
HAL Id: insu-04178275
https://insu.hal.science/insu-04178275v1

Submitted on 13 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Modelling Lane-Emden type equations using
Physics-Informed Neural Networks

Hubert Baty

To cite this version:
Hubert Baty. Modelling Lane-Emden type equations using Physics-Informed Neural Networks. As-
tronomy and Computing, 2023, 44, �10.1016/j.ascom.2023.100734�. �insu-04178275�

https://insu.hal.science/insu-04178275v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Astronomy and Computing 44 (2023) 100734

b
s
l
r
e
n
t
o
p
(
o
o
i
(

t
o
k
T
m
k

h
2

Contents lists available at ScienceDirect

Astronomy and Computing

journal homepage: www.elsevier.com/locate/ascom

Full length article

Modelling Lane–Emden type equations using Physics-InformedNeural
Networks
Hubert Baty
Observatoire Astronomique, CNRS UMR 7550, Université de Strasbourg, 67000, Strasbourg, France

a r t i c l e i n f o

Article history:
Received 2 May 2023
Accepted 4 July 2023
Available online 13 July 2023

Dataset link: https://github.com/hubertbaty
/PINNS-LE

Keywords:
Deep learning
Neural networks
Lane–Emden equations
Polytropic and isothermal gas spheres
White dwarf equation

a b s t r a c t

The solutions of Lane–Emden (LE) type equations arising in astrophysics for the polytropic gas spheres,
the isothermal gas sphere, and the white dwarf stars are revisited. We explore the potentiality of
recent methods of deep learning using neural networks constrained by the physics and called Physics-
Informed Neural Networks (PINNs). The basics of PINNs is introduced for solving each equation
individually. The method consists in constraining the equation residual at some collocation dataset in
addition to the boundary data via a minimization procedure. When the training process is complete, a
learned differentiable function is obtained that can generate solution at any value of the variable. The
novelty of this study is the additional possibility of learning solutions for several equations collectively
with the same network, e.g. for the polytropic equations family for all the indices. We demonstrate the
performances of PINNs in comparison with classical numerical methods. Advantages and drawbacks
are highlighted. Interestingly, PINNs are meshless methods that can quasi-instantaneously generate the
solution and its derivative once trained. However, the training procedure and accuracy of the method
remain two future points of improvement.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Machine learning and more precisely deep learning techniques
ased on Neural Networks (NNs) are actually widely used to
olve problems in a variety of domains including computer vision,
anguage processing, game theory, etc. (see Le Cun et al., 2015 and
eferences therein). The idea of applying NNs to solve differential
quations was first proposed by Lagaris et al. (1998), but it was
ot immediately put into practice in the following years due to
he lack of computational resources. Leveraging prior knowledge
f the physics in the learning process of NNs with the aim to solve
artial differential equations (PDEs) was introduced only recently
Raissi et al., 2017, 2019). Benefitting also from technical progress
n automatic differentiation and the facilitated use of Python
pen source software libraries like Tensorflow or Pytorch, promis-
ng new methods so-called Physics-Informed Neural Networks
PINNs) were born.

In classical NNs, a supervised approach is generally considered
hat consists in finding a mapping function between given input
bjects and their associated output values. This is done by using
nowledge about a dataset containing several input/output pairs.
his dataset is used to parameterize the NN such that it mini-
izes the error between solutions predicted by the NN and exact
nown solutions in the dataset of the so-called training data.

E-mail address: hubert.baty@unistra.fr.
ttps://doi.org/10.1016/j.ascom.2023.100734
213-1337/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a
The convergence is achieved by minimizing a loss function which
expression is a measure of the error (e.g. the mean squared error).
In other words, this is an efficient non-linear approximation pro-
cedure. However, in cases of PDEs the training dataset is generally
drastically reduced to the sole knowledge of the initial/boundary
conditions.

PINNs approach consists in enhancing classical NNs by defin-
ing some other set of data, called collocation points, at which
the estimated solution must additionally ensure the equation. In
the original method usually called vanilla-PINN, a second loss
function corresponding to the physics is thus defined and added
to the previous one in the learning process. The latter optimizes
the NN so that the residual of the equation is minimal. In this way,
unlike the classical NNs, PINNs does not require a large amount
of training data. Moreover, an advantage of this approach is given
by the possibility to evaluate exactly the differential operators
at the collocation points by using automatic differentiation. Note
that many PINNs-variants can be actually found in the literature.
In this work, we mainly focus on vanilla-PINNs as introduced
originally by Raissi et al. (2017, 2019).

The aim of this work consists in assessing the advantages
and drawbacks of PINNs for modelling Lane–Emden (LE) type
equations. LE equation is one of the most important classical
differential equation of mathematical physics which originally
appeared in astrophysics to model the static star structures. Be-
sides its applications in astrophysics, this type of equation is

also well known to be useful to simulate more general physics

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.ascom.2023.100734
https://www.elsevier.com/locate/ascom
http://www.elsevier.com/locate/ascom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ascom.2023.100734&domain=pdf
https://github.com/hubertbaty/PINNS-LE
https://github.com/hubertbaty/PINNS-LE
https://github.com/hubertbaty/PINNS-LE
https://github.com/hubertbaty/PINNS-LE
https://github.com/hubertbaty/PINNS-LE
https://github.com/hubertbaty/PINNS-LE
https://github.com/hubertbaty/PINNS-LE
https://github.com/hubertbaty/PINNS-LE
https://github.com/hubertbaty/PINNS-LE
https://github.com/hubertbaty/PINNS-LE
https://github.com/hubertbaty/PINNS-LE
https://github.com/hubertbaty/PINNS-LE
https://github.com/hubertbaty/PINNS-LE
https://github.com/hubertbaty/PINNS-LE
https://github.com/hubertbaty/PINNS-LE
https://github.com/hubertbaty/PINNS-LE
https://github.com/hubertbaty/PINNS-LE
https://github.com/hubertbaty/PINNS-LE
https://github.com/hubertbaty/PINNS-LE
https://github.com/hubertbaty/PINNS-LE
https://github.com/hubertbaty/PINNS-LE
https://github.com/hubertbaty/PINNS-LE
https://github.com/hubertbaty/PINNS-LE
https://github.com/hubertbaty/PINNS-LE
https://github.com/hubertbaty/PINNS-LE
https://github.com/hubertbaty/PINNS-LE
https://github.com/hubertbaty/PINNS-LE
https://github.com/hubertbaty/PINNS-LE
https://github.com/hubertbaty/PINNS-LE
https://github.com/hubertbaty/PINNS-LE
https://github.com/hubertbaty/PINNS-LE
https://github.com/hubertbaty/PINNS-LE
https://github.com/hubertbaty/PINNS-LE
https://github.com/hubertbaty/PINNS-LE
https://github.com/hubertbaty/PINNS-LE
https://github.com/hubertbaty/PINNS-LE
https://github.com/hubertbaty/PINNS-LE
https://github.com/hubertbaty/PINNS-LE
http://creativecommons.org/licenses/by/4.0/
mailto:hubert.baty@unistra.fr
https://doi.org/10.1016/j.ascom.2023.100734
http://creativecommons.org/licenses/by/4.0/


H. Baty Astronomy and Computing 44 (2023) 100734

p
i

t
s
p

y

henomena. The main difficulty in solving LE equation is due to
ts singularity at the origin (i.e. at the point x = 0, see below).
The development of solving techniques has therefore attracted
considerable attention from researchers in the last decades. Some
methods are analytical ones, numerical ones, or combinations of
both. A rather complete summary of the various approaches can
be found in He et al. (2020). Classical numerical methods includ-
ing the traditional Runge–Kutta methods have to circumvent the
singularity problem, by using some transformation, Taylor-like
expansion, or avoiding the origin. Many other recent approaches
have been developed, as for example ones based on Lattice Boltz-
mann method (Zhang et al., 2003), genetic algorithm or Monte
Carlo simulations (El-Essawi et al., 2023 and references therein).
Other recent approaches based on artificial neural networks have
been brought forward. This is the case of neural networks meth-
ods using Chebyshev polynomials (Mall and Chakraverty, 2014),
stochastic approach in combination with genetic algorithm (Sabir
et al., 2019), and Morlet wavelet neural networks (Sabir et al.,
2020). However, the above methods require specific carefully
designed basis functions to approximate the solution. In our deep
learning PINNs method, neural networks are directly used to
solve LE type equations without the need of basis functions.

The paper is organized as follows. We first briefly summarize
the different LE differential equations concerned in Section 2.
Section 3 presents the basics of PINNs including our proper PINN
algorithm for solving differential equations. The results of solving
individual and multiple Lane–Emden equations are reported in
Sections 4 and 5 respectively. Finally, conclusions are drawn in
Section 6.

2. Lane–Emden type equations

In this section, we summarize the different LE type equations
considered in this study. Three equations families represented by
three different second order differential equations appear below.
They are subject to two boundary conditions, namely on the
solution and on its first order derivative at the origin. Conse-
quently, the concern of this work is the integration of initial value
problems (IVPs) of ordinary differential equations (ODEs). The
numerically challenging aspect of the LE equations is due to the
singularity at x = 0 (see below).

2.1. Polytropic cases

In the theory of stellar structure, the polytropic model of a gas
sphere is represented by the following fundamental equation to
be solved:
1
x2

d
dx

(
x2

dy(x)
dx

)
+ yn = 0, (1)

where n is a positive polytropic index. The variable x is a dimen-
sionless radius, and the solution y(x) is a normalized quantity
related to the mass density ρ via ρ = ρcyn for the central
density ρc . The index n comes from the polytropic equation of
state P = Kρ(1+1/n), with P the thermal pressure and K a constant
of proportionality. More details about obtaining this LE equation
starting from a self-gravitating spherically symmetric fluid in
hydrostatic equilibrium can be found elsewhere (see for example
El-Essawi et al., 2023 and reference therein).

Note that obtaining the solution of Eq. (1) holds under the two
above mentioned boundary conditions imposed at x = 0, that are
y(0) = 1 and dy(0)

dx = 0. The physically relevant values for n invade
the whole range between 0 and +∞ and are not necessarily given
by an integer value. Finally, an exact solution exists only for three
n values as

n = 0 −→ y(x) = 1 −
x2
6 ,

n = 1 −→ y(x) =
sin(x)

x ,

n = 5 −→ y(x) =
1√ .

(2)
1+x2/3

2

Fig. 1. Schematic representation of the structure for a classical Neural Network
example having 3 hidden layers with 4 neurons per layer, one input layer (single
neuron), and one output layer (single neuron). In the context of a single ODE,
the input neuron noted σ

(0)
1 can be the x variable, and the output one σ

(0)
1 can

therefore be the approximated solution yθ (x).

2.2. Isothermal case

The isothermal model can be deduced from the previous equa-
tion as a special case setting n −→ +∞. The finally obtained
equation to be solved is thus (El-Essawi et al., 2023),

1
x2

d
dx

(
x2

dỹ(x)
dx

)
− e−ỹ(x)

= 0, (3)

where now ỹ is defined via ρ = ρce−ỹ. Another equivalent
equation is generally considered in the literature. Indeed, using
the transform ỹ −→ −ỹ = y, we have

1
x2

d
dx

(
x2

dy(x)
dx

)
+ ey(x) = 0, (4)

which is subject to the boundary conditions at x = 0, y(0) = 0
and dy(0)

dx = 0.

2.3. White dwarf cases

The white dwarf equation was initially derived by Chan-
drasekhar (1958) as

1
x2

d
dx

(
x2

dy(x)
dx

)
+ (y2 − C)3/2 = 0, (5)

where C take constant values in the range 0.01−0.8. Note that if
C = 0, the latter equation reduces to the polytropic LE equation
of index n = 3. This problem is subject to the two boundary
conditions at x = 0, y(0) = 1 and dy(0)

dx = 0.

3. The basics of PINNs

In this section, we first introduce the basic concepts under-
lying the approximation of a desired function with NNs. The
particularity of the physics constraint that is embedded into the
NN and our proper PINN algorithm are detailed after.

3.1. The basics of NNs for non linear approximation

We consider a desired function y(x) that could be (see below)
he solution on an ODE equation with yθ being the approximated
olution at different x values, and where θ is a set of model
arameters. Using a classical neural network, we can write

(x) = (N ◦ N ... N )(x), (6)
θ L L−1 0



H. Baty Astronomy and Computing 44 (2023) 100734

t

{

a

N

w
l
o
t
f
i
c
t

i
L
s

L

Fig. 2. Schematic representation of network structure for a vanilla-PINN modelling an ODE. The previous NN architecture (see previous figure) is used to evaluate
he residual of the ODE equation (via yθ and associated first and second order derivatives). Two partial loss functions are used to form a total loss function with
associated weights (see text) that is finally minimized.
where the operator ◦ denotes the composition and θ =

W l, bl}l=1,L represents the trainable parameters (weight matrices
nd bias vectors) of the network. The latter is composed of L + 1

layers including L − 1 hidden layers of neurons, one input layer,
and one output layer. The input layer is composed of one or two
neurons in this work, and it represents variables including the
normalized radius x (first neuron) and also eventually a variable
parameter (second neuron). For the sake of illustration, we con-
sider only the single input neuron in this subsection. The output
layer with a single neuron represents the predicted solution yθ (x).
In other words, the solution is written as a sequence of non linear
functions as for the hidden layers (1 ≤ l ≤ L − 1), we have

l(x) = σ (W lNl−1(x) + bl), (7)

here we denote the weight matrix and bias vector in the lth
ayer by W l ∈ Rdl−1×dl and bl ∈ Rdl (dl being the dimension
f the input vector for the lth layer). σ (.) is a non linear activa-
ion function, which is applied element-wisely. Such activation
unction allows the network to map nonlinear relationship that
s fundamental for automatic differentiation and therefore the
alculation of the derivatives (see below). In this work, I choose
he most commonly used hyperbolic tangent tanh function.

The optimization problem aiming to find a non linear approx-
mation yθ (x) ≃ y(x) is based on the minimization of a function
data, called loss function, that can be expressed using a mean
quared error formulation as

data(θ ) =
1

Ndata

Ndata∑
i=1

⏐⏐ yθ (xi) − ydatai

⏐⏐2 . (8)

The latter expression assumes that a set of Ndata data is available
for y(x) taken at different xi, i.e. input/output pairs (xi, ydatai ) are
known that are generally called training data in the literature. For
the purely non linear approximation problem, the loss function L
is simply Ldata. Finally, a gradient descent algorithm is used until
convergence towards the minimum is obtained for a predefined
accuracy (or a given maximum iteration number) as

θi+1 = θi − η∇θL(θi), (9)

for the ith iteration also called epoch in the literature, leading
to θ∗

= argminθ L(θ ), where η is known as the learning rate
parameter. This is the so-called training procedure. A schematic
of a standard NN is shown in Fig. 1. In this work, we choose the
well known Adam optimizer. The standard automatic differentia-
tion technique is necessary to compute derivatives (i.e. ∇θ ) with
respect to the NN parameters (e.g. weights and biases).

The goal is to calibrate the trainable parameters θ (weight
matrices and bias vectors) of the network such that yθ (x) approx-
imates the target solution y(x). However, in cases of differential
equations the training dataset is generally drastically reduced to

the sole knowledge of the initial/boundary conditions.

3

3.2. The basics of PINNs for solving an ODE

In order to tackle the limitation due to the reduced training
dataset, PINNs approach considers a second dataset called col-
location data aiming at evaluating the residual of the equation
written as

F [x, y(x), yx(x), yxx(x)] = 0, x ∈ [0,D] , (10)

for second order ODE as considered in this work. We use the
notation yx =

dy
dx , and yxx =

dyx
dx , D defining the right boundary

of the integration interval which may vary from case to case in
this work.

Consequently, a second loss function associated to the physics
(i.e. the equation) can be defined as

LF (θ ) =
1
Nc

Nc∑
j=1

⏐⏐F[xj, yθ (xj), yx,θ (xj), yxx,θ (xj)]
⏐⏐2 , (11)

that must be evaluated at a set of Nc data points located at xj
(generally called collocation points, j ∈ [1,Nc]). Note that, the col-
location data are not necessarily coinciding with the training data.
As an important property characterizing PINNs, the derivatives
of the expected solution with respect to the variable x (i.e. the
NN input) needed in the previous loss function are obtained via
the automatic differentiation, avoiding truncation/discretization
errors inevitable in traditional numerical methods.

In the vanilla-PINN framework, a new total loss function L
is defined that take into account the two previous partial loss
functions as

L(θ ) = ωdataLdata(θ ) + ωFLF (θ ), (12)

where weights (also called hyper-parameters) (ωdata, ωF ) are in-
troduced in order to ameliorate the eventual unbalance between
the two partial losses during the training process (see Fig. 2).
These weights and the learning rate can be user-specified or
automatically tuned. In the present work, for simplicity we fix
the ωdata value to be constant and equal to unity, and the other
weight parameters are determined with values varying from case
to case. More technical details about the PINNs methods can be
found elsewhere (see Baty and Baty, 2023 and references therein).

3.3. Our PINN algorithm

Taking into account the initial/boundary conditions can be
done in different ways in the PINNs variants found in the lit-
erature. In the vanilla-PINNs, the condition y(x = 0) = y0 is
generally imposed through the training dataset via Ldata(θ ) as a
soft constraint, thus Ndata = 1 (in the single input case), contrary

to other PINNs variants where this condition is incorporated into



H. Baty Astronomy and Computing 44 (2023) 100734

v

L
o
t
a
p
t
c

f
m

L

Fig. 3. Snapshots taken at different epochs (training steps) of the predicted PINN solution versus the exact one for the n = 0 polytropic LE equation. The radius x
alues (for collocation points) at which the physical loss function is evaluated are indicated with the small green circle on x axis.
t
d
p

T
2

F (θ ) thus as a hard constraint. In this work we follow the first
ption. Moreover, taking into account the first derivative at x = 0,
hat is yx = 0 in this study, must be also done. For our PINN
lgorithm we have found efficient to use the first collocation
oint at x1 = 0 in order to constrain the condition on yx,θ (x1)
o be close to zero (as required for LE boundary conditions), thus
onstituting a second soft constraint.
Consequently, we define a specific loss data Ldata, called loss

unction, that can be expressed using a mean squared error for-
ulation as

data(θ ) =
⏐⏐ yθ (x1) − ydata1

⏐⏐2 + ωd
⏐⏐ yx,θ (x1)⏐⏐2 , (13)

with ydata1 = y0 (with a value of 0 or 1 in this work) for our
LE equations. We have also introduced a new weight parameter
(ωd) for the derivative. In other words, a hybrid data loss function
is used. Other options exist like solving an equivalent system of
two first-order differential equations instead of a single second
order one, as for a standard analytical approach (He et al., 2020).
Nevertheless, as shown by our results, our method is efficient.
One must note that the singularity at the origin (x = 0) is
consequently handled by using the two soft constraints together
with the residual equation form (see just below).

As explained above (see Eq. (12)), a total loss function is finally
assembled and used into the gradient descent algorithm (see
Eq. (9)). A summary of the different parameters involved in our
algorithm and their associated explored values are reported in
Table 1. The other parameters are fixed to Ndata = 1 (except
for Section 5 where a second input variable is considered), and
ωdata = 1. For the sake of simplicity, the distribution of the
collocation points is chosen to be uniform over the integration
interval. This choice is not fundamental for this study as the
solutions are relatively smooth.

4. Solving individual Lane–Emden type equations with PINNs

4.1. Polytropic cases

The previous polytropic LE equation can be re-written in the
following equivalent form

x
d2y(x)

+ 2
dy(x)

+ xyn = 0, (14)

dx2 dx v

4

Table 1
Algorithm parameters and typical values investigated in this work.
Name

Number of hidden layers 1 ≤ L − 1 ≤ 5
Number of neurons per layer 5 ≤ Nn ≤ 50
Learning rate 1 × 10−4

≤ η ≤ 1 × 10−3

Weight for derivative 1 × 10−2
≤ ωd ≤ 1 × 10−1

Weight for physics 1 × 10−3
≤ ωF ≤ 1 × 10−1

Number of collocation points 5 ≤ Nc ≤ 50

that is the residual expression effectively used and minimized
in our PINN algorithm. In this way, the singularity at the ori-
gin which generally poses numerical difficulties in traditional
discretization schemes disappears. The convergence towards the
solution is illustrated in Figs. 3–4 for the n = 0 case for which
an analytical solution exists (see Eq. (2)). We have considered
the integration over the radius interval [0, 3] that encompasses
the physically relevant values for this index value (as positive
y values are required). Indeed, the different snapshots taken at
different epochs show the progression of the training process that
is stopped after 32000 steps. Note that a very modest number of
collocation points (here Nc = 10) is enough to obtain an average
absolute error (square root of the MSE deduced from Fig. 4)
significantly smaller than 10−3. The MSE is evaluated using the
standard expression, MSE =

1
Neval

∑Neval
i=1

⏐⏐ yθ (xi) − yevali

⏐⏐2, where
he evaluation yθ (xi) is done on Neval = 300 points uniformly
istributed within the whole space interval, and yevali is the ex-
ected exact solution at x = xi. This dataset introduced to

test the accuracy of the method must not be confused with the
collocation dataset at which the loss function is evaluated and
used to make the progress of the training. We have also checked
that the maximum absolute error is relatively very small, that is
approximately 5 × 10−4. The maximum absolute error is defined
as the maximum absolute value of the difference between the
expected exact solution and the predicted solution evaluated on
the Neval points distributed within the whole space interval. These
results have been obtained using the following combination of
parameters, η = 1 × 10−4, ωF = 2 × 10−2, and ωd = 1 × 10−2.
he architecture of the NN is composed of 2 hidden layers with
0 neurons for each layer.
A similar behaviour is obtained for the other polytropic index
alues. This is illustrated in Figs. 5 and 6 for the cases n = 1



H. Baty Astronomy and Computing 44 (2023) 100734

p
i

a
(
h
a
p
i
n
a
1
a
s
n
e

e
a
N
n
t
t
v

o
l
l
N
s
d
s

b
f
t
n
s

b

T
a

y

Fig. 4. Histories of the total loss function L(θ ) and MSE during the training
rocess corresponding to the n = 0 polytropic case (previous figure). The MSE
s evaluated using 300 points uniformly distributed within the whole x interval.

nd n = 5 respectively for which analytical solutions also exist
see Eq. (2)), where the last epoch for the solution and Loss/MSE
istories is plotted. The same combination of parameters and NN
rchitecture is also taken, except that the number of collocation
oints is now Nc = 20 in order to take into account of the larger
ntegration intervals that are [0, 7] and [0, 10] for n = 1 and

= 5 cases respectively. We have checked that the average
nd maximum absolute error remains again slightly smaller than
0−3 over the integration intervals. The other n values for which
nalytical solution does not exist can also be obtained in the
ame way. A general view of the solutions obtained for different
values is available in the following section, where multiple LE
quations are integrated using a single NN.
A natural question that arises about these results concerns the

ffect of varying the different parameters, i.e. more precisely the
rchitecture of the network and the number of collocation points
c . The effect of varying the learning rate and the weights is not
egligible but are less determinant. Indeed, for example taking a
oo high learning rate is known to lead to strong oscillations in
he loss due to jumps over minima, while a too low rate will take
ery long convergence.
Convergence studies have been performed with the number

f collocation points, number of neurons (for a fixed number of
ayers), and number of layers (for a fixed number of neurons per
ayer), with the aim to examine the influence on the precision.
ote that we can evaluate the maximum absolute error on the
olution y itself but also on the derivative yx, as the latter can be
irectly deduced via automatic differentiation from the predicted
olution. The exact solution first order derivative is yx(x) =
cos(x)

x −
sin(x)
x2

for the n = 1 case. The results that are reported
elow are obtained for the n = 1 case, but they are similar
or other n values (more precisely they are slightly better for
he n = 0 case). First, one can see in Table 2 that a modest
umber of collocation points (i.e. 12) already allows an acceptable
olution. Increasing Nc ameliorates significantly the accuracy with
a maximum absolute error being 3×10−5 when Nc is of order 30.
Increasing further Nc has no additional amelioration. This is not
completely surprising as the maximum accuracy expected using
such minimization procedure (i.e. with a gradient descent algo-
rithm) is known to be limited by residual oscillations around the
minimum. A precision situated between the machine precision
and its square root value is thus expected (Press et al., 2007). Note
that as in most of machine learning studies, we use the standard
version of the Pytorch library that works in single precision. The
effect of the architecture of the network on the accuracy is less
decisive, except that a minimum number of layers and neurons
is preferable, as one can see in Tables 3–4 (with Nn and L varying
etween 5 and 50, and 2 and 6 respectively).
5

Table 2
Convergence with the number of collocation points Nc , for
a NN architecture having 2 hidden layers and 20 neurons
per layer. Polytropic n = 1 LE equation.
Nc Error on y Error on yx
12 1.5 × 10−2 2.7 × 10−2

14 5 × 10−3 1 × 10−2

16 2.5 × 10−3 5 × 10−3

20 4 × 10−4 4 × 10−4

24 8 × 10−5 2 × 10−4

32 3 × 10−5 1.5 × 10−4

40 3 × 10−4 2 × 10−4

48 1.5 × 10−4 1 × 10−4

Table 3
Convergence with the number of neurons Nn , for a NN ar-
chitecture having 2 hidden layers and Nc = 32 collocation
points. Polytropic n = 1 LE equation.
Nn Error on y Error on yx
5 2.5 × 10−3 5 × 10−3

10 1 × 10−3 3 × 10−3

15 4 × 10−4 1.2 × 10−3

20 3 × 10−5 1.5 × 10−4

25 2 × 10−4 6 × 10−4

30 2 × 10−4 5 × 10−4

35 3 × 10−3 9 × 10−3

Table 4
Convergence with the number of hidden layers Nh , for a
NN architecture having 20 neurons per layer and Nc = 32
collocation points. Polytropic n = 1 LE equation.
Nh Error on y Error on yx
1 6 × 10−4 2 × 10−3

2 3 × 10−5 1.5 × 10−4

3 6 × 10−5 2 × 10−4

5 1.3 × 10−4 4 × 10−4

For completeness, we can have a look on the error distribution
of the absolute error over the integration domain for the solution
and its first order derivative, for the combination parameters
Nc = 32, Nh = 2, and Nn = 20. The results are plotted in Fig. 6.
The errors are not necessarily increasing with the radius, and the
error on first derivative is only slightly higher compared to the
solution one, especially close to x = 0.

Finally, we have made a close comparison of our algorithm
with two other integrations techniques, namely Monte Carlo and
Chebyshev Neural Network methods. The results are detailed in
the appendices, and show that PINNs method has very good ac-
curacy properties especially when considering the rather modest
number of collocation points.

4.2. Isothermal case

As for the isotropic equation, the previous isothermal equation
considered (Eq. (3)) can be written as

x
d2y(x)
dx2

+ 2
dy(x)
dx

− xe−y(x)
= 0. (15)

here is no exact solution, but an approximate one can be found
nd expressed as

(x) ≃
1
6
x2 −

1
5 × 4!

x4 +
8

21 × 6!
x6 −

122
81 × 8!

x8, (16)

by using series expansion (Iacono and De Felice, 2014).
Our PINN algorithm is also able to find an accurate solution

yθ (x) as one can see in the results plotted in Fig. 7. This has
been obtained using only N = 6 collocation points with the
c



H. Baty Astronomy and Computing 44 (2023) 100734

f

f
r
s
p
a
a
v

5

t
f
t
s
s
p

Fig. 5. Predicted PINN yθ (x) solutions versus the exact ones obtained at the end of the training for the n = 1 and n = 5 polytropic LE equations in left and right
panel respectively.
5

i
n
l

v
o
f
3
f
t
c
a
(
n
v
w
p
l
c
i
n
t
n

a
a
o
l
e
t
r
e

5

s
c
c

Fig. 6. Absolute error on the solution yθ (x) (red) and first order derivative (blue)
or the polytropic n = 1 LE case. See text for the exact combination of chosen
parameters.

combination of parameters, η = 1 × 10−4, ωF = 2 × 10−2, and
ωd = 1×10−2. The NN is chosen to have 2 hidden layers with 20
neurons for each layer.

4.3. White dwarf cases

As for the previous LE equations, the previously considered
white dwarf equation can be written as

x
d2y(x)
dx2

+ 2
dy(x)
dx

+ x(y2 − C)3/2 = 0. (17)

There is no exact solution in this case. During our PINN training
process, negative values of y2−C can be generated leading to non
defined non-integer power exponent. Thus the previous equation
is advantageously replaced by,

x
d2y(x)
dx2

+ 2
dy(x)
dx

+ x
⏐⏐y2 − C

⏐⏐3/2 = 0, (18)

or the residual form to be minimized in our procedure. The
esults obtained for different values of the C parameter are pre-
ented in the following section, as instead of solving individual
roblem for each C value separately, it is also possible to train
NN to solve a collection of solutions for multiple equations

nd then predict any solution yθ (x) corresponding to different C
alues.

. Solving multiple Lane–Emden type equations with PINNs

In the previous section we have focused on solving LE equa-
ions individually. For each equation, a dedicated NN was there-
ore trained and the corresponding trainable parameters defini-
ively calibrated at the end of the PINN training process. In this
ection, we show that a collection of several equations can also be
olved using a similar PINN algorithm. The idea is to consider one
arameter defining a particular equation belonging to one family
6

(e.g. the n index for polytropic equations) as an input variable
for the NN. Indeed, the PINN algorithm would be able to learn a
collection of solutions for several equations corresponding to the
different n values situated in an interval n ∈ [ninf , nsup].

.1. Polytropic family

We build a new NN architecture having two neurons in the
nput layer, the first one for the x radius variable and the second
euron representing the polytropic n index value. The output
ayer/neuron can be now written as yθ (x, n).

We first used a first PINN algorithm solving LE equations for x
arying in the range x ∈ [0, 7] and n ∈ [0, 5]. A corresponding set
f uniformly distributed collocation data is taken with 32 points
or x and 6 points for n (i.e. n = 0, 1, 2, 3, 4, and 5). Thus, Nc =

2×6. The training dataset representing the boundary conditions
or the solution at x = 0 is now Ndata = 1 × 6. The results at
he end of the training process are plotted in Fig. 8. The chosen
ombination of parameters is, η = 1 × 10−4, ωF = 8 × 10−2,
nd ωd = 1 × 10−2. The NN is chosen to have 4 hidden layers
two times larger than for individual PINN modelling) with 20
eurons for each layer. First, Fig. 8 shows that the n = 0, 1 and 5
alues that are learned by the network are perfectly superposed
ith the exact solutions over the whole radius range. Second, a
urely predicted solution can be obtained for intermediate not
earned n values (as for n = 2.5 plotted in the figure). The latter
an be quasi-instantaneously generated once the training process
s finished. However, note that predicting solution for a specific
value between 0 and 1 would require more collocation points

han only 6 because the solution drastically changes between
= 0 and n = 1.
In a second PINN algorithm, only 4 n values (i.e. n = 1, 2, 3,

nd 4) instead of 6 are now considered in the learning process,
ll the different parameters being the same compared to the
nes used just above. The results plotted in Fig. 9, show that the
earned n = 1 solution is nicely predicted. As an interesting result,
ven for a not learned n index (value situated outside the range of
rained n indices) the purely predicted n = 5 solution compares
ather well to the exact solution. Such PINNs methods are not
xpected to be good extrapolators.

.2. White dwarf family

We follow the same idea as the one developed in the previous
ubsection by considering a second input variable that is the
oefficient C . Indeed, in this way another single PINN algorithm
an be designed in order to learn multiple solutions yθ (x, C) of
the white dwarf family that is represented by Eq. (18).

We use a PINN algorithm for x varying in the range x ∈ [0, 5]
and C varying in the range C ∈ [0, 0.8]. A corresponding set of
collocation data with uniformly distributed N1

c = 28 points is
taken for x and N2

c = 5 points for C (i.e. C = 0, 0.2, 0.4, 0.6, and
0.8). The results at the end of the training process are plotted in

−4
Fig. 10. The chosen combination of parameters is, η = 1 × 10 ,



H. Baty Astronomy and Computing 44 (2023) 100734

o
c

g

ω
h
m

v
m
r
a
f
t
w
t

6

i

Fig. 7. Predicted PINN solution yθ (x) versus the expected one (given by Eq. (16)) obtained at the end of the training for the isothermal LE equation in left panel,
and corresponding histories of the loss function and MSE as function of epochs during training in right panel.
g

C
a

H

Fig. 8. Predicted polytropic PINN solutions for different n indices as functions
f radius. The 6 different learned solutions (see text) are plotted in blue, and
ompared to exact solutions (in dashed red line) for n = 0, 1 and 5. A purely
predicted n = 2.5 solution in plotted in green.

Fig. 9. Same as previous figure for a second PINN algorithm trained for 4 n
indices (between 1 and 4). A purely predicted n = 5 solution in plotted in
reen. and compared to the exact solution (dashed red).

F = 8 × 10−2, and ωd = 1 × 10−2. The NN is chosen to
ave 4 hidden layers (two times larger than for individual PINN
odelling) with 20 neurons for each layer.
We have checked that the predicted solutions obtained agree

ery well with published tabulated values obtained with different
ethods (El-Essawi et al., 2023). This is the case for solutions cor-

esponding to learned C values but also to non learned ones that
re quasi-instantaneously generated once the training process in
inished. The measured maximum absolute error is typically close
o 10−4. Smaller errors of order 10−5 can be also reached but
ould require a more fine tuning of the different parameters of
he network.

. Conclusions

We show that PINNs are promising numerical tools for solv-
ng Lane–Emden type and other similar differential equations.
7

Fig. 10. Predicted white dwarf solutions for different C values as functions of
radius. The 5 different learned solutions (see text) are plotted with blue colour,
and 4 purely predicted solutions for C = 0.1, 0.3, 0.5, and 0.7 are plotted using
reen colour.

ompared to traditional numerical methods, they present some
dvantages listed below.

1. They are meshless methods in the sense that the solution
is not computed on a given grid. Indeed, a dataset of
collocation points is introduced with the aim to minimize
the equation residual, but the solution can be directly eval-
uated (via a learned function) at any variable points (i.e. x
value). The required number of collocation points is very
reduced compared to classical integration schemes for a
similar accuracy.

2. Once trained, the solution and derivatives can be quasi-
instantaneously generated in the trained spatial domain.
The solution obtained with our method is valid over the
entire domain without the need for interpolation (unlike
RK tabular solutions).

3. Trial functions carefully designed according to the initial
conditions are not needed as in other approaches based on
neural networks (see discussion in He et al., 2020), and the
activation function is user-defined.

4. Multiple solutions can be learned with the same NN by
considering a parameter defining the individual equation
as a variable input (like the polytropic index n or the
constant C for the polytropic LE and white dwarf equations
respectively). In this way, the solution of a given individ-
ual equation is also quasi-instantaneously generated if the
parameter lies in the range of trained values.

5. The formulation based on the equation residual (that is
a second order derivative form) does not require the use
of some equivalent system of two first order differential
equations. The solution derivative (with respect to the x
variable) is also quasi-instantaneously obtained with an
accuracy similar to the solution.

owever, our results also highlight some drawbacks listed below.



H. Baty Astronomy and Computing 44 (2023) 100734

e
e
(

a

1. The training process depends on a combination of many
parameters like, the learning rate, the weights in the loss
function, and the architecture of the network, which de-
termines the efficiency of the minimization. Consequently,
a fine tuning in order to find optimal parameter values
is quite complex, and can therefore be computationally
expensive.

2. Even if the accuracy obtained in this work is excellent,
PINNs seem to be potentially less accurate than classical
methods where for example refining a grid (e.g. Runge–
Kutta schemes) allows a precision close to the machine
one. This limitation is partly inherent to minimization tech-
niques.

Anyway, PINNs are promising tools that are called upon to
develop in future years. For example, ameliorations using self-
adaptive techniques are expected in order to improve the pre-
viously cited drawbacks (Karniadakis et al., 2021; Cuomo et al.,
2022). They also offer a different and complementary approach to
traditional methods. They can be also used in different ways in as-
sociation with differential equations, as with the aim to discover
some unknown parameters (i.e. to discover the physics). In this
work, we focus on second order LE type equations. In future work,
it would be also of interest to generalize our PINNs method in or-
der to investigate solutions of higher order differential equations
having multiple singularities (Sabir et al., 2022).

CRediT authorship contribution statement

Hubert Baty: Conceptualization, Methodology, Software, Writ-
ing – original draft, Investigation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

The Pytorch-Python codes used in this work will be made
available after acceptance of the paper on the GitHub repository
at https://github.com/hubertbaty/PINNS-LE.

Acknowledgements

The author thanks Emmanuel Franck, Victor Michel-Dansac,
and Vincent Vigon (IRMA, Strasbourg), for associating him to
the supervision of the Master2 internship of Vincent Italiano in
February–July 2022, which also gave him want to learn the PINNs
technique. The author also thanks the anonymous referee for
helpful comments that improved the quality of the manuscript.

Appendix A. Comparison to Monte-Carlo method

We compare our results using PINNs with results obtained
using a Monte-Carlo (MC) method that are published in El-Essawi
et al. (2023). Indeed we consider integrations over the x intervals
[0, 2.4], [0, 3], and [0, 6], for the three polytropic cases with index
n = 0, 1 and 3 respectively. In our PINN computations we choose
a combination of parameters that give results close to optimal
ones. The MC reported results use up to 106 samples. We use the
data shown in Tables A.1, A.2, and A.3 of El-Essawi et al. (2023) to
deduce the absolute error at different x values. The comparisons
are reported in Tables 5–7.

One can see that our results have a better accuracy by one
order of magnitude.
w

8

Table 5
Comparison for n = 0 at different radius values.
x PINN error MC error

0 1.4 × 10−6 0.0 × 100

0.3 1.6 × 10−5 1 × 10−4

0.6 8.0 × 10−6 2 × 10−4

0.9 1.8 × 10−5 3 × 10−4

1.2 1.1 × 10−5 4 × 10−4

1.5 1.4 × 10−5 5 × 10−4

1.8 1.7 × 10−5 9 × 10−4

2.1 1.1 × 10−5 7 × 10−4

2.4 1.3 × 10−5 8 × 10−4

Table 6
Comparison for n = 1 at different radius values.
x PINN error MC error

0 3.1 × 10−6 0.0 × 100

0.4 3.3 × 10−5 1 × 10−4

0.8 2.7 × 10−5 3 × 10−4

1.2 1.9 × 10−5 4 × 10−4

1.6 2.5 × 10−5 4 × 10−4

2.0 1.1 × 10−5 4 × 10−4

2.4 1.3 × 10−5 3 × 10−4

2.8 3.3 × 10−5 3 × 10−4

Table 7
Comparison for n = 5 at different radius values.
x PINN error MC error

0 2.1 × 10−5 0.0 × 100

1 4.7 × 10−6 2 × 10−4

2 2.1 × 10−5 1 × 10−4

3 2.2 × 10−5 3 × 10−4

4 2.1 × 10−5 3 × 10−4

5 2.4 × 10−5 7 × 10−4

6 1.5 × 10−5 1 × 10−4

Table 8
Comparison for different n values of the maximum absolute error
over integration interval [0, 1].
n PINN error MC error CNN error

0 3.2 × 10−5 3.3 × 10−4 5.4 × 10−3

1 1.1 × 10−5 3.0 × 10−4 6.4 × 10−3

5 2.3 × 10−5 2.0 × 10−4 7.6 × 10−3

Appendix B. Comparison to Monte-Carlo and Chebyshev Neu-
ral Network methods

We compare our results using PINNs with results obtained
using a Monte-Carlo (MC) method that are published in El-Essawi
et al. (2023), and also with results obtained using a Chebyshev
Neural Network (CNN) method (Mall and Chakraverty, 2014). We
consider integration over the x interval [0, 1] for the three poly-
tropic indices (n = 0, 1, and 5). In order to make the comparison
the close as possible to CNN results, we have chosen the same
number of collocation points Nc = 10 for n = 0, 5 cases and
Nc = 20 for the n = 1. We deduce the maximum absolute
rror taken over the whole interval from Tables 1–3 in El-Essawi
t al. (2023) for MC and from Tables 1–3 in Mall and Chakraverty
2014) for CNN.

The results reported in Table 8 clearly show that our results
re again more accurate by one and even two orders of magnitude
hen compared to MC and CNN methods respectively.

https://github.com/hubertbaty/PINNS-LE


H. Baty Astronomy and Computing 44 (2023) 100734

R

B

C

C

E

H

I

K

L

L

eferences

aty, H., Baty, L., 2023. Solving differential equations using physics informed
deep learning: a hand-on tutorial with benchmark tests. doi:10.48550/arXiv.
2302.12260, Preprint.

handrasekhar, S., 1958. An Introduction to the Study of Stellar Structure. Dover
Publications, Inc., Mineola.

uomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.,
2022. Scientific machine learning through physics-informed neural networks:
Where we are and what’s next. J. Sci. Comput. 92 (88).

l-Essawi, S.H., Nouh, M.I., Soliman, A.A., Abdel Rahman, H.I., Abd-
Elmougod, G.A., 2023. Monte Carlo simulation of Lane-Emden equations
arising in astrophysics. Astron. Comput. 42, 100665.

e, J., Long, P., Wang, X., He, K., 2020. A deep-learning-based method
for solving nonlinear singular Lane-Emden type equation. IEEE Access 8,
203674-203684.

acono, R., De Felice, M., 2014. Celestial mechanics and dynamical astronomy.
118, pp. 291–298.

arniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S., Yang, L., 2021.
Physics-informed machine learning. Nature Rev. 3, 422–440.

agaris, E., Likas, A., DI Fotiadis, L., 1998. Artificial neural networks for solving
ordinary and partial differential equations. IEEE Trans. Neural Netw. 9 (5),
987–1000.

e Cun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521, 436–444.
9

Mall, S.M., Chakraverty, S., 2014. Chebyshev neural network based model
for solving Lane–Emden type equations. Appl. Math. Comput. 247,
100–114.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., 2007. Numerical
Recipes, third ed..

Raissi, M., Perdikaris, P., Karniadakis, G.E., 2017. Physics informed deep learning
(Part I): Data-driven solutions of nonlinear partial differential equations.
doi:10.48550/arXiv.1711.10561, Preprint.

Raissi, M., Perdikaris, P., Karniadakis, G.E., 2019. Physics-informed neural net-
works: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations. J. Comput. Phys. 378,
686–707.

Sabir, Z., Ali, M.R., Fathurrochman, I., Raja, A.Z., Sadat, R., Baleanu, D., 2022.
Dynamics of multi-point singular fifth-order Lane–Emden system with
neuro-evolution heuristics. Evol. Syst. 13, 795–806.

Sabir, Z., Wahab, H.A., Umar, M., Erdogan, F., 2019. Stochastic numerical approach
for solving second order nonlinear singular functional differential equation.
Appl. Math. Comput. 363, 124605.

Sabir, Z., Wahab, H.A., Umar, M., Sakar, M.G., Raja, A.Z., 2020. Novel design
of Morlet wavelet neural network for solving second order Lane–Emden
equation. Math. Comput. Simulation 172, 1–14.

Zhang, W.S., Yang, Y.H., Xu, J.Y., 2003. Theory and application of Lattice
Boltzmann method. Mod. Mach. 4, 4–6.

http://dx.doi.org/10.48550/arXiv.2302.12260
http://dx.doi.org/10.48550/arXiv.2302.12260
http://dx.doi.org/10.48550/arXiv.2302.12260
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb2
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb2
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb2
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb3
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb3
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb3
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb3
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb3
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb4
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb4
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb4
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb4
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb4
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb5
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb5
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb5
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb5
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb5
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb6
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb6
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb6
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb7
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb7
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb7
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb8
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb8
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb8
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb8
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb8
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb9
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb10
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb10
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb10
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb10
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb10
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb11
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb11
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb11
http://dx.doi.org/10.48550/arXiv.1711.10561
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb13
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb13
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb13
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb13
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb13
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb13
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb13
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb14
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb14
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb14
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb14
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb14
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb15
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb15
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb15
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb15
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb15
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb16
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb16
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb16
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb16
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb16
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb17
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb17
http://refhub.elsevier.com/S2213-1337(23)00049-5/sb17

	Modelling Lane–Emden type equations using Physics-Informed Neural Networks
	Introduction
	Lane–Emden type equations
	Polytropic cases
	Isothermal case
	White dwarf cases

	The basics of PINNs
	The basics of NNs for non linear approximation
	The basics of PINNs for solving an ODE
	Our PINN algorithm

	Solving individual Lane–Emden type equations with PINNs
	Polytropic cases
	Isothermal case
	White dwarf cases

	Solving multiple Lane–Emden type equations with PINNs
	Polytropic family
	White dwarf family

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A. Comparison to Monte-Carlo method
	Appendix B. Comparison to Monte-Carlo and Chebyshev Neural Network methods
	References


