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ad Institut de Ciència i Tecnologia Ambientals (ICTA), Universitat Autònoma de Barcelona, Spain 
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A B S T R A C T   

Amber is fossilized resin that preserves biological remains in exceptional detail, study of which has revolu-
tionized understanding of past terrestrial organisms and habitats from the Early Cretaceous to the present day. 
Cretaceous amber outcrops are more abundant in the Northern Hemisphere and during an interval of about 54 
million years, from the Barremian to the Campanian. The extensive resin production that generated this 
remarkable amber record may be attributed to the biology of coniferous resin producers, the growth of resin-
iferous forests in proximity to transitional sedimentary environments, and the dynamics of climate during the 
Cretaceous. Here we discuss the set of interrelated abiotic and biotic factors potentially involved in resin pro-
duction during that time. We name this period of mass resin production by conifers during the late Mesozoic, 
fundamental as an archive of terrestrial life, the ‘Cretaceous Resinous Interval’ (CREI).   

1. Introduction 

Resins are secondary metabolites synthesized by specialized cells of 
“gymnosperm” and angiosperm plants, whose composition consists of 
amorphous mixtures of carboxylic acids, essential oils and isoprene- 
based hydrocarbons (Langenheim, 2003). Resin production is condi-
tioned by temperature, solar radiation, evapotranspiration, and soil 
water deficit (Allen et al., 2010; Rodríguez-García et al., 2015). The 
primary functions of resins relate to defense against herbivores and 
pathogens, and as a healing mechanism, sealing wounds and vulnerable 
parts after damage caused by physical or biological agents (Langenheim, 
2003; Seyfullah et al., 2018). 

Resins can remain sticky from just hours to several months after 
being secreted, which can ensnare organisms or parts of them —known 
as bioinclusions— found mostly in the same ecosystem as the resin- 
producing plant (Solórzano Kraemer et al., 2018). The crosslinking of 
resin takes place over millions of years, resulting in gradual hardening, 
decrease in thermal denaturation, and loss of free methyl groups, all of 
which lead to a relatively inert, hardened form called amber (Langen-
heim, 1990; Anderson et al., 1992; McCoy et al., 2017; Solórzano- 
Kraemer et al., 2020). Only a few types of resins can fossilize based on 
their chemical composition (Anderson and Crelling, 1995; Langenheim, 
2003). 

Most amber deposits have yielded few or no bioinclusions. The 
reasons for this scarcity of bioinclusions are variable, but usually relate 
to the paucity of resin production during some periods of time (this 
paper), where the resin was produced (under aerial or underground 
conditions; Álvarez-Parra et al., 2021), and/or how long the resin 
retained its stickiness (Solórzano Kraemer et al., 2018). Amber-bearing 
outcrops that preserve bioinclusions are a type of Konservat-Lagerstätte. 
Indeed, the preservation of organisms in amber is exceptional and differs 
from other organic or inorganic mechanisms that retain organismic 
detail for millions of years (Martínez-Delclòs et al., 2004; Ross, 2009; 
Grimaldi and Ross, 2017). Despite taphonomic biases inherent in resin 
entrapment (Solórzano Kraemer et al., 2018), amber can provide 
exceptional external and internal anatomical detail of the bioinclusions 
and evidence of past animal behaviors (Labandeira, 2014a; Grimaldi, 
2019). Amber deposits are typically parautochthonous-allochthonous, 
in which resin was dislodged by gravity, transported and concentrated 
by water, and accumulated in a primary or secondary location (Martí-
nez-Delclòs et al., 2004). However, a few autochthonous- 
parautochthonous deposits are known, in which resin experienced 
minimal to virtually no transport (Schmidt et al., 2012; Seyfullah et al., 
2018; Álvarez-Parra et al., 2021). 

Resin crosslinking, which begins once the resin is exuded by the 
plant, continues after burial in sealed, anoxic sediments (e.g., within or 
under layers of clay) that have little interaction with meteoric water 
(Martínez-Delclòs et al., 2004). Resin has almost the same density as 
freshwater but is buoyant in sea water or in freshwater with sediments in 
suspension and is therefore easily transported by flotation and concen-
trated by currents. For these reasons, transitional settings with large 

accumulations of continental organic matter, such as deltas, estuaries, 
swamps or oxbow lakes, are the most favorable sedimentary environ-
ments for resin fossilization (Grimaldi et al., 2000b; Martínez-Delclòs 
et al., 2004; Iturralde-Vinent and MacPhee, 2019). Resiniferous trees are 
often located on emergent topography within these transitional envi-
ronments (Álvarez-Parra et al., 2021) or close to areas where resin pri-
marily accumulated by low-energy transport, indicated by the 
preservation of fragile resin structures (Grimaldi et al., 2000b; Perrichot, 
2005; Rust et al., 2010; Veltz et al., 2013). The association of amber- 
bearing deposits with coal (lignite) or other rocks rich in organic mat-
ter suggests episodes of inland environments flooded by marine trans-
gression (Najarro et al., 2009; Rodríguez-López et al., 2020). 

Although resin is exuded by different tissues and organs of plants, 
amber deposits —at least those from the Cretaceous and whose 
taphonomy has been addressed— were formed primarily by resin pro-
duced by root tissues that generally lack bioinclusions (root resin) and, 
more minorly, by the trunk, branches, or above-soil plant parts (aerial 
resin) (Langenheim, 1995; Álvarez-Parra et al., 2021), the latter of 
which has the potential to contain abundant bioinclusions. Although the 
oldest fossil resin dates from the late Carboniferous (Bray and Anderson, 
2009), oldest amber with bioinclusions dates from the Late Triassic, 
which preserves a few minute arthropods (Schmidt et al., 2012; 
Sidorchuk et al., 2015). Jurassic amber is scarce and may be associated 
with the tropical-equatorial zone, since it has been found primarily in 
Thailand, Italy, and Lebanon; no macroscopic bioinclusions have been 
hitherto reported from this amber (Nohra et al., 2013; Neri et al., 2016). 
The oldest amber deposits rich in bioinclusions are Barremian in age 
(Early Cretaceous) (Maksoud et al., 2017). 

The Cretaceous (~145.0–66.0 Ma) represents a time of rapid 
evolutionary turnover and diversification of organisms. From a macro-
ecological perspective, it was a key period in Earth history in which the 
Angiosperm Terrestrial Revolution (ca. 100 to 50 Ma), inclusive of the 
formerly defined Cretaceous Terrestrial Revolution (Lloyd et al., 2008; 
Benton et al., 2022), occurred. During this time, the Mesophytic pale-
obiome dominated by “gymnosperms” was replaced by a Cenophytic 
paleobiome dominated by angiosperms (Labandeira, 2014b; McElwain, 
2018; Birks, 2020; Condamine et al., 2020). This turnover altered the 
base of trophic networks within continental ecosystems (Labandeira, 
2014b), substantially modifying communities of herbivores (Lab-
andeira, 2007; Kergoat et al., 2014) and, therefore, affecting the 
composition and evolution of continental biotas (Meredith et al., 2011; 
McKenna et al., 2015; Peris et al., 2017; Benson et al., 2021; Peris and 
Condamine, 2023). 

The climate of the Cretaceous was warmer and more humid than that 
of today, probably due to very active, sustained volcanism associated 
with unusually extensive seafloor spreading that elevated atmospheric 
CO2 and O2 values (Royer et al., 2004; Poulsen and Zhou, 2013). During 
most of the Cretaceous, polar regions were virtually devoid of ice 
(Scotese, 2021) and continental land masses were largely occupied by 
forests dominated by conifers (Hay and Floegel, 2012; Peralta-Medina 
and Falcon-Lang, 2012), thereby significantly reducing albedo. The 
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decrease in latitudinal desert belts during the Early Cretaceous and long- 
lasting humid conditions during the Late Cretaceous were driven by the 
breakup of Pangea (Chaboureau et al., 2014; Landwehrs et al., 2021). 

Cretaceous amber-bearing deposits, at least those currently docu-
mented, have a limited temporal and geographical distribution (Martí-
nez-Delclòs et al., 2004; Labandeira, 2014a). They are known from the 
Valanginian to the Maastrichtian, but they are particularly abundant 
and significant from the Barremian to the Campanian (these ages 
ranging from 125.77 to ~72.1 Ma at present), and, although numerous 
and widely distributed, occur predominately in the Northern Hemi-
sphere, which may reflect present-day sampling biases (Fig. 1A). Several 
Cretaceous amber-bearing deposits yield abundant amber and bio-
inclusions (Martínez-Delclòs et al., 2004; Penney, 2010; Seyfullah et al., 
2018). The most studied fossiliferous amber-bearing outcrops from the 
Cretaceous are found in Lebanon (Barremian), Congo (Aptian), Spain 
(Albian), France (Cenomanian), Myanmar (Cenomanian), New Jersey in 
the USA (Turonian), Taimyr in Russia (Santonian) and western Canada 
(Campanian). In addition to these localities, amber (with or without 
bioinclusions) has been reported from Cretaceous deposits in many 
other regions worldwide (Fig. 2; Supplementary data A). 

Molecularly analyzed amber, Pleistocene and Holocene copals, and 
Defaunation resin (produced after the beginning of the Industrial Rev-
olution, see Solórzano-Kraemer et al., 2020) are valuable tools for 
interpreting the botanical origin of amber (McCoy et al., 2017, 2021). 

However, the identity of Cretaceous resin-producing plants remains 
unknown in most cases. The taxonomic affinities of Cretaceous trees that 
produced abundant resin remain elusive for a variety of reasons, which 
include extensive chemical variation observed in the composition of 
Cretaceous amber samples (Menor-Salván et al., 2016; McCoy et al., 
2021), molecular convergence (Bray and Anderson, 2009), and the 
usually scarce record of plant remains in amber as bioinclusions (Kvaček 
et al., 2018; Moreau et al., 2020). Nevertheless, geochemical studies 
have ruled out angiosperms as resin-producing plants during the 
Cretaceous (Anderson et al., 1992; Lambert et al., 1996; Menor-Salván 
et al., 2016), with a few minor exceptions (Grimaldi et al., 2000a). Most 
likely, angiosperms did not acquire the ability to produce resin in suf-
ficient quantities to form amber-bearing deposits until the Early Eocene 
(Jossang et al., 2008). As for “gymnosperms”, the coniferous tree fam-
ilies of Araucariaceae, Cheirolepidiaceae†, Cupressaceae s.l., Podo-
carpaceae, and Pinaceae were widely distributed during the Cretaceous 
(Peralta-Medina and Falcon-Lang, 2012) (Fig. 2) and have been identi-
fied as likely resin sources of Cretaceous amber deposits (Azar et al., 
2010; Peñalver and Delclòs, 2010; Perrichot et al., 2010; Nohra et al., 
2014; Menor-Salván et al., 2016; McCoy et al., 2021) (Supplementary 
data B). The Erdtmanithecales†, a group of non-coniferous “gymno-
sperms” related to the Gnetales or the Bennettitales†, and namely known 
for their pollen, have been suggested as possible producers of resin that 
generated amber deposits in the Aptian of Brazil (Seyfullah et al., 2020). 

Fig. 1. Paleolatitudinal distribution of 239 Cretaceous amber-bearing deposits, grouped by geological age (A) and sea level changes (B) throughout the Cretaceous. 
Amber-bearing deposit data are provided in Supplementary data A. Amber deposits represented by thin blue stripes of the same thickness; deposits within the same 
age box and close in paleolatitude appear as stripes of greater thickness due to superposition. Proportion of area occupied by land indicated in shades of brown 
(modified from Landwehrs et al., 2021: Fig. 3). Representative amber deposits: 1- Hastings (UK); 2- Golling (Austria); 3- Isle of Wight (UK); 4- Twenty-nine localities 
in Lebanon, Zarzar Lake (Syria); 5- Chōshi (Japan); 6- Doumanga (Congo); 7- Araripe (Brazil); 8- Ariño (Spain), Hkamti (Myanmar), Estoril (Portugal), Archidona 
(Ecuador); 9- Eleven localities in Spain, Salignac-Eyvigues (France), Wadi Zerqa (Jordan); 10- Six localities in France, Kachin (Myanmar); 11- Nizhnyaya Agapa 
(Russia), Agdzhakend (Azerbaijan); 12- Chatham Island (New Zealand); 13- Sayreville in New Jersey (USA), La Garnache (France); 14- Shavarshavan (Armenia); 15- 
Five localities in Taymyr (Russia), Kuji (Japan), Piolenc (France); 16-Ajka (Hungary), Eutaw Fm. in Alabama (USA), Tuna-1 (Australia); 17- Cedar Lake, Grassy Lake 
(and other localities, Canada); 18- Tilin amber (Myanmar); 19- Arctic Coastal Plain in Alaska (USA); 20- Hanna Basin in Wyoming (USA); 21- Hell Creek Fm. in South 
Dakota (USA). Eustatic sea-level changes modified from Ray et al. (2019) and after Haq (2014). Geological Timetable based in the International Commission on 
Stratigraphy (v 2023/06), https://stratigraphy.org/chart. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.) 

X. Delclòs et al.                                                                                                                                                                                                                                  

https://stratigraphy.org/chart


Earth-Science Reviews 243 (2023) 104486

4

Actuotaphonomic studies (Peñalver et al., 2018), plant bioinclusions 
(Kvaček et al., 2018; Moreau et al., 2020) (Fig. 3A− B), and examination 
of wood logs and cone scales with embedded amber in amber-rich levels 
(Perrichot, 2005; Mays et al., 2019) provide important evidence for 
determining specific conifer taxa involved in resin mass production 
during the Cretaceous. Although modern Pinaceae resin is poorly 
crosslinked due to its molecular composition, a few moderate-size amber 
deposits resulting from this resin have been found (Bray and Anderson, 
2008; Menor-Salván et al., 2016). Cretaceous Cupressaceae produced 
resin but generally in small amounts (e.g. Otto et al., 2000). 
Cheirolepidiaceae† conifers lack resiniferous structures, except for some 
taxa presenting traumatic resin canals (Bodnar et al., 2013; Rombola 
et al., 2022). 

In this contribution, we define and outline the Cretaceous Resinous 
Interval (CREI) by integrating diverse lines of evidence and analyzing 
the set of interrelated abiotic and biotic factors that characterized this 
interval. The data presented herein was compiled from the literature and 
our own fieldwork in Cretaceous amber localities from Lebanon, Jordan, 
Congo, Ecuador, Spain, France, Myanmar, USA, and New Zealand; 
Cenozoic amber localities from France, Mexico, Dominican Republic, 
New Zealand, India, China, and Ethiopia; and copal and Defaunation 
resin deposits from Colombia, Dominican Republic, New Caledonia, 
New Zealand, and Madagascar. In the latter three regions, our fieldwork 
focused on actuotaphonomic processes aimed at understanding the 
conditions of production and conservation of Defaunation resin and the 
formation of copal deposits. 

The materials figured in this work are housed at the El Soplao Cave 
amber collection, Spain (Figs. 3A, E, 5C), the University of Barcelona, 
Spain (Figs. 3B, 5D), the Nanjing Institute of Geology and Palaeontology, 
China (Fig. 5A), and the Museu de Ciències Naturals de Barcelona, Spain 

(Fig. 5B). Photographs and data used in the figures are our own when not 
specified in the captions. 

2. Definition of the Cretaceous Resinous Interval 

We define the Cretaceous Resinous Interval (CREI) as global mass 
resin production and burial interval that occurred from the Barremian to the 
Campanian stages of the Cretaceous Period. We posit that, during a rela-
tively continuous time interval of about 54 million years, a suite of 
factors led to the formation of rich amber deposits with similar char-
acteristics and of wide geographic distribution (Figs. 1, 2). This time- 
delimited interval is based on the known geological record, which pro-
vides evidence of numerous amber-bearing deposits (Supplementary 
data A) from the Barremian (Early Cretaceous), namely those from 
Lebanon (Maksoud et al., 2022), to the Campanian (Late Cretaceous), 
particularly Canadian (McKellar et al., 2008) and Tilin in Myanmar 
(Zheng et al., 2018) ambers. Most of these amber deposits occur in the 
Northern Hemisphere, between 5o and 75o N paleolatitude, and are 
especially abundant in low to mid latitudes from the Barremian to 
Coniacian and in mid to high latitudes from the Santonian to the Cam-
panian (Fig. 1A). Some Cretaceous amber-bearing deposits are found in 
the Southern Hemisphere between the Aptian–Turonian, but they are 
scarce (Fig. 1A). Cenozoic amber deposits first appear during the Mid 
Paleocene of Wyoming, USA (~61 Ma) and Late Paleocene of Alaska, 
USA (~57 Ma) (Grimaldi et al., 2000a, 2018), and the Eocene of Oise, 
France (~53 Ma), Fushun, China (53–50 Ma) and Cambay, India 
(~52–50 Ma) (Jossang et al., 2008; Rust et al., 2010; Wang et al., 
2014a). 

There are five primary shared characteristics among amber deposits 
formed during the CREI. First, resin production was restricted to conifers 

Fig. 2. Distribution of resiniferous forests based on known amber-bearing localities and known occurrences of potential coniferous resin-producing tree families 
throughout the Cretaceous: Araucariaceae, Cheirolepidiaceae†, Cupressaceae, Pinaceae, and Podocarpaceae. The dataset/sources related to the paleobotanical groups 
used to construct this figure is formed by Supplementary data B (data from Peralta-Medina and Falcon-Lang (2012) and our own bibliographic search) and data 
downloaded from Paleobiology Database (https://paleobiodb.org). A) Berriasian–Hauterivian; B) Barremian–Albian; C) Cenomanian–Turonian; D) Con-
iacian–Maastrichtian. Paleogeographic maps obtained from Scotese et al. (2021). The present-day spatial coordinates and ages from a total of 299 Cretaceous amber 
outcrops and 1252 paleobotanical records were obtained from a bibliographic survey (Supplementary data A and B, respectively). Present coordinates of amber 
outcrops and paleobotanic occurrences were rotated to paleocoordinates using R v.4.0.4 and GPlates v.2.2.0. Map visualization and imaging was made using QGIS 
v.3.22.3 software. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 3. Mass resin tree producers and development of fires during the Cretaceous. A) Aerial amber piece with surface imprints and bioinclusions of Frenelopsis 
(Cheirolepidiaceae†) axes, from the Albian of El Soplao (Spain); based on taphonomic studies, the largest number of plant bioinclusions corresponds to this resin- 
producing tree (Peñalver et al., 2018); B) One of the most abundant plant remains in the Cenomanian amber of Kachin (Myanmar) are axes with leaves of arau-
cariaceans (Poinar et al., 2007) (University of Barcelona); C) Charcoal from the Albian amber-bearing outcrop of San Just, level SJ2 (Spain), commonly found in 
amber-bearing levels (Peñalver and Delclòs, 2010); D) Agathis ovata from Col de Yaté, New Caledonia, producing copious quantities of resin in an area burned several 
years ago; E) The immature insect related to green lacewings, Hallucinochrysa diogenesi (Neuroptera: Chrysopoidea), from the Albian amber of El Soplao (Spain), 
preserved with a debris-carrying packet of trichomes with gleicheniaceous affinity; today, gleicheniacean ferns opportunistically colonize burned areas (Pérez-de la 
Fuente et al., 2012); F) Orthosyntexys elegans, a wasp from the relict family Anaxyelidae (Hymenoptera: Symphyta) from the Cenomanian amber of Kachin, Myanmar; 
the living representatives of this family lay eggs in the sapwood of conifers, preferring recently burned wood (Gao et al., 2021), photograph courtesy of T. Gao; G) 
Eophylica priscastellata, an angiosperm flower of the family Rhamnaceae from the Cenomanian amber of Kachin (Myanmar) showing morphological specializations 
identical to those of modern relatives adapted to recurrent wildfires (Shi et al., 2022); photograph courtesy of C. Shi and R. Spicer. Abbreviations: m = mandibulo- 
maxillary stylets (feeding structures), t = trichomes. Scale bars = 2 mm (B, F), 1 mm (E, G), 0.5 mm (A). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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(Araucariaceae, Cheirolepidiaceae†, Cupressaceae s.l., Podocarpaceae, 
and Pinaceae) (Langenheim, 2003; Menor-Salván et al., 2010; Seyfullah 
et al., 2018). Second, charcoal, resulting from plant material charred by 
wildfires, is commonly found in the same stratigraphic level as amber, 

particularly in the Northern Hemisphere (Brown et al., 2012; Tappert 
et al., 2013; Supplementary data C) (Fig. 3C). Third, when bioinclusions 
are preserved, they correspond to similar fauna and flora under com-
parable biases (Penney, 2010; Solórzano Kraemer et al., 2018), although 

Fig. 4. Oxygen (O2) and carbon dioxide (CO2) atmospheric composition, temperature, and Large Igneous Province (LIP) activity throughout the Cretaceous. A) 
Reconstruction for Cretaceous atmospheric O2 mixing ratio (from Mills et al., 2016). Forward models of O2 based on nutrient/weathering (1, 5, 7), including isotope 
mass balance models (4, 8) and “proxy inversion” methods that estimate atmospheric oxygen by reference to geochemical data, assuming relationships between O2 
concentration and either fossil charcoal abundance (3), carbon-to‑phosphorus ratios in sediments (6), carbon isotope composition of plant resins (9), or combined 
estimates for sedimentation rate and abundance of organic carbon and pyrite in rock samples (2). Also represented: wildfire minimum (for ignition) and maximum (in 
the Phanerozoic, Carboniferous–Permian). References used: 1- Bergman et al. (2004), 2- Berner and Canfield (1989), 3- Glasspool and Scott (2010), 4- Berner (2009), 
5- Arvidson et al. (2013), 6- Algeo and Ingall (2007), 7- Hansen and Wallman (2003), 8- Falkowski et al. (2005), 9- Tappert et al. (2013); B) Comparison of the carbon 
isotope composition of leaves of the Cheirolepidiaceae† conifer Frenelopsis (δ13Cleaf, in green) with the evolution of the carbon isotope composition of atmospheric 
CO2 (δ13CCO2, in brown), from Barral et al. (2017). The Frenelopsis samples from the upper Barremian–lower Santonian interval come from amber outcrops; C) 
Reconstructed Cretaceous Sea Surface Temperature (SST) (from Martin et al., 2014 in Barral et al., 2017), Global Average Temperature (GAT) (from Scotese et al., 
2021) and LIP running average every 5 Ma (from Eldholm and Coffin, 2000). Geological Timetable based in the International Commission on Stratigraphy (v 2023/ 
06), https://stratigraphy.org/chart. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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often bioinclusions are absent likely due to taphonomic reasons. Fourth, 
resin accumulation occurred in transitional sedimentary environments 
under subtropical and temperate paleoclimates. And fifth, resin accu-
mulation coincides with the maximum regressive surface (or trans-
gressive surface) (Bowen and Jux, 1987; Villagómez et al., 1996; Najarro 
et al., 2009) (Fig. 1B). Spatially, the CREI appears to be global in nature, 
since amber-bearing outcrops are distributed worldwide throughout the 
Cretaceous, although they are particularly concentrated in Laurasia and 
the northern margin of Gondwana (Figs. 1, 2). In any case, we use the 
term ‘global’ in its broader sense as we posit that the CREI did not 
necessarily take place in both hemispheres simultaneously throughout 
the entire interval. 

3. Conditional factors on resin production and preservation 

Two basic conditions need to co-occur in time and space to generate 
an accumulation of resin with the potential to become an amber-bearing 
deposit. First, there needs to exist resin-producing plants with the ca-
pacity to secrete large amounts of resin. Second, there needs to be a 
suitable sedimentary setting, namely a transitional environment that 
buries resin under anoxic conditions. Known Cretaceous amber-bearing 
deposits are restricted geographically despite the worldwide distribu-
tion of resin-producing conifers during various Cretaceous stages 
(Fig. 2). Consequently, potential lack of suitable depositional environ-
ments for the accumulation and preservation of resin may have limited 
the distribution of amber-bearing deposits. However, transitional sedi-
mentary environments during major marine transgressions were equally 
probable anywhere on Earth’s surface, and have occurred cyclically 
throughout time (Haq, 2014). Thus, the two conditions noted above may 
not fully explain the observed distribution of Cretaceous amber-bearing 
deposits, such that other abiotic or biotic factors, and the confluence of 
several factors, likely promoted the production of resin by trees and/or 
its subsequent accumulation and preservation. These factors could be 
global or more localized in spatial scale and are not necessarily mutually 
exclusive. 

3.1. Abiotic factors 

Multiple abiotic factors were potentially related to the mass pro-
duction and/or accumulation of resin during the CREI. Although these 
factors are interrelated and feedback on each other, we group them here 
to facilitate discussion: (1) atmospheric gas composition, temperature, 
and wildfires; (2) volcanism and changes in sea level; and (3) oceanic 
physicochemical properties and hurricanes. An overview of the global 
climate throughout the CREI is provided at the end of this section. 

3.1.1. Atmospheric gas composition, temperature, and wildfires 
Atmospheric gas composition (Fig. 4A− B) has a major effect on 

climate. Atmospheric greenhouse gases such as carbon dioxide (CO2) 
and methane (CH4), as well as oxygen (O2) may have directly or indi-
rectly impacted global resin production. Estimates of atmospheric CO2 
concentration during the Cretaceous vary according to the authors and 
proxies used (Tappert et al., 2013; Landwehrs et al., 2021) but generally 
is considered to have been more than twice that of preindustrial values, 
between 560 and 1680 ppm (Barral et al., 2017). 

High CO2 levels are due to extensive volcanic emissions during the 
Cretaceous from Large Igneous Provinces (LIPs, Fig. 4C) and seafloor 
formation (Condie et al., 2021). Wildfires, changes in ocean chemistry, 
biotic respiration, and organic matter decomposition also released sig-
nificant amounts of CO2 to the atmosphere during the Cretaceous (Hu 
et al., 2012; Wang et al., 2014b; Scott, 2018). Methane has a greater 
greenhouse potential than CO2, and is likely to have notably increased 
during the Cretaceous (Jahren et al., 2001; Chang et al., 2022). Higher 
CH4 levels were related to the liberation of methane hydrate from the 
seafloor by rising water temperatures (Wagner et al., 2007) and from 
seafloor spreading. Global temperatures fluctuated during the 

Cretaceous (Holz, 2015; Landwehrs et al., 2021) (Fig. 4C), with gener-
ally elevated temperatures and reduced latitudinal temperature gradi-
ents between the equator and the poles of ≤35 ◦C mean annual 
temperature (MAT) in both hemispheres (O’Brien et al., 2017; Huber 
et al., 2018) compared with current values. The Northern Hemisphere 
thermal gradient showed a ca. 5 ◦C decrease from the Late Jurassic into 
the Late Cretaceous due to increased CO2 and associated warming, while 
in the Southern Hemisphere the temperature gradient increased during 
this time due to the migration of Antarctica towards the South Pole 
(Landwehrs et al., 2021). Higher temperatures also brought more 
extreme atmospheric precipitation regimes and the establishment of 
more extensive regions under arid or monsoonal climates (Hasegawa 
et al., 2012), although the latter would have been influenced more by 
palaeogeography than by atmospheric gas concentration (Farnsworth 
et al., 2019). 

Continental precipitation during the mid-Cretaceous was roughly 
mirrored between the Northern and Southern Hemispheres according to 
coupled ocean-atmosphere general circulation simulations, with 
maximum precipitation at the equator that decreased steeply to a min-
imum around 30o paleolatitude, which then increased again to a peak at 
around 50o paleolatitude (Zhou et al., 2012). This pattern situates the 
bulk of Cretaceous amber deposits with bioinclusions (particularly 
during the mid-Cretaceous) (Fig. 1A) in areas of moderate to relatively 
low average rainfall. Remarkably, the occurrence of the first significant 
Triassic amber deposits with inclusions in northern Italy coincides with 
the Carnian Pluvial Episode, associated with an important evolutionary 
radiation of “gymnosperms” (Roghi et al., 2022). 

The increase in atmospheric CO2 below the RuBisCo (the enzyme 
ribulose-1,5-bisphosphate carboxylase/oxygenase, involved in the first 
major step of carbon fixation) saturation limit accelerates plant photo-
synthesis and growth under present conditions (Dalling et al., 2016; 
Olivoto et al., 2017). In principle, such acceleration would suggest that 
increasing atmospheric CO2 could result in higher metabolic rates and 
thus increased production of secondary metabolites, such as resin (Trapp 
and Croteau, 2001; Novick et al., 2012). However, related plant species 
may show opposite responses to CO2 changes due to differences in 
physiological plasticity (Berini et al., 2018; Kurepin et al., 2018), 
thereby limiting the ability to infer resin production by fossil plant 
species based on CO2 concentration alone. Even so, CO2 and O2 values 
might be indirectly linked with resin production, as elevated levels 
would be expected to impact the physiological features of plants that, in 
turn, could increase the herbivorous, wood-boring or pathogenic activ-
ity of other organisms such as arthropods or fungi (Lake and Wade, 
2009; Labandeira, 2013; Couture et al., 2015; see section 3.2 below). 

Numerous proxies suggest that atmospheric O2 increased continu-
ously from the Barremian to the late Cenomanian (Fig. 4A) to about 
29%–31% (Berner, 2006; Glasspool and Scott, 2010; Brown et al., 2012), 
but decreased from the Turonian to the end of the Paleocene to the 
current value of 21% (Wade et al., 2019). The high O2 content in the 
atmosphere during the Cretaceous favored recurrent wildfires in conif-
erous forests (Belcher and McElwain, 2008), which were also promoted 
by increased electrical storms and intensive volcanism (Scott, 2018). 
Charcoal is indicative of paleowildfires (Brown et al., 2012; Scott, 2018) 
and is abundant in most Cretaceous amber-bearing deposits (Peñalver 
and Delclòs, 2010; Shi et al., 2012; De Lima et al., 2019) (Fig. 3C), but 
mainly in the Northern Hemisphere deposits (Supplementary data C), 
including the presence of charcoalified remains within amber (Grimaldi 
et al., 2000b; Najarro et al., 2010). Partially burned amber pieces have 
been found occasionally together with charcoalified plant material 
(Grimaldi et al., 2000b). 

Extant trees increase resin exudation if injured by fire (Fig. 3D) as a 
physiological response that prevents pathogenic activity or arthropod 
invasion (Langenheim, 2003; Della Prasetya et al., 2017). Fire has 
played a key role in reshaping ecosystems, particularly after the accu-
mulation of flammable biomass arising from increased productivity of 
terrestrial ecosystems linked to the predominance of angiosperms (Bond 
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and Scott, 2010) and from the altered ignitability and flammability of 
angiospermous plant matter (Belcher and Hudspith, 2017). Different 
groups of Cretaceous conifers exhibit pyrophilous modifications linked 
to recurrent wildfires (He et al., 2016), in lifestyles such as serotiny that 
has endured into the present (Pausas, 2018). Moreover, there are diverse 
instances of organisms associated with fire that are preserved in Creta-
ceous ambers (Ortega-Blanco et al., 2008; Pérez-de la Fuente et al., 
2012; Shi et al., 2022) (Fig. 3E− G). 

The above lines of evidence suggest wildfires played a role in the 
genesis of resin deposits during the CREI, at least in some deposits, by 
favoring resin exudation but also subsequent accumulation, since 
deforested soils experienced increased erosion. However, based on the 
global occurrence of wildfires (Brown et al., 2012; Scott, 2018; Sup-
plementary data C) and the broad distribution of potential resiniferous 
plants during the CREI (Fig. 2; Supplementary data B), a global distri-
bution of Cretaceous amber deposits would be expected, for which there 
is currently no evidence (Fig. 2). Wildfires were globally distributed but 
seems only involved in local and regional resin production and accu-
mulation during the CREI (e.g., the Raritan Fm. amber in New Jersey, 
USA or Spanish and French ambers), but appear not to be a definitive 
cause of resin production on a global scale. 

3.1.2. Volcanism and changes in sea level 
The abundant record of volcanic rocks associated directly or laterally 

with Cretaceous amber-bearing deposits such as those in Lebanon (Veltz 
et al., 2013), Myanmar (Shi et al., 2012), Ecuador (Balseca et al., 1993), 
and Canada (Eberth, 2005) is evidence that resin mass production took 
place in environments amid local volcanic influence, with this factor 
intimately related to wildfires (see above). Aside from increasing at-
mospheric O2 concentrations that promoted wildfires, large amounts of 
volcanic emissions over a long period of time in LIPs could have affected 
global climate in other ways (Johansson et al., 2018; Macdonald et al., 
2018). The maximum development of LIPs during the last 2500 million 
years occurred during the Cretaceous (Eldholm and Coffin, 2000; Condie 
et al., 2021). This peak of LIP development (Fig. 4C) altered atmospheric 
composition and circulation patterns and changed the geometry of 
sedimentary basins and sea level. The formation of LIPs and seafloor 
spreading, in combination with increased global MATs, led to the 
melting of polar ice caps (Zhou et al., 2008; Hay, 2017) and to signifi-
cant reductions in the Earth’s albedo (Kent and Muttoni, 2022) during 
the Cretaceous. These changes produced a global marine transgression 
trend (Fig. 1C) from the Valanginian to the Turonian (Wagreich et al., 
2020). This global transgression was only interrupted by a regression at 
the Aptian− Albian boundary, after global MATs (Haq, 2014) fell to 
12 ◦C (Hay, 2017). Maximum transgression was reached in the Turonian 
and sea level remained at high stands into the Campanian (Olde et al., 
2015). All resin-bearing deposits were developed in periods of maximum 
regression, onlapped by the second-order marine transgressive strata 
(Grimaldi et al., 2000b; Perrichot, 2005; Najarro et al., 2009) (Fig. 1C). 

The globally-high sea level during the CREI increased insularization, 
changing the extent and distribution of land masses and epicontinental 
seas such as the Late Cretaceous European archipelago, and the Mid-
continental Seaway of North America. Extensive regions were flooded, 
which produced the remobilization of abundant resin stored in the soils 
due to erosion resulting from the transgressions, establishing new areas 
of shallow deposition, reducing terrestrial biotopes, and increasing 
flooding stress (Erwin, 2009). Marine transgressions have been associ-
ated with higher global temperature and paleogeographic changes, both 
of which caused more emergent land masses at mid to high latitudes in 
the Northern Hemisphere (Landwehrs et al., 2021), which potentially 
allowed for more colonization by plants and distribution of coniferous 
forest (Klages et al., 2020). This pattern contrasts with what occurred in 
the Southern Hemisphere during the Cretaceous, wherein the proportion 
of emerged land masses at mid to high latitudes remained low, similar in 
extent to that of the present day (Figs. 1, 2). 

3.1.3. Oceanic physicochemical properties and hurricanes 
Amber-bearing deposits are frequently associated with transitional 

sea-to-land environments. Thus, the properties of ocean waters, namely 
salinity and sea surface temperature (SST), and paleocirculation pat-
terns may have affected the formation of resin deposit. Salinity may 
have controlled the formation of resin deposits because resin has a lower 
density than seawater, rendering it buoyant and making its burial and 
preservation in environments with high salinity difficult. High salinity 
conditions did occur in regions where amber-bearing deposits are found 
in the Northern Hemisphere, such as Myanmar and New Jersey of the 
USA (Poulsen et al., 1998; Ladant et al., 2020; Topper et al., 2011), and 
Brazil and the Congo in the Southern Hemisphere (Pérez-Diaz and Ea-
gles, 2017). However, the formation of resin deposits in high salinity 
zones suggest only temporary marine influence. The record of frequent, 
yet rarely diverse, marine protists and invertebrates, such as oysters or 
crinoids, and plant macroremains in amber deposits (Néraudeau et al., 
2008; Barrón et al., 2015; Peyrot et al., 2019) supports a transitional 
depositional setting with occasional marine influence. 

Global average SST during the mid-Cretaceous was >6 ◦C higher 
than that of today (Hay, 2009; Torsvik and Cocks, 2016), but disparate 
data exist regarding SSTs throughout the entire Cretaceous (Hay and 
Floegel, 2012) (Fig. 4C). Global ocean circulation changed significantly 
during the Cretaceous due to progressive opening of the South Atlantic 
Ocean and the Tethyan Circumglobal Current, providing east to west 
flow around the globe at low latitudes of the Northern Hemisphere. In 
addition, the transfer of heat from the hydrosphere to the atmosphere 
from water vapor played an important role in cooling the tropics and in 
warming at high latitudes, establishing the diminished latitudinal 
gradient of temperature noted earlier. These factors conditioned global 
temperature and climate during the CREI (Hay, 2009; Wohlwend et al., 
2015), and thus may have indirectly impacted resin formation and/or 
accumulation. 

Linked to high average SST during the Cretaceous (O’Brien et al., 
2017), heavy rainfall and winds, such as those during hurricanes, have 
been proposed as an abiotic cause of resin production. High winds can 
cause severe damage to trees, which is sealed by resin to minimize 
opportunistic insect attacks or pathogenic infections (Langenheim, 
1994; Seyfullah et al., 2018). Climate models based on marine and 
continental distribution and topography suggest winds were generally 
weaker during the Cretaceous than at present (Cousin-Rittemard et al., 
2002; Hay, 2009), but the consistently high annual SST could have 
promoted the development of hurricanes in low to mid latitudes. The 
absence of high topographic relief (Hay et al., 2019) would have allowed 
the wind to circulate without diverting its zonal flow (Scotese et al., 
2021). 

3.1.4. Climatic overview throughout the CREI 
Based on paleoclimate data and maps (Chumakov et al., 1995), most 

Cretaceous amber-bearing deposits originated in the northern mid- 
latitude warm humid belt. Nevertheless, during the Albian and Santo-
nian, some amber-bearing localities were present well within the 
northern high-latitude temperate humid belt, and during the Albian and 
Cenomanian other amber-bearing localities were present within the 
equatorial humid belt and northern hot arid belt, respectively. Based on 
global circulation models, the depositional environments that gave rise 
to amber-bearing deposits in Lebanon (Barremian) were located within 
the tropical climate belt (Sewall et al., 2007; Ohba and Ueda, 2010). 
During the lower to middle Aptian, the climate cooled globally (Mut-
terlose et al., 2010), which coincides with a reduction in currently 
known amber deposits, although this cold interval was recently ques-
tioned (Huber and O’Brien, 2020). 

At the Aptian–Albian boundary, warm greenhouse conditions were 
re-established due to intense volcanism, coinciding with amber deposits 
in Brazil, Ecuador, and the Congo at low latitudes in the Southern 
Hemisphere (Pereira et al., 2009; Cadena et al., 2018; Bouju and Per-
richot, 2020). During the Albian, an extensive subtropical arid belt 
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developed in the equatorial zone, which subsequently migrated pole-
ward (Scotese, 2021). Abundant resin accumulations were common in 
tropical mid latitude areas, such as Iberia, leading to the present-day 
Spanish amber deposits (Peñalver and Delclòs, 2010). 

During the Cenomanian–Turonian, climate zones began to organize 
latitudinally (Sewall et al., 2007), although still under hothouse condi-
tions (Kidder and Worsley, 2010; Mills et al., 2017), enabling the trop-
ical biota to migrate poleward of 40oN latitude. Although currently there 
are important forests of conifers in very high latitudes (Fig. 2), resin 
deposits were formed at that time mostly between 30o and 40oN lati-
tude, with some exceptions at higher latitudes (Fig. 1), corresponding to 
a MAT of around 30 ◦C (Hay and Floegel, 2012); these conditions may 
have produced the resin corresponding to amber-bearing deposits from 
the lower Cenomanian of France (Perrichot et al., 2010), Myanmar (Ross 
et al., 2010), and from the Turonian of New Jersey in the USA (Grimaldi 
and Nascimbene, 2010). 

During the upper Turonian–Maastrichtian, climate changed consid-
erably (Tabor et al., 2016). Simulated global mean surface air temper-
atures (GMST) show temperatures of 21.2 ◦C–19.5 ◦C during the 
Campanian. These cooling trends are associated with changes in the 
fraction of Earth’s surface occupied by land (Fig. 1B), which has a higher 
average albedo than that of the ocean, caused by lower sea levels that 
resulted in greater exposure of continental areas (Landwehrs et al., 
2021). Although average global temperatures decreased during the 
Turonian–Maastrichtian, most resin deposits formed at high latitudes, 
namely of the Northern Hemisphere, and were rare at mid to low lati-
tudes (Fig. 1B). From this interval are known the amber deposits of the 
Santonian from the Taymyr region in Russia (Perkovsky and Vasilenko, 
2019), from the Campanian of Cedar Lake and Grassy Lake in Canada 
(McKellar et al., 2008), and from the Campanian–Maastrichtian of the 
Arctic Coastal Plain in Alaska (Langenheim et al., 1960). 

3.2. Biotic factors 

The mass production of resin during the CREI may have been pro-
moted by biotic factors acting at a regional scale (Martínez-Delclòs et al., 
2004; Seyfullah et al., 2018). These factors include arthropod damage, 
pathogenic activity, and the emission of volatile compounds by the 
resins to attract pollinators and other insects (Langenheim, 1994; 
Pichersky and Gershenzon, 2020; Peris et al., 2021). 

Terrestrial arthropods (insects, mites) can cause severe damage to 
plants through feeding- or development-related activity. Different 
wood-boring insects, namely beetles (Coleoptera), but also some wasps 
such as wood wasps (Hymenoptera: Siricidae) and moths such as cossid 
millers or clearwing moths (Lepidoptera: Cossidae and Sesiidae), bore 
into wood for nest building and offspring development, at times culti-
vating fungi as a food source in galleries within woody tissues (Hulcr and 
Stelinski, 2017; Peris et al., 2021). The diseased tree reacts against 
invasive agents by developing secondary defensive compounds such as 
terpene-rich oleoresins in conifers, which flood the area to physically 
repel the invasion, while different toxins and volatiles act as a chemical 
defense (Raffa, 2014; Krokene, 2015). The influence of massive attacks 
of wood-boring beetles on resiniferous ancient forests has been widely 
cited in the literature based on their abundance in Cenozoic ambers, 
Pleistocene and Holocene copals, and Defaunation resins (Martínez- 
Delclòs et al., 2004; Labandeira, 2014a; Seyfullah et al., 2018; Peris, 
2020). However, there is no significant direct evidence of beetle in-
festations in Cretaceous ambers yet found, although scarce wood boring 
beetles such as auger beetles (Bostrichidae), spider beetles (Ptinidae), 
ship timber beetles (Lymexylidae) and weevils (Curculionidae) are 
found occasionally (Chen and Zhang, 2020; Peris, 2020; Peris and Rust, 
2020) (Fig. 5A− B). Herbivorous insect groups such as true bugs (Hem-
iptera), thrips (Thysanoptera) (Fig. 5D), grasshoppers and crickets 
(Orthoptera), and termites (Isoptera) have been found in major Creta-
ceous amber deposits, including taxa that currently cause significant 
damage to plants. However little evidence exists of intense arthropod 

herbivory during the CREI in rock deposits (Labandeira, 1998, 2014b; 
Xiao et al., 2022a, 2022b), and there has been no assessment of the 
herbivory in amber due to the scarcity of damaged leaves and other 
photosynthetic structures (such as cheirolepidiacean axes) as 
bioinclusions. 

Pathogenic organisms can invade plant tissues directly or through a 
vector. Aside from their ability to cause direct harm, some extant species 
from insect groups transmit pathogens to their plant hosts, including 
viruses, bacteria, fungi, oomycetes, and nematodes (Labandeira and 
Prevec, 2014). 

The development of insect-borne pathogens depends on population 
dynamics, dispersal ability, host selection behavior, and the feeding 
behavior of the insect vectors (Labandeira and Prevec, 2014; Eigenbrode 
et al., 2018). Bacteria and fungi are chiefly spread by adhering to the 
insect’s body, so their vector relationship is not as specific as that which 
occurs in the transmission of viral diseases (Jones, 2005). Oomycetes are 
remarkable plant pathogens, because infection by these fungus-like 
microorganisms can induce copious resin exudation, as observed in 
the genus Agathis in New Zealand (Fig. 5E− G), which produces a 
particular variation in the color of large resin exudates (Weir et al., 
2015). Unfortunately, this type of resin would be difficult to recognize 
once transformed into amber; future studies may be able to distinguish 
this resin isotopically or by the presence of oomycete spores as 
bioinclusions. 

Plants are known to emit volatile compounds to attract or repel in-
sects (Raffa, 2014; Pichersky and Gershenzon, 2020). However, many 
insect species are attracted to volatile plant mixtures that indicate stress, 
as this signaling can allow insects to enter tissues free of defense and, 
potentially, competition (Hulcr and Dunn, 2011). Angiosperm resin 
terpenoids attract insect pollinators (Armbruster, 1984; Boncan et al., 
2020). Highly specialized pollination relationships between some 
groups of insects and “gymnosperms” have been discovered in amber 
since the Albian (Fig. 5C), in some instances lacking extant representa-
tives of such pollination interactions (Peñalver et al., 2012, 2015; Peris 
et al., 2017, 2020; Peña-Kairath et al., 2023). Resin exudation by co-
nifers during the CREI could be related to the attraction of certain groups 
of insects to assist in pollination. This idea was proposed for Cenozoic 
ambers produced by angiosperms (Armbruster, 1993). The hypothesis is 
challenging to test at present, and the absence of Cretaceous insects with 
attached coniferous pollen (Peris et al., 2020) renders it unlikely. 
Nevertheless, cheirolepidiaceous pollen has been found on the mouth-
parts of insects in compression–impression deposits from non-amber 
producing environments of the Middle Jurassic to the Early Creta-
ceous (Labandeira et al., 2016), indicating insect pollination of at least 
one reproductively specialized cheirolepidiaceous conifer was an 
exception (Labandeira et al., 2007). 

4. Present limitations and future directions 

We propose that the CREI represented a distinct mass resin produc-
tion that occurred over a continuous time interval from the Barremian to 
the Campanian, despite differences in the known record of amber- 
bearing deposits between Cretaceous geochronologic stages (Fig. 1A). 
The causal mechanisms underlying such fluctuations are not well un-
derstood, although they may relate to circumstances that are best 
studied on a case-by-case basis by integrating multiple approaches. 

Although we hypothesize that the same set of general processes that 
promoted resin mass production and accumulation acted for the entirety 
of the CREI, we posit that these were under the influence of possible 
local or regional controls that determined the intensity of the effect. The 
relative importance of the abiotic and biotic factors influencing resin 
production and accumulation during the CREI at regional geographical 
scales, among other variables, will need to be rigorously tested in future 
studies. 

We established the CREI with a stage/age hierarchy (apud IUGS 
Chronochart - Gradstein et al., 2021). Finer temporal resolution would 
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Fig. 5. Biotic factors that could have promoted resin mass production during the Cretaceous: wood-boring insects, pollination, and pathogens. A) A lymexylid beetle; 
larvae of this group of beetles today penetrate living and decaying wood, consuming fungus in a symbiotic association; unpublished specimen from the Nanjing 
Institute of Geology and Palaeontology, China Academy of Sciences; B) Bostrichid beetles Cretaretes minimus, from Kachin amber (Peris and Jelínek, 2020); these 
beetles could have been among the first wood-boring beetles and transmitters of pathogens; C) The zhangsolvid fly Buccinatormyia magnifica, from El Soplao amber 
(Peñalver et al., 2015); the oldest instances of “gymnosperm” pollinators in amber are found in the Albian of Spain; D) Thrips (Thysanoptera) swarm from Kachin 
amber with attached pollen grains (unstudied, UB); thrips were “gymnosperm” pollinators, but this group could have also been the cause of massive attacks on 
resinous trees; E–G) Agathis australis (Araucariaceae) attacked by the oomycete Phytophthora agathidicida (Oomycota) in Waipoua Forest, New Zealand, causing 
copious resin production (E, F) and the eventual death of the tree (G). Scale bars = 1 mm (A), 0.5 mm (B), 2 mm (C), 0.2 mm (D). (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.) 
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reduce considerable noise to the analyses at present, as many amber 
deposits and conventional paleobotanical deposits are characterized by 
significant temporal uncertainty. 

Further work to improve temporal resolution will involve more ac-
curate dating of the deposits, more detailed identification of changes in 
atmospheric gas composition, more precise evaluations of meso- and 
macroplant remains from amber deposits, and other studies within each 
Cretaceous stage. These studies may provide further insight into the 
causal mechanisms for enhanced resin production and accumulation 
during the CREI. A higher-resolution temporal framework might also 
allow identification of distinct subintervals or even events within the 
Cretaceous Resinous Interval. 

Although sampling bias may be an explanation for the apparently 
skewed presence of amber deposits towards the Northern Hemisphere 
during CREI (Figs. 1, 2), paleogeographical circumstances may 
contribute to explain the pattern. First, a greater proportion of land had 
emerged in the Northern Hemisphere (Landwehrs et al., 2021) during 
the Cretaceous, and was thus sustaining potentially greater extensions of 
resin-producing forests. Second, different resiniferous species distrib-
uted among both hemispheres could have had different capacities to 
produce resin even under comparable environmental conditions and, 
thus, a different potential to produce amber deposits; this has been 
observed at present even between closely related species (Langenheim, 
1995; Seyfullah et al., 2018). It will be necessary to substantially in-
crease reconnaissance efforts in the Southern Hemisphere to shed light 
on this matter. 

Taphonomic knowledge on the known Cretaceous amber deposits is 
scarce, fundamentally limiting understanding of the CREI. It is impera-
tive to improve efforts studying amber deposits (both the amber itself 
and the associated stratal context) from a detailed taphonomic stand-
point. Such studies would aim to elucidate the paleoenvironmental, 
paleoecological, and geological circumstances surrounding the produc-
tion and accumulation of resin and the formation of amber. A particular 
emphasis should be on improving paleobotanical analyses of meso- and 
macro-remains, including fossilized wood. A focus on actuotaphonomic 
experiments, both in the field and the laboratory, will further comple-
ment our view on the subject. 

5. Conclusions 

The Cretaceous distribution of amber-bearing deposits is clustered 
around an interval of roughly 54 Ma, from the Barremian to the Cam-
panian, and reflects global, massive resin production during the late 
Mesozoic. Prior to this interval, amber is remarkably scarce, appears in 
small quantities and, save from some Triassic amber, has not hitherto 
yielded macroscopic bioinclusions. We place the end of the interval in 
the Campanian, provided that during the Maastrichtian amber is lati-
tudinally well distributed but appears in small quantities and is scarcely 
fossiliferous. Shortly before the K-Pg boundary lignite deposits exist but 
with the absence of amber that extends into the Paleocene, establishing 
a gap of several million years without amber and obviously 
bioinclusions. 

In the Cenozoic the resin producers were no longer exclusively co-
nifers, but rather the first deposits of angiosperm resins appeared. 
Shared characteristics of Cretaceous amber deposits are herein used to 
formally establish the Cretaceous Resinous Interval, or CREI, and are 
distinct from those shown by Cenozoic amber deposits. The resin that 
generated the amber during the CREI was produced by conifers and 
accumulated in transitional sedimentary environments from subtropical 
and temperate regions, commonly associated with charcoal and coin-
ciding with the maximum regressive surface. Moreover, the fauna and 
flora preserved within the CREI share comparable group compositional 
characteristics, possibly due to similar original paleoenvironment, and 
suffered comparable taphonomic biases (Martínez-Delclòs et al., 2004; 
Solórzano Kraemer et al., 2018; Seyfullah et al., 2018). 

The potential causal factors for the CREI are complex and 

interrelated. Abiotic conditions potentially related to massive resin 
production and accumulation during the CREI include: (1) increased 
global average temperatures, including SST, with the consequent 
reduction in albedo due to the absence of icy poles, (2) reduced lat-
itudinal temperature gradients, which allowed the development of for-
ests at high latitudes, (3) higher levels of greenhouse atmospheric gases 
(carbon dioxide, methane) and oxygen, which promoted changes in the 
growth and development of the biota, (4) increased volcanic activity, 
which promoted an increase in temperature and changes in the 
composition of atmospheric gases, (5) moderate or relatively high 
average rainfall that could favor the development of large forests and the 
production of resin, (6) enhanced wildfire activity due to volcanism and 
high O2 levels, (7) transgressive sea level periods and overall trend, 
which reduced terrestrial land area but led to the filling of large areas of 
lowlands and formation of resin deposits, and (8) increased storm and 
hurricane activity that could have promoted wildfires and/or destruc-
tion of large areas of forest, and consequently resin production. Biotic 
factors partially explaining the CREI at a more localized scale could 
include arthropod damage, pathogenic activity due to high temperatures 
and humidity, and the emission of insect-attracting compounds by 
resins. Future studies on the CREI will need to focus on elucidating the 
relative importance of each of these abiotic and biotic factors, enhancing 
the spatial and temporal resolution of the succession of paleoevents, 
increasing prospective efforts − particularly in the Southern Hemi-
sphere− , and improving taphonomic understanding of Cretaceous 
amber deposits. 

Our multidisciplinary approach will hopefully stimulate future 
research efforts aimed at elucidating past dynamics between the geo-
sphere and the biosphere. Increased knowledge of when, how and why 
the CREI occurred will shed light on its global impact for Cretaceous 
terrestrial ecology and the establishment of modern terrestrial ecosys-
tems. The exceptionally preserved record trapped in resin during the 
Cretaceous Resinous Interval is crucial to unravel the evolutionary his-
tory of many key terrestrial lineages, including plants, arthropods, and 
vertebrates, and for understanding life in a moment of critical change for 
terrestrial ecosystems at the transition from the Mesozoic to the 
Cenozoic. 
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Mesozoic gymnosperms. Abstract Proc. Natl. Acad. Sci. 109, 8623–8628. https://doi. 
org/10.1073/pnas.1120499109. 

Peralta-Medina, E., Falcon-Lang, H.J., 2012. Cretaceous forest composition and 
productivity inferred from a global fossil wood database. Geology 40, 219–222. 
https://doi.org/10.1130/G32733.1. 

Pereira, R., de Souza Carvalho, I., Simoneit, B.R.T., de Almeida Azevedo, D., 2009. 
Molecular composition and chemosystematic aspects of cretaceous amber from the 
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Villagómez, R., Jaillard, E., Bulot, L., Rivadeneira, M., Vera, R., 1996. The Aptian-late 
Albian marine transgression in the Oriente Basin of Ecuador. In: Third ISAG. St Malo 
(France), pp. 521–524. 

Wade, D.C., Abraham, N.L., Farnsworth, A., Valdes, P.J., Bragg, F., et al., 2019. 
Simulating the climate response to atmospheric oxygen variability in the 
Phanerozoic: a focus on the Holocene, cretaceous and Permian. Clim. Past 15, 
1463–1483. https://doi.org/10.5194/cp-15-1463-2019. 

Wagner, Th., Wallmann, K., Herrle, J.O., Hofmann, P., Stuesser, I., 2007. Consequences 
of moderate ~25,000 yr lasting emission of light CO2 into the mid-cretaceous ocean. 
Earth Planet. Sci. Lett. 259, 200–211. https://doi.org/10.1016/j.epsl.2007.04.045. 

Cretaceous climate events and Short-Term Sea-Level changes. In: Wagreich, M., Hart, M. 
B., Sames, B., Yilmaz, I.O. (Eds.), Geol. Soc. Lond., Spec. Publ. 498, 1–8. https://doi. 
org/10.1144/SP498-2019-156. 

Wang, B., Rust, J., Engel, M.S., Szwedo, J., Dutta, S., et al., 2014a. A Diverse Paleobiota 
in early Eocene Fushun Amber from China. Curr. Biol. 24, 1606–1610. https://doi. 
org/10.1016/j.cub.2014.05.048. 

Wang, Y., Huang, Ch., Sun, B., Quan, Ch., Wu, J., Lin, Z., 2014b. Paleo-CO2 variation 
trends and the cretaceous greenhouse climate. Earth Sci. Rev. 129, 136–147. https:// 
doi.org/10.1016/j.earscirev.2013.11.001. 

Weir, B.S., Paderes, E.P., Anand, N., Uchida, J.Y., Pennycook, S.R., 2015. A taxonomic 
revision of Phytophthora Clade 5 including two new species, Phytophthora 
agathidicida and P. cocois. Phytotaxa 205, 21–38. https://doi.org/10.11646/ 
phytotaxa.205.1.2. 

Wohlwend, S., Hart, M., Weissert, H., 2015. Ocean current intensification during the 
cretaceous oceanic anoxic event 2 – evidence from the northern Tethys. Terra Nova 
27, 147–155. https://doi.org/10.1111/ter.12142. 

Xiao, L.F., Labandeira, C.C., Dilcher, D.L., Ren, D., 2022a. Arthropod and fungal 
herbivory at the dawn of angiosperm diversification: the Rose Creek plant 
assemblage of Nebraska, U.S.A. Cretac. Res. 131, 105088 https://doi.org/10.1016/j. 
cretres.2021.105088. 

Xiao, L.F., Labandeira, C.C., Dilcher, D.L., Ren, D., 2022b. Data, metrics, and methods for 
arthropod and fungal herbivory at the dawn of angiosperm diversification: the Rose 
Creek plant assemblage of Nebraska, U.S.A. Data Brief 42, 108170. https://doi.org/ 
10.1016/j.dib.2022.108170. 

Zheng, D., Chang, S.-Ch., Perrichot, V., Dutta, S., Rudra, A., et al., 2018. A late cretaceous 
amber biota from Central Myanmar. Nat. Commun. 9, 3170. https://doi.org/ 
10.1038/s41467-018-05650-2. 

Zhou, J., Poulsen, C.J., Pollard, D., White, T.S., 2008. Simulation of modern and middle 
cretaceous marine δ18O with an ocean-atmosphere general circulation model. 
Paleoceanogr. Paleoclimatol. 23, PA3223. https://doi.org/10.1029/2008PA001596. 

Zhou, J., Poulsen, C.J., Rosenbloom, N., Shields, C., Briegleb, B., 2012. Vegetation- 
climate interactions in the warm mid-cretaceous. Clim. Past 8, 565–576. https://doi. 
org/10.5194/cp-8-565-2012. 
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