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 Singh, 2019;[START_REF] Audhkhasi | Discovery of distinct lithosphere-asthenosphere boundary and the Gutenberg discontinuity in the Atlantic Ocean[END_REF], (2) the LITHOS-ILAB refraction survey (Profile 1, [START_REF] Grevemeyer | Ocean bottom seismometer and ocean bottom hydrophone seismic refraction and wide-angle data from profile P02 of Maria S. Merian cruise MSM69 with links to sgy data files[END_REF][START_REF] Vaddineni | Evolution of the crustal and upper mantle seismic structure from 0-27 Ma in the equatorial Atlantic Ocean at 2° 43′S[END_REF], and (3) the ILAB-SPARC reflectionrefraction survey (Profiles 2 and 3, [START_REF] Marjanović | Seismic Crustal Structure and Morphotectonic Features Associated With the Chain Fracture Zone and Their Role in the Evolution of the Equatorial Atlantic Region[END_REF][START_REF] Gregory | Serpentinized peridotite versus thick mafic crust at the Romanche oceanic transform fault[END_REF][START_REF] Growe | Seismic structure of the St. Paul fracture zone and late Cretaceous to mid Eocene oceanic crust in the equatorial Atlantic Ocean near 18°W[END_REF]Wang et al., 2022;Wang & Singh, 2022).

During the TransAtlantic ILAB survey, 2750 km of ultra-deep seismic reflection data were acquired onboard WesternGeco M/V Western Trident in 2015, using a 12 km-long multisensor streamer with a receiver spacing of 3.125 m. The energy source consisted of six subarrays, each containing 8 air guns totalling to a volume of 10170 in 3 , deployed at 15 m depth. The shot spacing varied from 50 to 75 m, depending on the age of the lithosphere. Most of the profile lies on the African Plate (0-75 Ma), crosses the ridge-axis, and samples the South American Plate (0-26 Ma). Portions of these MCS data have been used to study the crustal and lithospheric structures along different part of the profile [START_REF] Mehouachi | Water-rich sublithospheric melt channel in the equatorial Atlantic Ocean[END_REF][START_REF] Audhkhasi | Seismic structure of the upper crust from 0-75 Ma in the Equatorial Atlantic Ocean on the African Plate using ultra long offset seismic data[END_REF][START_REF] Marjanović | Seismic Crustal Structure and Morphotectonic Features Associated With the Chain Fracture Zone and Their Role in the Evolution of the Equatorial Atlantic Region[END_REF][START_REF] Audhkhasi | Discovery of distinct lithosphere-asthenosphere boundary and the Gutenberg discontinuity in the Atlantic Ocean[END_REF].

The collocated OBS data were acquired aboard the German R/V Maria S. Merian during the LITHOS-ILAB experiment in 2017. A total of 71 OBSs were deployed along an 1100 km transect, with OBS spacing of 10-20 km. The data were sampled at 250 Hz for all the instruments. The seismic source consisted of six G-gun clusters (12 guns) configured as two sub-arrays with a total volume of 5440 in 3 . The air-gun array was operated at 210 bar, towed at 7.5 m depth and fired every ~400 m along the profile.

The ILAB-SPARC survey was conducted in 2018 onboard the French N/O Pourquoi Pas? and both MCS and OBS data were acquired simultaneously along two perpendicular profiles. The MCS data were acquired using a 6 km-long streamer, towed at 12 m depth, with a receiver spacing of 6.25 m. The energy source consisted of two airgun sub-arrays, each with 9 airguns, with a total volume of 4990 in 3 , towed at 15 m water depth and fired at 300 m interval. Although parts of these profiles were covered during TransAtlanticILAB ultra-deep seismic survey, we decided to use the ILAB-SPARC MCS data to have uniform and coincident coverage with the refraction data. The refraction survey consisted of 85 multi-component OBSs deployed at a spacing of 14-17 km.

S2. VP-VS ratio uncertainty

We calculated the uncertainty associated with where 𝑇 𝑏 -𝑇 𝑠𝑒𝑎 is the seafloor-to-basement two-way travel time (TWTT) beneath the OBS, 𝐷 is the time delay between the P and P-to-S arrivals, dD is the uncertainty associated with the time delay 𝐷 and 𝑑(𝑇 𝑏 -𝑇 𝑠𝑒𝑎 ) is the uncertainty associated with the seafloor-to-basement TWTT sediment thickness 𝑇 𝑏 -𝑇 𝑠𝑒𝑎 .

For conventional travel-time tomography the picking errors on OBS gathers (dD) are normally 20-30 ms but here, because of the strong reverberatory nature of the P-to-S converted waves, we set it to 60 ms.

The uncertainty associated with picking sediment thickness from the MCS data 𝑑(𝑇 𝑏 -𝑇 𝑠𝑒𝑎 ) was calculated as following:

𝑑(𝑇 𝑏 -𝑇 𝑠𝑒𝑎 ) = √(2 * MCS time sampling) 2 + (OBS relocation uncertainty) 2
where the MCS time sampling is equal to 8 ms and the OBS relocation uncertainty is the rms residual error of the least square fitting of water wave arrival picked in each OBS gather.

We found that the uncertainty associated with 𝑉 𝑃 𝑉 𝑆 is between 0.3 and 4.1.

S3. Porosity uncertainty

We calculated the uncertainty associated with porosity propagating the error through Eq. 3 of the main text [START_REF] Lee | Modified Biot-Gassmann Theory for Calculating Elastic Velocities for Unconsolidated and Consolidated Sediments[END_REF]. It depends on the

𝑉 𝑃 𝑉 𝑆
uncertainties and it can be written as follows:

𝑑(𝜙) = 𝐶 1 𝐶 2 𝑛 ( 𝑉 𝑃 𝑉 𝑆 ) -(1+ 1 𝑛 )

𝑑 ( 𝑉 𝑃 𝑉 𝑆 )

where

𝐶 1 = (3𝐾 + 4𝜇) 1 2𝑛 and 𝐶 2 = (3𝜇𝐺 2 ) -1 2𝑛 .
𝐾 and 𝜇 are the bulk and shear modulus of the matrix material and 𝐺 and 𝑛 are constants taking into account the degree of compaction and the effect of clay on velocities, respectively.

Porosity values with relative uncertainty >10% (9 points in total, all of them at crustal ages < 17 Ma) are considered outliers and excluded from the analysis.

S4. Spearman correlation between porosity and climate proxies

We calculated the formal correlation coefficients of the porosity data with 𝛿 18 𝑂, 𝛿 13 𝐶 and 𝐶𝑂 2 climate proxies in the age range 3-37 Ma. To do that, we used the Spearman's rank correlation coefficient, 𝑟 𝑠 , a nonparametric measure of rank correlation, which can assess both linear and non-linear monotonic relationship and it is weakly affected by outliers.

The results show positive correlation between the porosity and 𝐶𝑂 2 (𝑟 𝑠 = 0.665), a negative correlation between the porosity and 𝛿 13 𝐶 (𝑟 𝑠 = -0.445), a weaker but still significant negative correlation between the porosity and 𝛿 18 𝑂 (𝑟 𝑠 = -0.340).

S5. Limit of the method

For this work we have analysed a huge amount of MCS data (~2000 km) and 69 OBSs, covering oceanic crustal age from 3 to 74 Ma. To have consistent results over such a large spatial extent, we had to simplify the calculation. Furthermore, except for ODP sites 662 and 663, which cored down to the Late Pliocene, we do not have any direct measurements of the sediments. Therefore, our analysis required several approximations and assumptions.

First, the formula we used to calculate average

𝑉 𝑃 𝑉 𝑆
in the sediments is valid only in a 1Dapproximation and with the rays travelling vertically within the sedimentary sequence.

However, layering in the sediment creates internal multiples and the long duration of the converted wave can be explained by the effects of wide-angle ringing in sediment wedges arising from dip on the basement-sediment interface. In other words, lateral variations matter and the location of an OBS relative to the underlying sediment pinch-outs or basin flattening can have a significant effect on the delay, strength and duration of the converted wave.

Secondly, we must underline that, in this work, we only considered average 𝑉 𝑃 𝑉 𝑆 and average porosity in the sediments. Yet, over such a large spatial and temporal scale, the sedimentary column will encompass material characterised by a wide range of seismic velocities, density and porosity. We are aware that this is a severe limitation, but we do not have enough information to constrain the variation of such properties with depth. Instead, although we discussed the role of sediments input from Africa, which could be hemipelagic or turbiditic in origin, we made the basic and realistic assumption of dealing only with pelagic sediment. Redistribution of sediment (of the same lithology) via gravity-transport mechanisms, on the other hand, could be particularly important, especially where the seafloor topography is particularly rugged. The topographic highs may have some material removed by slumps and currents, and this material would accumulate in adjacent local basins. Our OBS spacing is not dense enough to appreciate this phenomenon. As the OBS stations were deployed at equal spacing, indistinctly located on topographic highs and lows, both

𝑉 𝑃 𝑉 𝑆
and porosity are estimated on a regional scale. It would be an enormous task to characterise turbidites and slumps along our profiles, but their scientific impact would be limited.

In addition to the above approximations, we have assumed that in the sediments

𝑉 𝑃 𝑉 𝑆
is a function of porosity only. In modelling the porosity, we also assumed the matrix bulk and shear moduli of clay material and we set the dimensional modelling parameters following the modelling studies for unconsolidated sediments with porosities greater than 40% [START_REF] Lee | Modified Biot-Gassmann Theory for Calculating Elastic Velocities for Unconsolidated and Consolidated Sediments[END_REF].

However, we performed a parametric study on these 4 parameters (matrix bulk and shear moduli, n, G), finding that the sensibility of Eq. 3 to these is quite low.
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  Figure S1: A) Vertical component of seismic data at OBS 08, B) horizontal component. The distance is from the OBS location. The sediment delay is marked. C) MCS image showing the location of OBS 08 along Profile 1.

Figure S2 :

 S2 Figure S2: A) Vertical component of seismic data at OBS 32, B) horizontal component. The distance is from the OBS location. The sediment delay is marked. C) MCS image showing the location of OBS 32 along Profile 1.
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 S3 Figure S3: A) Vertical component of seismic data at OBS 39, B) horizontal component. The distance is from the OBS location. The sediment delay is marked. C) MCS image showing the location of OBS 39 along Profile 1.
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 S4 Figure S4: A) Vertical component of seismic data at OBS 59, B) horizontal component. The distance is from the OBS location. The sediment delay is marked. C) MCS image showing the location of OBS 59 along Profile 1.

Figure S5 :

 S5 Figure S5: A) Vertical component of seismic data at OBS 64, B) horizontal component. The distance is from the OBS location. The sediment delay is marked. C) MCS image showing the location of OBS 64 along Profile 2.
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 S6 Figure S6: A) Vertical component of seismic data at OBS 69, B) horizontal component. The distance is from the OBS location. The sediment delay is marked. C) MCS image showing the location of OBS 69 along Profile 2.

Figure S7 :

 S7 Figure S7: A) Vertical component of seismic data at OBS 75, B) horizontal component. The distance is from the OBS location. The sediment delay is marked. C) MCS image showing the location of OBS 75 along Profile 2.

Figure S8 :

 S8 Figure S8: A) Vertical component of seismic data at OBS 03, B) horizontal component. The distance is from the OBS location. The sediment delay is marked. C) MCS image showing the location of OBS 03 along Profile 3 (modified from Growe et al., 2021).

Figure S9 :

 S9 Figure S9: A) Vertical component of seismic data at OBS 09, B) horizontal component. The distance is from the OBS location. The sediment delay is marked. C) MCS image showing the location of OBS 09 along Profile 3 (modified from Growe et al., 2021).

Figure S10 :

 S10 Figure S10: A) Vertical component of seismic data at OBS 13, B) horizontal component. The distance is from the OBS location. The sediment delay is marked. C) MCS image showing the location of OBS 13 along Profile 3 (modified from Growe et al., 2021).
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S1. Seismic surveys and acquisition parameters

The data analysed in this work were collected during three seismic surveys: [START_REF] Grevemeyer | Ocean bottom seismometer and ocean bottom hydrophone seismic refraction and wide-angle data from profile P02 of Maria S. Merian cruise MSM69 with links to sgy data files[END_REF]