomaly of temperature compared to the 90th percentile threshold is

around 0.35 °C (Plecha & Soares, 2020) when it can reach 1.2°C north of Crozet EEZ.

Over the historical period, no significant spatial contrasts in mean annual MHW days are
observed in the Southern Indian Ocean north of 60°S. The global ocean mean annual number of
days affected by MHW has been estimated from around 30 days/year in 1900 to around 60 days/year
in 2020 (Holbrook et al., 2020, using observations and models). Between 1984 and 2014 using OSTIA
dataset, a mean number of around 24 days per year affected by MHW (90th percentile) is observed
north of 60°S, with in average 23 annual MHW days over Kerguelen and Crozet EEZ (data not shown).

South of 60°S, the mean annual MHW days is lower (16 days/year).

Five contrasted zones emerge. When comparing the projected regional characteristics of both
warming and MHW characteristics (climatic impact-drivers), five zones (from the subtropics to the
Antarctic continent) associated with specific dynamical features stand out relative to the level of change
expected to occur (Figure 9). The first (north of 35°S, subtropical region) and fourth (between 50°S and
55°S, southern part of the ACC) zones are affected by intermediate amplitudes of warming-related
climatic impact-drivers. The second (between 35°S and 40°S, under the influence of the Agulhas Return
Current) and fifth (south of 55°S, Antarctic colder water) zones have weaker warming and weaker
changes in mean MHW intensity and in mean annual MHW days. Finally, the third zone (north of the
ACC and covering subantarctic islands) is the one with the most important magnitudes of warming-
related climatic impact-drivers, especially over topographic features: the Crozet Plateau, Kerguelen and

the Southeastern ridge.
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The projected mean MHW intensity might be underestimated in CMIP6. It can be noted that the
projected mean MHW intensity might be underestimated, as it was found over the historical period
relative to observations (Figure 3) and in global studies using CMIP6 models (Pilo et al., 2019; Plecha
et al., 2020). Since the observations suggest that the most intense MHW are related to mesoscale activity
and that this mesoscale activity is not always well reproduced by climate models (Pilo et al., 2019; Su
etal., 2021), but could be expected to intensify (Hogg et al., 2015; Patara et al., 2016; Martinez-Moreno
et al., 2019; Martinez-Moreno et al., 2021), projections in terms of MHW intensity may be

underestimated.

Figure 9: Representation of the 5 zones identified in this study in terms of climatic impact-drivers’
trends (warming and marine heatwaves) along with the identification of areas for which surface
temperature increases by more than 1°C at the end of the century relative to 1995-2014 under SSP1-2.6
and SSP2-4.5; and areas for which mean MHW annual days are higher than 250 day/year at the end of
the century under SSP2-4.5 using CMIP6 models. Areas of chlorophyll a concentration greater than
0.25 mg.m-3 (using Copernicus-GlobColour product provided by ACRI-ST company, between 1997
and 2020) are identified in green to allow for comparison between spatialised climate trends and

spatialised biological characteristics.
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4.2 Implications of climate mitigation

This study also shows how regional patterns of temperature change and marine heatwaves can differ
between SSP1-2.6 and SSP2-4.5. Not only can the magnitude of changes be mitigated in SSP1-2.6 but
some patterns may be reversed at the end of the century, for instance through the surface cooling
obtained around 35°S. However, the major differences between SSP1-2.6 and SSP2-4.5 mainly

occurred in the long term.

The consequences of following one SSP instead of another can also be identified at the EEZ scale, both
in terms of emerging trends and of magnitude of change. The projected changes in surface temperature
over Saint-Paul and Amsterdam EEZ in SSP1-2.6 remain in the range of the observed interannual
variability at that location, even in the long term, which is not the case for the other EEZs. Already in

the mid term in SSP1-2.6 Crozet, Heard and McDonalds Islands, Kerguelen and Prince Edward Islands
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EEZ changes in surface temperature are found to be respectively 2.6, 2.5, 2.8 and 3.1 times higher than
the observed (using OSTIA) interannual variability in sea surface temperature (Figure 10). This
indicates that emerging warming trends will also occur in a high mitigation scenario (SSP1-2.6) for

subantarctic islands.

At the EEZ level, major differences between the two SSPs used in this study mainly occur in the long
term. In the long term , the change in surface temperature is 0.62°C , 0.49°C , 0.58°C , 0.65°C and
0.43°C warmer in SSP2-4.5 compared to SSP1-2.6 for Crozet, Heard and McDonalds Islands,
Kerguelen, Prince Edward Islands and Saint-Paul and Amsterdam EEZ, respectively. In the long term,
mean MHW intensity is 0.39°C , 0.33°C, 0.40°C, 0.40°C and 0.23°C warmer in SSP2-4.5 compared to
SSP1-2.6 for respectively Crozet, Heard and McDonalds Islands, Kerguelen, Prince Edward Islands

and Saint-Paul and Amsterdam EEZ (Figure 10).

This study therefore shows that the choice of a mitigation strategy and socio-economic development
pathway can have direct regional consequences on climate change patterns in the long term, even at the

scale of EEZs.

Figure 10: Map of subtropical and subantarctic islands’ exclusive economic zones (EEZs) in the
Southern Indian Ocean (A). Change in surface temperature relative to 1995-2014 (B), mean MHW
intensity (D) and surface (C) and mesopelagic (E) climate velocities averaged over the Southern Indian
Ocean (SIO) and different EEZs : Crozet, Heard and Mc Donald Islands (HMI), Kerguelen (KP), Prince
Edward Islands (PEI) and Saint-Paul and Amsterdam (SPA), for SSP1-2.6 and SSP2-4.5. Changes in
surface temperature and mean MHW intensity are estimated over 2021-2040 (NT), 2041-2060 (MT)
and 2081-2100 (LT). Climate velocities were estimated over 2015-2065 (MT) and 2050-2100 (LT).
Change in surface temperature results are compared to the observed interannual variability in sea

surface temperature in each location calculated from the OSTIA dataset between 1982 and 2019.
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48 657 4.3 Coherence with known physical mechanisms and remaining questions
49
50

51 658  The aim here is to better understand the projected intensities and patterns of warming and marine
52

2 Z 659  heatwaves in the Southern Indian Ocean. This requires an evaluation of the models and a mechanistic
55 . . T

5 660  understanding of the potential heat uptake and redistribution processes.
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It can be firstly noted that CMIP6 models have improved compared to CMIPS5 models for some key
metrics in the Southern Ocean, such as the Antarctic Circumpolar Current (ACC) strength or the
representation of differences in density across latitudes of the ACC (Beadling et al., 2020). In addition,
the spatial patterns and interannual variability of MHW are better represented in CMIP6 compared to
CMIPS5 models, and more generally tend to be better represented in higher resolution climate models

(Qiu et al., 2021).

There are at least three ways to evaluate a climate model: 1) to compare the model outputs to
observation-based products, 2) to verify the agreement between multiple models and/or models’
versions (this is done here by using an ensemble of models) and 3) to confront the projections to known
physical mechanisms (Baumberger et al., 2017). Given the important role of natural variability for
shaping the spatial patterns of historical warming trends, it is difficult to evaluate the quality of the
CMIP6 ensemble in simulating warming trends in the Southern Indian Ocean by simply comparing
them to past observations (Radisadnen, 2007; Baumberger et al., 2017; Gopika et al., 2020). We
therefore focus here on determining whether the projected patterns of warming and marine heatwaves

are coherent with known or potential heat redistribution processes.

The intensity of the Southern Indian Ocean warming is not directly correlated to the intensity of global
warming. The models used in our study have a wide range of Equilibrium Climate Sensitivities (ECS;
defined as the long term global warming obtained after a doubling of the atmospheric CO, above its
pre-industrial concentration; Charney et al., 1979; Forster et al., 2021). The ECS of the model ensemble
we used in this study vary from 2.29 to 5.62 °C (Forster et al., 2021). However, no correlation was
found between the mean ocean warming in the region and the model ECS, that is, models displaying
greater warming are not necessarily the ones with greater ECS (data not shown), suggesting that the
regional warming in the Southern Indian Ocean is sensitive to local processes, reproduced differently
in different models. It is therefore particularly important to investigate whether the projected warming
and marine heatwaves patterns in the Southern Indian Ocean can be explained by known physical

processes active in the region.
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The coherence of the projected patterns of warming-related climatic impact-drivers with known or
potential heat redistribution processes is discussed here to both assess the adequacy of the models

(Baumberger et al., 2017) and understand their main physical drivers.

4.3.1  Theimpact of winds and local circulation on warming-related climatic

impact-drivers’ patterns

CMIP6 projections, either through the traditional or the time-shift approaches (i.e. using GWLs, see
Section 2.1.2), suggest an intensification of MHW and warming mostly in the region of influence of the
ACC, in the subantarctic latitudinal band between 40° and 55°S. Such result is consistent with the
observed increased heat uptake in the subpolar region transported northward by Ekman transport and
subducted within and north of the ACC (Armour et al., 2016; Frolicher et al., 2015; Morrison et al.,
2016; Sallée, 2018; Huguenin et al., 2022). The strength of this northward Ekman transport is modulated
by the position and strength of the westerlies which is particularly strong over the Indian sector of the
Southern Ocean (Lin et al., 2018). The westerlies are expected to intensify and to shift poleward (Lee
et al., 2021) and thus the associated northward transport of heat content anomaly (anomaly caused by
warming) may be strengthened, accumulating heat over the subantarctic (Swart et al., 2018; Fox-
Kemper et al., 2021; Silvy et al., 2022). In addition, southward heat transport also occur through eddy
advection, partly compensating the Ekman northward heat transport (Farneti et al., 2010; Saenko et al.,

2018), but there are still uncertainties on the degree of this compensation (Fox-Kemper et al., 2021).

Another pattern that stands out in this study is the lesser intensification of warming and marine
heatwaves between 35° and 40°S. This latitudinal band is mostly under the influence of the Agulhas
Current system, which consists in the Agulhas Current, a western boundary current flowing southward
along the African coast, which brings warm waters into the Indian Ocean at around 40°S through the

Agulhas Return Current up to 70°E (Lutjharms et al., 2006). The remaining waters are transported to

37



O Jo Ul WN

OO UTUTUTUTUTUTOTUT O DD E DD D DEDWWOWWWWWWWWRORNRONNNNNNNR R e
TR WNRFRPOWOVWOINTEWNRFROWOWO-JdNUTEWNHOWO®JdNUEWNROWOW®MJAUGTREWNRLOW®OW-LTOUNWNRO W

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

the South Atlantic between 32°S and 42°S and this westerward inflow of relatively warm and salty
water exiting the Indian sector is called the Agulhas leakage (Schmidt et al., 2021). Projections from
global climate models suggest an increase in Agulhas leakage (Rouault et al., 2009; Backeberg et al.,
2012; Biastoch & Boning, 2013), and a decrease of Agulhas Current transport by 11 to 23% at the end
of the century (Stellema et al., 2019; Ma et al., 2020; Sen Gupta et al., 2021). If we assume that the
decreasing Agulhas Current feeds both the increasing Agulhas leakage and the Agulhas Return Current,
and that the Agulhas Current is the main source of water for the Agulhas Return Current, then the
Agulhas Return Current would have to decrease. A decreasing Agulhas Return Current would slow
down a large heat transport source in the northern part of the Southern Indian Ocean, which could

potentially explain the lesser warming projected in this area.

The Agulhas Current system transport is also modulated by the position and strength of the westerlies.
Indeed, an equatorward shift of the westerlies (as observed in summer in SSP1-2.6, Bracegirdle et al.,

2020) can be associated with an increase of the Agulhas leakage (Durgadoo et al., 2013).

Latitudinal differences in projected warming trends and climate velocities seem therefore consistent
with known mechanisms in the region. In particular, the position and strength of the westerlies can have

a different effect on a specific zone, depending on how westerlies impact the local circulation.

4.3.2  Remaining questions: on the role of unresolved spatial scales and

modes of variability

The projected trends in warming and marine heatwaves therefore seem consistent with potential
mechanisms of heat uptake and transport but some key questions remain. Uncertainties remain

concerning the role of the ocean mesoscale circulation and the role of the decadal and longer variability.
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Finer scale processes (meso- and submesoscale) have the potential to impact warming trends. Eddies
can play a significant role in meridional heat transport (Morrison et al., 2016) and can for instance
contribute to modulate heat uptake through submesoscale ventilation (Dove et al., 2021). Increased
upward heat transport at submesoscale fronts can also alter surface heat uptake capacity (Siegelmann
etal., 2020) but the impact of such a process on warming trends locally is yet to be studied. In a changing
climate with intensifying winds, it is expected that mesoscale activity might change (Martinez-Moreno
et al., 2019; Martinez-Moreno et al., 2021). However, it remains unclear how such changes might also
impact the projected warming trends. To investigate whether resolution could play a role in determining
the patterns of projected temperature changes, we focus on two models, GFDL-CM4 and MPI-ESM1-
2-HR with a resolution of 0.25° and 0.4° respectively. As for the model ensemble, a pattern of greater
surface warming over the subantarctic is observed (Supplementary Figure S8). This suggests that the
influence of smaller scale processes on the warming patterns may remain limited, at least for the larger
eddies represented in higher resolution CMIP6 models. The net impact of eddies on the heat budget and

how it will evolve under climate change remain an active field of research (Hewitt et al., 2022).

Internal variability is not negligible in the Southern Indian ocean between 1982 and 2019 but it is
challenging to evaluate whether the representation of decadal and multidecadal variability modes and
their interaction with the local circulation in the models is accurate. The Southern Indian Ocean is
indeed under the influence of various modes of natural variability but depending on the time scale of
interest, for instance for policy-makers, different modes of natural variability are to be considered. The
Indian Ocean Subtropical Dipole (I0SD) and the El-Nifio-Southern Oscillation (ENSO) can influence
patterns of SST anomaly (Behera and Yamagata, 2001; Huang and Shuckla, 2008; Morioka et al., 2010)
on decadal timescales and the Southern Annular Mode (SAM) on even shorter timescales (Sallée et al.,
2010). As the above-mentioned climatic modes of variability may not be in the same phase in reality
and in the climate models, this increases the uncertainty on near-term climate projections (Hurrell et al.,

2010; Chen et al., 2021).
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Multidecadal variability may also not be negligible in the Southern Indian Ocean and could potentially
impact projected trends on longer timescales (Zhang et al., 2018). Indeed, the natural variability
observed in this study is important over a 37-year period. The east/west contrast obtained in the
observations (Section 3.1.1) could result from the response to the positive-to-negative phase transition
of the Atlantic Multidecadal Variability (AMV) but the teleconnexion processes associated may not be
well represented in climate models (Chung et al., 2022). There are therefore uncertainties on how
natural modes of variability and their interactions with the local circulation will evolve, and whether

they will enhance, buffer or mask the projected changes.

4.4 Potential impacts on ecosystems

Using the warming-related climatic impact-drivers regional characteristics, it is then important to make
the link with the regional ecological characteristics. Here, based on the observed and projected trends
in warming and MHW and based on knowledge on the ecology of the Southern Indian Ocean, examples

of potential impacts are discussed.

Climate change might induce a shift in habitats for various species, thus potentially affecting the
distribution of species with conservation and/or economic values (Reisinger et al., 2022). The region
studied here covers three biogeochemical provinces (i.e. oceanographically and ecologically relatively
homogeneous regions) as defined by Reygondeau et al., 2020, distributed latitudinally from north to
south: the South Subtropical convergence, the Subantarctic water ring and the Antarctic (Reygondeau
et al., 2020). Our results suggest that, as far as temperature interactions are concerned, a poleward shift
of these provinces is expected and this shift is shown to be faster for the mesopelagic layer compared
to the surface with potential ecological impacts for species living across multiple depth layers

throughout their life cycle. Such shift between surface and mesopelagic conditions is particularly
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relevant for the Saint-Paul and Amsterdam region which is currently located at the transition between
different bioregions: the South subtropical convergence in the north and the Subantarctic water ring in
the south. By the end of the century, the temperature conditions south of Saint-Paul and Amsterdam
EEZ will probably be similar to the ones in the south subtropical convergence province. For the north
of the EEZ, the mesopelagic layer temperature conditions will shift faster and could be similar to the
ones in the Indian South Subtropical Gyre province. Our study helps identifying other areas that could
be undergoing an important shift between surface and mesopelagic conditions and therefore where long
term biophysical monitoring could be of special interest: the north-western side of Kerguelen Plateau,
slightly up to the southern part of the Crozet Plateau which has been identified as a foraging zone for

top predators (e.g. Piitz et al., 2002).

The consequences of the long term shift of thermal conditions in top predators’ foraging zones are
anticipated by extreme events in the near term (or in the past). The 1997 MHW that occurred in the
northern part of the Southern Indian Ocean has been associated with a southward shift of the Polar Front
south of the Crozet Plateau where king penguins (Aptenodytes patagonicus) from Crozet islands usually
forage. The temperature anomaly was so intense and associated with such a major shift of the foraging
zones that these zones were barely accessible to the penguins leading to important mortality of those
populations (Bost et al., 2015). Over the whole region, the mean MHW intensity of this event remained
greater than 0.5°C for 36 days (obtained using OSTIA dataset). Given models projections it appears
that such a drastic event may no longer be an extreme phenomenon and if associated with a significant

shift in the Polar Front position, it could lead to systematic mass mortality events for top predators.

Intermediate levels of the food webs can also be affected by warming and MHW. Indeed, some
populations of fish are already living at the edge of their thermal tolerance. Low-antarctic (i.e. just south
of the Antarctic Polar Front) species can live in conditions above their upper optimal range of
temperature (1°C to 1.5°C) but further increases in temperature may become too physiologically
demanding, especially as the intensification projected appears to occur over their distribution areas

(Kock and Everson, 2003).

41



O ~Joy Ul b WN -

OO TTUTUTUTUTUTUTUTUT O B DD D DD DEDWWOWWWWWWWWWRORNRONONNNNNNNR R e
TR WNRFRPOWVWOINTEWNRFROWVWO-JdNUEWNHOWO®JdNUIEWNROWOW®MJAUTREWNRLOW®OW-LTOUAWNRO W

813
814
815
816
817
818

819

820

821

822

823
824
825
826
827
828
829
830
831
832
833
834
835
836

837

Besides, a whole range of MHW potential impacts in the Southern Indian Ocean has not yet been
covered. Such impacts could include primary production changes (Hayashida et al., 2020), changes in
species growth and abundance (Oliver, 2019b; Smale & Wernberg, 2013), changes in population
structure (Smale et al., 2017), behavioral changes, notably for reproduction and foraging (Fromant et
al., 2021), changes in geographic distributions of species (Cure et al., 2017; Smale & Wernberg, 2013)
or even genetic changes (e.g., Coleman et al., 2020). These impacts are yet to be studied in the Southern

Indian Ocean.

4.5 Climate change and conservation

A regionalisation of temperature-related climatic impact-drivers, associated with further research on
climate change impacts on ecosystems, should contribute to the further consideration of climate change
impacts in conservation design and management. Increasing literature aims at addressing this issue and
suggests management tools to help integrate climate resilience into MPA design (Tittensor et al., 2019;
Crespo et al., 2020). However, efforts are needed to identify the risks posed by climate change at the
regional scale. Our study of warming-related climatic impact-drivers mostly addresses the hazards
dimension of a risk assessment (which would also include an analysis of the vulnerability and exposure
of ecosystems, Chen et al., 2021) and points out the need to include the vertical analysis in the eco
regionalisation process, since different layer depths may be impacted differently. In particular, this
study shows that the relative difference between mesopelagic and surface climate velocity (a « climatic
vertical shear ») is highest over Kerguelen Plateau and Saint-Paul and Amsterdam EEZ under both
scenarios while it is the lowest over Heard and McDonalds Islands and Prince Edward Islands EEZ
(Figure 10). Yet, mesopelagic climate velocities over Heard and McDonalds Islands and Prince Edward
Islands EEZ are still between 20 and 30% faster than surface climate velocities in SSP2-4.5; and

respectively between 50% and 60% and between 35% and 66% faster in SSP1-2.6 (Figure 10).
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The 3D information provided by climate velocity could be further used to project potential changes in
marine biodiversity distribution and help inform conservation management (Arafeh-Dalmau et al.,
2021). Through this type of methodology, other concepts related to climate velocity can be used to
understand the impact of climate change on species distribution, notably i) climate residence time
(Loarie et al., 2009) and ii) climate refugia (Burrows et al., 2014; Brito-Morales et al., 2018). Indeed, it
can be useful to know not only if certain environmental conditions will be found and where but also
how long these conditions will last in a specific area (climate residence time, Loarie et al., 2009). The
concept of climate refugia aims to identify areas that are relatively less impacted by climate change,
meaning low climate velocity and/or long climate residence time (Brito-Morales et al., 2018), but it can
also be based on the time of emergence of the climate change signal to identify temporary refugia
(Bruno et al., 2018). This concept could guide the development of surveillance programs to follow the
evolution of environmental conditions on specific zones that are particularly affected by climatic
impact-drivers. Climate velocity could also be used to anticipate future expansions of species and to
check if current MPA networks cover these expansions (Arafeh-Dalmau et al., 2021). Note that, to be
even more biologically meaningful, climate velocity should be combined with other constraints of
dispersion such as habitat permeability or connectivity (Brito-Morales et al., 2018). It may also be
important to consider multiple variables such as pH (acidification), primary production or zooplankton
abundance, since the interaction between multiple variables changes can result in multi-directional

distribution shifts (e.g., VanDerWal et al., 2013).

From the characterisation of warming and marine heatwaves patterns presented here, it is difficult to
identify potential climate refugia. However, this study pinpoints areas that are scientifically interesting
to further study the impacts of climate change on ecosystems, for instance the area south of Crozet near
the Antarctic Polar Front and Saint-Paul and Amsterdam EEZ. Indeed, the area south of Crozet, in the
main zone of intensification identified in this study, is an important foraging zone for top predators (e.g.
Piitz et al., 2002) and is expected to undergo intense warming and increases in MHW intensity and
duration but it is also an area that can be subject to important natural variability (as seen on Figure 2).

It can therefore be very interesting to study whether this variability in the long term will be enough to
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counteract warming trends and whether ecosystems in this area compared to similar ecosystems east of
the Kerguelen Plateau (at the same latitudes) will develop different features as a response to different
changing conditions. The Saint-Paul and Amsterdam area can also be interesting to protect for further
scientific investigation on how the difference between surface and mesopelagic temperature changes

might affect endemic ecosystems.

5. Conclusion

The aim of this work is to provide a systematic description of observed and future temperature changes
and marine heatwaves over the entire Southern Indian Ocean and to compare the projections over this

region under two scenarios that reflect two possible socio-economic pathways.

This analysis shows the spatial heterogeneity of temperature trends and marine heatwaves
characteristics at the regional scale, highlighting also some limits. The projected warming trends appear
to be consistent with warming mechanisms identified in the literature, notably related to the dynamic
of the ACC and the intensification and shifts of westerly winds. Concerning MHW intensity pattern, a
better spatial fit between the observations and the models was obtained, although intensities may be
underestimated in the models, mainly because of resolution limits, and current spatial patterns of MHW

intensity are expected to intensify.

This intensification of both warming and marine heatwaves characteristics is expected to occur mostly
over the subantarctic islands, with consequences on endemic species and ecosystems that are still to be
further studied. It can be noted that the difference between SSP1-2.6 and SSP2-4.5 projections are
mostly significant in the long term, with changes in both scenarios that could be important for
ecosystems already in the near and mid term, highlighting the need to anticipate adaptation measures.
Such measures would need to also consider that surface and deeper conditions may evolve at different

pace.
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Through a regional example, this study also reaffirms the need to globally commit to strong mitigation
strategies and to follow a sustainable socio-economic development pathway to alleviate the potential

impacts of warming and MHW.
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Appendix A: Supplementary Materials

1
2
i Figure S1: List of models used for the timeshift approach analyses for both SSP 245 and SSP585.
5
6
7 For changes in temperature (yearly data) For MHW intensity
8 22 models (daily data) 17 models
9
10 ACCESS-CM2 ACCESS-CM2
11 ACCESS-ESM1-5 ACCESS-ESM1-5
12 BCC-CMS2-MR BCC-CMS2-MR
13 CAMS-CSM1-0 CanESM5
1@ CanESM5 CESM2-WACCM
16 CanESM5-CanOE CMCC-ESM2
17 CESM2-WACCM CMCC-CM2-SR5
18 CMCC-ESM2 CNRM-CM6-1
19 CMCC-CM2-SR5 CNRM-CM6-1-HR
20 CNRM-CM6-1 GFDL-CM4
21 GFDL-CM4 EC-Earth3
22 GFDL-ESM4 IPSL-CM6A-LR
23 HadGEM3-GC31-LL MIROC6
gg EC-Earth3-CC MPI-ESM1-HR
26 EC-Earth3-Veg MPI-ESM1-LR
27 IPSL-CMGA-LR MRI-ESM2-0
28 MIROC-ES2L NESM3
29 MPI-ESM1-HR
30 MPI-ESM1-LR
31 MRI-ESM2-0
32 NESM3
33 UKESM1-0-LL
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Figure S2 : Temperature trends between 1982 and 2019 in the Southern Indian Ocean (top panel), using
linear regression on sea surface temperature, using OISST (left) and OSTIA (right) datasets. Timeseries
of sea surface temperature for two areas (bottom panel): one west of the Southern Indian Ocean,
covering Prince Edward Islands and Crozet (orange) and one north of Saint-Paul and Amsterdam (green)
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using OISST (full) and OSTIA (dashed) datasets

Warming rates - 1982-2019

-0.03-0.02-0.01 0.00 0.01 0.02 0.03
°Clyear

6.8 - 30:50°E 55:40°5 —-—=- 80:100°E 40:30°S L 172
r17.0
6.6
- 16.8
6.4 1
o -16.6°
r16.4
6.2 4
r 16.2
6.0 1 ’ o
slope :2.12e-02 °C/year L 16.0
r. 0.67

1984 1988 1992

1996

2000

2004

2008 2012 2016 2020



O J o U W

Figure S3: Warming rates between 1982-2019 for each of the 24 CMIP6 models studied.
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Figure S4: MHW intensity over 1984-2014 (90th percentile) for each of the 19 CMIP6 models studied.

CanESMS ACCESS ESMl 5 CNRM- ESM2 1 IPSL CMB6A- LR

Figure S5 : (A) Warming trends between 1975 and 2015 of 10 IPSL-CM6A-LR members. (B) Change
in surface temperature (2081-2100 minus 1995-2014) of the same 10 IPSL-CM6A-LR members under
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SSP2-4.5. (C)Time series of mean Pearson correlation coefficient, as an indicator of spatial similarity,
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for each 10 IPSL-CM6A-LR members relative to rlilp1fl member, under SSP2-4.5.
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Figure S6: Relative increase in the mean (full) or spread (hatched) of the daily temperature distribution
under SSP2-4.5 relative to historical period (1995-2014) from 19 CMIP6 models for 2021-2040 (near

term, NT), 2041-2060 (mid term, MT) and 2081-2100 (long term, LT).
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Figure S7: Relation between the change in surface temperature and MHW annual days for 20-year
periods under SSP1-2.6 and SSP2-4.5 averaged over the area. Error bars correspond to intermodel

variability.
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Figure S8: Change in surface temperature for the near-, mid- and long-terms under SSP2-4.5 for two
high resolution models: MIP-ESM1-2-HR and GFDL-CM4.
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