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1.  Introduction
The Atlantic Meridional Overturning Circulation (AMOC) plays a crucial role in Earth's climate (Bryden & 
Imawaki, 2001; W. Liu et al., 2017). This ocean circulation system has been observed to slow down over the 
past two decades as measured by the RAPID array at 26.5°N in the North Atlantic (Frajka-Williams,  2015; 
Smeed et al., 2018); however, given the relatively short observational period, this AMOC slowdown can be part 
of natural climate variability (Robert et al., 2014). According to some proxy reconstructions, the AMOC slow-
down might have started as early as in the middle-to-late twentieth century (Caesar et al., 2021, 2018; Rahmstorf 
et al., 2015; Thornalley et al., 2018); this conclusion however has been debated (Kilbourne et al., 2022). During 
the twenty-first century, the AMOC is projected to continue to decline as summarized by the Fifth Assessment 
Report of the Intergovernmental Panel on Climate Change (IPCC AR5). For example, under the RCP8.5 (Repre-
sentative Concentration Pathway 8.5) global warming scenario, the AMOC strength will decrease by 12%–54% 
by 2100. In the recent IPCC AR6, the AMOC also shows a comparable decline by 2100 under a similar climate 
scenario of the SSP585 (an updated version of RCP8.5 but now based on Shared Socioeconomic Pathways, cf., 
Weijer et al., 2020), although the newer models put the starting time of the AMOC decline by about one decade 
later due to a stronger anthropogenic aerosol forcing used (Hassan et al., 2021; Menary et al., 2020).

The AMOC slowdown has been shown to impact the global and regional climate (Li & Liu,  2022; W. Liu 
et al., 2020; Ren & Liu, 2021). For example, in the absence of anthropogenic global warming, a weakened AMOC 
can remotely cause a meridionally asymmetric change in the mean state in the eastern equatorial Pacific through 
atmospheric teleconnections and local coupled air-sea feedback (Dong & Sutton, 2002; Zhang & Delworth, 2005), 
featuring a substantial weakening of sea surface temperature (SST) annual cycle there (Timmermann et al., 2007) 
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and a reduction in mean cross-equatorial winds (Hu & Fedorov, 2018). These changes in the mean state lead in turn 
to an eastward shift of El Niño–Southern Oscillation (ENSO) SST anomalies, a longer and more regular ENSO 
period (Willianson et al., 2018) and an increase in the magnitude of ENSO variability (Dong & Sutton, 2007; 
Timmermann et al., 2007). Yet a recent study (Orihuela-Pinto et al., 2022) argued that a collapsed AMOC acts to 
decrease, instead of increase, the ENSO variability.

Most of the above insights of AMOC impacts however are obtained from classical freshwater hosing experiments 
causing a slowdown or a full collapse of the AMOC. To the best of our knowledge, the impacts of projected 
AMOC slowdown have not been explicitly assessed in the context of anthropogenic warming via fully coupled 
climate model experiments. Also, it is well recognized that climate model projections of ENSO intensity have 
large uncertainties (Cai et al., 2022, 2015; Collins et al., 2010; Stevenson, 2012) because ENSO is controlled 
by a delicate balance of amplifying and damping feedback, which is modified by climate change simultane-
ously (Collins et al., 2010; Fedorov et al., 2020; Fedorov & Philander, 2000, 2001; Hu & Fedorov, 2018; Zheng 
et  al.,  2016). So far, efforts to understand ENSO projections have mainly focused on local processes in the 
tropic Pacific, whilst remote effects such as those from the future AMOC slowdown have received less attention. 
Therefore, it remains unclear how and to what extent the projected AMOC slowdown can affect future ENSO 
variability during the twenty-first century, which is the focus of the current study.

2.  Data and Methods
2.1.  Observations

We use four monthly reconstructed SST data sets to assess historical ENSO variability during 1861–1980. These 
data sets are COBE-SST2 on a 1° grid (Hirahara et al., 2014), ERSST.v4 (Huang et al., 2015; W. Liu et al., 2015) 
and ERSSTv5 (Huang et al., 2017) on a two-degree grid and KAPLAN EXTENDED v2 on a five-degree grid 
(Kaplan et al., 1998). We compute the mean over these four SST data sets as well as one standard deviation. For 
each data set, we calculate the Niño 3.4 ENSO index by averaging the detrended SST anomalies over the Niño 
3.4 area (5°N–5°S, 170°W–120°W). The mean of the Niño 3.4 index depicts a significant ENSO period at 2–4 yr 
during 1861–1980 (Figure 1c).

2.2.  Climate Model Simulations

We employ a broadly used climate model, the Community Climate System Model version 4 (CCSM4) with the 
standard 1° atmospheric resolution (Deser et al., 2012), which captures well the 2–4 yr periodicity of ENSO, even 
though with a larger amplitude (Figure 1c), as well as an annual cycle of SST in the eastern equatorial Pacific 
similar to the observations (Figure S1 in Supporting Information S1). We use five ensemble members of CCSM4 
historical and RCP8.5 simulations from 1861 to 2100. Consistent with most of IPCC AR5 model results, CCSM4 
simulates a relatively steady AMOC in the early and middle twentieth century (Figure 1a), which is likely due to 
the compensation between the warming effect of rising greenhouse gases and the cooling effect of growing aero-
sols at that time (Delworth & Dixon, 2006). The model AMOC weakens after the 1980s when aerosol emissions 
began to decline over North America and Europe while greenhouse gas concentrations continued to rise.

Utilizing CCSM4 historical and RCP8.5 simulations, we conduct a parallel sensitivity experiment with corre-
sponding five ensemble members, which is branched from the year 1980 of the historical simulation and driven 
by the same historical and RCP8.5 forcings except that a small amount of freshwater is gradually removed from 
the surface in the subpolar North Atlantic and uniformly redistributed over rest of the global ocean (details are 
provided in W. Liu et al., 2020). This experimental setup helps maintain a constant AMOC strength throughout 
the twenty-first century even under anthropogenic warming (Figure 1a). The AMOC strength is defined as the 
maximum of the annual mean stream function below 500 m in the North Atlantic. For brevity, we denote the 
historical simulation over 1861–1980 as “HIST”, and the historical plus RCP8.5 simulation over 1981–2100 as 
“RCP85” since most of this period falls under the RCP8.5 scenario. We denote the sensitivity experiment for 
years 1981–2100 as “RCP85_fxAMOC”, so that the difference between RCP85 and RCP85_fxAMOC shows the 
climate impacts of the AMOC slowdown under the chosen global warming scenario. We also test the significance 
of the difference between these two sets of simulations relative to internal climate variability (Zheng et al., 2019) 
at 95% confidence level based on the Student's t test between the RCP85 and RCP85_fxAMOC ensembles. This 
internal climate variability manifests in the inter-member difference within each ensemble. Accordingly, for each 
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of the HIST, RCP85, and RCP85_fxAMOC simulations, we calculate the ensemble mean over five members and 
the ensemble spread as one standard deviation among ensemble members.

3.  Results
We first explore the mean-state change in the tropical Pacific between the RCP85 and HIST simulations. The 
ensemble mean result shows an enhanced equatorial SST warming relative to the subtropics during the twenty-first 
century (Figure 2a). The equatorial enhanced response (Knutson & Manabe, 1995; Meehl et al., 2000) to anthro-
pogenic forcing is associated with changes in surface latent heat fluxes due to wind speed change, shortwave cloud 
radiation, and ocean mixing (Z. Liu et al., 2005). A warming maximum emerges at the eastern tropical Pacific and 
a warming minimum emerges to the south of the equator, accompanied by reduced equatorial easterlies but inten-
sified southeast trade winds off the equator (Figure 2a), which points to the role of the wind-evaporation-SST 
feedback in shaping this pattern (Xie et al., 2010; Xie & Philander, 1994). The interplay of different mechanisms 
that lead to the development of this pattern on different timescales and across different models has been discussed 

Figure 1.  (a) Atlantic Meridional Overturning Circulation (AMOC) strength in the HIST simulation for years 1861–1980 
(black), RCP85 simulation for 1981–2100 (blue), and RCP85_fxAMOC simulation for 1981–2100 (red). AMOC strength 
is defined as the maximum of the annual mean stream function below 500 m in the North Atlantic. (b) Power spectra of the 
Niño 3.4 indices in the HIST (black), RCP85 (blue), and RCP85_fxAMOC (red) simulations and associated 95% confidence 
limits (dashed/dotted curves). (c) Power spectra of the Niño 3.4 indices in the HIST (black) and observations (green) over 
1861–1980. In all cases solid lines denote ensemble-mean results, and light color shading indicates ensemble spread.
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Figure 2.  (a–c) Ensemble-mean differences of annual mean sea surface temperature (SST) (color shading, in °C) and surface 
wind stress (vectors, in N/m 2) between (a) the RCP85 and HIST simulations, (b) RCP85_fxAMOC and HIST simulations, 
and (c) RCP85 and RCP85_fxAMOC simulations. (d–f) Hovmöller diagrams showing ensemble-mean differences for the 
annual cycle of SST (color shading, in °C) in the tropical Pacific (5°S–5°N) between (d) RCP85 and HIST simulations, (e) 
RCP85_fxAMOC and HIST simulations, and (f) RCP85 and RCP85_fxAMOC simulations. The annual cycle of SST from 
the HIST simulation (contours in °C with a contour interval of 0.2°C; positive solid, negative dashed and zero contours 
thickened) is overlaid in panels (d and e). The ensemble-mean difference for the annual cycle of surface wind stress (vectors, 
in N/m 2) between RCP85 and RCP85_fxAMOC simulations is superposed in panel (f). Note the anomalous northerly winds 
during May–June in panel (f). Stippling in panels (c–f) indicate where SST differences are statistically significant at a 95% 
confidence level based on Student's t test.
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in Heede and Fedorov (2021, 2023) and Heede et al. (2020, 2021). The warming maximum and minimum would 
reach even greater amplitudes without AMOC slowdown (Figure 2b). This is because a weaker Atlantic overturn-
ing induces cooling and warming SST anomalies to the north and south of around 3°S, respectively, in the eastern 
and central Pacific (CP), along with anomalous cross-equatorial northerly winds (Figure 2c).

Changes in ENSO are tired to the resulting change in the mean state of the tropical Pacific (An & Jin, 2000; 
Fedorov et al., 2020; Fedorov & Philander, 2000, 2001; Jin et al., 2006). The ensemble mean of ENSO variability 
peaks at 4, 3.64, and 3.87 yr in the HIST, RCP85, and RCP85_fxAMOC simulations, respectively, meaning that 
the projected anthropogenic warming shortens future ENSO period while the AMOC slowdown can make the 
ENSO period even shorter. On the other hand, the ensemble-mean magnitude of ENSO variability decreases over 
the twenty-first century under the RCP8.5 scenario, and such decrease might be even larger without the projected 
AMOC slowdown (Figure 1b). This result suggests that, relative to the simulated future state with reduced ENSO 
variability, a weakened AMOC under global warming acts to amplify ENSO variability, which is consistent 
with the findings of Dong and Sutton (2007) and Timmermann et al. (2007) but is different from the study of 
Orihuela-Pinto et al. (2022).

Despite the ensemble-mean result showing ENSO intensification, this AMOC impact is not statistically signif-
icant relative to internal climate variability, that is, the inter-member difference within either ensemble. Taking 
the 4 yr period ENSO variance for example, the variance significantly (p = 0.00) decreases by −47.2% ± 13.8% 
from the HIST to RCP85 simulation but insignificantly (p = 0.39) increases by 10.6% ± 40.5% from the RCP85_
fxAMOC to RCP85 simulation. The latter means that the inter-member difference within the ensembles of either 
simulation is greater than the ensemble-mean difference between the two global warming simulations. In other 
words, ENSO variance may actually decrease between a few of the ensemble members from the RCP85_fxAMOC 
and RCP85 simulations, respectively.

To investigate the physical mechanisms of the AMOC on modulating future ENSO, we first examine the changes 
in the SST annual cycle in the eastern equatorial Pacific among the ensemble means of the HIST, RCP85, and 
RCP85_fxAMOC simulations. The difference between the RCP85 and HIST simulations reveals a general 
reduction of the SST annual cycle during the twenty-first century, though it also illustrates some anomalous 
semi-annual signals (Figure 2d). The difference between the RCP85_fxAMOC and HIST simulations shows a 
similar pattern of reduced SST annual cycle but with smaller magnitude of the reduction (Figure 2e), meaning 
that a weakened AMOC indeed acts to further reduce the SST annual cycle in the eastern equatorial Pacific 
relative to the simulated future state with an already weakened annual cycle (Figure 2f). This result is consistent 
with  those from Dong and Sutton  (2007) and Timmermann et al.  (2007), suggesting that a weakened annual 
cycle can lead to intensification of the ENSO amplitude and vice versa via the frequency entrainment mecha-
nism (Chang et al., 1994; Z. Liu, 2002; Timmermann, Lorenz, An, Clement, & Xie, 2007). We also find that the 
anomalous cross-equatorial northerly winds are especially strong in May–June (Figure 2f), which indicates that a 
simple reduction in the mean (background) cross-equatorial winds (Hu & Fedorov, 2018; Zhao & Fedorov, 2020) 
can provide a sufficient explanation of ENSO changes in the context of an AMOC slowdown under the back-
ground of anthropogenic warming.

We further probe the physical mechanisms by which a weakened AMOC modifies ENSO by utilizing the 
Bjerknes (BJ) stability index (Jin et al., 2006; Lu et al., 2019, 2016; Manucharyan & Fedorov, 2014; Zhao & 
Fedorov, 2020; Zhu et al., 2017), which allows us to evaluate quantitatively the role of ocean-atmosphere feed-
back and damping effects. The linear equation for temperature anomalies (𝐴𝐴 𝐴𝐴o ) averaged within the mixed layer 
(i.e., the upper 50 m) in the tropical central and eastern equatorial Pacific (5°S–5°N, 180°E–80°W) can be written 
as: 𝐴𝐴 𝐴𝐴𝐴𝐴𝑜𝑜∕𝜕𝜕𝜕𝜕 = 𝐵𝐵𝐵𝐵 ∗ 𝑇𝑇𝑜𝑜 + . . . , where the omitted terms describe the term proportional to the thermocline depth in 
the eastern Pacific (EP) and the system's noise, and

BJ = − �� − �MA + ����⟨−� �⟩ + ����⟨−� �⟩ + ���ℎ
⟨

�
�1

⟩

�ℎ

TD MA ZA EK TH

� (1)

From Equation 1, the BJ index is a sum of five feedback terms: (a) the net surface heat flux feedback, or ther-
modynamic damping (TD), (b) the mean advection feedback (MA), (c) the zonal advection feedback (ZA), 
(d): the Ekman upwelling feedback (EK) and (e) the thermocline feedback (TH). Terms (a) and (b) describe 
negative feedback processes that damp SST anomalies. Terms (c)–(e) denote positive feedback processes that 
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intensify SST anomalies. Together they represent the combined effects of the 
background state, including the mean zonal and vertical ocean temperature 
gradients and vertical ocean velocity (𝐴𝐴 𝑇𝑇 𝑥𝑥 , 𝐴𝐴 𝑇𝑇 𝑧𝑧 , 𝐴𝐴 𝑤𝑤 ), atmospheric (wind stress) 
response to SST anomalies (𝜇𝑎), and oceanic response to equatorial wind 
stress anomalies (𝛽𝑢, 𝛽𝑤, and 𝛽ℎ) for thermocline slope, upwelling and zonal 
currents on the growth of ENSO SST anomalies. aℎ denotes the sensitivity 
between ocean subsurface temperature and sea level anomalies. H1 denotes 
an effective depth for vertical advection.

We find that, consistent with the weakened ENSO variability from the HIST 
to RCP85 simulation, the total BJ index on average reduces by 51.6%. This 
reduction in the BJ index can be mostly attributed to stronger negative feed-
back, including the thermodynamic damping and mean advection feedback 
(Figures 3a and 3b). Moreover, if the AMOC stayed constant after the 1980s, 
the total BJ index would on average increase by 16.9%, which is consistent 
with the strengthening of ENSO variability from the RCP85_fxAMOC to 
RCP85 simulation. This relative increase in the BJ index is mainly caused 
by stronger positive Ekman upwelling feedback (Figures 3a and 3b), which 
results from enhanced atmospheric wind stress response to SST anomalies 
(𝜇𝑎) and enhanced oceanic upwelling response to equatorial wind stress 
anomalies (𝛽𝑤) (Figure  3c). Note that while 𝛽ℎ and 𝜇𝑎 have comparable 
percentage increases, the contribution from the thermocline feedback is small 
compared to that from the Ekman upwelling feedback.

Next, we investigate the impacts of AMOC slowdown on ENSO diversity, 
focusing on events characterized by the EP or CP patterns with maximum 
SST anomalies developing in the eastern and central Pacific, respectively 
(Ashok et al., 2007; Capotondi, 2013; Kao & Yu, 2009; Santoso et al., 2019; 
Takahashi et al., 2011; Yu & Kao, 2007). To determine the type of particular 
El Niño events, we follow Takahashi et al. (2011) and first compute empirical 
orthogonal functions (EOFs) for the detrended monthly SST anomalies (rela-
tive to the SST climatology of the base period for each observation or model 
simulation) for the observations and for the HIST, RCP85, and RCP85_
fxAMOC simulations over a domain bounded by 10°S–10°N and the Pacific 
lateral boundaries. We focus on the first two principal components (PC1 and 
PC2), which are normalized by the standard deviation for the base period and 
smoothed with a 1-2-1 filter. The dimensional spatial SST patterns of EOF1 
and EOF2 are then obtained by linearly regressing SST anomalies onto PC1 
and PC2 (Figure S2 in Supporting Information S1).

Next, following Takahashi et al. (2011), we calculate the E and C indices for 
ENSO as follows:

𝐸𝐸 =
PC1 − PC2

√

2
� (2)

𝐶𝐶 =
PC1 + PC2

√

2
� (3)

These two indices describe the strength of EP and CP El Niño events, respectively. We linearly regress SST anom-
alies onto the E and C indices to obtain the dimensional spatial SST patterns corresponding to EP and CP El Niño 
events (Figure 4). The ensemble mean of observations for years 1861–1980 displays an EP pattern with maximum 
SST anomalies in the eastern equatorial Pacific and along the coast of Peru (Figure 4a) and a CP pattern with 
maximum SST anomalies over the central equatorial Pacific (Figure 4b). CCSM4 captures the general features 
of both EP and CP patterns seen in the observations during this period except with slightly large amplitudes of 
the EP pattern (Figure 4c) and a more westward maximum in the CP pattern (Figure 4d), which is similar to 

Figure 3.  (a) The BJ index for the HIST (green), RCP85 (purple), and 
RCP85_fxAMOC (yellow) simulations. MA, TD, ZA, TH, and EK represent 
the mean advection, thermal damping, zonal advection, thermocline, and 
Ekman feedback, respectively. The panel shows the ensemble-mean result. 
(b) Similar to panel (a) but for changes between simulations (RCP85 – HIST, 
blue; RCP85_fxAMOC – HIST, orange; RCP85 – RCP85_fxAMOC, gray). (c) 
Similar to panel (b) but for changes in the percentage of different regression 
coefficients and mean temperature gradients relative to HIST.
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other climate model simulations (Kim & Yu, 2012; Yu & Kim, 2010). During the twenty-first century, the SST 
anomaly maximum is projected to weaken for the EP pattern (Figure 4e) and to move westward for the CP pattern 
(Figure 4f) under the RCP8.5 scenario. Without the AMOC slowdown, the SST anomaly maximum would reduce 
even more for EP events (Figure 4g) and shift even more westward for CP events (Figure 4h).

We further employ the EP and CP indices to assess the frequency of El Niño events of different types. We define 
an EP or CP warm event when the corresponding averaged October–March index exceeds one standard deviation 
(Orihuela-Pinto et al., 2022). Observations show more CP than EP events (about three fifths vs. two fifths of the 
total number of warm events) between 1861 and 1980; the HIST simulation exhibits generally similar percent-
ages of CP and EP events (Figure 4i). Since the 1980s, the RCP85 simulation suggests that CP El Niño events 
are more frequent than the EP events. If the AMOC did not weaken, the proportion of CP to EP ENSO events 
would on average further increase by 11.0% over 1981–2100 (Figure 4i), which is consistent with the result from 
Orihuela-Pinto et al. (2022). However, this AMOC impact of shifting El Niño events toward the CP type is statis-
tically insignificant (p = 0.29) relative to internal climate variability.

4.  Conclusion and Discussions
In this study, we isolate and quantify the AMOC impacts on ENSO in a warming climate using CCSM4 simu-
lations. We find that the weakened AMOC causes a reduction in the SST annual cycle in the eastern equatorial 
Pacific and anomalous cross-equatorial northerly winds there, which leads to an increase in ENSO variance 

Figure 4.  (a, c, e, g) Linear regression of sea surface temperature (SST) anomalies (color shading, in °C) onto the E-index for (a) observations, (c) the HIST simulation 
for years 1861–1980, and (e) RCP85 and (g) RCP85_fxAMOC simulations, both for years 1981–2100. The panels show ensemble-mean results. (b, d, f, h) As in the 
left panels but for the SST regression onto the C-index. (i) The fraction of EP and CP El Niño events in the observations (gray), in the HIST simulation (green) for 
1861–1980, and in the RCP85 (purple) and RCP85_fxAMOC (yellow) simulations for 1981–2100. Bars denote one standard deviation.
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by around 11% between 1981 and 2100 relative to the simulated ENSO weakening induced by anthropogenic 
warming. We further analyze the Bjerknes stability index and find that this ENSO intensification induced by the 
AMOC slowdown can be primarily attributed to the enhanced Ekman upwelling feedback related to amplified 
atmospheric response to SST anomalies as well as oceanic upwelling response to equatorial wind stress anom-
alies. We also find that the weakened AMOC modulates ENSO complexity by increasing the ratio of CP to EP 
events by approximately 11%. Nevertheless, both AMOC effects on ENSO magnitude and type are relatively 
small when compared to ENSO variations driven by internal climate variability.

It is noteworthy that the AMOC impacts on ENSO presented in our study are considered in the context of 
anthropogenic warming over the twenty-first century during which the AMOC will slow down but remain active, 
which are thus different from the impacts of a collapsed AMOC that is often considered in the paleoclimate 
context using idealized strong freshwater hosing experiments (Dong & Sutton, 2007; Orihuela-Pinto et al., 2022; 
Timmermann et al., 2007). It also merits attention that, compared to the AMOC modest impact on ENSO induced 
SST variance (Figure S3g in Supporting Information S1), the weakened overturning has a greater impact on inter-
annual SST skewness and hence ENSO asymmetry (Figure S3h in Supporting Information S1). Over 1981–2100, 
the weakened AMOC generally reduces the ENSO skewness by decreasing positive SST skewness in the eastern 
Pacific and at the same time increasing negative skewness in the western Pacific. The maximum change in skew-
ness can exceed 30% of its historical values (Figures S3b and S3h in Supporting Information S1).

We note that the simulated AMOC-induced changes in ENSO variability and the role of ocean-atmosphere feed-
back are opposite in our study and that of Orihuela-Pinto et al. (2022), which may reflect the delicate balance 
of amplifying and damping feedback in different model simulations. We also find significant differences in the 
AMOC-induced mean state changes in zonal winds and thermocline along the equatorial Pacific (Figure S4 in 
Supporting Information S1) between our study and Orihuela-Pinto et al. (2022), which to some extent reflects 
the model uncertainty as reported in Timmermann et al. (2007). Additionally, a recent study by Lee et al. (2021) 
has suggested that large (≥50) ensembles are needed to robustly capture the baseline ENSO characteristics and 
physical processes. Given the large uncertainties in the  IPCC AR5 model projections of ENSO intensity and 
the need of large ensembles, it would be important to apply the current framework to the state-of-art IPCC AR6 
model large ensemble simulations to further tackle this scientific question.

Data Availability Statement
COBE-SST2 data are publicly available at https://ds.data.jma.go.jp/tcc/tcc/products/elnino/cobesst/cobe-sst.html. 
ERSST.v4 & v5 data are publicly available at https://www.ncei.noaa.gov/products/extended-reconstructed-sst. 
KAPLAN EXTENDED v2 data are publicly available at https://iridl.ldeo.columbia.edu/SOURCES/.KAPLAN/.
EXTENDED/.v2/.ssta/datafiles.html?Set-Language=en. The source code of CCSM4 is available at https://www.
cesm.ucar.edu/models/ccsm4.0/. Model configuration parameters used to run the model experiment are available 
in W. Liu et al. (2020), https://www.science.org/doi/10.1126/sciadv.aaz4876. The data to generate Figures 1–4 
are available at Zenodo DOI: https://doi.org/10.5281/zenodo.7783335.
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