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Chemical and biological reactions at fluid-solid interfaces are central to a broad range of porous material
applications and research. Pore-scale solute transport limitations can reduce reaction rates, with marked
consequences for a wide spectrum of natural and engineered processes. Recent advances show that chaotic
mixing occurs spontaneously in porous media, but its impact on surface reactions is unknown. We show
that pore-scale chaotic mixing significantly increases reaction efficiency compared to nonchaotic flows. We
find that reaction rates are well described in terms of diffusive first-passage times of reactants to the solid
interface subjected to a stochastic restart process resulting from Lagrangian chaos. Under chaotic mixing,
the shear layer at no-slip interfaces sets the restart rate and leads to a characteristic scaling of reaction
efficiency with Péclet number, in excellent agreement with numerical simulations. Reaction rates are
insensitive to the flow topology as long as flow is chaotic, suggesting the relevance of this process to a
broad range of porous materials.
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Chemical and biological reactions at the interface
between fluid and solid phases, including adsorption,
complexation, redox reactions, and precipitation or dis-
solution, are central to a broad range of reactive transport
problems. In porous media, where the specific solid surface
is high, fluid-solid reactions are at the core of a broad
spectrum of processes and applications, including contam-
inant transport and degradation, soil remediation, mineral
weathering, microbial processes, carbon dioxide sequestra-
tion, water treatment, and electrochemical processes in
batteries [1–6]. Reaction kinetics are generally modeled
assuming well-mixed (uniform) pore-scale reactant con-
centrations [7]. However, transport limitations can lead to
large deviations from well-mixed estimates by reducing
access of solutes to reactive surfaces [8–11]. Modeling the
impact of pore-scale mixing on fluid-solid reaction kinetics
remains an outstanding challenge.
Steady laminar flows through three-dimensional porous

materials have been shown to spontaneously exhibit
Lagrangian chaos, driving the evolution of concentration
fields [12–17] and potentially impacting reaction rates.
Indeed, increased surface reaction rates in unsteady chaotic
flow through rotating cylinders have been observed in
numerical simulations [18]. While surface reactions locally
deplete reactants and limit reactivity, transport and mixing
by the flow tend to reestablish reactant homogeneity within
the fluid. This interplay can be modeled through delayed
inter-reaction times [19] controlled by the distribution of
first-passage times (FPTs) and return times of dissolved
reactants to the solid interface [20–25]. Yet, the universal
shape of these distributions and its link to mixing properties
remain unknown.

A key property of chaotic advection is the efficient
exploration of space due to the exponential divergence of
nearby fluid parcels, leading to a rapid loss of dependency
on initial conditions [26,27]. Thus, knowledge of reactant
positions within the fluid is lost over a characteristic
timescale. Here, we propose a general theory for predicting
fluid-solid reactivity in chaotic flows based on a stochastic
restart process [28–30]. Restart increases search efficiency
[31–33], leading to enhanced reaction rates compared to
purely-diffusive or nonchaotic transport. We derive new
scaling laws for reaction rates as a function of Péclet
number, leading to large differences compared to the
predictions of current nonchaotic models. We highlight
the role of viscous dissipation at solid surfaces by consid-
ering chaotic flows with slip and no-slip boundary con-
ditions. Our results are supported by numerical simulations
of reactive transport in flows through a crystalline bead
pack [14] and synthetic chaotic flows [34,35].
Reactive transport system.—We consider Stokes flow

through a body-centered cubic bead pack (BCC) with
reactive sphere surfaces (Fig. 1). This idealized porous
medium allows the intensity of chaotic mixing to be tuned
by varying the mean flow orientation [14,36], permitting a
systematic study of the role of chaotic mixing. To isolate
the effect of chaotic mixing, we do not for the present
consider more complex pore topologies such as found in
rocks [37,38], where pore-scale heterogeneity induces
additional transport limitations. We choose three fully-
chaotic mean flow orientations, ðθ;ϕÞ ¼ ð8; 6Þπ=40,
ð7; 5Þπ=40, and ð5; 1Þπ=40, with increasing intensity of
chaotic mixing as characterized by the infinite-time
Lyapunov exponent λ∞ [14,26]. The angle θ is defined
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in the x-y plane with respect to the x direction in the
primitive cell, and ϕ is the angle with the z direction. We
take the cell side lc ¼ 4r=

ffiffiffi
3

p
, where r is the sphere radius,

as a reference length scale. We also consider the special
case of mean flow aligned with packing symmetries,
ðθ;ϕÞ ¼ ð0; 0Þ, which renders the flow nonchaotic.
We study transport of a single dissolved species under-

going advection–diffusion and reacting irreversibly upon
contact with the fluid-solid interface according to a con-
stant surface reaction rate kS ½L=T�. For a bimolecular
reaction with a single solid-phase reactant at constant
surface concentration cS ½M=L2�, kS ¼ kcS, with k the
usual bulk reaction rate [25]. The diffusion time associated
with the reference length lc is τD ¼ l2

c=ð2DÞ, where D is
the molecular diffusion coefficient, and the reaction time-
scale is τR ¼ ðkSlcÞ−1. The Damköhler number Da ¼
τD=τR compares the rates of reaction and diffusion, and
the Péclet number is given by Pe ¼ lcv̄=D ¼ 2τD=τA,
where v̄ is the magnitude of the mean velocity and the
advection time τA ¼ lc=v̄. Numerical results for reaction
efficiency and FPTs use particle tracking with the approach

developed in [25], based on the flow fields from [14].
Figure 1 shows Eulerian simulations of the same system for
an instantaneous reaction. Computational details are given
in the Supplemental Material [39].
This idealized setup allows us to isolate the impact of

chaotic mixing on surface reactions. We disregard for
the moment more complex effects, such as interactions
between multiple reactants, reversible reactions and chemi-
cal equilibrium, and interface changes due to precipitation
or dissolution. The transition to chemical equilibrium
should reduce concentration gradients near the interface
and therefore mitigate transport limitations. Changes in the
interface are generally slow compared to transport and may
be integrated in our framework through changes in the
reactive surface area. The present reactive transport prob-
lem is nevertheless directly relevant to a broad range of
systems, characterized by far-from-equilibrium conditions
and negligible interface changes.
Enhanced reaction efficiency under chaotic mixing.—

Reaction at solid surfaces locally depletes fluid reactants.
Under nonchaotic flow [Figs. 1(a1)–1(c1)], transport to
reactive surfaces is diffusion limited and can lead to
significant reaction slowdown compared to well-mixed
conditions. Under chaotic flow [Figs. 1(a2)–1(c2)], stretch-
ing and folding in the pore space redistribute the solute,
increasing its probability of encounter with reactive surfa-
ces. To quantify this effect, we define the total (or effective)
reaction rate as keðtÞ ¼ jdMðtÞ=dtj=MðtÞ. When the fluid
reactant is well mixed, the reaction rate kwme depends only
on the diffusive flux at the interface and equals ρDa=τD,
where the interface-extent coefficient ρ ¼ lcA=V ½−�
encodes the interface area A per fluid volume V [25].
We define reaction efficiency as the ratio of effective to a
well-mixed rate, εðtÞ ¼ keðtÞ=kwme ½−�. Under transport
limitations, ε < 1 quantifies reaction slowdown (Fig. 2)
due to reactant depletion near the interface (see Fig. 1). In
the absence of chaotic mixing, efficiency is low and
essentially independent of the flow rate, as diffusion is

FIG. 1. Simulations of flow (line a) and fluid-solid reactive
transport (lines b, c) in a BCC, for two flow orientations: ðθ;ϕÞ ¼
ð0; 0Þ and ð5; 1Þπ=40, leading to nonchaotic (column 1) and
chaotic (column 2) advection. Streamlines colored with velocity
magnitudes v normalized by the maximum vmax are shown in (a).
Reactive transport of a solute instantaneously consumed at the
solid surfaces (infinite Damköhler number) is shown for Péclet
numbers 105 (b) and 102 (c). Initially-uniform reactant concen-
trations are depleted by surface reaction. Concentrations c
normalized by the initial value c0 are shown after 20 (b) and
5 (c) advection times τA. Chaotic flow leads to exponential fluid
stretching and accelerated consumption compared to the non-
chaotic case.

100 101 102 103 104 105
10-1

100

FIG. 2. Asymptotic reaction efficiency as a function of Péclet
number for Stokes flow through a BCC, for Damköhler number
102 and four flow orientations, three yielding fully-chaotic
(squares: λ∞ ≈ 7.53 × 10−3; triangles: ≈1.40 × 10−1; asterisks:
≈2.52 × 10−1) and one nonchaotic flow (circles).
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the key mixing mechanism. Under chaotic flow, efficiency
increases with flow rate and can be much larger than
without chaotic mixing. Strikingly, chaotic flows with
different Lyapunov exponents produce similar results.
This suggests that in the presence of chaotic mixing a
different process limits reaction, as discussed below.
First passage to reactive surfaces.—We first recall

previous results for reaction efficiency, obtained using a
chemical continuous time random walk [19] (see also
Supplemental Material [39]). Within this framework, over-
all reaction rates are modeled in terms of interreaction times
subject to stochastic delays. In order to react, the solute
must first reach the reactive interface, and then return as
many times as necessary for reaction to occur. Thus,
reaction efficiency is dictated not only by the local surface
rate kS, but also reduced according to the statistics of FPTs
and return times to the interface. In particular, the late-time
efficiency depends on the mean FPT w0 [T] from the solute
initial condition to the interface, on the corresponding
second moment s20 ½T2�, and on the second moment of
return times [25]:

ε∞ ¼ lim
t→∞

εðtÞ ¼
�
1þ ατD=w0 þ α0ρDa

1þ τD=ðw0ρDaÞ
�

−1
; ð1Þ

where α0 ¼ s20=ð2τDw0Þ ½−� and α is defined similarly for
the return times. Here, we show in Supplemental Material
[39] that α ¼ wh=τD, where wh is the mean FPT associated
with a homogeneous initial condition, removing the
dependency on return times. Intuitively, wh plays a role
here because variability in return times is controlled by long
trajectories, which explore the domain before returning to
the interface. In the following, we quantify the impact of
chaotic mixing on the FPT moments. We focus on an initial
condition that is itself homogeneous (w0 ¼ wh, α0 ¼ αh).
Note that solute concentrations do not remain homogene-
ous due to depletion around reactive surfaces (Fig. 1). Our
results generalize to an arbitrary initial condition as dis-
cussed in Supplemental Material [39].
Chaotic restart.—Chaotic advection enhances mixing

due to efficient Lagrangian exploration of space. We thus
conceptualize chaotic mixing as a random relocation of
dissolved reactants over some characteristic timescale.
FPTs are modeled as diffusive FPTs subject to homo-
geneous spatial restart at a constant rate kr ¼ τ−1r , where the
restart time τr depends on flow and medium geometry.
These FPTs have moments such that [33,39]

wh ¼
1 − ψ̃D

h ðkrÞ
krψ̃D

h ðkrÞ
; αh ¼

1þ kr
ψ̃D0
h ðkrÞ

1−ψ̃D
h ðkrÞ

τDkrψ̃D
h ðkrÞ

; ð2Þ

where ∼ denotes the Laplace transform, ψh is the FPT
density, and D indicates pure diffusion (no flow and thus no
restart). When τr ≫ wD

h , restart is slow compared to

diffusion and the latter dominates first passage: in this
low-Pe regime, Taylor expansion of Eq. (2) yields wh ≈ wD

h
and αh ≈ αDh . In the high-Pe regime, τr ≪ wD

h , fast restart
due to chaotic mixing means that only the short-time
regime of diffusion is probed: only trajectories restarted
close to the interface can reach it sufficiently quickly to
avoid subsequent restart. Correspondingly, we show in
Supplemental Material [39] that the diffusive scaling

ψ̃hðλÞ ≈ ψ̃D
h ðλÞ ≈ ρ=

ffiffiffiffiffiffiffiffiffiffi
2τDλ

p
ð3Þ

holds for Laplace variable λ ≫ 1=wh (short times t ≪ wh).
Taylor expansion of (2) then leads to

wh=τD ≈ αh ≈ ρ−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2τr=τD

p
: ð4Þ

Thus, the normalized first and second FPT moments are
approximately equal under fast restart (small τr) and scale
as

ffiffiffiffi
τr

p
. This holds for an arbitrary initial condition because

fast restart results in a quick loss of memory. Using Eq. (1),
we find a corresponding impact on reaction efficiency in
the high-Péclet range:

ε∞ ≈ ð1þ Da
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2τr=τD

p
Þ−1: ð5Þ

In what follows, we close the model for arbitrary Pe by
quantifying the dependency of τr on flow and geometry.
Restart time under chaotic mixing.—The restart model

simplifies the mixing process by employing a constant
restart rate. We find here that this leads to accurate
descriptions when this rate is obtained from the slowest
mechanism limiting mixing. We distinguish two scenarios
for FPTs to highlight the effect of the hydrodynamics close
to the interface: interfaces with (i) slip and (ii) no-slip flow
conditions: (i) applies to inviscid flows and is relevant for
reactions at the interface of immiscible fluids and (ii) cor-
responds to viscous (e.g., Stokes) flows and applies to
typical flows through porous media.
When the bulk of the flow is fully chaotic, the stirring rate

is proportional to the mean velocity [40]. Hence, the
characteristic time scale τb for mixing in the bulk scales
as τb=τD ∼ Pe−1. Under slip, flow along the interface is also
proportional to themeanvelocity. Hence, the interface restart
time τr ∼ τA, so that τr=τD ∼ Pe−1. The exact velocity profile
near the interface depends on the medium and flow, but this
scaling remains the same as for the bulk time τb. Thus, the
restart theory predicts that the mean FPT scales as wh=wD

h ∼
Pe−1=2 [Eq. (4)]. This is verified in SupplementalMaterial for
a generalized baker’s map [34,35,39].
No-slip conditions fundamentally changemixing, because

low velocities near the interface become the limiting factor
for advective exploration [41–43]. The corresponding
timescale can be determined by examining the distance
l⊥ from the interface over which diffusive and advective
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exit rates are balanced, where reactants are likely to reach
the interface before being “restarted” due to chaotic
advection (Fig. 3). This distance is also the characteristic
length scale of depletion for instantaneous surface reactions
(see Fig. 1). Diffusive exit is controlled by diffusion
perpendicular to the interface, and advective exit by flow
parallel to it. Uniformly-distributed solute exits an open
region of length l by diffusion with an average FPT of
l2=ð12DÞ [20]. Diffusive exit from near the interface is one
sided, so that the diffusive escape time τ⊥ ¼ l2⊥=ð3DÞ can be
obtained by considering two-sided escape in a domain with
l ¼ 2l⊥. Approaching the interface, velocity decay is
characterized by an average shear rate γ ¼ hj∇vji ½T−1�.
The average magnitude up to distance l⊥ is γl⊥=2, and the
average advective exit rate is kA ¼ γl⊥=ð2l⫽Þ, where l⫽ is
the typical distance traveled in a visit. Setting
kr ¼ kA ¼ 1=τ⊥,

τr
τD

¼ 2

3

�
l⊥
lc

�
2

;
l⊥
lc

¼
�

6l⫽

lcγ�Pe

�
1=3

; ð6Þ

where γ� ¼ τAγ ½−�. Thus, without slip, the FPTs governing
asymptotic reaction rates are controlled by interface flow
shear. For large Pe, the mean FPT [Eq. (4)] scales as
wh=wh;D ∼ l⊥=lc ∼ ðγ�PeÞ−1=3, a slower decay compared
to inviscid flows (Pe−1=2) and to the mixing time in chaotic
flows [lnðλ∞PeÞ=ðλ∞PeÞ] [40]. The Pe−1=3 scaling is con-
sistent with simulations as discussed below. In Supplemental
Material [39], we confirm that Stokes flow past a reactive
sphere forms a depletion layer whose width also follows this
scaling. This is consistent with mixing under rod stirring in a
beaker, where the mixing scale at which advective compres-
sion by shear and diffusive spreading are balanced follows
this scaling near the interface [42].

The role of flow near the interface in setting the restart
time also explains its lack of dependence on the Lyapunov
exponent λ∞. Chaotic mixing ensures efficient mixing in
the bulk, but transport near the interface is limited by
diffusion under shear. While reaction rates are insensitive to
λ∞, and thus to the details of the chaotic stretching and
folding of material lines at the pore scale, they fundamen-
tally differ from nonchaotic flows (Fig. 2). Under the latter,
FPT moments, and therefore reaction efficiency [Eq. (1)],
are diffusion limited and thus independent of Pe. In
partially-chaotic flows, where chaotic regions coexist with
nonchaotic islands, a transitional dependence on Péclet
number following the restart prediction is observed; how-
ever, at larger Péclet, the restart model overpredicts mixing
because diffusion within the islands becomes the limiting
factor (see Supplemental Material [39]).
Predictions across the full Pe-Da range.—We estimate

the restart time for the BCC and compare the resulting
predictions for FPT moments and reaction efficiency to
simulations. Using a typical trajectory length l⫽ ¼ πr
(Fig. 3), Eq. (6) yields

τr=τD ¼ 2½π=ð2γ�PeÞ�2=3: ð7Þ

Figure 4(a) shows the FPT moments wh and αh for the three
fully-chaotic orientations from Fig. 2. Predictions are
obtained by inserting kr ¼ τ−1r according to Eq. (7) in
Eq. (2). For arbitrary Péclet, the purely-diffusive FPT density
ψD
h is computed numerically. Its meanwD

h is the low-Pe limit
of wh, and its shape controls the intermediate-Pe regime. It
does not require knowledge of flow, leading to substantial
computational advantage. For high Pe, (2) simplifies to (4),
which does not require ψD

h : predictions follow from the
interface shear γ� and interface extent ρ, without the need for
transport simulations. For the BCC, ρ ≈ 14.7 is determined
analytically, and we find γ� ≈ 4 × 101 numerically for all
flow orientations (see Supplemental Material [39]). The
predictions are in very good agreement with simulations
over the full range of Péclet [Fig. 4(a)]. The momentswh and
αh collapse at high Pe as predicted, as do all results for
different flow orientations.
Figure 4(b) shows the reaction efficiency, predicted by

inserting the FPT moments in Eq. (1). The chaotic restart
model is in excellent agreement with simulations across the
full range of Pe and Da. For low Da, ε∞ ≈ 1, because
diffusion homogenizes reactive depletion. For low Pe and
high Da, reaction is diffusion limited and ε∞ ∼ Da−1

[Eq. (1)]. Chaotic mixing counteracts this tendency by
smoothing over concentrations and increasing reactant
availability. This is most pronounced at high Pe and Da,
for which we obtain, by inserting (7) in (5), ε∞≈
f1þ 2Da½π=ð2γ�PeÞ�1=3g−1. For Da⩾ 10, we observe
significant effects for 102 ⩽ Pe⩽ 105, relevant for both
natural porous flows and industrial applications.

FIG. 3. Near-interface dynamics controlling the restart time in
fully-chaotic, no-slip flow. Under fully-chaotic advection in the
bulk, dynamics near no-slip interfaces represent the limiting
factor for advection-induced exploration of the domain and set
the restart time. This leads to restart times controlled by interface
shear γ, which result from balancing advective and diffusive
escape times near the interface.
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Conclusions.—We have developed a general theory
based on a stochastic restart process that quantifies the
impact of chaotic flow on first-passage times to solid
surfaces. The model predicts that pore-scale chaotic mixing
leads to a significant enhancement of fluid-solid reaction
rates compared to the nonchaotic flow paradigm, in agree-
ment with numerical simulations. Such chaotic dynamics
are increasingly observed and expected to be inherent to 3D
porous media [12,15,17]. This mechanism hence likely
affects reaction rates in a broad spectrum of porous
materials and reactive transport applications. As long as
microscale flow is fully chaotic, reaction rates are inde-
pendent of the microscopic details. Hence, the predictions
for effective reaction rates are expected to be general and
can be linked to basic porous medium properties, such as
specific surface and pore size. These findings open new
avenues for understanding and modeling reactive transport
dynamics in natural and engineered media, and for opti-
mizing industrial processes involving catalysis, chroma-
tography, and filtering.
This new theory of FPTs and their impact on reaction

rates involves a stochastic restart of diffusive solute
excursions to the reactive interface. By tying the restart
rate to basic properties of flow and medium geometry, we
predict FPT moments and reaction efficiency across Péclet
and Damköhler numbers. We show that scaling exponents
depend on the presence of slip or no-slip flow. This
highlights the role of fluid dynamics near the interface
and provides insights into the effect of chaotic flows in a
broader range of reactive systems, including reactive
processes at the interface of immiscible fluids. The general
role of chaotic mixing is highlighted here by considering an
idealized medium and a simple reaction, but the restart
formulation provides a promising framework to study more
complex scenarios.
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Méheust, J. Fluid Mech. 871, 562 (2019).

10-2 10-1 100 101 102 103 104 105

10-3

10-2

10-2 10-1 100 101 102 103 104 105
10-2

10-1

100
(a) (b)

FIG. 4. Moments of first-passage times (a) and asymptotic reaction efficiency (b) as a function of Péclet number in a BCC. Symbols
(superimposed) are based on numerical computation of first-passage and return times for three chaotic flow orientations. Solid lines show
theoretical predictions using the restart model [Eqs. (1), (2), and (7)]. The dashed line in (a) is the large-Pe prediction using Eqs. (4)
and (7). Dashed lines in (b) are small-Pe [Eq. (1) for pure diffusion] and large-Pe [Eqs. (5) and (7)] predictions, for wh ⩽wD

h and τr > wD
h ,

respectively.

PHYSICAL REVIEW LETTERS 130, 264001 (2023)

264001-5

https://doi.org/10.1016/j.epsl.2005.09.017
https://doi.org/10.1016/j.epsl.2005.09.017
https://doi.org/10.1126/science.1250770
https://doi.org/10.1016/j.earscirev.2016.09.001
https://doi.org/10.1016/j.watres.2018.01.059
https://doi.org/10.1016/j.watres.2018.01.059
https://doi.org/10.1073/pnas.1115347109
https://doi.org/10.1007/s10800-011-0348-2
https://doi.org/10.1007/s10800-011-0348-2
https://doi.org/10.1039/C6SM02414A
https://doi.org/10.1039/C6SM02414A
https://doi.org/10.1021/es5013438
https://doi.org/10.1021/es5013438
https://doi.org/10.1017/jfm.2017.499
https://doi.org/10.1021/acs.est.6b06224
https://doi.org/10.1021/acs.est.6b06224
https://doi.org/10.1103/PhysRevLett.111.174101
https://doi.org/10.1103/PhysRevLett.111.174101
https://doi.org/10.1103/PhysRevFluids.2.104502
https://doi.org/10.1103/PhysRevFluids.2.104502
https://doi.org/10.1017/jfm.2019.245


[15] J. Heyman, D. R. Lester, R. Turuban, Y. Méheust, and T. Le
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