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The emergence of a power-law distribution for the energy released during an earthquake is inves-
tigated in several models. Generic features are identified which are based on the self-affine behavior
of the stress field prior to an event. This field behaves at large scale as a random trajectory in 1
dimension of space and a random surface in 2 dimensions. Using concepts of statistical mechan-
ics and results on the properties of these random objects, several predictions are obtained and
verified, in particular the value of the power-law exponent of the earthquake energy distribution
(the Gutenberg-Richter law) as well as a mechanism for the existence of aftershocks after a large
earthquake (the Omori law).

Two of the most widely observed and intriguing prop-
erties of earthquakes (EQ) are the distribution of energy
that they release and the variation with time of the num-
ber of aftershocks following a mainshock. Using modern
definitions, the released energy during an EQ is charac-
terized by the magnitude m, m = 2 log10(M)/3 where M
is the moment M ∝ ∑

∆x. The sum is taken over all the
spatial extent that has moved during the EQ and ∆x is
the total displacement during the event.
In natural data, the distribution of m is observed to

be an exponential, so-called Gutenberg-Richter (GR) law
[1]. It is written P (m) ∝ 10−bm and the value of b usu-
ally ranges between 3/4 and 1 [2]. Translated into the
distribution of the moment M , the GR law turns into a
power law P (M) ∝ M−1−B, where B = 2b/3 and ranges
between 1/2 and 2/3 [3]. For what concerns the num-
ber of aftershocks per unit time, Omori’s law [4] states
that dn/dt ∝ (t + τ)−a where a is of order unity, τ is a
constant and t is the duration since the mainshock.
There exists a variety of EQ models that use simpli-

fied dynamical rules to describe the evolution of faults,
see for instance [3, 5–7]. Here, from the study of several
of such models, we identify an analogy between the non-
linear dynamics of the solutions of EQ models and some
statistical properties of random curves or surfaces. Using
methods and tools of statistical mechanics, we are able to
explain the origin of the GR law and the value of its ex-
ponent. In addition, in 2 dimensions (2D) this approach
provides an explanation for the existence of aftershocks
after a large earthquake.
We start with 1D geometry and consider Nt sliders on

a line at positions xi. Each slider is connected to its
nearest neighbors with a spring of stiffness k2 and with

a spring of stiffness k1 to a plate that moves at constant
velocity v0. The driving force on the i-th slider is

Si = −k2(2xi − xi+1 − xi−1) + k1(v0 t− xi) . (1)

When the sliders are all at rest, they experience a linear
in time increasing load until Si reaches the static friction
force Fs for a given slider i, which starts to move with ve-
locity vi and is then subject to the dynamic friction force
Fd. First, we consider the case of a constant, Coulomb-
like, friction Fd, a model that has received little attention
compared to the standard Burridge-Knopoff (BK) model
[5] that considers a velocity weakening behavior for Fd.
The dynamical equation is then mv̇i = Si − Fd. In ad-
dition, a slider is not allowed to move backward. We set
m = k1 = Fs = 1, Nt = 800, v0 = 10−6, Fd = 0 and k2 is
varied between 5 and 13. The system alternates between
a loading period with sliders at rest followed by a brief
event initiated once one of the sliders starts moving and
can put into motion a varying number of sliders. These
sudden events are the EQ of the model. The system has
a chaotic behavior with large fluctuations of the EQ mo-
ment M =

∑
∆xi where ∆xi is the total slip of the i-th

slider during the EQ. The PDF P (M) displays a power-
law behavior P ∝ M−1−B with exponent B that varies
with k2, see fig. 1 a.
We also observe a wide distribution of the spatial ex-

tent of the event i.e. the number of masses involved in
each event N . As for the distributions of the moment,
they display a power-law P ∝ N−β , see fig. 1b. In addi-
tion, the moment and the spatial extent are related. We
calculate the value of 〈M〉N where the average is taken
at fixed value of N . At intermediate value of N a power-
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law 〈M〉N ∝ Nα is observed (not displayed here). α and
β both vary with k2 and are displayed in fig. 1d.
Using the rule of change of variable for a probability,

together with P (N) ∝ N−β andM ∝ Nα, we obtain that
the distribution of M is a power-law, P (M) ∝ M−1−B,
and predict

B =
β − 1

α
. (2)

This prediction is verified, see fig. 1c.
The exponent for the distribution of the moment is

thus related to the one of the spatial extent and to the
one of the moment vs spatial extent relation. To progress
in the understanding of the B−value, we need to under-
stand what sets the value of α and β. It appears that
the stress field Si, as defined in eq. 1, plays a particu-
larly important role. Indeed, Si determines the slip of the
event: its size and moment. More precisely, we observe
that for events that involve a sufficient number of masses,
there exists a simple effective linear relation between Si

and ∆xi. The slip profiles thus correspond to excursions
above a fixed threshold of the stress field. In particular
the length of the event is the length at which the stress
profile returns to its initial value (the return time for a
random walk) and the moment of the earthquake is the
surface below the stress excursion.
Predictions on the EQ properties can thus be obtained

from the properties of the stress profile. We show the
power spectrum density of the spatial gradient of the
stress profile in fig. 1c. At small wavevector, K < 0.1,
the spectrum displays a power-law K1−2H . We associate
this behavior to a fractional Brownian motion (fBm) of
Hurst exponent H [8]. More precisely, the large scales of
the stress profile have properties similar to those of the
excursions of a fBm. As the slip is proportional to the
stress, we can use properties of the fBm to predict the
ones of the EQ. Return times of a fBm are distributed as
P (N) = NH−2 [9] so that the exponent for the EQ size
is β = 2 −H . Typical excursions of a fBm of size N are
of size NH so that the area covered by a fBm excursion
scales as N1+H . This implies that the exponent of the
moment-size relation is α = 1 + H . We thus obtain a
prediction for the B-value using equation 2 as 1 + B =
1 + 1−H

1+H . This prediction, together with α = 1 +H and
β = 2 − H are verified and are displayed as continuous
lines in fig.1d, using H fitted from the spectrum of the
gradient of the stress profile.
Let us sum up on the behavior of the Coulomb BK

model. The large scales of the stress behave as a fBm
of Hurst exponent H. The EQ slips are proportional to
excursions of this fBm. This analogy between fBm and
earthquake properties allows us to predict the values of
the exponents α, β and B as a function of one single
parameter H , the Hurst exponent of the large scales of
the stress.
We have successfully performed a similar investigation

on other 1D models such as a BK model with a slip-
weakening friction force or the standard BK model [5]

and could understand for each of these models the value
of B. As for the Coulomb friction model, all these sys-
tems can be described in a more simple manner by con-
sidering the coupled dynamics of two fields: the stress
before an event and the total slip during an event. In all
these systems, the stress is scale invariant at large scale.
This scale invariance is spontaneously built up during
the evolution of the stress caused by the successive ac-
tion of EQ of varying size. This mechanism, simple and
robust, provides an explanation for the properties of EQ
in models, and might also be at work in experiments and
nature.

In the following, inspired by this mechanism, we intro-
duce a 2D model based on such evolution rules for the
stress field. This model is made as simple as possible
and thus omits several features of real EQ. Yet we will
observe that the stress field displays scale invariance and
we will obtain additional predictions for the EQ prop-
erties in 2D. We consider Nt sites on a square lattice.
Between events, the stress at each site Si increases lin-
early in time at a rate vo. When the stress at one site,
say i0, reaches a threshold value, Sc, an earthquake is
initiated. Let D1 be a constant, we identify sites which
stress is larger than Sc−D1. All these sites can be classi-
fied into clusters made of neighboring sites, see fig. 2 for
an example of stress field. Only the sites which belong to
the same cluster as i0 participate to the earthquake. Let
N be the number of sites in this cluster. As in nature
[2], we assume that their motion during the earthquake

is proportional to the length of the earthquake, i.e.
√
N ,

which results in a moment M = N3/2.

After an event, the stresses of the moving sites are set
to new values equal to their former value minus a stress
drop Dd equal to a constant D2 plus a random term.
The system is then back into the initial stage for which
the sites are at rest and the stress increases linearly in
time. We consider a random term that can be spatially
correlated. Its amplitude is D3. It is self-affine with
Hurst exponent Hn = s − 1 where s is a parameter and
is obtained as follows. A random field is calculated with
values of uniform probability between 0 and D3. The
field is Fourier transformed in space, filtered by multi-
plication with a kernel K−s with K the wavevector and
then inversed Fourier transformed. This procedure gen-
erates a correlated random surface with Hurst exponent
Hn = s− 1 [15, 16]. The random field is calculated over
the whole Nt sites but only the values corresponding to
the moving sites are used. To gain computational time,
we perform this procedure only for events of size larger
than 5, otherwise an uncorrelated random field is taken
with value uniformally sorted between 0 and D3. For
s = 0, the random stress drop is an uncorrelated field
(white noise), whereas it is correlated for positive s [16].
In this model, the interaction between sites takes place
when sites which belong to the same cluster move and the
value of the stress of these sites is reduced by a uniform
value and a correlated one for s 6= 0.

Numerical simulations are performed for v0 = 1, Sc =
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Figure 1. For the solution of the Coulomb BK model in 1D with Fd = 0, N = 800, v0 = 10−6, k1 = 1 and varying k2 (see
color code in the legend), a: Probability density function (PDF) of the moment of the events M . b: PDF of the event size N .
c: Power spectrum density (PSD) of the spatial gradient of the stress Si before events with 1 ≤ M ≤ 100 and 80 ≤ N ≤ 170.
Straight lines are power-law fits for K < 0.1; the obtained exponents are 1− 2H with H the Hurst exponent associated to the
large scales of the stress profiles. d: Exponents α, β, 1 + B and the prediction 1 + (β − 1)/α as a function of K2. Symbols
are best fits of the power-law exponents of fig 1a and 1b. Continuous lines are the predictions obtained from the fBm analogy
(α = 1 +H , β = 2−H , 1 +B = 1 + (1−H)/(1 +H)) with H obtained from the large scales of the gradient of the stress, as
in fig 1c.

1, D1 = 1 and D2 = 10, D3 = 0.1, Nt = 4002. The
distribution of size of the EQ is a power-law, see fig.2,
with exponent β that depends on s. For s = 0, a best-fit
for 3 ≤ N ≤ 80 leads to β = 2.046± 0.015. It decreases
to β = 1.93 ± 0.01 for s = 1 and β = 1.63 ± 0.01 for
s = 1.5. Results similar to the ones of s = 0 are obtained
for small positive s = 0.5 or negative s = −1. In these
models, the relation between size and moment is taken to
be M = N3/2, so that the B-values (B = 2(β− 1)/3) are
equal to 0.697, 0.62, 0.42 for s = 0, 1 and 1.5 respectively.

In addition to these wide distributions of moments,
aftershocks are observed, see fig. 2 c. Both an Omori’s
law after the mainshock and an inverse Omori’s law of
smaller amplitude before the mainshock are visible. The
larger s, the stronger is the increase of activity in the
vicinity of the mainshocks. The data can be fitted using
the standard Omori’s law, dn

dτ ∝ (τ + a)−1 at least for τ
not too small. We add that the distribution of interevent
time [11] also shows the existence of clusterring when

s > 0, a property that is related to Omori’s law [12–14].

As for 1D geometry, the observed behavior can be un-
derstood by an analysis of the spatial distribution of the
stress. The stress field is a surface and events involve
clusters of sites for which the stress is larger than a
threshold value. This problem is classical in statistical
physics as it covers a variety of analogous situations [17].
If the comparison of the stress with a threshold defines
whether a site is occupied or empty, then the problem
of percolation is recovered [18]. From this analogy, we
expect the existence of a critical point close to which the
cluster size are distributed following a power-law with
exponent τF , so-called Fisher exponent. If the heights of
the surface at different positions are uncorrelated, stan-
dard percolation takes place and τF = 187/91 [18]. If the
heights are correlated as 〈(h(x +R) − h(x))2〉1/2 = RH ,
then correlated percolation takes place. For H ≤ −3/4,
correlations do not affect the critical behavior that re-
mains identical to the one of uncorrelated percolation.
For correlated surfaces with H ≥ −3/4, the critical ex-



4

a

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

b

100

N

10-6

10-4

10-2

P
(N

)

c

-0.06 -0.04 -0.02 0 0.02 0.04 0.06
t

0

50

100

150

200

250

300

350

dn
/d

t

Figure 2. For the 2D model with D1 = 1, D2 = 10, D3 = 0.1,
Nt = 4002. a: Snapshot of the stress field as a function of
position for s = 0. Values on the color bar on the right. b:
PDF of EQ size P (N) for red s = 0, green s = 1, blue s = 1.5.
c: Averaged number of events per unit of time as a function
of duration to a main event of size N ≥ 100. Only events
with hypocenter located at a distance smaller than 50 from
the main shock are considered. Red: s = 0 and blue: s = 1.5.
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Figure 3. PDF of the distance d between the largest cluster
of occupied sites and the other clusters for a random surface
with Hurst exponent H = −1 in red, H = 0 in green and
H = 0.5 in blue. The fraction of occupied sites increases with
the line thickness and is 0.3, 0.5 and 0.55. The total number
of sites is 4002.

ponents vary with H [17, 19].
We have calculated the Hurst exponent of the stress

field. At large scales, we measure H ≃ −0.32 for s = 1.5,
H ≃ −0.5 for s = 1, and H ≃ −1 for s = 0. We
point out that the Hurst exponent of the stress field varies
with the one of the noise term (Hn = s − 1) but they
are different. Indeed, the stress field results from the
successive addition of many random terms with varying
size, so that the stress drop and the total stress have
different properties.
Considering that the stress field has the same prop-

erties as a random field with Hurst exponent H that
depends on s, and assuming that the system is in the
vicinity of the percolation critical point, we expect that
the distribution of size of clusters above a cut follows a
power-law of exponent τF . This is in agreement with the
exponent of the distribution of the size of the event for
small s as we have measured β = 2.046± 0.015 for s = 0,
very close to Fisher prediction for uncorrelated percola-
tion τf = 187/91 ≃ 2.055 . Written in term of b-values,
we predict b = 96/91 ≃ 1.05 and B = 64/91 ≃ 0.70
for weakly correlated stress surfaces. If the stress has
strong correlations, namely H > −3/4, the analogy with
correlated percolation predicts a decrease in the b-value.
This is indeed observed in our model as B = 0.697 for
H = −1 (s = 0) and similar values are obtained for mod-
erate correlations (s = −1 and s = 0.5). Increasing the
correlation and for H > −3/4, we measure as expected a
decrease in B since B = 0.62 for H = −0.5 and B = 0.42
for H = −0.32.
Aftershocks and foreshocks also find a simple expla-

nation based on the spatial structure of the stress field.
We have simulated random surfaces with various Hurst
exponents H by multiplication in Fourier space with a
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well-chosen power-law using the method of [15]. For
each surface, we identify the sites which value is above a
given threshold. These sites are said to be occupied using
the terminology of percolation. We calculate p the frac-
tion of occupied sites. We then identify the clusters of
connected sites and calculate the distance d between the
largest cluster and the other clusters. The distribution
of d, P (d), is a characteristic of the spatial organization
of the clusters. It is displayed in fig.3 for different values
of p and H . A clear divergence of P (d) for small d is
visible when H gets larger. In other words, increasing H
leads to a localization of the clusters close to the largest
cluster. Correlated random surfaces, with H > 0, thus
display level sets which positions are correlated. This
property of random surface has never been described so
far. It can be translated in terms of the spatial distribu-
tion of large values of stress in a fault: for a correlated
stress field, if a domain has a large value of stress, other
clusters with large stress are likely to be located in its
vicinity. Clusterring in space of individual clusters with
large stress is thus a consequence of the geometrical prop-
erties of the stress field that behaves at large scale as a
correlated random surface. This provides an explanation
for the Omori’s law: in the vicinity of a mainshock, there
exist clusters which stress is large and close to initiate
an EQ. This mechanism is purely geometrical and does
not require additional phenomena (stress transfer, pore
pressure dynamics, viscosity....).
In nature, it has been reported that slip profiles, stress

or friction fields have self-affine properties [20, 21], in line
with our description. In addition, the b-values that we
predict, b = 96/91 ≃ 1.05 for weakly correlated stress
field and a smaller one for strong correlation, are com-
patible with most reported natural values [2, 3]. We also
note that the prediction B = 64/91 is in perfect agree-
ment with the measured exponent in an experiment of
sheared granular matter that measures B = 0.71 ± 0.01
for the released energy during the events [13]. To fin-
ish on this brief comparison with datas, we add that [22],
[23] describe a variation of b with properties of the faults.
Our work provides an explanation for these effects: the
fault properties affect the self-affine behavior of the stress
field or the moment vs size relation. These properties in
turn modify the b-value.
Essentially, the GR law and Omori’s law result from

the scale invariance of the stress. This scale invariance
builds up during the iterative coupled evolution of the
stress and the slip. Power-law distributions of the mo-
ment are then a consequence of this scale invariance and
their exponent are related to the the statistical properties
of random curves or surfaces.
This approach is promising. First, it can be applied to

other models of EQ or of similar effects such as avalanches
in order to understand the emergence of power law dis-
tributions.
Second, the analysis of the two steps of evolution sheds

the light on new problems in statistical mechanics. The
stress to slip problem is a non standard application of
random curves: the stress profile, a random trajectory,
defines through possibly nonlinear rules the slip distribu-
tion which is also a random curve. In probability theory,
this situation belongs to the problem of random polymers
and our results open the way to the study of new classes
of such models.
Third, the second step in the modeling, from slip to

stress field, is obviously crucial here. The stress field
evolves at each event because the slip decreases the stress
of the moving sites but both the stress and the slip fields
are coupled as the slip is determined by the stress profile
before the event. As a consequence, EQ properties result
from the non trivial dynamical evolution of a random
interface instead of resulting from the self-organization
close to an equilibrium critical point [24]. It remains
to be understood how and when such evolving interfaces
tend towards a self-affine geometrical structure. For these
questions also, very little is known and we expect that
new classes of random interfaces will be identified in this
context. The robustness of EQ-like behavior in models
and nature pushes toward the existence of generic mech-
anisms able to generate these self-affine surfaces.
F P gratefully acknowledges the Visiting Research Pro-

gram in 2019 at the Earthquake Research Institute, the
University of Tokyo and the IEA action of CNRS. A S
gratefully acknowledges the support of the European Re-
search Council Grant REALISM (2016-Grant 681346). T
H and T S are also supported by the MEXT under ‘Ex-
ploratory Challenge on Post-K computer’ (Frontiers of
Basic Science: Challenging the Limits). T H gratefully
acknowledges additional support from JSPS KAKENHI
Grant JP16H06478.

[1] Scholz C. H., The Mechanism of Earthquakes and Fault-
ing, Cambridge University Press, 2019.

[2] H. Kanamori and E. E. Brodsky, Reports on Progress in
Physics 67(8) 1429 (2004).

[3] H. Kawamura et al., Rev. of modern physics, 84, 839
(2012)

[4] T. Utsu et al., J. Phys. Earth 43, 1-33 (1995).
[5] Burridge, R., and L. Knopoff, 1967, Bull. Seismol. Soc.

Am. 57, 341. Carlson, J. M., J. S. Langer, and B. E.
Shaw, 1994, Rev. Mod. Phys. 66, 657.

[6] Z. Olami, H. J. S. Feder and K. Christensen, Physical
Review Letters, 68, 1244-1248 (1992).

[7] J. Xia et al., Phys. Rev. E 77, 031132 (2008).
[8] B. Mandelbrot and J. W. Van Ness, SIAM Review 10,

422-437 (1968).
[9] M. Ding and W. Yang, Phys. Rev. E 52, 207 (1995).

[10] C.P. de Castro et al., Scientific Report 7, 1961 (2017).
[11] A. Corral, Phys. Rev. Lett. 92, 108501 (2004).
[12] A. Saichev and D. Sornette, Phys. Rev. Lett. 97, 078501

(2006).



6

[13] S. Lherminier et al., Phys. Rev. Lett. 122, 218501 (2019).
[14] D. Houdou et al., Commun Earth Environ 2, 90 (2021).
[15] C.P. de Castro et al., Scientific Report 7, 1961 (2017).
[16] A. Lodhia et al., Fractional Gaussian fields: A survey,

Probability Surveys, 13, 1-56 (2014).
[17] M. B. Ishenko, Reviews of modern physics 64, 961 (1992).
[18] D. Stauffer and A. Aharony, Introduction to percolation

theory, Taylor and Francis (2010).
[19] J Zierenberg et al., Physical Review E 96 (6), 062125

(2017).

[20] F. Renard et al., GRL 40, 83-87 (2013). S. Abe, and H.
Deckert, Solid Earth Discuss., preprint 2021. L. Bruhat
et al., Geophys. J. Intern., 220, 1857–1877 (2020).

[21] T. Candela et al., Geophysical Journal International,
187, 959-968 (2011).

[22] D. Schorlemmer et al., Nature 437 (7058), 539-42 (2005).
[23] C.H. Scholz, Geophys. Res. Lett., 42, 1399–1402 (2015).
[24] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59,

381 (1987).


