N
N

N

HAL

open science

Impact of hydrodynamic dispersion on mixing-induced
reactions under radial flows
Pratyaksh Karan, Uddipta Ghosh, Yves Méheust, Tanguy Le Borgne

» To cite this version:

Pratyaksh Karan, Uddipta Ghosh, Yves Méheust, Tanguy Le Borgne. Impact of hydrodynamic dis-
persion on mixing-induced reactions under radial flows. Advances in Water Resources, 2023, 179,
pp.104521. 10.1016/j.advwatres.2023.104521 .

insu-04185643

HAL Id: insu-04185643
https://insu.hal.science/insu-04185643
Submitted on 23 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://insu.hal.science/insu-04185643
https://hal.archives-ouvertes.fr

Journal Pre-proof

Impact of hydrodynamic dispersion on mixing-induced reactions under
radial flows

Pratyaksh Karan, Uddipta Ghosh, Yves Méheust, Tanguy Le Borgne

PII: S0309-1708(23)00155-0
DOI: https://doi.org/10.1016/j.advwatres.2023.104521
Reference: ADWR 104521

To appear in:  Advances in Water Resources

Received date: 3 May 2023
Revised date: 12 August 2023
Accepted date: 15 August 2023

Advances
in Water
Resources

Please cite this article as: P. Karan, U. Ghosh, Y. Méheust et al., Impact of hydrodynamic

dispersion on mixing-induced reactions under radial flows. Advances in Water Resources (2023),

doi: https://doi.org/10.1016/j.advwatres.2023.104521.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the

content, and all legal disclaimers that apply to the journal pertain.

© 2023 Elsevier Ltd. All rights reserved.



https://doi.org/10.1016/j.advwatres.2023.104521
https://doi.org/10.1016/j.advwatres.2023.104521

Revised Manuscript -Changes Unmarked

O©CO~NOOOPA~WNE

Graphical Abstract

Click here to view linked References %

Impact of hydrodynamic dispersion on mixing-induced reactions under radial flows

Pratyaksh Karan, Uddipta Ghosh, Yves Méheust, Tanguy Le Borgne

(2)

Reaction Front

Concentration

Front Width

G >

Front
. Location >
Injection Point r¥
(r =10) (®)



O©CO~NOOOPA~WNE

Highlights
Impact of hydrodynamic dispersion on mixing-induced reactions under radial flows
Pratyaksh Karan, Uddipta Ghosh, Yves Méheust, Tanguy Le Borgne

e We study the impact of mechanical dispersion on radially-advected reaction fronts

e We derive scaling laws for the front position and effective reaction rate

e We find that dispersion accelerates the advancement of the front and enhances reaction rates

e We discuss the implications for field applications over a range of temporal and spatial scales
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Abstract

Mixing-induced reaction fronts play a key role in a range of subsurface processes. In many applica-
tions, reactive fronts develop under radial flows, where a reactant is injected and displaces another.
Analytical solutions for reactive front dynamics under radial flows have been derived under the
assumption of a constant diffusion coefficient. However, the impact of mechanical dispersion still
remains unexplored. We investigate this question here by deriving approximate analytical expres-
sions for the reaction front properties as a function of time, dispersion length and Péclet /Damkohler
number, as well as from corresponding numerical simulations. Our results indicate that mechanical
dispersion leads to a more advanced front and enhanced reaction rate, compared to the dispersion-
free scenario. This leads to new scaling laws for the front position, width and reaction rate. We
discuss the implications of these findings for field conditions over a range of temporal and spa-
tial scales. Under most realistic scenarios, dispersion is expected to be dominant over diffusion,
suggesting a broad relevance of these results.

Keywords: Radial flow, Mixing-limited reaction, Hydrodynamic Dispersion

1. Introduction

Reactive fronts formed at the interface between two reactive fluids, one of which displaces the
other, are ubiquitous in subsurface hydrology, and are relevant to a wide range of processes (Dentz
et al., 2011; Rolle and Le Borgne, 2019; Valocchi et al., 2019), including contaminant remediation
(Sprocati and Rolle, 2020), aquifer recharge (Maliva and Maliva, 2020; Stolze and Rolle, 2022),

COs sequestration (Gautam and Narayana, 2019; Addassi et al., 2022) and geothermal systems

Email addresses: pratyakshkaran@gmail.com (Pratyaksh Karan), uddipta.ghosh@iitgn.ac.in (Uddipta
Ghosh), yves.meheust@univ-rennesl.fr (Yves Méheust), tanguy.le-borgne@univ-rennesl.fr (Tanguy Le
Borgne)
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(Burté et al., 2019). For instance, during in-situ decontamination of soil or groundwater, plumes
of bio-chemical reactants are often injected into the subsurface using boreholes, which leads to the
formation of moving fronts between the resident species and the injected agent, wherein chemical
reactions take place. In the presence of heterogeneous flow fields, these fronts undergo continuous
stretching and folding, which enhances mixing by augmenting the local concentration gradients,
therefore resulting in increased reaction rates (Dentz et al., 2011; De Anna et al., 2014; Le Borgne
et al., 2014, 2015; Jiménez-Martinez et al., 2015; Bandopadhyay et al., 2017; Ghosh et al., 2018).
Reactive fronts under radial flows are particularly important as they represent useful models for a
number of geologically relevant processes such as contaminant remediation (Neupauer et al., 2020),
soil leaching (Batarseh and Stiller, 1994), aquifer recharge (Eldor and Dagan, 1972), where reagent
injection takes place over a large vertical segment of a borehole so that dominantly radial flow
advects the reaction’s reagents and the products.

The dynamics of reactive fronts is often studied by considering bimolecular A + B — C type
reactions (Galfi and Récz, 1988; Larralde et al., 1992; Brau et al., 2017; Bandopadhyay et al., 2017;
Comolli et al., 2019; Budroni et al., 2019; Brau and De Wit, 2020; Comolli et al., 2021; Guilbert
et al., 2021). They represent simple models for a wide spectrum of mixing-induced reactions such
as precipitation (Luo et al., 2008; Edery et al., 2009; Arshadi and Rajaram, 2019), contaminant
degradation (Wing, 1997; Miller et al., 1998; Copley, 2009) and redox processes (Liu et al., 2016;
Burté et al., 2019; Bochet et al., 2020), to underline a few. The kinetics of such bimolecular reactions
in radial flows have so far been studied at the continuum/Darcy scale under the assumption of a
constant diffusion coefficient (Brau et al., 2017; Bandopadhyay et al., 2017; Comolli et al., 2019;
Brau and De Wit, 2020), which uncovered the various regimes and scaling laws for effective reaction
rates. However, a complete continuum/Darcy scale description of reactive transport in porous media
should account for hydrodynamic (also, mechanical) dispersion.

In many applications, hydrodynamic dispersion, rather than molecular diffusion, is expected to
dominate the continuum scale dynamics of transport in porous media (Saffman, 1959; Levy and
Berkowitz, 2003; Dentz et al., 2011; De Anna et al., 2013; Noetinger et al., 2016; Bear, 2018; Wang
et al., 2020; Neupauer et al., 2020). At the pore-scale, the transport phenomena is characterized by
heterogeneous advection borne out of the local variations in the flow passages and the velocity field.
The pore-scale coupling of the heterogeneity in advection and molecular diffusion manifests at the

Darcy scale as mechanical dispersion, which is usually modelled as a Fickian transport mechanism
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with a flux proportional to the local upscaled concentration gradient and the averaged velocity
(Bear, 2018). The upscaled reactive transport at the Darcy scale is consequently encapsulated in
the advection-dispersion-reaction equation (ADRE) (Dentz et al., 2011; Bear, 2018). While this
representation is broadly used to study reactive transport problems, it does not capture anoma-
lous (i.e., non-Fickian) transport dynamics inherent to moderate to strongly heterogeneous media
(Berkowitz et al., 2006; Neuman and Tartakovsky, 2009). For reactive fronts under radial flows,
however, the question of how Fickian dispersion couples with the resulting non-uniform flow to
govern reaction laws remains as yet unexplored.

In this study, we analyze the impact of hydrodynamic dispersion on a radially moving bimolec-
ular A+B — C type reaction front, wherein species ‘B’ is displaced by continually injecting species
‘A’ into a porous medium with uniform permeability. We present both numerical solutions to the
pertinent governing equations, as well as analytical approximations of these solutions. Our results
indicate that mixing in the reaction front is initially dominated by dispersion, which qualitatively
impacts the front’s properties, including its position, width, and global reaction rate. We derive
the corresponding scaling laws, which differ from those known for diffusion-dominated regimes.

The article is arranged as follows. In §2, we present the physical description of the system along
with the governing equations and the boundary conditions. §3 discusses the approximate analytical
solutions for the various front properties along with the results emerging out of our analysis. We
conclude in §4. It is followed by §Appendix A, where a brief overview of the numerical solution
methodology is outlined, and §Appendix B and §Appendix C, where details of the analytical

solutions are provided.

2. The governing equations for reactive transport

2.1. Physical description of the system under consideration

We consider an ambient solution residing in a porous domain of uniform permeability (K)
with uniform porosity (¢g), wherein the reactant species B is dissolved with a uniform initial
concentration cg. A solution of the reactant species ‘A’ with the same uniform concentration (co)
is introduced into the porous media through a flux-averaged line injection on the vertical axis of
the reference frame, with a constant volumetric flow rate (2r@Qg) per unit depth. As the fluid
containing solute ‘A’ invades the porous media, a circular reaction front develops between the

species ‘A’ and ‘B’ where a third species ‘C’ is produced, as depicted in figure 1. Due to the
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Figure 1: Illustrative representation of a cylindrical reaction front; the plot cartoon in (b) demonstrates a typical
reaction front and the typical concentration distributions for the reactants (A and B) and the product (C) in its

vicinity.

continuous injection of ‘A’ at the origin, the circular (axisymmetric) front is advected radially
outward. We shall assume the rate of reaction between ‘A’ and ‘B’ to follow a first order kinetics
given by, R'(X/,t") = krcd4(X',t")5(x/,t"), where R'(x’,t') is the rate of reaction, c;(x’,t')’s are the
concentrations of solute ‘i’ (which represents A, B or, C) at position x" and time ¢’ and kg is the
reaction rate constant, all evaluated at the Darcy scale. The stoichiometric coefficients of all the
species involved in the reaction are taken to be identical. We also assume that the effect of small
scale porous media heterogeneity is encapsulated in the dispersion coefficient. In future studies, the
effect of macroscopic heterogeneities may be investigated by considering heterogeneous permeability
fields. This would lead to stretching of the reaction fronts and thus to enhanced mixing and reaction
(Le Borgne et al., 2014). In what follows, we shall further assume that the Reynolds number (Re)
at the pore scale remains sufficiently small (quantified ahead in §3.3) so that the linear (Darcian)
relation between the discharge rate and the hydraulic head is maintained and the flow does not

spontaneously become non-axisymmetric.

2.2. The hydrodynamic dispersion tensor

For flows through porous media, the transport of a dissolved species (say, species i) is governed
by the advection-dispersion-reaction equation (ADRE), expressed as (Dentz et al., 2011; Bear,
2018):
ac{t / / ! D* 1/ /
8t,+v-vci:v-( -V'd) + R;, (1)

where, ¢ is the Darcy-scale concentration of the dissolved species, ¢’ is the time, v’ is the interstitial

velocity (i.e., local fluid velocity averaged over the intersection of the pore space and a representative

elementary volume), V' is the gradient operator (see the Appendix A in Leal, 2007, for detailed

4
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expressions), R} is the local reaction rate per unit volume, defined here as —c/;c’z when i = A, B
and ¢y when i = C, and D* is the hydrodynamic dispersion tensor which may be written as

(Dentz et al., 2011; Noetinger et al., 2016; Bear, 2018) :
v'v/

D* =D}, +{r ’|V/||I+(€L_£T)Ma (2)
In the above, I is the identity tensor, ft and /;, are respectively the transverse and longitudinal
mechanical dispersion lengths and D3, is the effective (or, apparent) molecular diffusion coefficient
of the solute in porous media (i.e., D}, = Dy, T* where D), is the molecular diffusivity and T* is the
tortuosity of the porous media), and the argument ||-|| denotes the magnitude of a vector. In this
study, we shall assume D3, to be in the form D}, = Dy/I, where T* = Al and Dy, = D\, which
implies isotropic and homogeneous effective (or, apparent) diffusivity, resulting from an isotropic
and uniform tortuosity tensor. Note that we have chosen to follow Bear (2018) in defining A as
a scalar in the range [0;1]; the inverse definition (with A* € [1;+400[) is also widespread in the
literature, in which case Dj; = Dj;/\* and the tortuosity factor (A\*) is interpreted as the squared
ratio of a typical streamline’s length to the linear size of the medium (Guyon et al., 2015). It
may be observed that in the absence of any mechanical dispersion (i.e. when ¢, = {1t = 0) or of
flow (v/ = 0) or both, the dispersion tensor reduces to an isotropic effective diffusion tensor. For
the axisymmetric scenario that we investigate here, {1 is found to not contribute to the transport

processes.

2.83. The governing equations for the concentrations of A, B and C

We first introduce the non-dimensional versions of the governing equations. To this end, the
dimensionless version ¢ of any variable, ¢’ (which could represent ¢,, x’, ¢/, etc.), is written as:

/
1) = —, where 1) is the characteristic scale of the said variable. The characteristic scales for all the

pertingnt variables are listed in table 1. Here we have chosen the reaction time (tg ~ 1/krcp) as the
characteristic time scale because it is the only naturally occurring time-scale in the problem. As a
consequence, it follows that ¢t = 1 demarcates a transition in the reactive transport process; prior
to t = 1, the reaction is largely limited by the reaction kinetics, which results in a reaction-limited
regime as quantified ahead in §3.2.1 and 3.2.2. On the other hand, when ¢ > 1, the reaction has
progressed sufficiently and most of the reactants would be consumed if they were properly mixed.

As a result, the global reaction rate at this stage largely depends on how fast the reactants are

mixing, which leads to the mixing-limited regime as quantified ahead in the forthcoming sections.
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Table 1: Characteristic scales of the relevant variables.

Variable Char. Scale Remarks
Injection and resident concentrations
Concentration (c.) Co
of species A and B respectively
Time (t.) (kreo) ™" Reaction time scale
Coordinate length (ro) /(Qo/¢0)/ (krco) Distance traveled by the front at time ¢.
Velocity (v.) (Qo/o)/re Averaged characteristic velocity over pore space

Proceeding with the reaction time as the time scale, the volumetric flow rate per unit vertical length
(2mQo) and the reactant concentration (co), it is possible to define characteristic scales for length,
velocity, etc., as shown in Table 1. The length scale is defined from the volumetric flow rate per
unit vertical length and the time scale. The characteristic velocity v, is defined as the velocity at
distance 7. from the injection line. We have used cylindrical (polar) coordinates for the subsequent
analysis, and because of the axisymmetric nature of the problem, it follows that the velocity field
will be of the form,

V=06 =1 ‘e, (3)

(which is purely radial) as mandated by the solvent mass conservation principle. Furthermore, all
concentrations will be functions of r and ¢ only.

From these characteristic scales, we can define the dimensionless numbers characterizing the
reactive transport problem. The Damkohler number (Da) (Dentz et al., 2011) is defined as the

ratio of the diffusion time scale (tp = r2/Dy) to the reaction time scale (%)

_ TC/DI\/I _ (QO/QSO)’ (4)

D
¢ te Dy

where we have taken the effective molecular diffusivities (D)) of all the species to be identical. In
this study, since the characteristic spatial scale is also defined based on the reaction time scale, the
Damkohler number becomes identical to the Peclet number, which characterizes the ratio of the

diffusion time scale to the advection time scale,

_7e/Dn _ (Qo/o) (5)

P
‘ Tc/vc DM

We thus define the non-dimensional reactive transport equations using the Peclet number hence-

forth. Note that the usual definition of the Péclet number based on the dispersion length may be
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written as: Peg = u'fy,/ Dy, where u' = (Qo/¢o) /1’ is the local velocity at 1. Evidently, Pey decays
in time (or, with 7’), which reflects the fact that for the velocity field being studied here (which
decays with the radial distance), the front encounters smaller velocities as it progresses to larger
radial distances at later times. The non-dimensional numbers Pe in Eq. (5) and Peg are related as
Peg = Pe({y,/r"), which indicates that the standard Péclet number and the one defined in Eq. (5)
would be equal when the front has travelled a distance r} = f,. Subsurface flows, especially those
prevailing in applications such as aquifer decontamination, typically entail Pe > 1. Furthermore,
the diffusion-dominated cases have already been studied extensively in the literature (Brau et al.,
2017; Brau and De Wit, 2020). Therefore, here we shall focus on the cases where Pe > 1 at the
injection.

We also define the dimensionless longitudinal dispersion length n,, which essentially characterizes

the strength of mechanical dispersion:

_EL_ /{JRCO 12
== () )

By extension, nPe gives an indication of how strong dispersion is in comparison to diffusion.

Using the characteristic scales defined in Table 1, the non-dimensional version of the ADRE

(Eq. (1)) may be expressed in the axisymmetric polar coordinate system as follows:

oc; oc; 1 10 ( 8@) N ov, Oc;

ot +vr5:ﬁ(nPevr+l);§ r@r 7761“ or

+ R;(r,t), (Ta)

—cacg when i=A,B
Ri(r,t) = (7b)
4+cacg when i =C
Eq. (7a) is subject to the boundary conditions, cy = 1, cg = 0,cc =0asr — 0and cg =1, cy =
O0.cc = 0 as r — 0o, and the initial condition, cg =1, ¢4 = cc =0 at t =0, V r, where 0, denotes
the partial derivative with respect to r. We may substitute the expression for v, as mentioned

earlier in Eq. (3) into Eq. (7), which then simplifies to (written explicitly for each of the species
A, B and C):

dca  (nPe 0%cy 1 — Pe\ Ocy
P€E = <T + ].) 87'2 + < , ) 87’ — Pe CACB, (8&)
dcg  (nPe d*cp 1— Pe\ Ocp
Peﬁ = <T + 1) Or2 + < , ) or — Pe CACB, (8b)
dcc  (nPe 0ce 1— Pe)\ Oco
7
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3. Results and Discussion

We will now quantify the impact of dispersion, represented by finite values of 7, on the front
propagation and reaction rates using both numerical and approximate analytical solutions of Eq.
(8). Numerical solutions (of Eq. (7)) are computed using an implicit finite difference scheme
along with source term linearization to handle the non-linear reaction terms. Further details on
the numerical scheme are given in §Appendix A. Approximate analytical solutions to Eq. (8) are
discussed ahead in the section.

The dispersion-free scenario corresponding to n = 0 has been investigated recently by Brau et al.
(2017) and Brau and De Wit (2020). As expected, our solutions (both numerical and analytical) for
the limiting case n = 0 agree with the ones reported in those studies. In what follows, we shall first
define some of the key properties of the front in §3.1, following which the key inferences from the
analytical and numerical solutions will be discussed in §3.2. Finally in §3.3 representative scenarios
relevant to subsurface hydrology are outlined, where the findings from this study may be useful.

Although in this article we focus on the case where both the reactants have equal initial concen-
trations (cg), numerical simulations with distinct initial reactant concentrations suggest that the
essential physics remains unaltered in the latter cases. In particular, the scaling insights and the
analytical approximations discussed ahead remain applicable to the reactive transport processes
even if the initial concentrations of A and B are different, as verified by the numerical solutions
of Eq. (8) and hence for the sake of brevity the results from such cases have not been explicitly

included in this article.

3.1. Reactive front metrics

Subtracting Eq. (8b) from Eq. (8a) gives the conservative equation for § = ¢4 — cp as,
2
Pl (1) B (1) .
Eq. (9) admits a similarity solution for certain limiting scenarios, as shown later and these will be
key to the approximate analytical treatment of the front. However, before proceeding ahead, it is
important to first outline the key front properties that we shall focus on.
First, the reaction front location r; is defined as the location where § = 0 (or, c4 = cp) (Gélfi
and Récz, 1988), since both ¢4 and cp being equal in concentration implies that the reaction is
significant at and around this location (cp is zero for smaller radial locations whereas ¢4 is zero

for larger radial locations). Second, the reaction front’s half width w; (henceforth referred to as

8
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‘width’ for brevity), quantifying the thickness of the region where most of the reaction takes place,
is defined from the normalized second moment of the reaction rate field about the reaction front as

follows (Galfi and Racz, 1988):

r—00 %
| 2mreacp(r —ry)? dr
wy = = r—00 : (10)
[ 2mrcacy dr
r—0

Third, the global reaction rate R is evaluated by integrating the local reaction rate field (R = c4cp)

over the entire domain:
r—00

R(t) =27 / cacpg 1 dr. (11)
r—0

Finally, the mass of the product is computed as the integral of the concentration field over the

entire domain
T—00

Mo (t) = 27T/ co o dr. (12)

r—0

Integrating Eq. (8c) over time ([0;¢]) and space ([0; +00[), we observe that the integrals with spatial
derivatives as integrands vanish owing to the boundary conditions (see the discussion after Eq. (7)),

which directly leads to the following alternative expression for the mass of the product:

Mo(t) = /Ot dt* R(t*). (13)

3.2. Behavior of the cylindrical reaction front

A few key inferences may be immediately noted from Eqs. (8) and (9), which help steer the

forthcoming analysis:

(i) At early times (¢ < 1), the reaction front will reside very close to the injection line such that
r; < 1, and thus, examining Eqs. (8) and (9) one concludes that close to the front nPe/r > 1,
which indicates that mechanical dispersion will dominate over molecular diffusion during this

time period.

(ii) On the other hand, it may be shown (see the study of the dispersion-free scenario by Brau
and De Wit, 2020) that radially advected fronts never reach a steady state (because Eq. (9)
does not admit a physically consistent stationary solution). Hence, if allowed to progress, the
reaction front will eventually reach a position where that nPe/ry < 1, notwithstanding the

values of n and Pe. At this stage, the flow velocity (which is 1/r) is sufficiently small for

9
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nPe/r to become negligible in the factor (nPe/r + 1) appearing in Eq. (9). In other words,
molecular diffusion will be dominant over dispersion and the front will essentially behave as

one without any dispersion.

(iii) By combining the observations above, we can deduce that in the presence of dispersion (n # 0),
the reaction front will always start in a dispersion-dominated regime at early times (f < 1)
and will eventually transition into a diffusion-dominated (or non-dispersive) regime at large
times (¢ > 1). Examining Eq. (9), specifically the term (nPe/r + 1) which is the only term
that incorporates the effect of dispersion, one observes that the dispersion-dominated regime
shall persist whilst r; < nPe and the diffusion-dominated regime will set in when 7 > nPe,

while the transition between the two regimes occurs around r; ~ nPe.

We shall now examine the dispersion-dominated and the diffusion-dominated regimes, respectively
in §3.2.1 and §3.2.2. Subsequently, the transitions between the various transport regimes will be

ascertained in §3.2.3.

3.2.1. The Dispersion-dominated regime (ry < nPe)
As noted in point (iii) above, at early times r; < nPe, and thus, in the vicinity of the front,

ie., for |[r —r| Swy, Eq. (9) simplifies to,
20 1m0 (1 — Pe) 00

— =—-= —. 14
ot ror? Per ) or (14)
We now seek a similarity solution for 6 of the form 6 = 0(qisp), by carrying out the following change

of variable, &4sp = 7°/(9t), which results in Eq. (14) transforming into:

d*0 [ 2 1—Pe r ] do
+ + +1 = 0. 15
By [y B0PC Gy | By (15)
We note from Eq. (15) that under the condition,
2nPe
16
EA ‘1 — Pel’ (16)

the second term in the square braces becomes negligible and then it is possible to derive a similarity
solution of the form 6(&gisp) to Eq. (15). Now, the above condition is identically satisfied whenever
Pe =1, regardless of the value of 7. On the other hand, for Pe > 1, the condition (16) is satisfied
when 7y < 27 = O(n). With the second term in the square braces thus dropped, Eq. (15) (or,

equivalently, Eq. (14)) naturally admits a similarity solution of the form:

o= 1o (L Y= 1por (L (17)
- 37 disp | — 3,97775 )

10
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where T'(a,z) is the normalized gamma function (Olver et al., 2010, see Sec. 8.2.1 on page 174
therein), which is the ratio of the upper incomplete gamma function I'(a,z) and the complete
gamma function I'(a), defined as:

, where, I'(a,z) = /t“l exp(—t) dt, and T'(a) = /tal exp(—t) dt.  (18)
0

xT

Although Eq. (14) is strictly valid in the vicinity of the front |[r—ry| < wy, its solution in the form as
presented in Eq. (17) does satisfy the boundary conditions §(r — 0,¢) = 1 and 6(r — oo, t) = —1,
and therefore, may be treated as the complete solution as long as 7y < nPe. Furthermore, the
front location is the value of r such that 6 = 0:
1
ry = Agptt, Agip = (90) [r—l (%%)] ., (19)
thus implying r; ~ t!/3 when 7 # 0. Note that ['! is the inverse normalized gamma function, i.e.,
if y =I'(a,Z), then & = I"Y(a,y).
While Egs. (17) and (19) provide valuable information on front propagation, further insights
into the reaction metrics (i.e., the global reaction rate and the front width) and the product mass

may be obtained by approximating the concentration of A as:

cA = t_gG(z), =" ;an' (20)

This expression follows from an ansatz similar to the earlier studies without dispersion (Galfi and
Récz, 1988; Brau and De Wit, 2020), and is chosen because this particular form enables us to
simplify Eq. (8a) into an ODE for G(z). This, as we show later, helps us analyze the state of the
reaction at various temporal regimes, while the values of the parameters v and 3 are linked to the
temporal scalings of the front properties. Indeed, we have verified (not shown here for brevity) that
Eq. (20) accurately represents the numerical solutions for ¢4 when the appropriate solution for
G(z) is used. In Eq. (20), the term ¢ essentially represents the width of the region where c4 (as
well as c¢p) varies from zero to one, which indicates that the reaction zone width is also expected to
scale as t*. On the other hand, t=#/2 represents the fact that the reaction front should get depleted
of the reactant A (and also B, whose decay rate is also deduced as t~%/? in Eq. (B.4)) as time
progresses. The variations in the concentrations within the front is captured by the function G(z).

Using the above form of ¢4 and the Taylor series expansion of the solution for § from Eq. (17)

around the reaction front, Eq. (8a) can be transformed into an ODE governing the function G(z),

11
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whilst also yielding the values of the exponents o and 3. The details of this derivation have been
included in §Appendix B. We also show in §Appendix B that the global reaction rate takes the
following form in the dispersion-dominated regime (see Eq. (B.6)):

ee]

R(t) = 2n / (G? + KaispzG) (Aaisp + 2t*H3) 27043 gz, (21)
where Kgisp is a constant derived ahead in §Appendix B.

Depending on whether the dispersion-dominated regime persists for a sufficiently long time (i.e.,
whether ry < nPe remains true for ¢ > 1), it may be further broken down into two distinct sub-
regimes. First, at sufficiently small times (f < 1), the front goes through a dispersion-dominated
reaction-limited sub-regime, wherein the reaction front metrics show the following variations with
time:

R(t) ~ 23, Mo~ and wy ~ /3, (22)

see §Appendix B.1 for a detailed derivation.

Second, when nPe is sufficiently large (nPe > 1), the front still resides within the dispersion-
dominated region even when ¢ > 1 and this leads to the commencement of the dispersion-dominated
mizing-limited sub-regime. Further, if n > 1, from the derivation in §Appendix B.2, we infer the

following scalings for the reaction front metrics:
R(t) ~t73 Mg ~t*3 and wy ~ t°. (23)

Further ahead (see §3.2.3.1), we establish that the scaling laws in Eq. (23) remain valid for the time
period 1 < t < t3 where ¢t ~ 52, We emphasize that the dispersion-dominated reaction-limited
sub-regime at early times always manifests whenever n > 0, whereas the dispersion-dominated

mixing-limited sub-regime only comes into existence when either mechanical dispersion is suffi-

ciently strong or, molecular diffusion is weak (or, both).

3.2.2. The Diffusion-dominated Regime (ry > nPe)

If the front is allowed to progress for a sufficiently large amount of time, eventually we must
have 7y > nPe, i.e., at and around the reaction front, molecular diffusion will dominate over
mechanical dispersion. Reactive front dynamics in radially advected fronts in the presence of a
uniform molecular diffusion coefficient has been investigated in previous studies (Brau et al., 2017;

Brau and De Wit, 2020). In the diffusion-dominated regime, the front exhibits the same behavior

12
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as outlined by these studies. We shall thus only briefly discuss the key features of this regime.
First, since the front is now at a distance (from the injection line) sufficiently large compared to
the region where dispersion is significant (dispersion is non-negligible only for » < nPe), Eq. (9)

simplifies to,

o0 9% 1— Pe\ 06
pel _ 9 ) 24
“ot 8r2+( r >6?7"7 (24)
which admits a similarity solution for 6:
_ (Pe Per?

f=—-1+2I 25
n ( e ) (25)

The front location is then given by (at the front, (rs,t) = 0),

A1 &’ 1

Tf = Adiﬁ‘t%, Where Adjff = %, (26)

thus implying ry ~ 12, For Pe > 1, Agg ~ V2 and T V/2t, and thus the front is advected as
if attached to a fluid parcel moving with the flow. We reiterate that in the absence of mechanical
dispersion (i.e., n = 0 identically), Eq. (24) remains valid and Eq. (25) represents the solution for
6 at all times, as previously shown by Brau et al. (2017).

Further insights into the reaction metrics may be obtained using the same procedure as outlined

in §3.2.1 - see §Appendix B for detailed derivation. The global reaction rate may now be written

as (see Eq. (B.6)):

(o)

R(t) =27 / (G2 + ]CdiffZG) (.Adiff + Ztail/Q) tai’BJrl/Z dZ, (27)
where gy is a constant, defined ahead in Appendix B.

When mechanical dispersion is sufficiently weak (n < 1), the condition r; > nPe may also
be satisfied at early times (¢ < 1) and this will result in a diffusion-dominated reaction-limited
sub-regime. We show in §Appendix B.3 that the reaction metrics during this early time period

take the following asymptotic forms:
R(t) ~t; Mg ~t* and wy ~ /2. (28)

Conversely, at sufficiently large times (¢ > 1), the condition 7y > nPe must be satisfied,
regardless of how strong mechanical dispersion is. This corresponds to the diffusion-dominated

mixing-limited sub-regime, wherein the following reaction metrics are observed:
R(t) ~ 1% Mg ~t and wy ~ /5, (29)
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as shown by Brau et al. (2017) (also see §Appendix B.4 for a derivation).

We reemphasize that the diffusion-dominated mixing-limited sub-regime will always manifest
regardless of how strong dispersion is, provided that the front is allowed to move for a sufficiently
long time. On the other hand, the early time diffusion-dominated reaction-limited sub-regime is
only realized when mechanical dispersion is very weak, which results in the front transitioning out
of the dispersion-dominated region while the reaction is still in the kinetics limited regime (¢t < 1).

A summary of the expected temporal scalings of the front properties revAduring various regimes
as discussed in §3.2.1 and §3.2.2, has been provided in Table 2. Comparing the front advancements
in Egs. (19) and (26), it is noted that in the presence of mechanical dispersion, the front stays
ahead as compared to a front which will be observed when only diffusion is active, although its rate
of advancement is diminished. Similarly, comparing the reaction rates in Eq. (22) with those in
Eq. (28), we observe that dispersion results in a slower growth rate of R at early times, although
its magnitude is still higher as compared to the dispersion-free scenario - see figures 3 and 4. More
interestingly, comparing the reaction rates in Eq. (23) and Eq. (29), it is noted that dispersion may
lead to a decaying global reaction rate at large times provided it remains dominant over diffusion;
such a decay in R is not observed when dispersion is absent. We discuss more on this in relation

to figure 3.

Table 2: Expected temporal scalings of the front properties and the product mass based on the analytical approxi-

mations discussed in §3.2.1 and §3.2.2.

Front Dispersion Diffusion

Property - Dominated - Dominated
Mixing-Limited Mixing-Limited

(t>1, ry < nPe) (t>1, ry > nPe)

rs £1/3 £1/3 £1/2 /2
w; 41/3 40 11/2 1/6
R 2/3 -1/3 n 40
M /3 12/3 2 /

3.2.3. The transition times
3.2.3.1. Transition time for the front’s rate of advancement (ry). For Pe ~ 1, we deduce from

inference (iii) (see §3.2) that the front transitions into the diffusion-dominated region when it
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reaches ry ~ nPe ~ O(n). On the other hand, for Pe > 1, although the front is still in the
dispersion-dominated region when it reaches r; ~ O(n) (< nPe), condition (16) is no longer
satisfied. Therefore, we deduce that the similarity solution (17) as well as the associated front
propagation rate (Agispt'/?, Eq. (19)) cease to be valid when r; ~ O(n). This leads to a transition
in the front’s rate of advancement, which occurs when ry = Adisptl/ 3 =1, and yields the following
estimate for the first transition time (£0°):

tfisp=< 7 )3: 7 ~ 11612 (30)

T /9 [T (55)]

It is to be noted that t2*" is independent of Pe and so is Aaisp, which indicates that the front’s

movement prior to tfrmp (or, when 7y < ) is expected to be independent of Pe.

3.2.3.2. Transition time for the front characteristics into the Diffusion-dominated region. For Pe >
1, the front will continue to be in the dispersion-dominated region even after t = ¢\ because
n < 1y < nPe. In such scenarios, the transition of the front properties into the diffusion-dominated
regime occurs at a later time, when r; ~ nPe. Numerical solutions (see figures 3 and 4) suggest that
during this transition, the front advances approximately as r; = Aggt'/?, yielding the following

estimate for this second transition time (¢{f):

2 3
diff _ n-Pe
I D] o

When Pe ~ O(1), the above expression gives t3f ~ 1.17?2, indicating that the two transitions occur

simultaneously. On the other hand, for Pe > 1, t3F ~ 0502 Pe? > ¢,

3.2.3.3. General discussion on the transition times. Figure 2 summarizes the key inferences from
the two transition times derived in §3.2.3.1 and 3.2.3.2. We can observe that below the t?risP/T]Q

curve (the solid pink region), mechanical dispersion dominates the transport on account of ¢ < £

diff /2 curve (the solid violet region), where ¢ > t3f diffusion dominates the

tr

Similarly, above the ¢
transport process over mechanical dispersion. In the region between the two curves (the hatched
pink region), where tfﬁSp <t < t3 the front resides in a dispersion-dominated region because
rr < nPe continues to be true, but the analytical scaling expectations derived in §3.2.1 do not
remain valid here. In fact, during this period, the front’s movement is closely approximated by
the relation 7y ~ Aggt'/? (see figures 3 and 4), although it is not possible to derive analytical

scaling expectations for the remaining front properties (as done in §3.2.1 and 3.2.2) during this

time interval. One can observe that the length of this time interval grows with Pe. For Pe = 1,

15



OCoO~NOOUA~AWNPE

349

350

351

352

354

355

356

357

358

359

360

361

362

363

364

365

366

367

Journal Pre-proof

10*

102
&
lt
10°
1072
100 .%91 102
e

disp

Figure 2: Plots of the normalized transition times t;,°" /n? and t3ff /n? as functions of Pe.

the interval practically vanishes, thus indicating that for Pe = 1 the front’s rate of advancement
transitions at the same time as it moves into the diffusion-dominated region by crossing the threshold
r = nPe. Therefore, the other front properties are also expected to follow the diffusion-dominated
scalings beyond this instant. Conversely, for Pe > 1, there are always two distinct transitions.
The first one occurs at ¢ = t2°, when the front’s rate of advancement transitions from a ¢'/3-type
behavior to a t'/2-type one. A second transition occurs later at ¢ = t&f when the front reaches a
position r = nPe and the remaining front properties transition into the diffusion-dominated regime.

The quantification of the transition times discussed above also provides us with the conditions
for the existence of several regimes outlined earlier. Specifically, the dispersion-dominated mixing-

disp

limited regime (§Appendix B.2) will be observed only if ¢, > 1, while the diffusion-dominated

reaction-limited regime (§Appendix B.3) materializes only when t3f < 1.

3.2.4. Results for Pe =1

Figure 3 reports the variations in the front properties and the product mass with time, for
Pe =1 and for various choices of . We have plotted the numerical solutions (solid lines) of the
complete governing equation (Eq. (7)) along with the analytical temporal scalings (floating solid
lines corresponding to the dispersion-dominated scalings from §3.2.1 and floating dashed-dot lines
to the diffusion-dominated scalings from §3.2.2) for the various front properties. The star markers
represent the time at which 7y = 1 (representing ¢ ~ t?riSp), which is also identical to the transition

time from the dispersion-dominated into the diffusion-dominated regime, on account of Pe = 1.
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Figure 3: Time Evolution of the front properties and product mass for Pe = 1; the legend presented in panel (a)

applies to all panels. The star markers demarcate the time at which ry = 7, which for Pe = 1 coincides with

rs = nPe. The insets in panels (c) and (d) respectively show the excess global reaction rate and product mass, with

respect to the dispersion-free scenario which is represented by the subscript ‘(0)’ (e.g., R(O)).

The numerical results for the front location as well as the transition times agree well with the

analytical estimates reported in Egs. (19), (31) and (30).

We first note that the analytical scaling expectations as summarized in Table 2 show good

agreement with the numerical solutions for all the front properties. For n > 0, the early time

dispersion-dominated reaction-limited sub-regime (t < 1; w; ~ t'/3 R ~ t?/3 Mg ~ t7/3 see
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§3.2.1) may be clearly observed in all panels. At the same time, the diffusion-dominated reaction-
and mixing-limited sub-regimes (see §3.2.2) are also evident when 1 = 0. The latter of these two
sub-regimes is also observed at large times for the dispersive fronts, when n < 10. In particular, for
0 < n < 1, one notes that the front transitions from the dispersion-dominated reaction-limited sub-
regime into the diffusion-dominated reaction-limited sub-regime (¢ < 1; wy ~ 12 R~t', Mo~
t2) at ¢t &~ 3P ~ 3T which oceurs early (& < 1), also in agreement with the discussion in §3.2.3.3.
Conversely, for n > 10, mechanical dispersion is strong enough to induce the dispersion-dominated
mixing-limited sub-regime (w; ~ ¢, R ~ t7Y3 Mg ~ /3, see §3.2.1) for t > 1, as evident
from panels (b) and (c¢). In such cases, the front directly approaches the diffusion-dominated
mixing-limited sub-regime (w; ~ t°, R ~ t=1/3, Me ~ t%/3) at sufficiently large times, when by
t ety =t > 0(1).

The inset in panel (c) reveals that hydrodynamic dispersion results in an enhanced global
reaction rate at all times, as compared to the dispersion-free scenario (R for n = 0). Even at
larger times, when molecular diffusion becomes the dominant Fickian mechanism driving mixing,
mechanical dispersion still causes R to be larger than R, although now AR(t) = R(t) — R (t)
diminishes with time (at a rate ¢~'/2). These features are also reflected in the excess product mass
(AM¢), as shown in the inset of panel (d). Since AMqy = fot drAR(7T), AM¢ should grow as
t'/2 at large times, as is indeed observed in the inset. As a result, although dispersion becomes
subdominant at large times, it actually leads to an ever-increasing product mass as compared to
the dispersion-free scenario, which underlines the profound impact of hydrodynamic dispersion on
reactive transport in porous media.

The enhancement caused by the mechanical dispersion at early times also helps explain the
the decaying (at t~'/3) global reaction rate in the novel dispersion-dominated mixing-limited sub-
regime. For sufficiently large 7, the reactants are quickly consumed during the early time (¢ < 1)
reaction-limited sub-regime, thus depleting the reactant concentration close to the front, which
manifests in the decrement of R at larger times (¢ > 1). This non-monotonic variation in the global
reaction rate should also result in R going through a maximum at t ~ O(1), as is indeed observed

in panel (c).

3.2.5. Results for Pe =100 > 1
Figure 4 demonstrates the results for Pe = 100 (representing the limit Pe > 1), wherein the

panel-wise description remains identical to fig. 3. The circular markers denote the time at which
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Figure 4: Time Evolution of the front properties and product mass for Pe = 100 and various choices of n =

0, 1073 — 103. The star markers demarcate the instant when ry = 7 and the circular markers indicate the instant

when 7y = nPe. All other entities are the same as in Figure 3.

r; = nPe (representing ¢ & t3). Recall from §3.2.3.1, that the condition (16) will now be satisfied
for t < ¢isp (the star markers), i.e., so long as ry < 7. We further note that the analytical scaling
expectations as summarized in Table 2 have been included in all the panels and they show good
agreement with the numerical results.

Qualitatively the variations shown in this figure are similar to those in Figure 3, with some

subtle differences. In contrast to Pe = 1, the transition times 2 (star markers representing the

19



O©CO~NOOOPA~WNE

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

instant when r; ~ n) and t3% are now separated by a significant time interval for Pe = 100; this is in
agreement with Eqs. (30) and (31) and the discussion in §3.2.3.3. As a consequence, the transition
of the front properties from the dispersion-dominated regime into the diffusion-dominated regime
occurs much later than the transition in the front’s location from a t'/3- type scaling into a t'/-type
behavior, as evident from panels (b) - (d). Because of a relatively larger value of Pe, molecular
diffusion is relatively weak here and hence the front does not go through the diffusion-dominated
reaction-limited sub-regime, even for n as small as 1072. In fact, for n > 1072, the front transitions
from the dispersion-dominated regime directly into the diffusion-dominated mixing-limited sub-
regime at large times.

The early time dispersion-dominated reaction-limited sub-regime (¢t < 1; wy ~ 3 R ~
23, Mq ~ t°/3) is present for all n > 0. The diffusion-dominated reaction-limited sub-regime only
materializes for n = 1073 at t3% < ¢ < 1 (for n = 1073, ¢ < 1) and is made possible by the
very weak mechanical dispersion. For all other values of 1, t3iff is larger than 1, which prevents
this sub-regime from being realized. On the other hand, for n = 10* and 103, tfriSp > 1 and hence
the dispersion-dominated mixing-limited sub-regime (wy ~ t°, R ~ ¢t=¥/3 M¢ ~ t¥/) commences
when ¢ ~ O(1). For 102 < 5 < 10, although 2% ~ O(1071) — O(1), there still is a relatively brief
window reminiscent of this mixing-limited sub-regime, during which the global reaction rate decays
(panel (c)) and the front width stays nearly constant (panel (b)). It may also be observed that at
sufficiently large times (depending on the choice of 1), all front properties eventually asymptote
towards the n = 0 curve (dispersion-free), although for > 10? this occurs beyond the time interval
shown in the present figure. The insets in panels (¢) and (d) reveal the same behavior as discussed
in connection to Figure 3: hydrodynamic dispersion leads to an enhanced global reaction rate as
compared to the purely diffusive scenario at all times, which in turn results in an ever increasing
excess product mass when n > 0.

Intriguingly, comparing Figures 3 and 4, we observe that in the presence of mechanical disper-
sion, the front properties essentially become independent of Pe prior to tfrisP, which is in contrast
to the dispersion-free scenario (n = 0) for which the front properties are generally dependent on
Pe. This may be attributed to the fact that for ¢ < t2°° Eq. (14) simplifies to 9,6 = nr—1920,
which is independent of Pe and hence it is expected that the front properties emanating from this
equation would also be independent of Pe. Conversely, when = 0 or for ¢ > t&*, the governing

equations can not be made independent of Pe and hence the front properties also exhibit Péclet
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3.2.6. Phase diagrams of the front behavior

reaction-limited mixing;limited reaction-limited mixing;limited

(a) Pe=1 (b) Pe =102

Figure 5: Phase diagram summarizing the various regimes of the reactive transport process in the (7,t) plane along
with the expected scalings as summarized in Table 2. The vertical dashed line demarcates the instant t = 1. The
solid black lines represent the numerically evaluated time at which the front passes through r; = n and nPe; they
coincide for Pe = 1. The dotted and dashed-dot black lines show the transition times t?riSp and tdf respectively as

functions of 7, as estimated based on Egs. (30) and (31). Panel (a) is for Pe = 1 and panel (b) for Pe = 100.

Figure 5 summarizes the various regimes and sub-regimes of a radially advected reaction front
in the presence of dispersion on the (7,¢) plane. All the associated temporal scalings for the front
location and the global reaction rate have been indicated within the figure (also summarized in
Table 2). Examining both the panels, it appears that tf;Sp and t3 respectively approximate the
actual (i.e., numerically obtained) transitions at 7y = 1 and ry = nPe reasonably well.

We first note that the two regime diagrams qualitatively look very similar, and as such, one
can clearly identify four distinct areas. These correspond to the four sub-regimes: (i) the dispersion-
dominated reaction-limited sub-regime (dark pink, solid, §Appendix B.1); (ii) the diffusion-dominated
reaction-limited sub-regime (dark violet §Appendix B.3) for sufficiently weak dispersion and advec-
tion; (iii) the dispersion-dominated mixing-limited sub-regime (light pink, solid, §Appendix B.2)
for strong mechanical dispersion; (iv) the diffusion-dominated mixing-limited sub-regime (light vi-

olet, solid, §Appendix B.4). In addition, panel (b) contains two more areas, i.e., (v) the hatched
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dark pink and (vi) the hatched light pink areas, which exist because for Pe = 100, {2 < ¢diff
and hence the front goes through two distinct transitions as outlined in §3.2.3. Noting that these

disp

two areas are sandwiched between the t,"" and tdiff

curves, one may infer that they both imply
dispersion-dominated regime but without any analytical scaling expectations, since t?riSp <t < tdiff
in these two areas — also see §3.2.3.3 for details. The area (v) (dark pink, hatched) is part of the
dispersion-dominated reaction-limited sub-regime for the time interval £ < ¢ < 1 and the area
(vi) (light pink, hatched) is part of the dispersion-dominated mixing-limited sub-regime for the time
interval 1 < t < t3. Consequently, when Pe = 1, i.e. when r; = and r; = nPe become identical,
the hatched areas ((v) and (vi)) vanish, as observed in panel (a), which implies a simultaneous tran-
sition in the front’s advancement and in all other front characteristics at r; = n = nPe. We have
verified that the overall nature of the phase diagram as shown in Figure 5 remains unaltered for
other values of Pe; a larger Pe would result in widening of the hatched area illustrated in panel (b),
and push the diffusion-dominated areas (violet) further south-east, whilst the dispersion-dominated

areas above the r; = 1 curve (solid pink) are only affected to a negligible extent. Above the t = tfriSP

curve, the front behavior is dominated by mechanical dispersion, while below the t = t3f curve,

diffusion controls the front behavior.

10°

10!

8P < 10
i < 10

10! 102
Pe

Figure 6: Surface plot of log;, (AMC/MC(O)) at time ¢ = t, = 10 in the (7, Pe) plane, where AM¢ = Mo — Mc(o)-

The black solid curves represent 2" = 10 and ¢3iff = 10 as labeled.

It is noteworthy that in the presence of mechanical dispersion, the global reaction rate and the

product mass never fall below those obtained in the dispersion-free scenario. Hence, hydrodynamic
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dispersion enhances the global reaction rate at early times, whilst still not adversely affecting it at
large times, although for £ > 1, the front properties asymptotically approach their dispersion-free
counterparts. Despite this, the accumulated product mass is still expected to have a signature of
the dispersion-driven enhanced reaction rates at earlier times. We have quantified this in terms of
the excess product mass (AM¢g = Mc — M), in the insets of Figures 3d and 4d. The large time
signature of dispersion on the product mass (evaluated at ¢ = ¢, = 10) is further investigated in
Figure 6. Below the 3 = 10 curve, where both ¢t < ¢, = 10 and t3 < ¢, = 10, the enhancement
in the product mass due to dispersion is very limited, as the front has already transitioned into
the diffusion-dominated regime by the time t = ¢, = 10 is reached. In between the two black

disp

curves, where t,"" < 10, but t3f > 10, the front resides in the dispersion-dominated regime at

t =t, =10 (as 7y < nPe), and therefore, we observe a moderate enhancement in the product mass.

The maximum augmentation in Mg is however observed above the curve ;" = t,

= 10, where
both tfriSp > 10, and +&f > 10 and hence the front at time t = ¢, = 10 is still completely within the
dispersion-dominated regime, being dictated by the scalings established in §3.2.1. Generally, larger

n and Pe both facilitate larger AMq by delaying the onset of the diffusion-dominated regime.

3.8. Illustrative practical examples related to the subsurface porous media

The reactive front dynamics discussed in the preceding sections are in terms of dimensionless
numbers, providing general insights into the reactive transport processes in a porous media. It is
thus important, from an application perspective, to relate the results of the present analysis to
reactions that are often encountered in the subsurface porous media for various purposes. To this
end, in table 3, we list the typical values of the key dimensionless parameters and characteristic
scales for some common scenarios relevant to subsurface applications.

Figure 7 revisits the phase diagrams in figures 2 and 5 in dimensional terms, translated to the
(Qo,t") plane and the (¥, tgr) plane respectively, where ¢’ is the time after injection and tg is the
reaction time scale. The color coding of the various regimes remains identical to those used earlier.
The flow rates considered in the two panels correspond to the typical flow rates encountered in
subsurface injection scenarios such as environmental restoration (Narr, 1996; Saripalli et al., 2000;
Zhang, 2003; Phenrat and Lowry, 2019). Similarly, the range of characteristic time scales in table
3 correspond to the typical reaction times encountered in various subsurface scenarios (Sundstrom
et al., 1986; Patil and Sharma, 2011; Rossi et al., 2015; Haynes et al., 2016).

First and foremost, we observe from figure 7 (both panels) that for typical subsurface flow

23



OCoO~NOOUA~AWNPE

Journal Pre-proof

Table 3: Range of values for the characteristic scales (t. & r.) and the non-dimensional parameters (Pe
and 7). Three distinct values of the longitudinal dispersion length (¢1,) have been illustrated along with

the corresponding values of 7.

Parameter Range
Péclet number Pe 10°-10*
Characteristic Time Scale t. (s) 10%-10%
Characteristic Length Scale 7. (m) 107%-10°
Long. Dispersion length ¢, (m) 0 1073 10° 10°

Dimensionless long. dispersion length n 0 1075-10=* 1073-10%> 10°-10°

diffusion-dominated
reaction-limited

mil

mil

1074

g 5
o —
yr
= q
38 = =
= <z 2
T S
hr g5 2
[«
= . <
8 dispersion-dominated o
mixing-limited
s n  — T T T T S
10° 10 s min hr day mnt dec il
Qo (L/hr per 100 m inj. depth) o

(a) (b)

disp/

Figure 7: (a) Plots of the dimensional transition times (with units) #;,**" and i

as functions of Qg for £, = 10 cm
and ¢g = 0.5, with the three regimes delimited by these transition times. (b) Dimensional phase diagram for a porous
domain having a porosity ¢q of 0.5, for Qo = 5000 L/hr per 100 m of injection depth (i.e., Qp = 1.39 x 107° m?3/m-s)
(Pe = 2.78 x 10?), depicting the various regimes of the reactive transport process in the (#,tgr) plane where ¢’ is the
dimensional time and ¢ is the reaction time scale (= (kgco) ). The solid black diagonal line represents ¢’ = th-
The dotted and dashed-dotted vertical lines respectively demarcate the transition times t?riSP/ = 1.16¢2 /Qo and
t8 — 202 /4D3 T71 [Qo/(2D), 1/2]. The hatched pink region corresponds to the dispersion-dominated behavior
without any analytical scaling expectations. The diffusion coefficient and the dispersion length have been fixed to

Dy = 1078 m?/s and £, = 10 cm. The right vertical axis indicates the variations in 7; the ticks ‘mnt’ and ‘mil’

stand for a month and a thousand years respectively.

so0 Tates (Qp ~ 10° — 10° L/hr. per 100 m depth), the reaction front will remain well within the
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dispersion-dominated region for any realistic time-frame, thus underlining the impact of mechanical
dispersion on the transport processes. The transition of the front into the diffusion-dominated
region depends on the flow rate and may take anywhere from a few years to a several decades.
We further observe that the transition times (t2°*" and tdf) are independent of the reaction time
(as they are represented by vertical lines in panel (b)) and depend only on the flow rate and the
dispersion length. A larger flow rate does not qualitatively alter the phase diagram in panel (b),
rather it only widens the hatched region between the two transition times because tSriSp " decays as
Qo ' and t3% increases as Q3 (see panel 7a). Thus, a larger flow rate generally delays the onset
of the diffusion-dominated regime, thereby enhancing the influence of mechanical dispersion on
the reaction, whilst also resulting in an earlier transition in the front’s rate of advancement (7).
Similarly, a larger dispersion length will also not alter the qualitative nature of the phase diagram
and will only delay the two transitions (with all other entities remaining unchanged), since both of
them increase as 2. The diagonal ¢ = ¢y line in panel (b) separates the reaction-limited and the
mixing-limited regimes. Therefore, faster reactions (smaller ) would cross this curve at an earlier
time, before even crossing the ' =t line. Conversely, sufficiently slow reactions (large tg) may
transition into the diffusion-dominated regime before crossing the ' = tg curve.

It is observed that for a given flow rate and dispersion length, faster reactions result in larger
n values and thus mechanical dispersion will have a greater influence on their kinetics. In fact,
faster reactions generally go through the dispersion-dominated reaction-limited sub-regime when
t' < tg, followed by the dispersion-dominated mixing-limited sub-regime at tg < t' < t3¥ and
they finally enter the diffusion-dominated mixing-limited sub-regime at t3¥ < #'. Conversely, the
impact of hydrodynamic dispersion is relatively weaker on slow reactions as they tend to result in
lower values of n; sufficiently slow reactions would be in the dispersion-dominated reaction-limited
sub-regime at ¢ < t3% and then move on to the diffusion-dominated reaction-limited sub-regime
when 3 < ' < ¢y, before transitioning into the diffusion-dominated mixing-limited sub-regime
when ¢ > tg. Based on the above discussion, it may therefore be concluded that faster reactions
and higher flow rates will maximize the influence of dispersion on reactive transport processes.
While specific parameter sets will provide specific estimations, broadly speaking, a larger flow rate
and/or a larger dispersion length will facilitate greater advancement of the front along with a larger

reaction rate and a larger product mass.

Finally, recalling that we assume axisymmetry of the flow (which requires that the pore scale
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flow is at worse weakly-nonlinear and hence Re < O(1), see section 2.1), we note that the pore-scale
Reynolds number may be defined as Re = av'/v, where v/ = Qq/(¢o1’), a being the characteristic
length scale of the pores (a ~ V'k, where k is the permeability) and v is the kinematic viscosity
of water. Taking a ~ 3 x 107® m (corresponding to k ~ 107 m?), Qy ~ 1.4 x 107> m?/m.s and
¢o = 0.5, the above condition is satisfied when 1’ > Qpa/¢or ~ 10~* m, which indicates that our
axisymmetric solution can be considered to be valid in the entire porous medium outside of the

injection borehole.

4. Conclusion

In this article, reactive transport in a radially moving A+B—C bimolecular reaction front has
been studied in the presence of significant hydrodynamic dispersion. The species A was continually
injected into an infinite porous medium of uniform permeability, which initially only contained
the species B. The advection-dispersion-reaction equation was solved to infer the spatio-temporal
evolution of the reactants’ and the product’s concentrations. Both numerical and approximate
analytical solutions were derived, the latter being applicable to various temporal regimes; the
numerical and analytical solutions agreed well with each other.

There are several novel points to be noted from our analysis. First, it is established that at
early times (¢ < 1), mechanical dispersion is dominant over molecular diffusion and the front thus
advances as ry ~ t'/3, which is qualitatively different from a t'/?-type progress observed when
diffusion is the only Fickian mixing mechanism. This results in a dispersion-dominated regime and
leads to enhanced global reaction rates (and thus an enhanced product mass) at the early reaction-
limited times. The ry ~ t1/3_type variation in the front’s movement ceases to be valid when the
front reaches the location 7y ~ n; this leads to a transition (at ¢t = tfrmp) in the behavior of the
front’s position from a ¢'/3 to a t'/?-type scaling in time. When Pe ~ O(1), the front completely
transitions into the diffusion-dominated regime at this juncture, because the condition r; ~ nPe is
also satisfied. However, when Pe > 1, the front still remains in the dispersion-dominated region
after this first transition, and a second transition occurs only when the front crosses the location
rp ~nPe, at a time ¢ = t{if at which the diffusion-dominated regime sets in.

Within the dispersion-dominated regime, the front exhibits reaction-limited behavior at early
times (¢ < 1), and may exhibit mixing-limited behavior at moderately large times (¢ > 1), provided

that mechanical dispersion (7) is sufficiently strong. This second sub-regime is characterized by a
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decaying global reaction rate and a nearly constant front width. Furthermore, the global reaction
rate (R) also goes through a maximum at ¢+ ~ O(1), when the dispersion-dominated mixing-
limited sub-regime sets in. At sufficiently large times, regardless of the strength of dispersion, its
impact will eventually become subdominant and the front will transition into a diffusion-dominated
regime. However, when dispersion is weak (7 < 1), the front will leave the dispersion-dominated
region sufficiently early so that a diffusion-dominated reaction-limited sub-regime may come into
existence before t = 1, followed by the diffusion-dominated mixing-limited sub-regime.

The reaction front behavior is expected to remain dominated by dispersion for any realistic
time frame of field scale experiments, because the time of transition of the front into the diffusion-
dominated behavior may vary from several years to several decades, depending on the flow rate and
the dispersion length. In particular, mechanical dispersion is observed to influence faster reactions
to a greater extent, with all other parameters remaining unchanged. Generally, the presence of
hydrodynamic dispersion leads to enhanced reaction rates and product mass as compared to a
dispersion-free scenario; this is true at all times, although at large times (¢ > 1) the differences
between the two decay with time.

The above findings may provide fundamental insights towards characterizing reactive front dy-
namics and help formulate transport models for a diverse set of applications related to subsurface
porous media such as contaminant remediation, aquifer recharge, geothermal systems, to under-
line a few. Future studies should investigate some key elements that have not been considered
here. This includes: the impact of macroscopic permeability heterogeneities, which are expected
to further enhance mixing rates due to stretching of the front, the effect of non-Fickian dispersion,
which would affect scaling laws, and the case of partially penetrating wells, which would lead to
imperfect radial flows. While we have investigated here a simplified bimolecular reaction, it would
also be useful to confirm the predicted dynamics for realistic geochemical processes simulated with

a multi-component reactive transport model.
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Appendix A. Numerical solution methodology

Eq. (7) is discretized as per the time-implicit finite difference method:

(nPe V() + 1) Ty + <(17Pe :;(j) ha 1) +n Ci;: (j)) Ty — Pe v(jy15 — (% + SP,z‘(j)) Ci(j) =
_ Peaiy Lo . (A1)
t— gprev DG '

7, — 205 = i)y = 20 = r)cig) + 20ria = )iy (A.2)

(rjvr =) (rjsa =)y — 75-1)
7, — 73 = i) F (T i = 2r)cig) = (T = 15)Ci-y (A.3)
2(rjea = 1)1 = 15-1)
7, = (im =12 @y =i — re)ti) — (1 — 1) tegon £ 0 = 1)) (A.4)
(rj1 = 1=2)(ry = r50) (15 = 75-2)

The numerical solution is obtained by time-marching, wherein Eq. (A.1) is solved at each time step

for each of the three species, A, B and C, with v,y = 1/r;. The term c;(;) represents the i-th species

concentration at the j-th grid point, and the superscript ‘prev’ denotes that the value is for the previ-

=3 j=n
ous time step. At each time step, iterations are carried out till the error (1/n) Z Z (cigy — ci?jg)Z
=1 j=1

(n is the number of nodes on the discretized z-axis) falls below the tolerance (here, taken as 107°)
with cia(‘% being the solution of the last iteration. These iterations are carried out to resolve the
non-linear reaction terms, wherein these terms are expanded in a Taylor series around the solutions
from the previous iteration (or, for the first iteration, the initial guess). This procedure is commonly
known as the source-term linearization technique (Patankar, 2018), and is implemented as follows:
Rigjy = Scigg) + Spag)cit), where Sgg) = R — 6R;/6ci|5 i), Spgy = 0R;/dci|%y and the su-
perscript ‘last’” indicates that the given quantity is evaluated using the solutions from the previous
iteration. Using (7b), Sc.i(;) and Sp,(;) get evaluated as: for species A, Sp a¢;j) = —0113?;), Sc.aig) = 0;
for B, Spp(j) = —cfjf;), Scpi) = 0, and for C, Spe) = 0, Sccy) = cj?;)clgf;). Lastly, knowing
that the system evolves slowly at long times and the gradients are smoother at larger r, the ¢ and

r grids are discretized in a non-uniform fashion, being finer near ¢/r = 0 and relatively coarser for

t/r> 1.

Appendix B. Temporal scalings for the front properties and the product mass

The solution for ¢ and the front location, as expressed in Eqs. (17), (19), (25) and (26) for the

dispersion and diffusion-dominated regimes may be unified in the following manner:

0=—-1+ 2F ('7dom7 gdom) ’ (Bla)
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Tf :Adomt')’dom’ (Blb)

where ‘dom’ = ‘disp’ signifies the dispersion-dominated regime, while ‘dom’ = ‘diff” indicates that
diffusion is dominant over mechanical dispersion. As such, we note that, Yaisp = 1/3, Laisp =
r3/(9nt), Yo = 1/2, and Egig = (Pe r?)/(4t). Furthermore, with the expressions for 6 and r; as

presented in Eq. (B.1), a Taylor series expansion for § around the front,

0
0=9f+(r—ry) [%] o ((r = 7)) & = Kaomt %m(r — 1), (B.2)

1 1 -1 —
with Kgisp = 6 (95775 exp (Aj,/ (97}))) and Kag = 2V Pe (exp ((PeAlq)/4)) ' simplifies the
subsequent analysis. In an effort to obtain further insights into the reaction front’s behavior, recall

from Eq. (20) that we approximate c4 as:

ca=t"3G(2), z=" ;f’f, (B.3)

and further utilizing Eq. (B.2), the expression for ¢g (which is ¢4 — ) becomes:
Ccp = t76/2 (G(Z) + ICdomz) . (B4)

Proceeding with these expressions, Eq. (8a) may be simplified for various temporal regimes and
dispersion strengths to yield the respective ODEs for G(z) in the vicinity of the reaction front.
The region far behind the front corresponds to z — —oo, which is also the left boundary for these
ODEs. In this region, since cg = 0, one must have c4 = 6, which leads to (upon equating Egs.
(B.3) and (B.2)) G(z) ~ —t8/2 Wom[Cy 2, as 2 — co. Because G is a function of z only as per
Eq. (20), it follows that o + 5/2 — Ygom = 0 and G ~ —Kgomz x —2z as z — —oo. The arguments
presented above are analogous to those utilized by Gélfi and Récz (1988) in their study of planar
reaction fronts, and adopted later by various others (Brau and De Wit, 2020; Comolli et al., 2019).

We now conduct the following algebraic manipulations on equation (8a):

1. Substitute c4 and cp from Eqgs. (B.3) and (B.4) respectively, into Eq. (8a). Note that while
substituting ¢4, the derivatives Oca /0t, Oc4/Or and 9*cs/Or? are evaluated as 51 [ﬁG/Q—l—
azdG/dz], t==B2dQG /dz, and t=22F/2 d>G /dz?, respectively.

2. Substitute r = ry + 2t using equation (B.3) and r; = Agomt?@™, as per equation (B.1b).
3. Multiply either sides of the resulting equation by t‘”%ﬂd‘)m(fldomﬂdom + 2t%).
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The above steps lead to the following governing equation for G(z) in the vicinity of the front:

B

Pe (Agomt7@m + 2t) {20~ 2ydom (G2 + lCdosz) — @17 7dom <§G + az

(nPe 4+ Agomt ™ + 2t%)

2
t_a_'Ydom G _|_

dz?

£)-

(1 — Pe) t_Vdomelﬁ.

z

(B.5)

Note that the (nPe + Agqomt’@™ + 2t*) term simplifies to (nPe) when dispersion dominates (‘dom’

= ‘disp’) and to (Agomt ™ + 2t%) when diffusion dominates (‘dom’ = ‘diff”).

On the other hand, substituting r; from Eq. (B.1b) and the similarity expressions for ¢4 and

cp from Egs. (B.3) and (B.4) respectively, with r expressed in terms of ¢ and z as noted above, a

general expression for R based on Eq. (11) may be written as,

o

—0oQ

R(t) — 27‘(‘ / (G’2 -+ KdOmZG) (Adom —+ Ztafvdom) tafﬂ‘f"ydom dZ: ]IRtafﬁ‘F’Ydom o< ta*ﬁ+"/dom’ (BG)

where Iz = 27 [*° (G? + KaomzG) (Adom + 2t 74») dz. This is independent of time because at

early times (t < 1), @ = Ygom and hence t* Yem = 1 while at large times (¢t > 1), @ < Ygom

and hence t*7em — (), in both the dispersion-dominated regime as well as the diffusion-dominated

regimes (see table 2). Refer to Appendix C for a detailed derivation of the values of « and 5 during

the various temporal regimes.

In order to obtain the temporal scaling for the front width wy, we substitute, » = ry + 2t* and

cA = tng(z) using Eq. (B.3), ry = Adomt@™ using Eq. (B.1b) and ¢ = tfg(G(z) — Kdom#) using

Eq. (B.4), into Eq. (10). Furthermore, dr = t*dz for a fixed time, whereas the integration limits

r — 0 and r — oo transforms to 2 — —oo and z — oo respectively. This yields:

Z—00

f 27 (AdgomtYdom + 2t)t P (G? — Kgomz)(21%)? t*dz

[ 27 (Agomtrdom + 2t)tB(G? — Kgomz) t@dz

1
2

f (Agom + 2t 740m)(G? — Kgom2)2? dz

_ Z—r—00
wy = Z—00
Z—r—00
Z—00
Z—>—00
where, Iy = e

[ (Aqom + 2to70om) (G2 — Kaomz) dz

Z—>—00

like g, is independent of time.
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Appendiz B.1. The early time dispersion-dominated reaction-limited sub-regime (t < 1 and ry <
nPe)

For t <« 1 and ry < nPe, we show in Appendix C.1 that a = 1/3 (giving us 8 = 0) is
required for Eq. (B.5) to remain physically consistent. As a consequence Eq. (B.5) simplifies to:
d2G + (Aagispz + 2°) /(3n)d.G = 0, where d? represents second total derivative with respect to z.
Using Eq. (B.6), one then obtains:

[e.¢]

R(t) =2 / (G2 + K2G) (Aaisp + 2) 15 dz = It5 ~ t3, (B.8)
where Iy = 27 / (G* + K2G) (Aqgisp + 2) dz. Similarly, Eq. (13) yields for the mass of the product,

Mc ~ t3. (B.9)
Finally, using Eq. (10), we deduce that the reaction front width scales as
Wy~ 1 =13 (B.10)

Appendiz B.2. The dispersion-dominated mizing-limited sub-regime (t > 1 and ry < nPe)

At moderately large times, i.e., for £ > 1 but before the transition into the diffusion-dominated
regime occurs (see the inference (iii) in §3.2), the presence of mechanical dispersion may lead to a
second novel transport regime. This regime is realized when nPe > 1 (based on the definition of
T see §3.2.3.2), such that the front location satisfies r; < nPe even when t > 1. At the same
time, if n > 1 (based on the definition of 5P gee §3.2.3.2), it becomes possible to deduce analytical
scaling estimates for the reaction front properties for the interval 1 < ¢ < n?, as outlined below.
We deduce in §Appendix C.2 that for Eq. (B.5) to remain physically consistent in ¢ > 1, one must
have o = 0 (leading to 8 = 2/3). As a result, Eq. (B.5) reduces to, d>G + (1 — Pe)/(nPe)d.G —
(Aaisp/n) (G* + KzG) = 0, and using Eq. (B.6), we deduce,

R~ts (B.11)
The product mass (Eq. (13)) is then given by,
Mg ~ ti, (B.12)
Finally, using Eq. (10), the reaction front width scales as,
wy ~t* =10, (B.13)
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Appendiz B.3. The diffusion-dominated reaction-limited sub-regime (t < 1 and ry > nPe)

In case of weak mechanical dispersion (n < 1), if the condition ry > nPe is satisfied at early
times, i.e., for t < 1, the front will transition into a diffusion-dominated regime before the reaction
front becomes mixing-limited. As a result, it may be shown (see Appendix C.3) that a physically
and mathematically consistent form of Eq. (B.5) requires, « = 1/2 (giving us = 0) and as a
result the same simplifies to: (Agg + 2) d>G + [(1 — Pe) + Pe (Agigz + 22)/2] d,G = 0. It then
follows from Eq. (B.6) that:

R~t. (B.14)

The mass of the product (Eq. (13)) and front width (Eq. (10)) are given by:
Mg ~ %, and wy ~t* = t2. (B.15)

Appendiz B.4. The diffusion-dominated mizing-limited sub-regime (t > 1 and r; > nPe)

As noted earlier, at sufficiently large times (¢ > 1), 7y > nPe must be satisfied regardless of
how strong dispersion is. At this stage, it may be shown that @ = 1/6 (giving us 8 = 2/3) is
required for a consistent form of Eq. (B.5) (see the work of Brau et al. (2017) and Appendix C.4).
Hence, this equation simplifies to d2G — Pe (G2 + ICZG) = 0. Using Eq. (B.6), we then deduce

R~ (B.16)
The product mass (Eq. (13)) and the front width (Eq. (10)) scale as,

Me ~t, and wp ~t* ~ to. (B.17)

Appendix C. Brief derivation of the values of o« appearing in §3.2.1, §3.2.2 and Ap-
pendix B

Appendiz C.1. The early time dispersion-dominated reaction-limited sub-regime

Proceeding with Eq. (B.5) in the dispersion-dominated regime, we emphasize that early time
implies t < 1. For this, we identify the prospective intervals for « as: (i) o < —2/3, (ii) —2/3 <
a <0, (iii) 0 < a < 1/3 and (iv) a > 1/3. These values are identified such that Eq. (B.5) shows
distinct behavior in each of these intervals, when attempting to fulfil the following requirements:
(a) None of the terms in Eq. (B.5) should have a negative power of ¢; and (b) The second derivative

term d*G must be retained (otherwise the nature of the equation changes). These requirements
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ensure that Eq. (B.5) remains physically and mathematically consistent. For (i) a < —2/3 and (ii)
—2/3 < a < 0, the above requirements cannot be simultaneously fulfilled whilst also restricting
a within the respective intervals. When the intervals (iii) 0 < a < 1/3 and (iv) o > 1/3 are
chosen, in both cases we estimate a = 1/3, which falls outside interval (iii), but inside interval (iv).
Therefore, & = 1/3 stands out as the deduced value of « in the early time dispersion-dominated

reaction-limited sub-regime.

Appendiz C.2. The dispersion-dominated mizing-limited sub-regime at moderately large times

We again start with Eq. (B.5) in the dispersion-dominated regimes, and emphasize that the
moderately large time regime implies ¢t > 1. For this also, the prospective intervals for o are the
same as listed in §Appendix C.1. A physically and mathematically consistent form of Eq. (B.5)
now requires that: (a) none of the terms in Eq. (B.5) should have a positive power of ¢, along
with the requirement (b) as stated in §Appendix C.1. For the intervals (i) & < —2/3 and (iv)
a > 1/3, the above requirements cannot be simultaneously satisfied whilst restricting o within the
respective interval. On the other hand, the intervals (ii) —2/3 < a < 0 and (iii) 0 < @ < 1/3 both
lead to o = 0, which falls outside the interval (iii), but within the interval (iv). Therefore, & = 0
stands out as the deduced value of o during the dispersion-dominated mixing-limited sub-regime

at moderately large times.

Appendiz C.3. The diffusion-dominated reaction-limited sub-regime

Proceeding with Eq. (B.5) in the diffusion-dominated regime, we recall that the early time
implies t < 1. The conditions ensuring the physical and mathematical consistency of Eq. (B.5)
remain identical to those in Appendix C.1, while the prospective intervals for a now are: (i)
a<—1/2, (i) —=1/2 < a < 1/2 and (iii) > 1/2. Following the same line of reasoning as outlined

in Appendix C.1, the value of « is deduced as a = 1/2 in the interval (iii).

Appendiz C.4. The diffusion-dominated mizing-limited sub-regime at large times

We again start with Eq. (B.5) in the diffusion-dominated regime and note that in the large time,
t > 1. The conditions ensuring the physical and mathematical consistency of Eq. (B.5) remain
identical to those in Appendix C.2, while the prospective intervals for « are identical to those in
Appendix C.3. Following the same line of reasoning as outlined in Appendix C.2, the value of «

is deduced as v = 1/6 in the interval (ii).
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