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Abstract 35 

The taphonomy of early soft-bodied organisms in Palaeoproterozoic sediments is not yet clearly 36 

understood, even though some locations where these fossils are found present all the conditions for 37 

exceptional fossil preservation. Indeed, the degree of fossil preservation has received attention, but 38 

better knowledge of the environmental conditions and associated taphonomic processes is also essential. 39 

In the Gabonese Francevillian Basin, the discovery of macrofossils (2.1 Ga) of multicellular organisms 40 

in black shales is an outstanding example of this degree of preservation. Indeed, the biological diversity, 41 

as a wide variety of fossil morphologies are observed, is associated with two major taphonomic 42 

processes – moulding (lenticular-shaped forms) or early pyritization, while the fossil host rocks were 43 

not deeply buried and were affected only by weak to moderate diagenesis. However, usually, the 44 

mechanisms of this preservation remain difficult to assess, as the original taphonomic processes are 45 

impacted by diagenesis and still misunderstood. In this way, by closely observing fossil mineralization 46 

in four morphotypes of macrofossils and associated host rocks from mineralogical and textural points 47 

of view, this work aims to provide some keys to a taphonomic comprehension of soft-bodied organism 48 

preservation. After the deposition of dead organisms on the clayey sediment, an illitization process, 49 

which depends on the availability of dissolved K driven by bacterial activity, started from the first stages 50 

of preservation by moulding the lenticular-shaped forms and proceeded in the pores of the other 51 

macrofossils after their pyritization. At the fossil level, the intensity of illitization is controlled by the 52 

mode of preservation and the evolution of the associated permeability. In the nonpyritized lenticular-53 

shaped specimens, illitization was not achieved, preserving I-S mixed-layer minerals, while in the 54 

pyritized forms, the illitization degree was more extensive. In comparison, I-S mixed-layer minerals are 55 

almost absent in pyritized abiotic concretions. A second process, which occurred later, consists of 56 

general chloritization from fluid circulation. Our detailed results show that each specimen behaved like 57 

a microsystem with its own physico-chemical and mineralogical evolution during 58 

preservation/diagenesis. This finding allows us to propose a conceptual model of the taphonomic 59 

history, describing the fossilization stages for each type of specimen. 60 

 61 

  62 
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1. Introduction 63 

Knowledge of early Precambrian biospheres is primarily based on the study of exceptionally well-64 

preserved fossilized remains of soft-bodied organisms (Knoll, 1985). Shales appear to be very 65 

favourable host rocks for the preservation of the earliest forms of life (Ngombi-Pemba et al., 2014; 66 

Wilson and Butterfield, 2014), but the mechanisms of this preservation remain difficult to assess, as the 67 

original taphonomic processes are still largely misunderstood and can be impacted by various chemical 68 

and mineralogical transformations. 69 

In fact, the preservation of soft bodies involves sufficiently slow biological degradation for the more 70 

resistant organic molecules to be fossilized by imprinting or mineralization (Briggs, 2003). The early 71 

stage of this preservation is mainly controlled by the nature of the sediments and their rate of 72 

accumulation (Briggs and Kear, 1993) in the presence or absence of biological agents (bacteria) together 73 

with the water column chemistry (major elements, dissolved O2, etc.) of the depositional environment 74 

(Gaines et al., 2012; Gaines and Droser, 2010). Then, diagenetic processes (e.g., compaction, 75 

cementation, fluid‒rock interaction, and potential hypothermal and magmatic activities) can also impact 76 

the quality of fossilization (Muscente et al., 2015). The quality of the conserved fossils, i.e., the degree 77 

of resemblance to the original organisms, is controlled by the intensity of all these predominant factors, 78 

with a direct impact on reconstructing the initial form of soft-bodied organisms and deriving information 79 

on their lifestyles based on the geometric (morphologies, tracks, burrows, etc.) and chemical (organic 80 

molecules, isotopes, etc.) signatures that have been preserved. 81 

The Palaeoproterozoic fossil-rich black shales of the Francevillian Basin (Gabon) constitute a 82 

unique case study to fill these gaps. They hold exceptionally fossilized fauna, the oldest ecosystem is 83 

2.1 billion years, they consist of decimetric macrofossils (El Albani et al., 2023, 2014, 2010; Ossa et al., 84 

2023) of soft-bodied organisms capable of movement (El Albani et al., 2019a), and they are in close 85 

association with photosynthetic microbial mats (Aubineau et al., 2019, 2018; Reynaud et al., 2018). 86 

However, even if this fossiliferous system was not affected by metamorphic conditions – thereby saving 87 

a large amount of taphonomic information (El Albani et al., 2014, 2019a; Gauthier-Lafaye and Weber, 88 

1989; Ngombi-Pemba et al., 2014; Ossa Ossa et al., 2013; Weber, 1968a) – the fossilization/preservation 89 

conditions and mechanisms are still unclear. An adapted mineralogical and petrographic study of these 90 

organic matter-/clay-rich rocks should remove these uncertainties. 91 

In this way, by closely observing fossil mineralization and host rocks from mineralogical and 92 

textural points of view and by describing organo-mineral interactions, this work aims to provide some 93 

keys to a taphonomic comprehension of soft-bodied organism preservation in Francevillian black shales. 94 

The study strategy involves the following: 95 

(i) Remains of both biomineralized and nonmineralized taxa in fossil deposits were discriminated 96 

(Conway Morris, 1986). 97 
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(ii) Pyritic concretions that have no apparent links with the fossil specimens were observed (El 98 

Albani et al., 2023, 2019b, 2014, 2010; Ossa et al., 2023). This can help us to better understand the 99 

conditions that prevailed during fossilization. 100 

(iii) Organo-mineral interactions were characterized. This can serve as indirect evidence for 101 

understanding the taphonomy and biogenicity of the earliest organisms (Lepot, 2020), especially clay 102 

mineral transformation, which can record palaeobiological and palaeoecological variations 103 

(Behrensmeyer et al., 2000). In this sense, resolving the role of minerals in the fossilization of soft bodies 104 

is also a key element in understanding any environmental bias in fossil assemblages. Illustrating the 105 

importance of organo-mineral interactions, Burges Shales fossils are certainly preserved primarily as 106 

carbonaceous compressions (Butterfield, 1995), but diagenetic mineralization may have stabilized 107 

organic matter or replicated the morphology (Anderson et al., 2011; Briggs, 2003). 108 

Although the mineralogical study of Palaeoproterozoic Francevillian rocks has already been 109 

carried out in part (e.g., Aubineau et al., 2021), a systematic study such as the one presented here is 110 

unprecedented. Clay minerals, specifically illite, mixed-layer minerals (MLMs) and chlorite, have been 111 

documented within or near the fossils but not on a large scale with as many samples as in this study 112 

(more than 40 fossils + host rock samples). In this respect, our approach is resolutely innovative: it 113 

systematically characterizes the mineralogy and textural arrangement of clay minerals and pyrite in the 114 

host rock as well as in the fossils but independently assesses nonpyritized lenticular-shaped specimens, 115 

pyritized lobate forms, string-shaped specimens, and segmented morphologies. The results should allow 116 

us to propose a conceptual model depicting the taphonomy and the mechanisms of mineralization during 117 

fossilization and diagenesis according to the submillimetre-scale physico-chemical conditions. 118 

 119 

2. Geological settings 120 

The Franceville Basin is filled by a series of unmetamorphosed sedimentary deposits of 121 

Palaeoproterozoic age resting unconformably on an Archean basement (Figs. 1 and 2) (Aubineau et al., 122 

2021; Bankole et al., 2015; Bros et al., 1992; Gauthier-Lafaye, 1986; Ossa Ossa et al., 2013; 123 

Thiéblemont et al., 2014; Weber, 1968a). The Francevillian siliciclastic fluvial and marine sediments 124 

are subdivided into four major lithostratigraphic formations, FA to FD, from oldest to youngest. The FA 125 

Formation dominantly consists of fluvio-deltaic conglomerates and sandstones (Bankole et al., 2015; 126 

Gauthier-Lafaye and Weber, 1989), while the overlying FB Formation is dominated by heterolithic 127 

marine rocks deposited during a period of tectonic subsidence and basin deepening (Reynaud et al., 128 

2018). The significant lithological differences and sedimentary structures within this formation resulted 129 

in several lithostratigraphic subdivisions into the FB1 (including a, b, and c units) and FB2 (a and b units) 130 

members (Azziley Azzibrouck, 1986; Weber, 1968b). The FC Formation hosts shallow marine 131 

dolostones and cyanobacteria-hosting stromatolitic cherts interbedded with black shale horizons (Lekele 132 

Baghekema et al., 2017; Préat et al., 2011), while the FD Formation is made of marine black shales with 133 
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interbedded volcanic tuffs, which were deposited in a transgressive phase (Thiéblemont et al., 2014). 134 

Although large-scale synclinals and anticlinals have been formed in the Francevillian subbasin, 135 

sediments were not deformed, which is marked by the exceptional conditions of preservation of the 136 

entire Francevillian sedimentary stratum. 137 

The Francevillian fossil deposits, which belong to the FB2 Member, are in the Moulendé quarry close 138 

to Franceville town on the northern side of the Mvengué syncline. The latter stretches along an NNW‒139 

SSE axis parallel to the edge of the basin represented by the eastern boundary of the Chaillu Massif (Fig. 140 

1). The tectonic activity with the generation of normal faults predominantly in the centre of the 141 

Francevillian subbasin led to the formation of well-exposed outcrops (Fig. 2); (Gauthier-Lafaye and 142 

Weber, 1989; Mayaga-Mikolo, 1996; Thiéblemont et al., 2009; Weber, 1968b). Sea-level fall that began 143 

during the deposition of the FB1c unit and extended during the deposition of the overlying FB2 Formation 144 

caused contemporary-level to increasingly oxic conditions in the water column with transient oxygen-145 

deficient bottom waters (Aubineau et al., 2021; Canfield et al., 2013; Ossa Ossa et al., 2018). 146 

Specifically, the FB2 deposits aged 2092 ± 48 Ma (Ngwal’ghoubou Ikouanga, 2022) are composed of 147 

Poubara sandstones interbedded with thin black shale levels (FB2a unit) and 5-m thick black shales with 148 

cm-thick siltstone layers (FB2b unit) (Fig. 3). Lithofacies analyses indicated that the black shale deposits 149 

of FB2b were emplaced in a calm, low-energy marine environment after a large discharge of sands 150 

(Reynaud et al., 2018). The relatively oxygenated water column, together with the cyanobacterial mats, 151 

may have favoured the development and preservation of complex macroorganisms (Aubineau et al., 152 

2021, 2018; Canfield et al., 2013; El Albani et al., 2019a; Reynaud et al., 2018). 153 

3. Materials and Methods 154 

The studied specimens were collected from the FB2b black shales. Four morphotypes of macrofossils, 155 

including different lobate-shaped, string-shaped, segmented, and lenticular-shaped forms, as well as 156 

microbial mat communities, described as mat-related structures (MRSs), are preserved throughout this 157 

entire rock unit (Aubineau et al., 2018; El Albani et al., 2019b, 2014, 2010). Ten specimens of each 158 

morphology (total of 40) were analysed. 159 

The vertical distribution of the fossiliferous content is irregular (Fig. 3). While, the interbedded siltstones 160 

are completely devoid of macrofossils, MRSs have been described inside (Aubineau et al., 2018). 161 

Finally, pyrite concretions (Reynaud et al., 2018) were also found throughout the black shales. They are 162 

aligned in the lower part, are sparse and smaller in the middle part and form almost continuous pyritic 163 

beds in the upper part of the FB2b unit. Polished slab sections were made for petrographic 164 

characterization at the macroscale. Microsamples were separated using a Dremel microdrill equipped 165 

with a diamond tip to precisely determine the mineralogical and chemical nature of the specimens. 166 

Specimens of all macrofossil morphological types were analysed: one unmineralized morphological 167 

type (round shape) and three mineralized types (lobed, tubular, and segmented shapes). For each of these 168 

Code de champ modifié
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types , the specimen (SP) and the host black shale (BS) have been characterized in detail. Pyritic 169 

concretions (clusters and nodules) present in the host black shales have also been investigated. 170 

3.1. Petrographic observations 171 

Petrographic observations of polished thin sections were performed to study the textural relationships, 172 

morphology, mineral assemblages, and chemical composition. Polished thin sections were first 173 

examined by a Nikon ECLIPSE E600 POL optical microscope coupled with a Nikon Digital Sight DS-174 

U1 camera installed with NIS-Element D software. Selected polished thin sections were carbon-coated 175 

and examined using a JEOL JSM IT500 Scanning Electron Microscope at the University of Poitiers, 176 

France. The scanning electron microscopy (SEM) instrument was equipped with secondary electron 177 

(SE) and backscatter electron (BSE) detectors. 178 

 3.2. Bulk and clay mineralogy 179 

The bulk and clay mineralogical compositions were obtained by X-ray diffraction (XRD) from randomly 180 

oriented bulk powders and oriented clay preparations, respectively, using conventional procedures 181 

(Brindley and Brown, 1980; Moore and Reynolds, 1997). The X-ray diffractograms were obtained using 182 

a Bruker D8 Advance diffractometer equipped with a copper source (λCuKα = 1.5418 Å). The analytical 183 

conditions were 40 kV and 40 mA; the acquisition parameters were 1 s with a step of 0.025 °2θ for 184 

angular ranges of 2-65 °2θ and 2-30 °2θ for randomly oriented powder and oriented clay samples, 185 

respectively. XRD patterns were deconvoluted in the 7-10° 2θ range using Fitik software to 186 

semiquantify mixed layer clay minerals (using peak areas). 187 

4. Results 188 

4.1. Macroscopic description of studied biotic and abiotic structures. 189 

Here, we report a multiscale description of specimens previously described by El Albani et al. (2023, 190 

2019b, 2014 and 2010). 191 

4.1.1 Lenticular-shaped forms 192 

The lenticular-shaped fossils look like subcircular capsules with a more or less pronounced central bulge 193 

(Fig. 4A-B). They can be found associated with other macrofossils (Fig. 4A), form aggregates 194 

overlapping each other, or are preserved alone (Fig. 4B). The diameters range from 0.3 to 5 cm. The 195 

inner surface comprises a core and a flat collar containing fine radial striations. The length of the collar 196 

represents 25% of the total radius. The observed shape of the lenticular fossils results from epirelief 197 

moulding, i.e., light silty and dark clayey laminae of the host sediments mould the specimens (convexity 198 

of laminae shown in Fig. 4C). 199 
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4.1.2. Lobate form 200 

The lobate macrofossils are characterized by a rounded (Fig. 4D) or ovoid (Fig. 4E) inner part and an 201 

outer part composed of a succession of smaller lobes delimited by deep radial striae. The lengths of the 202 

specimens vary from 2 to 4 cm, and their widths vary from 1 to 2 cm. They are almost entirely 203 

mineralized by phenocrystal of euhedral pyrite (2 to 3 mm). The central lobes lack striae and may be 204 

more or less smooth. The lobes are mineralized, consisting of aggregates of euhedral pyrite grains (Fig. 205 

4F). The mineralized specimens locally display a submillimetre-sized border of more “diffuse” pyrite, 206 

particularly at the lobed end - where smaller euhedral pyrite crystals are packed in a clay matrix - which 207 

rapidly fades at the outer edge of the specimen. At the contact zone between the specimens and host 208 

sediments, textural changes in the sediments are visible (Fig. 4F): the host sediment presents alternating 209 

light silty laminae and dark clay laminae that follow the border of the contact zone, suggesting that the 210 

host sediment was not consolidated at the time of fossil mineralization. 211 

4.1.3. String-shaped forms 212 

The string-shaped specimens have a millimetre-scale ovoid diameter and centimetre-scale 213 

elongated body fossils (Fig. 4G, H). The edges are clear (Fig. 4G) but may be bifid (Fig. 4H). They have 214 

been interpreted as multicellular organisms capable of moving vertically or horizontally with respect to 215 

the sediment to reach nutrients (El Albani et al., 2019a). The string-shaped structures are largely 216 

pyritized, but the remaining porosity is filled by a clayey material that is more abundant in the cores of 217 

the fossiliferous structures (Fig. 4I). The host black shale sediments are slightly deformed in the contact 218 

zone with the fossils. 219 

4.1.4. Segmented forms 220 

The segmented specimens, which are pyritized and often associated with pyritized MRSs, appear as 221 

segmented, sinuous cylinders (Fig. 5A). The length of such fossilized structures reaches several 222 

centimetres, while the maximum width is up to 2 cm. The segmented forms may have a homogeneous 223 

shape over the entire length, and a narrowing of a few millimetres has been observed. Pyritization is 224 

likely continuous between segmented fragments. Perpendicular to the elongation, cylindric fossils 225 

appear completely pyritized, although the core host septaria-type fractures are filled with a dark clayey 226 

matrix (Fig. 5B). Intergranular porosity is strongly reduced at the edges of segmented specimens. 227 

4.1.5. Mat-related structures 228 

Mat-related structures are ubiquitous in both black shale laminae and intercalated siltstone levels. 229 

Numerous mat morphotypes, up to 10, were formed by either mat growth or mat-protected patterns 230 

(Aubineau et al., 2018). The latter resulted from the mat preservation of abiotic structures. One of the 231 
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most common MRSs in the FB2b unit is the fairy-ring structure (Fig. 5C). In addition, the FB2b MRS 232 

may also be associated with macrofossils. 233 

4.1.6. Pyritized mineral concretions 234 

Mineral concretions consist of aggregates of euhedral pyrite phenocrystals that display specific 235 

morphologies. Concretions may form isolated clusters or discontinuous beds (Fig. 5D-E). The polished 236 

cross-section shows that the pyritization of concretions was intense where the crystal size increases from 237 

the core to the edge (Fig. 5F). Early small euhedral crystals likely served as templates for the later 238 

crystals, which are now observable. A reduction in the intergranular porosity is strongly apparent at the 239 

edges. While the light silty and dark clayey laminae of the host black shales are slightly deformed near 240 

the concretions, a general flexure following the overall structure is lacking. This suggests that the 241 

sediment was partially consolidated when the pyrite crystallized. 242 

4.2. Mineralogy 243 

4.2.1. Host sediments 244 

Based on XRD data and SEM observations, the bulk mineralogy of the host sediments close to each 245 

fossil mainly consists of quartz and clay minerals (Fig. 6A-7A-8A). Carbonates, Do (peak at 2.89 Å – 246 

dolomite, and the peak is sometimes slightly shifted to 2.90 Å – dolomite-Fe-/ankerite), are minor, and 247 

pyrite, Py (peak at 2.71 Å), is in extremely low amounts. The clay fraction (Fig. 6B-7B-8B) is mainly 248 

composed of chlorite, C (characteristic peaks at 14.2 Å and 7.09 Å); illite/mica, I/M (at 10.00 Å); mixed 249 

layers of illite/smectite, MLs and MLi (~ 10.8 Å); and smectite, Sm (16.9 Å), to a lesser extent, which 250 

was identified after ethylene glycol saturation (Fig. 6C-7C-8C). This treatment also causes a slight shift 251 

towards higher 00l spacing and a reduction in the intensity of the ML peak coupled with an appearance 252 

of a shoulder at approximately 9.8 Å. 253 

The deconvolution of the XRD patterns for mixed layer ML phases (Fig. 9A, Tab. 1-2) shows a clear 254 

contribution of an illite-rich term in mixed layers (MLi) at 10.3 Å, which may be slightly influenced by 255 

a term richer in illite (illite-like) at 10.1 Å. Assuming that the smectite interlayers are entirely occupied 256 

by divalent cations (Ca, Mg), one can approximate the I/S ratios in both types of ML: MLi (I=94%; 257 

S=6%) and MLs (I=80%; S=20%). In both cases, illite is always the dominant component of these 258 

mixed-layer minerals (Tab. 1). 259 

4.2.2. Lenticular-shaped forms (nonpyritized macrofossils) 260 

The lenticular-shaped forms are mainly filled by quartz (3.34 Å) associated with clay minerals (4.49 Å), 261 

dolomite (2.89 Å), and pyrite to a lesser extent (2.71 Å) (Fig. 6A). The clay fraction consists of chlorite 262 

(14.2 Å and 7.09 Å), illite/mica (10.0 Å), mixed layers of MLi and MLs, and discrete smectites (Fig. 263 
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6B-6C). The mixed-layer MLs are characterized by a d001 reflection centred at 10.9 Å after glycolation, 264 

which corresponds to ordered MLs with the persistence of some smectite-rich layers (I=82%; S=18%). 265 

Overall, the mineralogical assemblage is identical to the host sediment (Fig. 9B); the illite/smectite ratio 266 

seems to be lower, indicating a lower illite content than in the sediment. 267 

4.2.3. Pyritized fossils 268 

The lobate, string-shaped and segmented specimens are dominantly filled by pyrite (Fig. 7A). Quartz 269 

and clay minerals are identified only after separation of the <2 µm clay fraction. The clay mineral 270 

assemblage, consisting of chlorite, mixed layer MLi and MLs, and illite/mica, is similar to that of the 271 

host black shale sediments (Fig. 7B). Nonetheless, smectite is present in the string-shaped structures 272 

(Fig. 7C). The illite/(MLi) ratio is globally lower than that of the host sediment (Fig. 9B, Tab. 1). 273 

Importantly, the main mineralogical differences between pyritized fossils and their host sediment are 274 

the higher abundance of mixed layers compared to illite/mica combined with the absence of carbonates. 275 

4.2.4. Pyritized concretions 276 

Unsurprisingly, these concretions are made of pyrite with few associated phases (Fig. 8A). Nonetheless, 277 

chlorite, illite, mixed layers of MLi and quartz are observed in the ≤ 2 µm clay fraction (Fig. 8B-8C). 278 

Unlike the sediment and all fossils, low amounts of MLi (10.3-10.4 Å), together with the lack of MLs, 279 

characterize these concretions, as indicated by the high illite/MLi ratio (Fig. 9C, Tabs. 1-2). 280 

4.3. Petrography 281 

4.3.1. Host sediments 282 

Along the stratigraphic sequence of the Moulendé quarry, the host sediments always consist of a clay 283 

matrix, quartz, chlorite, pyrite, and dolomite, as illustrated by XRD data and SEM observations (Fig. 284 

10). The clay phase proportion varies according to the granulometry of the laminae. The clayey facies 285 

(Fig. 10A) correspond to deposits of a densely packed clayey matrix with chlorites, disseminated pyrite 286 

and rounded to subangular quartz grains densely packed. The transitional facies – composed of silty clay 287 

(Fig. 10B) or clayey silt (Fig. 10C and 10D) – is marked by an increase in the grain size of quartz and 288 

chlorite. Compared to the clayey facies, the quartz morphology here is closer to polycrystalline 289 

aggregates. Chlorites display three 2-D morphologies, including lamellar structures, rectangular 290 

platelets, and ovoidal shapes, which can exceed 50 µm in length and diameter (Fig. 10A-10B-10). In all 291 

cases, the particles are composed of poly-lamellar stacks. In addition, the edges of the ovoids show thick 292 

grey halos, probably due to iron depletion from postdepositional alteration and/or recrystallization 293 

processes. The porosity can be filled by intertwined or stacked secondary chlorite lamellae, which 294 

developed at grain contacts with primary phases (quartz, chlorite in platelets) or as coatings (Fig. 10D). 295 

In these facies, pyrite is either disseminated, corresponding to euhedral to subeuhedral crystals, or 296 
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intergrown with chlorites (Fig. 10C). Although pyrite is a minor phase, its proportion is higher than in 297 

the clayey facies. 298 

4.3.2. Nonpyritized macrofossils: Lenticular-shaped forms 299 

The clay material of the lenticular-shaped forms is mainly filled by illite particles, while quartz grains 300 

are scarce (Fig. 10E). On the other hand, chlorites in flexuous lamellae, oriented parallel to the 301 

stratification, seem to be much more abundant than in the sediments, although chlorite with platelet and 302 

ovoid shapes are present in low amounts. The size (10 to 20 µm) of the latter is generally smaller than 303 

that of the host sediment. Finally, tiny anhedral, disseminated pyrite grains are observed. 304 

4.3.3. Pyritized fossils 305 

Clayey assemblages identified by XRD fill the intergranular pores between pyrite crystals that preserved 306 

the mineralized macrofossils, while detrital minerals (e.g., quartz, primary chlorite, and dolomite) are 307 

almost absent (Fig. 10F-10G). 308 

The lobate, string-shaped, and segmented specimens are essentially composed of illite I/M (Fig. 10F). 309 

Micrometric illite (I/M) is mainly in the form of stacked sheets (Fig. 10) and shows signs of free growth 310 

within the pore spaces. Chlorite has developed as short platelets in the intragranular porosity, probably 311 

at the expense of illite as encompassing relict patches of illitic matrix (Fig. 10F). Inside the porosity, 312 

chlorite lamellae are interbedded with illite as “accordion” structures. Secondary quartz patches are also 313 

observed (Fig. 10G). 314 

4.3.3. Pyritized mineral concretions 315 

Pyrite concretions has allowed the development of strongly interlocking pyrite phenocrystals, reducing 316 

the porosity (Fig. 10H-10I). The clay assemblage that fills the residual porosity of plated concretions 317 

seems to be diagenetic considering their size and shape, and does not contain an illite-rich matrix. In the 318 

nodules, part of the porosity is occupied by the illite. However, chlorite is more abundant than illite (Fig. 319 

10I).  320 

5. Discussion 321 

Processes impacting soft-bodied organism preservation 322 

Studying the degree of conservation of biological bodies is essential for understanding taphonomy. 323 

Moreover, it is of great interest to elucidate the environmental conditions and taphonomic mechanisms 324 

that prevailed during the different stages of preservation (Behrensmeyer et al., 2000). 325 

The preservation of soft bodies involves sufficiently slow biological degradation for the more resistant 326 

organic molecules to be fossilized by imprinting or mineralization (Briggs, 2003). The early stage of 327 
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preservation is mainly controlled by the nature of the sediments and their rate of accumulation (Briggs 328 

and Kear, 1993) in the presence or absence of biological agents (bacteria) together with the water column 329 

chemistry (major elements, dissolved O2, etc.) of the depositional environment (Gaines et al., 2012; 330 

Gaines and Droser, 2010). Compaction, cementation, fluid‒rock interaction, and potential hypothermal 331 

and magmatic activities can also impact the quality of fossilization (Muscente et al., 2015).. Such 332 

parameters have a direct impact on reconstructing the initial form of soft-bodied organisms and deriving 333 

information on their lifestyles based on the geometric (morphologies, tracks, burrows, etc.) and chemical 334 

(organic molecules, isotopes, etc.) signatures that have been preserved. 335 

 336 

Taphonomic information from pyritization 337 

As previously presented, in the FB2b formation (El Albani et al., 2010, 2014, 2019, Aubineau et al. 338 

2019), pyritization is not specific to the body fossils but is also associated with abiotic concretions in 339 

the host black shales throughout the stratigraphic sequence. This is expected because the black shale 340 

sediments contained sufficient organic matter and iron to promote pyritization independently of the 341 

carbon origin (Canfield et al., 2013). Petrographic observations of lenticular nonpyritized specimens 342 

indicate that moulding materials are inherited from the host sediments. The similarity of the detrital and 343 

diagenetic clay materials in both the host sediments and lenticular infilling is not observed when 344 

pyritized macrofossils and their associated host sediments are compared. 345 

Pyritization of soft bodies related to bacterial sulfate reduction (Gabbott et al., 2004) can occur when 346 

organic biodegradation is relatively rapid (Briggs et al., 1996) and takes place in clay-rich sediments 347 

(Farrell, 2014) under the oxic–anoxic interface (Berner, 1984). Under these conditions, the formation of 348 

hydrogen sulfide and the occurrence of reactive iron concentration gradients in or around the labile 349 

organic matter of dead organisms (Guan et al., 2017) favour the nucleation of iron sulfide (Allen, 2002) 350 

or iron-rich clays (Petrovich, 2001). Rapid organic matter remineralization produces carbon dioxide (or 351 

methane) and water. The degradation rate is a function of several factors, such as (i) the physico-352 

chemical properties of the sediments, (ii) the characteristics of the decomposing organic matter, and (iii) 353 

the microbial populations involved (Muscente et al., 2017). In the studied case, the coexistence of 354 

different taphonomic styles in the same sedimentary laminae cannot be explained by variations in criteria 355 

(i) and/or (ii). On the other hand, the speed of degradation can play an important role in favouring 356 

biomineralization. This mechanism depends on the biodegradability of the main molecular compounds 357 

(carbohydrates, lipids, proteins) of the organic matter (e.g., (Stankiewicz et al., 2000), i.e., their ability 358 

to be photodegraded, hydrolysed or incorporated into the biomass by serving as nutrients for 359 

microorganisms (Briggs, 1999). Rapidly decomposing organic matter, known as labile material, is easily 360 

attacked by enzymatic catabolism, and its chemical constituents are easily reused by microbial 361 

metabolism. In contrast, the organic materials that are part of the composition of structural bodies 362 
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(envelopes, partitions, etc.) can be recalcitrant to decomposition (e.g., Butterfield, 2003; Tegelaar et al., 363 

1989). 364 

 365 

Taphonomic information from clay minerals and their evolution during diagenesis 366 

The Francevillian biota lived in a shallow marine environment where periodically resuspended fine 367 

particles eventually sedimented into fine-grained laminae (Reynaud et al., 2018) in an oxic to suboxic 368 

water column (Aubineau et al., 2021; Canfield et al., 2013). The finely laminated horizons are composed 369 

of quartz and clay minerals associated with low amounts of dolomite and pyrite. The primary clay 370 

mineralogical assemblage of Francevillian sediments evolved differently depending on whether it was 371 

located within the preserved specimens by (i) simple compression casting or by (ii) mineralization 372 

(biogenic or abiotic). The former mechanism can be compared to the Burgess Shale-type preservation 373 

(Butterfield, 1995; Gaines et al., 2005) but without the overprint of metamorphism. Regardless of the 374 

preservation mechanism, all macrofossils are in laminae where clayey microfacies prevail in overall 375 

low-permeability rocks. This suggests a direct relationship between the nature of the original organism, 376 

its taphonomy, and the rock morphological elements that have been preserved. 377 

The degree, condition, and mechanism of fossil preservation are strongly controlled by mineral 378 

transformations and/or neo-formations, particularly clay minerals (e.g., (Anderson et al., 2011; Gabbott 379 

et al., 2001; Martin et al., 2004) and associated phases (sulfides, carbonates, etc.). During early 380 

diagenesis, anoxic microenvironments develop in association with organic matter degradation; Fe² ions 381 

adsorbed on the preserved biopolymers may favour nucleation of crystals of iron(II)-rich clay minerals 382 

(berthierine or ferroan saponite), which form a coating on the organic remains and/or replace parts of 383 

the organism (Petrovich, 2001). Nevertheless, these minerals associated with both pyritized and 384 

nonpyritized specimens evolve during burial diagenesis, leading to the formation of new phases 385 

inherited from their initial chemical composition. Therefore, the specific study of these minerals is 386 

justified to reveal the conditions and mechanisms of fossil preservation in ancient sediments. 387 

At the millimetre to centimetre scale of the fossil microsites and their host sediments, the dominant 388 

mechanism of clay mineral transformation associated with the early stages of preservation of 389 

Francevillian soft-bodied organisms is illitization. This authigenesis is represented first by smectite 390 

sensu stricto and then smectite-rich mixed-layer illite/smectite, namely, MLs. Since only a few MLs are 391 

still preserved, extensive illitization occurred. The intensity of this mechanism is primarily controlled 392 

by the potassium availability in the system (Cuadros and Linares, 1996). Considering the absence of K-393 

feldspars and evidence of K-rich fluids in the study area, the K supply is of paramount importance. Near 394 

the surface, dissolved potassium in the overlying water column was theoretically available (Santiago 395 

Ramos et al., 2018; Sun et al., 2015). However, seawater's sodium concentration and ionic strength are 396 

not very favourable for direct solid-solution exchange and absorption of potassium in the interlayer 397 

spaces of swelling minerals (smectites and illite/smectite mixed layers). Alternatively, potassium may 398 
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have been supplied by the degradation of MRSs that naturally fixed K for cellular machinery (Aubineau 399 

et al., 2019). The latter mechanism, in the marine environment, has long been known to regulate 400 

microorganism growth and cellular osmotic pressure (Rhoads and Epstein, 2003) and to collaborate in 401 

many metabolic reactions, such as protein synthesis and enzyme activation (Stautz et al., 2021). Thus, 402 

a similar mechanism of K concentration can be argued for bacteria that degrade the organic matter of 403 

dead organisms, which is the most plausible explanation. In this case, heterotrophic microbial respiration 404 

degrading the organic matter would have promoted K release and concentration in the interstitial pore 405 

waters of the unconsolidated sediments. This K increase would have favoured the conversion of swelling 406 

smectite into MLs in the early stages of burial and, ultimately, illite, which would correspond to induced 407 

biogenic mineralization. Despite the presence of K in the marine system, in both cases, the end of 408 

bacterial activity stopped K accumulation in the preserving microsystem and thus reduced the illitization 409 

mechanism. 410 

Illitization is a general mineral transformation that affects both the host sediments and the studied 411 

specimens. This mechanism involves the transformation of MLs into MLi as transitional phases and 412 

then into illite. Nevertheless, the degree of this transformation is variable regarding the proportion of 413 

illite–MLi–MLs phases. When the K content was sufficient, the MLi could be completely transformed 414 

into illite-like and/or illite phases. However, here, all samples have remaining MLs and/or MLi. In the 415 

case of the nonpyritized fossils, illitization was not achieved, as testified by the preservation of 416 

illite/smectite mixed layers (MLs) and the lower illite/MLi ratio. The same occurred in the pyritized 417 

specimens, but illitization was more intense, i.e., a higher illite/MLi ratio, except for segmented forms. 418 

For other forms, the host sediments present higher illite/MLi ratios than fossils, while the pyrite 419 

concretions show MLi that is very enriched in K and a higher illite/MLi ratio. These heterogeneous 420 

results highlight that each fossil represents a microsystem whose location, nature and rate of degradation 421 

influence the availability of potassium, controlling the intensity of illitization. 422 

The illitization mechanism was followed by chloritization, as shown by the development of secondary 423 

chlorites from the microcrystalline illitic matrices and/or recrystallized MLi in “accordion-like" 424 

structures. The presence of many chlorite shapes is due to the mixing of primary and secondary phases 425 

(Fig. 10). In the fossils, ovoids and laths are observed in low amounts on the outer rims associated with 426 

reduced porosity and are absent in the central part. Conversely, “accordion-like” structures and radial 427 

shapes are much more abundant in the central parts of the pyritized specimens but absent in the 428 

nonpyritized circular forms. 429 

In host sediments and fossils, chlorite shapes indicate different origins. Ovoid forms are clearly detrital. 430 

The other shapes are probably secondary products from direct precipitation (fibroradial) or from 431 

transformation of a precursor (accordion-like shapes). In the latter case and in the illitic clay matrix, 432 

chloritization seems to be developed at the expense of the smectitic part of the clay phases and 433 

encapsulates residual S–MLs–MLi. Under these conditions, both transformation and 434 
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dissolution/precipitation mechanisms are probably involved. In contrast, in the concretions, 435 

chloritization results from direct precipitation in a free pore space, leading to the development of 436 

chlorite-dolomite paragenesis in the intergranular porosity. Regardless of the study area, chloritization 437 

occurred after the early phase of illitization and during burial diagenesis, benefiting from fluid 438 

circulation that supplied the necessary Fe and Mg. 439 

 440 

Towards a taphonomic conceptual model 441 

Our results allow us to summarize the taphonomic history by a conceptual model (Fig. 11), describing 442 

the fossilization stages of each type of specimen within a microsystem. 443 

After their death, the specimens are deposited on clayey sediment that is mainly composed of quartz, 444 

clay minerals, small amounts of dolomites and pyrite. The specimens are quickly buried within specific 445 

microenvironments, where all of the fossilization mechanisms take place. In this way, lenticular 446 

specimens undergo nonpyritized fossilization, while the lobed, segmented and tubular forms are 447 

pyritized. 448 

After decomposition of the organism's body, lenticular forms are trapped in a sediment that is still loose 449 

but coherent enough to maintain the mould. The voids left by decomposition are progressively filled by 450 

particles via size sorting, favouring a high concentration of fine material within the specimen. 451 

The mode of fossilization of the pyritized forms is approximately identical. After their deposition, the 452 

specimens are degraded progressively by sulfate-reducing bacteria during burial activity. The 453 

conservation of the specimens is conditioned by the speed of degradation of the internal structures and 454 

favoured by the bacterial activity. Early pyritization permits 3D preservation of each specimen. 455 

After this early stage of fossilization, a secondary diagenetic overprint participates in the stabilization 456 

of the specimens. This is represented by the illitization of the smectitic phases. This illitization is 457 

controlled by the availability of K and the permeability of each microsystem. Due to the high 458 

concentration of finer materials, nonpyrite specimens present microsystems in which exchanges with 459 

the outside are more reduced compared to pyrite specimens and concretions. The intensity of the 460 

illitization reaction increases progressively from the nonpyritic forms to the abiotic concretions through 461 

the pyritic specimens. These microsystems are later subjected to generalized chloritization, reflecting 462 

the circulation of fluids rich in Fe and Mg. Abiotic pyrite concretions are formed during late diagenesis. 463 

As summarized here, our data provide robust evidence that clay minerals, such as smectite, illite, 464 

illite/smectite mixed layers, and chlorite, can be used as indicators for the physico-chemical changes 465 

that occur at the local scale during the preservation of soft-bodied organisms. 466 
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6. Conclusion 467 

The 2.1 Ga Francevillian fossils preserved in black shales show two early preservation modes 468 

corresponding to moulding/compression and pyritization. In the pore spaces of the sediments and fossils, 469 

the mechanisms of clay transformation associated with the evolution of the system are successively 470 

illitization and chloritization. The intensity of these processes and the habit of the authigenic clay 471 

minerals depend on the degree of porosity and key element availability, such as K. Thus, the intensity 472 

of illitization at the early stage differs between the sediment, pyritized and nonpyritized fossils and pyrite 473 

concretions of the same age. The potassium availability may have been controlled by the microbial 474 

activity of bacterial mats everywhere in the black shale levels, leading to the biodegradation of organic 475 

matter from soft bodies. In this scheme, each fossil represents a microsystem. At a late stage, 476 

chloritization begins, and its intensity is determined by the contents of soluble iron and magnesium from 477 

fluid circulation. 478 

In the same depositional setting, we observe heterogeneous clay mineralogical assemblages, depending 479 

on the presence or absence of organic matter remains. We also observe contrasting clay mineralogy by 480 

comparing biotic and abiotic pyritized specimens. In fact, preservation (moulding and pyritization) 481 

occurred within microsites, whose properties significantly impacted the clay mineral reactions, which 482 

cemented the pore spaces and thus contributed to the final fossilization. Fossil microsites must be 483 

considered microsystems that have undergone physical and chemical changes that are different from 484 

those of their immediate surrounding environment, which is similar to additional indirect evidence of 485 

the existence of biological remains encapsulated in the sediment. These data could represent a diagnostic 486 

tool for detecting traces of life in rocks from the early Earth. 487 

 488 

 489 

Author Contributions: A.E.A. designed the research. A.E.A., J.N.I., C.F and F.B. wrote the 490 

manuscript. A.E.A, J.N.I, O.B., A.T and C.L. did the field work. J.N.I., C.F.,  A.M., A.A.E., A.R. and 491 

A.E.A. prepared the samples and performed XRD analyses and models. L.R., A.C.W. Performed Re/Os 492 

datations. 493 

 494 

Acknowledgment 495 

Funding was provided by La Region Nouvelle Aquitaine, French Embassy at Libreville (Gabon). They 496 

are acknowledged for their support and collaboration.  The authors are also grateful to the National 497 

Agency of National Parcs, le CENAREST, Socoba BTP for their assistance and access to the localities. 498 

We appreciate C. Lebailly, R. Oslisly, J.L. Albert, C. Boissard, L.Tromas S. Ventalon, J.C. Baloche for 499 

their assistance and support. 500 



 

 
16 

 

 501 

 502 

 503 

 504 

 505 

 506 

 507 

 508 

 509 

Table 1 – Ratios of areas of d001 reflections of illite/mica and illite/smectite mixed-layers 510 

rich in illite, measured from diffractogram patterns of air-dried oriented preparations. 511 

Host sediment and specimen 

associated 

  
Major peak 

area 
 

  Illite (10.0 Å) MLi (≈10.5 Å)  Ratio 

    (cts.°2q) (cts.°2q)   Aillite/AMLi  

Circular (R) 
  max. 469 3774   0.12 

 min. 215 3654  0.06 

Lobated (L) 
  max. 658 2719   0.24 

 min. 118 1100  0.11 

Segmented (S) 
  max. 1540 3664   0.42 

  min. 41 2303   0.02 

Tubular (T)  max. 1475 1432  1.03 

  min. 578 2706   0.21 

Concretions (Co)  max. 119 42  2.85 

  min. 427 1603   0.27 

 512 

 513 

Table 2 – Semi-quantitative overview of the mineralogy of the clay phases based on XRD analysis 514 

and deconvolution of diffractograms. Empty circles: traces. 515 

  
  

Smectite s.s. MLs 
MLi                                 

and Illite like 

Illite s.s. 

Mica  

      

Host rock  ○ ○ ●● ●●● 

Lenticular fossil non pyritized ●● ●●● ●●●● ○ 

Lobate fossil pyritized ● ●● ●●● ● 

Segmented fossil pyritized ● ●● ●●●● ○ 
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Tubular fossil pyritized ● ●● ●● ● 

Concretions pyrite  ● ● ●● 
      

 516 

 517 

518 



 

 
18 

 

Figure 1 – Geological map of the Franvcevillian Basin (Gabon). 519 

Figure 2 – Geological section showing the structure and the lithostratigraphic sequence of the 520 

Francevillian deposits on the northern edge of Mvengué syncline. 521 

Figure 3 – Lithostratigraphy of the studied section (Moulendé quarry). 522 

Figure 4 – Photographs showing the spatial relations between: A) pyritized lobate (pl) and non- 523 

pyritized lenticular shaped specimens. Arrows represent at top left a lenticular-shaped specimen and 524 

pyritised specimen at the right side. B) top view and C) cross section of unpyritized lenticular-shaped 525 

specimen. Arrows represent a sharp limit between a lenticular-shaped specimen and host-sediment.  526 

D) pyritized round lobated shapes, E) pyritized oval lobated shape, F) cross-section of a pyritized 527 

lobated shape. Arrows represent a sharp limit between the pyritized specimen and host-sediment with 528 

the evidence of pre-compaction. G) simple tubular shape, H) bifid tubular shape, I) cross-section of 529 

tubular shape. Abbreviations: (SP) specimen, (BS) black shale. Scale 1 cm. 530 

Figure 5 – Photographs showing: A) pyritized segmented shape in contact with the bacterial mat 531 

(arrow), B) cross-section of segmented shape. Arrow represent the sharp and pre-compactional limit 532 

between specimen and host-sediment. C) Fairy ring structure type of bacterial mat (Aubineau et al 533 

2018), D) plated coarse pyrite concretion, E) top view and F) cross-section of nodular pyrite 534 

concretion. Arrow represent the contact between coarse pyrite crystals cross-cutting the host-sediment. 535 

Abbreviations: (SP) specimen, (BS) black shale host. Scale 1 cm. 536 

Figure 6 – A) Powder diffractograms showing bulk mineral composition of the host sediments and 537 

non pyritized macro-fossils (ciculars), B) Diffractograms of oriented air-dry preparations C) 538 

Diffractograms of oriented preparations after ethylene glycol solvation. Minerals: (C) Chlorite, (Do) 539 

Dolomite, (I/M) illite and/or Mica, (MLi) Mixed-layer illite-rich, (MLs) Mixed-layers smectite-rich, 540 

(Py) Pyrite, (Q) Quartz. 541 

Figure 7 – A) Powder diffractograms showing the bulk mineral composition of the host sediments and 542 

pyritized macro-fossils (lobates, tubulars and segmenteds), B) Diffractograms of oriented air-dry 543 

preparations C) Diffractograms of oriented preparations after ethylene glycol solvation. Minerals: (C) 544 

Chlorite, (Do) Dolomite, (I/M) illite and/or Mica, (MLi) Mixed-layer illite-rich, (MLs) Mixed-layers 545 

smectite-rich, (Py) Pyrite, (Q) Quartz, (Sm) Smectite. 546 

Figure 8– A) Powder diffractograms showing the bulk mineral composition of the host sediments and 547 

concretion, B) Diffractograms of oriented air-dry preparations and C) Diffractograms of oriented 548 

preparations after ethylene glycol solvation. Minerals: (C) Chlorite, (Do) Dolomite, (I/M) illite and/or 549 

Mica, (MLi) Mixed-layer illite-rich, (MLs) Mixed-layers smectite-rich, (Py) Pyrite, (Q) Quartz, (Sm) 550 

Smectite. 551 

Figure 9 – Examples of diffractograms deconvolution obtained with air-dried oriented preparation of: 552 

(A) host sediment, (B) macrofossil samples, and (C) concretion. Distribution of clay minerals 553 
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proportions in quaternary plot with illite (I), Chlorite (C), Mixed-layers smectite-richer (MLs) and 554 

illite-rich (Mli) end-members. Minerals: (C) Chlorite, (I) Illite and (MLi) Mixed-layers illite-rich 555 

and/or illite-like, (MLs) Mixed-layers smectite-rich.  556 

Figure 10 – Micrographs in backscattered electron (BSE) of the host sediments (A, B, C, D), non-557 

pyritized macrofossils (E), infilling of intergranular porosity of pyritized macrofossils (F, G), and 558 

infillings of intergranular porosity of plated (H) and nodular (I) pyrite concretions. Abbreviations: (C) 559 

Chlorite, (Do) Dolomite, (IM) Illite/Mica, (MA) Undifferentiated Clay Matrix, (Py) pyrite, (Q) Quartz. 560 

Figure 11 – Conceptual model illustrating the taphonomy and mechanisms of mineralization during 561 

burial diagenesis. 562 
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