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ABSTRACT

Dynamic exploration around non-spherical bodies has increased in recent decades due to the interest in studying the motion
of spacecraft orbits, moons, and particle ring around these bodies. The dynamic structure around these objects is defined by
regular and chaotic regions. The Poincaré surface of section technique allows mapping these regions, identifying the location of
resonances, and the size of regular and chaotic zones, thus helping us to understand the dynamics around these bodies. Using
this technique, we map in the a—e space the stable and unstable regions around ellipsoidal bodies, such as the dwarf planet
Haumea, the centaur Chariklo, and other five hypothetical bodies, in which we keep part of the physical parameters of Haumea
but we varied its period of rotation and ellipticity, to analyse the impact of these alterations in the extensions of the stable and
unstable regions due to first kind orbits and spin-orbit type resonances. We identified a large region of stability, in semimajor
axis and eccentricity, due to the first kind orbits. Periodic orbits of the first kind are present in a large semimajor axis interval
for all considered systems and have almost zero eccentricity, while resonant and quasi-periodic orbits have high eccentricities.
Furthermore, we identified the bifurcation of the 2:6 resonance when there is a spin reduction of a body with the same physical
parameters as Haumea. This bifurcation generates a chaotic region, reducing the extension of the stability zone.

Key words: celestial mechanics — Kuiper belt objects: individual: (136108) Haumea — minor planets, asteroids: general — planets

and satellites: dynamical evolution and stability.

1 INTRODUCTION

With the increasing discoveries of small non-spherical bodies, such as
asteroids, centaurs, comets, and trans-Neptunian objects, the interest
in understanding the dynamics of regions around these bodies,
subjected to non-spherical gravitational potentials, has increased.
This is because the orbits around these bodies generally differ from
the Keplerian orbits of the two-body problem (Hu & Scheeres 2004;
Ribeiro et al. 2021), as irregularities in their shape cause distur-
bances in their gravitational fields. To study the dynamics around
these bodies, through numerical simulations, it is necessary to use
physical models that adequately represent their shapes. Modelling by
triaxial and Jacobi ellipsoids or the Maclaurin spheroid are widely
used because they demand lower computational costs and they are
good approximations for symmetrical and non-spherical bodies. The
Maclaurin spheroid consists of a body with an equatorial radius A
different from the polar radius C, the triaxial ellipsoid is formed by
three semi-axes with different sizes, A > B > C, and the Jacobi
ellipsoid is an ellipsoid triaxial that revolves around the minor
axis (Chandrasekhar 1942). However, other modelling methods are
needed for bodies with more irregular shapes, as the case of the
asteroid Kleopatra. The Mascons model, developed by Geissler et al.
(1996), and the Polyhedra model, created by Werner (1994), are
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capable of representing the surface contours of these objects with
better precision, however, they demand higher computational costs.

The relevance of this type of dynamic exploration is justified
by the interest in studying the motion of spacecraft orbits, moons,
and ring particles around these bodies. Celestial bodies that can be
modelled using ellipsoids or spheroids, the gravitational field can
be studied by adding spherical harmonics. For oblate spheroids,
the terms J, are included, for example, J,, J4, and Js, which
correspond to the oblateness of the poles. For prolate ellipsoids,
in addition to J,, the term Cy;, is also added, which is related to
the ellipticity in the equatorial region of the body. The effect of
the gravitational potential generated by oblate spheroids is well
known due to extensive studies of the dynamics of planetary rings
and the orbits of artificial satellites, since planets with orbital rings
in the solar system, such as Saturn, are oblate spheroids and, in
the case of orbits of near Earth artificial satellites, it its necessary
to take into account is oblateness of the planet. The same does
not occur for prolate bodies, since the inclusion of the ellipticity
term in the gravitational potential, produces effects that have been
observed in recent decades, as in Hu & Scheeres (2004), which,
intending to study the motion of a spacecraft around the equator of
the asteroid Castalia, mapped the stable region around this body,
using numerical integrations for a gravitational field of a uniformly
rotating prolate body. For this, Hu & Scheeres (2004) modelled
Castalia using a triaxial ellipsoid. Furthermore, they demonstrated
that resonances between a rotating body and the mean orbital
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motion can play an important role in determining the stability of
orbits.

In Olsen (2006), Castalia is used again as a target object for the
study of stable regions around it, analysing prograde orbits with an
inclination of 60° and retrograde orbits with an inclination of 150°. In
the same work, the region around Itokawa is explored because it is an
asteroid with slower rotation, compared to Castalia. In addition to the
numerical experiments, Olsen (2006) derives analytical expressions
for the widths of the mean motion resonances in gravitational fields
of a uniformly rotating prolate body. The comparison made between
the two models, analytical and numerical, points to a disagreement
between theory and experiment for distances close to the asteroids
that were objects of study. In Mysen, Olsen & Aksnes (2006)
and Mysen & Aksnes (2007), a similar approach to the work
studied in Olsen (2006) is performed for the comet 67P/Churyumov-
Gerasimenko, modelling the body as a triaxial ellipsoid and mapping
the unstable and stable zones.

In this work, the second in a series of articles that study Non-
Spherical Symmetric Bodies (Madeira et al. 2022), we also seek to
map the region around ellipsoidal bodies using the Poincaré surface
of section technique. One of the target bodies of this work is the dwarf
planet Haumea, which, because it is quite elongated and has a ring of
particles, has become the object of study in several works in recent
years. Ortiz et al. (2017) suggests that the ring is at the location of the
1:3 resonance between the orbital period of the ring particles and the
spin of Haumea. However, Winter, Borderes-Motta & Ribeiro (2019)
using the Poincaré surfaces of sections technique, shows that the
orbits of this resonance have high eccentricities, above the limiting
eccentricity to maintain the estimated ring width, concluding that the
Haumea ring is not in resonance with the spin of the central body
and the rings are possibly associated with the first kind orbits. They
also show that the 1:3 resonance is double (2:6), generating a large
region of chaos in the resonance separatrix. In addition, they mapped
the stable zone of this resonance and the first kind orbits close to the
ring.

We also mapped the region around the centaur 10 199 Chariklo,
which has a system with two narrow rings and possibly small
satellites (Braga-Ribas et al. 2014; Bérard et al. 2017). Sicardy et al.
(2019) discusses the possibility that the centaur is spherical and has an
anomalous mass at its equator. Other studies, based on observational
data, suggest that Chariklo has a triaxial or Jacobi ellipsoid shape
(Leiva et al. 2017; Morgado et al. 2021). In this work, we model
Chariklo as an ellipsoid using the most recent observational data on
its shape (Morgado et al. 2021).

In addition to Chariklo and Haumea, we map the stable and un-
stable regions of five other systems. These systems are hypothetical
bodies in which we maintain part of the physical parameters of
Haumea, but vary its ellipticity and period of rotation, to analyse the
impact of these changes on the extensions of the stable and unstable
regions.

The dynamic system adopted and the Poincaré surface of sec-
tion technique are considered in the next section. The dynamic
characteristics of some of the controlled orbits found in this study
are explored in Section 3. Maps of stable and unstable regions are
presented and discussed in Section 4. The applications of this study
are explored in Section 5 and finally, we present our conclusions in
Section 6.

2 DYNAMICAL SYSTEM

In this work, we analyse the dynamics of particles around prolate
bodies in the rotating system (Fig. 1). Observational data from the
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Figure 1. Schematic diagram of an equatorial path around a Jacobi ellipsoid.
The plane Oxy is fixed on the body, xo marks the initial position of the
trajectory and the arrow indicates the initial velocity.

works of Ortiz et al. (2017); Morgado et al. (2021) suggests the Jacobi
ellipsoid as a possible shape for the bodies chosen as the target of this
study. Therefore, the gravitational potential of these bodies will be
composed by the spherical harmonics J, and C,; defined as (Balmino
1994):

2C? — A — B?
h=-—m ey
and

A? — B?
C22 = W (2)

We take R, = (ABC)'? as the equivalent radius.

The equations of motion, with a plane Oxy fixed on the central
body and rotating with the same period of rotation as the central
body, as illustrated in Fig. 1, are given by (Hu & Scheeres 2004):

i— 2wy = w*x + Uy, 3)
and
y+2a)x:w2y+Uy, 4)

where w is the velocity of rotation of the central body, U, and U,
are the derivatives of the gravitational potential defined as:

GM R\’>[-J 3C
=B (1 (£ [£ 0]

where r = \/x2 + y2, G is the gravitational constant and M is the
mass of the central body.

The systems explored have the Jacobi constant C; that can be given
by (Hu & Scheeres 2004):

Ci =0 (x*+y%) +2U(x,y) — 3> — y°, (6)

which will be used to obtain the Poincaré surface of section. The unit
of Jacobi’s constant is km?s 2, however, for practicality, we will omit
this information in the figures presented in this work. In the following
subsections, we explore the Poincaré surface of section technique and
some of the families of periodic orbits found in the systems studied
in this work.

2.1 Poincaré surface of section

Poincaré surface of section are maps generated by crossing points of
the trajectories in the phase space with a fixed section of the system.
These maps are generated in phase space for fixed values of the Jacobi
constant (equation 6). This technique has been used extensively in
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Figure 2. Poincaré surface of section for a system considering Haumea as an
oblate body, i.e. the ellipticity coefficient (Cy2) is equal to zero. The islands
in red are quasi-periodic orbits associated with a family of periodic orbits,
indicated by the single point at the centre of all the islands.

celestial dynamics as a tool for identifying the location and extent
of stable and unstable regions in the circular restricted three-body
problem (Hénon 1965a, b, 1966a, b, 1969; Jefferys 1971; Winter &
Murray 1994a, b, 1997a, b). However, in recent years, Poincaré
surface of section has been applied to the two-body problem,
whose central body rotates and has a non-spherical mass distribution
(Borderes-Motta & Winter 2018; Winter et al. 2019; Madeira et al.
2022). Fig. 2 shows a Poincaré surface of section applied to the
two-body problem whose central object is oblate. The primary body
has the same physical parameters as Haumea (these parameters can
be seen in Table 1) but with the coefficient C,; equals to zero. In
this case, when there is no ellipticity, we only have elliptical orbits,
indicated by the red curves, a circular orbit, represented by the point
in the centre of the red curves, and hyperbolic trajectories that collide
with the central body or are ejected, indicated by isolated red points.

In cases where the body is prolate, the ellipticity of the body
together with its rotation are responsible for disturbing the region and
generating more complex structures, related to resonances between
the rotation of the primary and the orbital motion of the particles,
as can be seen in the Fig. 3, which shows two Poincaré surfaces
of sections of the Haumea system. The physical parameters used
can be consulted in Table 1. First, a few dozen initial conditions
were distributed for distances 2000 < x < 2300 km and x =0
ms~!. Through a set of numerical integration, the Poincaré surface of
sections are generated. The points randomly distributed correspond
to chaotic orbits and determine the dynamically unstable regions. The
stable regions are delimited by points that form closed curves, which
do not cross each other. These curves are called islands of stability.
Random points from chaotic orbits do not enter these stable regions.
Each island of stability is formed by a quasi-periodic orbit, which
receives this nomenclature because it does not have a defined orbital
period. However, these quasi-periodic orbits follow the behaviour of
the periodic orbits that are located in the centre of stability islands.

Table 1. Physical parameters of central bodies used in the numerical simulations.
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Figure 3. Poincaré surface of section for two different values of the Jacobi
constant (C;). The stability islands of the 2:5 resonance are shown at the top,
indicated by the blue colour, while the double stability islands of the 2:6
resonance are shown in the bottom figure, represented by different shades of
green. On both Poincaré surfaces of sections, there is the presence of islands
of quasi-periodic orbits associated with periodic orbits of the first kind (closed
red curves), in addition to the unstable region, filled randomly by red points.

Periodic orbits, whenever they cross the Poincaré surface of section,
pass through the same points in the phase space.

The periodic orbits present in Fig. 3 can be classified, according
to Poincaré (1895), as first or second kinds. The first kind is quasi-
circular orbits that are not associated with any resonance. Fig. 3 are
the points in the centres of the islands of stability represented by
the red colour. The second kind are the periodic orbits associated
with resonances. In this case, spin-orbit resonances, i.e. resonances
between the rotation of the primary body and the orbital motion of
the secondary body. Periodic orbits of the first kind are identified by
single islands of stability in the Poincaré surface of section, while
those of the second kind can be identified by unit islands, pairs, or
an integer number of islands of stability. This number is equal to the
order of the resonance. For example, in Fig. 3(a) there are three blue
islands, therefore it is a third-order resonance associated with 2:5

System Chariklo Haumea Haumea® Haumea® Haumea“ Haumea? Haumea®
Mass (kg)'? 6.432 x 10'8 4.006 x 102! 4.006 x 102! 4.006 x 102! 4.006 x 102! 4.006 x 102! 4.006 x 10%!
Equivalent radius (km) 124.8 798 798 798 798 798 798
Spin (h)!3 7.004 3.9155 3.9155 3.9155 3.9155 11.7465 19.5775
J2 0.124 0.243 0.243 0.243 0.243 0.243 0.243
Cx» 0.007 0.049 0.034 0.018 0.003 0.049 0.049

Note.! Leiva et al. (2017). 2Ragozzine & Brown (2009). 3Rabinowitz et al. (2006).
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resonance. These islands of stability related to the same resonance
or the first kind periodic orbits, occur along an interval of C; values,
varying their location and size. This set of periodic orbits is called a
family.

Fig. 3(b) shows two pairs of stability islands in light green and
dark green. These are two families belonging to the same resonance.
Duplicity in families is a natural feature due to the potential of
the body being invariant under a rotation 7 (Sicardy 2020) and it
occurs for all 1:n. Because of that, following Sicardy (2020), we will
call them 2:2n resonance. Thus, the two families in Fig. 3(b) are
associated with the 2:6 resonance.

2.2 Other periodic orbits

There are periodic orbits that do not fit the first and second kinds
classifications but also delimit regions of stability. Broucke (1968)
mapped and classified several of these orbits in the Earth—-Moon
system and Winter & Neto (2002) investigated the stability zones
delimited by them, in the same Earth—-Moon system. In this work, we
found two families of these periodic orbits in the system composed
of a central body with the same physical parameters as Haumea, but
with three times the rotation period of the dwarf planet (see data
in Table 1, case Haumea?). Fig. 4 presents the evolution of the two
families (in shades of blue) for four Jacobi constant values. Due
to the shape of the trajectory these two families fit into the F-type
classification, defined in the work of Broucke (1968). For simplicity,
they will be called F1 and F2. Furthermore, the periodic orbits of
these two families are symmetric trajectories and with a large radial
variation.

These two families delimit regions of stability that will be
discussed in Section 4. Next, we present the evolution of the families
associated with resonances of up to the third order.

2.3 Resonances

In this work, we use the Poincaré surface of section technique to
determine stable and unstable regions around prolate bodies. Part of
the stable region found is due to the presence of resonances. We will
analyse the resonances of up to the third order, which is the strongest
presence in the systems considered in this work. To demonstrate the
evolution of these resonance families in the phase space, we show
in this section some of the Poincaré surfaces of sections for four
cases of the central body of the system: the dwarf planet Haumea; the
hypothetical Haumea“ body, which has the same physical parameters
as Haumea, except for the ellipticity, with a minimum value for
the Poincaré surface of section to appear resonant structures; and
the hypothetical system Haumea®, which has a rotation period five
times slower than that of Haumea. In addition to these four cases,
the study extends to three more hypothetical central bodies, which
are variations of the rotation period and ellipticity coefficient of
Haumea and to the Chariklo system case. The variation of these
two parameters was made to analyse its implications in the stability
regions of the systems. The physical parameters used in the numerical
simulations for each system are shown in Table 1.

Fig. 5 presents a sequence of the Poincaré surface of section for six
values of the Jacobi constant, allowing the visualization of the evo-
lution of the structures of the first and second kinds periodic/quasi-
periodic orbits. Three resonances are highlighted: 2:4 ((a) and (b)),
2:5 ((c) and (d)) and 2:4 ((e) and (f)). The 2:4 resonance is double,
represented by the pink and purple islands in Figs 5(a) and (b). For the
first Jacobi constant value, there are no periodic/quasi-periodic orbits
of the first kind, as the entire region is chaotic, as indicated by the
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Figure 4. Poincaré surface of section of the Haumea? system (see Table 1)
for four different values of the Jacobi constant (C;), showing the evolution of
two families, of periodic and quasi-periodic orbits, indicated by the colours
light blue (F1) and dark blue (F2).

random red points that fill the region around the islands of stability
of the 2:4 resonance. This is due to the proximity to the central body,
the particles collide or are ejected. In Fig. 5(b) the existence of the
chaotic region can still be seen, but there is a region of stability
associated with quasi-periodic orbits of the first kind, closed red
curves. The islands of stability associated with the 2:4 resonance
are closer and smaller, a natural motion when the Jacobi constant is
increased. Due to this approximation, a separatrix appears between
the islands, generating a narrow region of chaos. The chaos between
the islands destroys the periodic orbit of the first kind. Therefore, for
the Jacobi constant interval, in which it is possible to identify the
existence of the 2:4 resonance, the first kind of periodic orbit does
not exist.

Fig. 5(c) shows the stability islands associated with the 2:5
resonance, in blue. There is a small region with periodic/quasi-
periodic orbits of the first kind and, around it, a large region of

MNRAS 525, 44-56 (2023)
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Figure 5. Poincaré surfaces of sections of the Haumea system for six different values of the Jacobi constant (Cy), showing the evolution of the 2:4, 2:5, and 2:6
resonances. The stability islands of the 2:4 resonance (plots (a) and (b)) are duplicated and are represented by pink and purple colours. The same phenomenon
occurs with the islands of the 2:6 resonance (plots (e) and (f)), indicated by different shades of green. The 2:5 resonance is shown by the islands in blue in plots
(c) and (d). The islands in red are quasi-periodic orbits associated with a family of periodic orbits of the first kind.

chaos. In the following plot, 5(d), it can be seen that the islands
of the 2:5 resonance are closer and smaller, however, in this case,
these islands do not continue to approach the centre of the first kind
periodic orbits. This is the closest approximation between them and
for larger values of C;j, these islands are no longer identified in the
Poincaré surface of section.

Changing on to the Poincaré surface of section where the two
families of the 2:6 resonance appears, Figs 5(e) and (f), there is a
considerable increase in the stable region, both limited by first kind
and resonance orbits. This fact is explained by the distance from
the central body, reducing the perturbation due to ellipticity in the
gravitational field.

Fig. 6 shows a set of Poincaré surface of section for the Haumea“
system, which has the ellipticity coefficient lower than the real

MNRAS 525, 44-56 (2023)

Haumea value of Cy,. This is the smallest value of Cy, that generates
structures related to spin-orbit resonances, for this system. The first
observable change is the displacement of the structures on the x axis:
they are closer to the central body. Note that, in general, the unstable
region is smaller, identified by the random red points. The family of
periodic orbits of the first kind still does not coexist with the families
of the 2:4 resonance. In Fig. 6(b), the points that follow a curve in the
region between 1765 < x < 1770 km for x < Om s~ and 1783 < x
< 1790 km for % > 0 m s~! are orbits that initially have the motion
of quasi-periodic orbits, but collide with the central body after some
period of time. The collision occurs because the proximity to the
central body increases the probability of more eccentric trajectories
colliding with the primary. The same phenomenon occurs in Figs 6(b)
and (c¢).
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Figure 6. Poincaré surface of section of the Haumea“ system for six different values of the Jacobi constant (C;), showing the evolution of the 2:4, 2:5 and 2:6
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resonances. The stability islands of the 2:4 resonance (plots (a) and (b)) are duplicated and are represented by pink and purple colors. The same phenomenon
occurs with the islands of the 2:6 resonance (plots (e) and (f)), indicated by different shades of green. The 2:5 resonance is shown by the islands in blue in plots
(c) and (d). The islands in red are quasi-periodic orbits associated with a family of periodic orbits of the first kind.

Haumea’s high spin, added to its elongated shape, causes for those
particles orbiting close to it to collide or to be ejected from the
system. Decreasing the rotation, all the resonant semimajor axes
move away from the central body, allowing other resonances to
appear, for example, the 4:7 resonance represented by the yellow
islands in Fig. 7 present in the Haumea® system. Also, on this system
occurs the bifurcation of the 2:6 resonance, which can be seen in
Fig. 8(a) by the dark and light green points. Previously, each periodic
orbit associated with the 2:6 resonance crossed the phase space at
only two points, but due to the bifurcation, it now crosses at four
different points. Figs 8(b) and (c) shows the zoom of the bifurcated
islands of one of the families associated with the 2:6 resonance.
Around them, there is a region of chaos intrinsic to the separatrix,

generated by the bifurcation, restricting the extension of the stable
region of the resonance, compared to cases in which there is no
bifurcation. This phenomenon entails some implications, such as the
radial extension of a possible ring around this body in 2:6 spin-orbit
resonance: the chaos generated by the separatrix would produce a
gap inside the ring. The evolution of these families in phase space
can be seen in Fig. 9.

3 PERIODIC ORBITS AROUND PROLATE
BODIES

The orbits associated with the resonances discussed in Section 2.3 are
studied here in order to discuss their dynamical characteristics. For
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Figure 7. Poincaré surface of section of the Haumea®. The 4:7 resonance
is represented by the islands in yellow. The islands in red are quasi-periodic
orbits associated with a family of periodic orbits of the first kind. The islands
in pink and lilac belong to the 2:4 resonance.

this, we choose a periodic orbit for each resonance of the Haumea
system and a periodic orbit of the 4:7 resonance of the Haumea®
system. It is noteworthy that the behaviour of the resonant orbits of
the other analysed systems are similar to the one presented in this
section. As said, the 2:4 resonance has two families of periodic/quasi-
periodic orbits, so in Fig. 10 a pair of these periodic orbits are
presented for C; = 0.7903 km? s~2, one from each family. Fig. 10(a)
refers to the periodic orbit represented by the central point interior
to the pink islands of the Poincaré surface of section and Fig. 10(b)
refers to the purple periodic orbit, both shown in Fig. 5(a). The
trajectories are in the rotating system and are retrograde. The orbit
is closed because the particle is at the fixed point of the resonance.
The temporal evolution is given by the numbered points that are
equally spaced in time, while the scale and colours give the velocity
in the inertial system. The points closest to the central body have
the highest velocity modules, indicating the pericentre of the orbit.
Likewise, the lowest values of velocities indicate the region of the
apocentre of the orbit. The trajectories are mirror images of each
other about the line Oy. These are consequences that result from the
gravitational potential being invariant under a rotation 7 (equation
5). The period of these orbits corresponds to two periods of rotation
of Haumea.

Fig. 11 shows the periodic orbit, in the rotating system, associated
with the 2:5 resonance for a C; = 0.8030 km?s~2. This orbit is
represented by the central point interior to the blue islands of stability
in Fig. 5(c). In this case, the orbit is symmetrical in both axes, the Ox
axis and the Oy axis. The period of this orbit is approximately five
times the period of rotation of Haumea and it is a closed trajectory
because it is at the resonance fixed point.

As it happens for the 2:4 resonance, there is a duplicity of families
of periodic/quasi-periodic orbits in the 2:6 resonance, as seen in
the Poincaré surface of section in subsection 2.3. Fig. 12 presents a
sample of these periodic orbits for the value of C; = 0.8200 km?s~2.
In Fig. 12(a), there is the trajectory of the central point interior
to the light green islands of the Poincaré surface of section and
Fig. 12(b) shows the central point interior to the islands in dark
green colour, both shown in Fig. 5(e). The orbital period is three
times the rotational period of Haumea. As it is a double family
belonging to the same resonance, the orbits are mirror images of
each other about the Ox axis. In the Oy axis, there is a division of
the orbits into symmetrical parts, due to the symmetry of the body
to the same aforementioned axis. The closest points of the trajectory
with the central body are the same where the velocity module
assumes the highest values, indicating the pericentre locations. At
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Figure 8. Poincaré surface of section of the Haumea® system for C; =
26115 x 107! km?s=2. (a) The stability islands of the 2:4 resonance
are duplicated and are represented by pink and purple colours, the same
phenomenon occurs with the islands of the 2:6 resonance indicated by
different shades of green, the 2:5 resonance is shown by the islands in blue
and the islands in red are quasi-periodic orbits associated with a family of
periodic orbits of the first kind. (b) and (c) zoom of the bifurcation of one of
the families associated with 2:6 resonance.

the points of closest approximation to Haumea, the velocities are
lower, corresponding to the apocentres.

Fig. 13 shows the periodic orbit, in the rotating system, asso-
ciated with the 4:7 resonance of the Haumea® system for a C; =
0.25536 km?s~2. This orbit is represented by the central point interior
to the yellow stability islands in Fig. 7. Because it is not a double
resonance, the orbit is symmetrical in both axes, the Ox axis and the
Oy axis. The period of this orbit is seven times the period of rotation
of Haumea.

The plots in Fig. 14 show the temporal evolution of the radial
distance of the periodic orbits associated with the (i) 2:4, (ii) 2:5,
(iii) 2:6, and (iv) 4:7 resonances. Figs 14(a) and (c) refer to the
families that were represented by pink and light green colours, in the
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Figure 9. Evolution of the families associated with the 2:6 resonance in
the Poincaré surface of section for the Haumea® system. The plot presents
a sample of the largest islands of stability, an intermediate island, and the
internal points that represent the periodic orbit, showing the structure for
different values of C;. The colours indicate the values of Cj.

Poincaré surface of section of Fig. 5. The colours of the solid lines
indicate distinct values of the Jacobi constant. The orbits with the
highest radial amplitudes (yellow) correspond to the lowest values
of C;, while the trajectories with the lowest radial amplitude (solid
grey lines) correspond to the highest values of C;. The intervals of
the considered Jacobi constants can be seen in the captions of each
plot present in Fig. 14. The comparison between the orbits of the
same family for different C; shows that the greater the value of C;,
the smaller is the amplitude of the radial variation. This attenuation
occurs as the islands of stability approach the first kind orbit in the
Poincaré surface of section. The dotted and dashed lines delimit the
location of the resonant semimajor axis using two different methods:
through the epicyclic frequencies (Borderies & Longaretti 1987;
Longaretti & Borderies 1991; Borderies & Longaretti 1994) and the
geometry of the orbit. The  and « frequencies are defined as (Sicardy
2020):

GM | 3f /R\?]

N =— 1+—f(—) @)
a- 5 a

and
GM [ 3f /R\?]

2=t 1_4(7) , ®)
a’ 5 a

where f = 2.5 J,. The resonant semimajor axis, a, is obtained by
a numerical iteration process using the two frequencies (for more
details see Renner & Sicardy 2006). The values presented in the
graphs of Fig. 14 (dotted lines) using this method are the same
values obtained in Sicardy (2020).

The second method for finding the resonant semimajor axis is
derived from the geometry of the orbit. This method was discussed
in Ribeiro et al. (2021), which consists of calculating the semimajor
axis using the equation:

Tmax + V'min
_ Tmax ¥ Tinin, 9
a > ©)

where a is the semimajor axis due to the geometry of the orbit,
Tmax and ry, are the largest and smallest radial distances of the
same orbit, respectively. The diagram in Fig. 15 shows an overview
of the comparison between the three methods used to locate the
centres of resonances and the radial width of the resonant orbits. The
diagram is divided into three horizontal bands. Each track refers to
one resonance. The grey regions limit the width of the orbital radius
variation of the trajectories indicated by the grey colours in Fig. 14.
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Figure 10. Periodic orbits of the 2:4 resonance for C; = 0.7903 km? 72
in the rotating system. The temporal evolution of the orbits is given by the
numbered points that are equally spaced in time, while the colour scale
gives the velocity in the inertial system. (a) The periodic orbit of the family
represented by the pink colour in Fig. 5(a). (b) The periodic orbit of the family
represented by the purple colour in Fig. 5(a).

These are the periodic orbits with smaller amplitudes of the radial
variation. Among the three orbits analysed, the one associated with
2:5 resonance is the one with the greatest extent of radial variation,
around Ar = 307 km, while the orbit associated with 2:4 resonance
has Ar = 83 km and at 2:6 has Ar = 118 km. The radial extent of
the 2:5 resonance orbits is larger because its family is not double, as
well as the 2:4 and 2:6 resonances.

As explored in Ribeiro et al. (2021), there is a difficulty in
describing, in terms of orbital elements, trajectories around prolate
bodies. The diagram in Fig. 15 highlights this difficulty. In the
2:4 resonance range the location of the resonant semimajor axis
calculated using the two-body problem (pink dotted line), which
considers the central body to be spherical, is outside the radial
width of the orbit and distant about 133 km from the ry;, of this
orbit. The same occurs with the resonant semimajor axis obtained
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Figure 11. Periodic orbit of the 2:5 resonance for C; = 0.8030 km? 2
in the rotating system. The temporal evolution of the orbit is given by the
numbered points that are equally spaced in time, while the colour scale gives
the velocity in the inertial system.

through the epicyclic frequencies (pink dot-dash line), which only
considers the perturbation of the oblateness of the body. Going back
to Fig. 14(a), note that the 2:4 resonant semimajor axis obtained by
the epicyclic frequencies is outside the region of the orbit with the
greatest amplitude of radial variation (yellow line). Both method do
not take into account the perturbation due to the ellipticity of the
central body.

Because they are farther from the primary body, particles at the 2:5
resonance are less affected by the effect of the ellipticity of the body,
compared to the particles at the 2:4 resonance. For this reason, the
difference between the resonant semimajor axis calculated by the two
mentioned methods is closer to the centre of the radial band of the
orbit. However, this difference, around 69 km, is still considerable.
For the 2:6 resonant orbit, the difference does not reach 2 km. Because
the theoretical models are not accurate to determine the resonant
semimajor axis, especially those closer to the central body, to use the
orbit geometry method becomes an alternative. The dashed lines in
the diagram of Fig. 15 indicate the semi-axis of each of the resonances
making use of the geometry of the orbit of smaller radial amplitude
(solid grey lines). In the following section, the stable and unstable
regions around prolate bodies are identified using this method.

4 WIDTH OF RESONANCES

Having defined the method that best fits the calculation of the
resonant semimajor axis, we extend this application to determine the
width of resonances and the limits of the stable and unstable regions
around bodies with ellipticity. Fig. 16 shows how the resonance width
is determined for a given value of C;. In Fig. 16, we have the temporal
evolution of the radial variation of the periodic (pink line) and quasi-
periodic (yellow line) orbits associated with the 2:4 resonance. The
quasi-periodic orbit chosen is always the largest island of stability
found in the Poincaré surface of section, as this guarantees the
maximum width of the resonance. With the periodic orbit, the centre
of resonance is determined, while with the quasi-periodic orbit, the
limits of the width of the resonance can be obtained. To determine the
lower limit, the equation @ = (rmin + 7max)/2 i used again, where the
values of the maximum and minimum radii are those indicated by the
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Figure 12. Periodic orbits of the 2:6 resonance for C; = 0.8200 km? s—2
in the rotating system. The temporal evolution of the orbits is given by the
numbered points that are equally spaced in time, while the colour scale
gives the velocity in the inertial system. (a) The periodic orbit of the family
represented by the light green colour in Fig. 5. (b) The periodic orbit of the
family is represented by the dark green colour in Fig. 5.

dashed lines and yellow arrows, which is the smallest difference of
the radial variation. For the upper width limit, use the radius values
of the greatest radial variation, indicated by the dashed lines and
grey arrows. This process is done for all orbits of the 4:7, 2:4, 2:5,
2:6 resonances and for orbits of the first kind family. In addition
to calculating the semimajor axis due to geometry, its respective
eccentricities are also calculated by the equation e = 1 — ry/a.
With these data, it is possible to build the map of the unstable and
stable regions in the a — e space. This process was done for all the
seven systems addressed in this work.

Fig. 17 shows the mapping of the region around the Haumea sys-
tems, Haumea,” Haumea® and Haumea®. Starting with the Haumea
system, Fig. 17(a), since it is a very elongated body, the region of
stability due to the family of the first kind orbits (white region limited
by red lines), is greatly affected by the unstable region (in grey). This
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Figure 13. Periodic orbit of the 4:7 resonance of the Haumea® system for
C; =0.25536 km? s~2 in the rotating system. The temporal evolution of the
orbit is given by the numbered points that are equally spaced in time, while
the colour scale gives the velocity in the inertial system.

phenomenon can also be noticed by analysing the Poincaré surface
of section, Fig. 5, with the presence of regions of chaos, indicated by
the red points randomly filling the spaces. The pink, blue, and green
regions correspond to the widths of the 2:4, 2:5, and 2:6 resonances,
respectively. Of the three, the largest in semimajor axis length and
eccentricity is the 2:6 resonance. Due to the proximity to the central
body, the width of the 2:4 resonance is considerably small. As seen
in the Poincaré surface of section, this resonance is surrounded by
a large region of chaos. It is observed that for low values of the
eccentricity, e < 0.018, there are no regions of stability associated
with any of the three considered resonances. However, the periodic
orbits of the first kind, represented by the lower red line, always
remain with an eccentricity below 0.02.

Observing the maps of the Haumea® and Haumea” systems, see
Figs 17(b) and (c), it is noted that the stable region due to the
first kind orbits is greater as the ellipticity of the body decreases.
Furthermore, the eccentricity of periodic orbits of the first kind is
also closer to zero. Fig. 17(d) shows the mapping of regions around
the Haumea“ system, which has the lowest ellipticity coefficient of the
systems considered in this work. For this case, the coefficient C,, was
minimized to 0.003, which is the smallest value sufficient to generate
more complex structures, involving resonances between the Haumea
rotation and the orbital motion of the particles. With the perturbation
of the reduced ellipticity of the body, the stable region becomes
larger and the upper red line has a smooth grow, different from what
is shown in Fig. 17(a), where there are sharp drops on the eccentricity
of quasi-periodic orbits of the first kind. The lower red line, which is
related to periodic orbits of the first kind, shows that the eccentricity
is approximately zero. As for the widths of the resonances, for the
case of the 2:4 resonance there was a considerable reduction in its
size and the 2:5 and 2:6 resonances became less asymmetrical about
their respective centres (dashed lines), consequences caused by the
attenuation of the ellipticity of the central body.

Fig. 18 shows the maps for the systems where only the rotation
period has changed in relation to the physical data of Haumea. In
general, in both cases, the regions of stability due to the resonances
became wider in the semimajor axis and covered a wider range
of eccentricity. This occurs because the rotation is slower, which
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(a) Periodic orbits of the 2:4 resonance of the Haumea system for values of
0.7903 < Cj < 0.7930, indicated by different colours.
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(b) Periodic orbits of the 2:5 resonance of the Haumea system for values of
0.8030 < C; < 0.8078, indicated by different colours.
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(c) Periodic orbits of the 2:6 resonance of the Haumea system for values of
0.8200 < C;j < 0.8277, indicated by different colours.
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(d) Periodic orbits of the 4:7 resonance of the Haumea® system for values of
0.25536 < C; < 0.25676, indicated by different colours.

Figure 14. Temporal evolution of the radial distance of the periodic orbits
associated with the resonances, for different values of C;. Time refers to an
orbital period in the rotating system. The dashed lines indicate the resonant
semimajor axis location obtained from two different methods.
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Figure 15. Diagram comparing the location of the semimajor axis of the
2:4,2:5, and 2:6 resonances, calculated by three different methods: two-body
problem, epicyclic frequencies (n and k) and orbit geometry. The types of
dashes indicate which method was used. The pink, blue, and green colours
are related to the resonances and the grey regions indicate the radial variation
of the less eccentric periodic orbit of each considered resonance. In the case
of the 2:4 resonance, the locations of the resonant semimajor axis calculated
through the two-body problem and epicyclic frequencies are very close, with
the lines almost overlapping.
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Figure 16. Temporal evolution of the radial variation of the periodic (in
pink) and quasi-periodic (in yellow) orbits. The quasi-periodic orbit refers
to the largest island associated with 2:4 resonance for the Jacobi constant
C; =0.7912 km?s~2. The yellow and grey dashed lines and arrows indicate
the maximum and minimum radial distance values used to calculate the
semimajor axis and eccentricity limits of the quasi-periodic orbits, while the
pink dashed lines and arrows point to the maximum and minimum values of
the radial distance considered to calculate the centre of resonance.

leaves the resonances considered further away from the central body,
minimizing collisions and ejections. In the Haumea® system, see
Fig. 18(b), in addition to the slower rotation period allowing the
emergence of the 4:7 resonance, yellow region, one can note the
segmentation of the stability region due to the orbits of the first
kind. This segmentation is caused by the chaos of the separatrix
of the 2:4 resonance. Unlike the other cases, in Haumea®, the
periodic orbits of the first kind have also higher eccentricities,
starting at e &~ 0.1. In the stability region of the 2:6 resonance,
Fig. 18(b), we can observe a curvature in the resonant semima-
jor axis, a black dashed line, caused by the bifurcation of the
resonance.
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Figure 17. Maps of the stable and unstable regions in the a — e space of the
systems (a) Haumea, (b) Haumea®, (c) Hamuea® and (d) Haumea®. Maps were
obtained from the Poincaré surface of section. Particles with semi-major axis
and eccentricity within the gray region either collide with the central body
or are ejected. In the other regions, the particles remain stable for more than
10000 orbits. The pink, blue and green regions are related to the 2:4, 2:5
and 2:6 resonances, respectively. The black dashed lines indicate the centres
of each resonance determined by the geometry of the resonant orbits. The
lower red line corresponds to the semi-major axis and eccentricity of first
kind periodic orbits and the upper red line to quasi-periodic orbits.
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Figure 18. Maps of the stable and unstable regions in the a—e space of the
systems (a) Haumea? and (b) Haumea®, obtained from the Poincaré surface
of section. Particles with semimajor axis and eccentricity within the grey
region either collide with the central body or are ejected. In the other regions,
the particles remain stable for more than 10000 orbits. The yellow, pink,
blue, and green regions are related to the 4:7, 2:4, 2:5, and 2:6 resonances,
respectively. The purple region in plot (a) refers to the F1 and F2 family.
The black dashed lines indicate the centres of each resonance determined by
the geometry of the resonant orbits. The lower red line corresponds to the
semimajor axis and eccentricity of first kind periodic orbits and the upper red
line to quasi-periodic orbits.
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Figure 19. Map of the stable and unstable regions in the a—e space of the
Chariklo system, obtained from the Poincaré surface of section. Particles with
semimajor axis and eccentricity within the grey region either collide with the
central body or are ejected. In the other regions, the particles remain stable for
more than 10000 orbits. The pink, blue, and green regions are related to the
2:4,2:5, and 2:6 resonances, respectively. The black dashed lines indicate the
centres of each resonance determined through the geometry of the resonant
orbits. The lower red line corresponds to the semimajor axis and eccentricity
of first kind periodic orbits and the upper red line to quasi-periodic orbits.

Dynamics around prolate body 55

Changing systems again, Fig. 19 shows the mapping of the region
around Chariklo. This centaur is considerably less elongated and
rotates more slowly compared to Haumea. Consequently, the stable
region (in white) is larger and without abrupt drops in eccentricity
in the upper red line, associated with quasi-periodic orbits of the
first kind. The width of the 2:4 resonance is narrower than the others.
The orbits associated with the 2:6 resonance are more eccentric, with
variations between 0.05 < e < 0.29.

The maps presented in this section show the impact of the
ellipticity and spin of the central body on the stable and unstable
regions and, consequently, on the widths of the resonances. It is
common to build the a—e maps through theoretical models using the
circular restricted three-body problem. However, it was not possible
to use this model in the systems analysed in this work, due to
the difficulty in describing orbital elements of trajectories around
prolate bodies. This disagreement between the analytical model and
numerical results was pointed out in the work of Olsen (2006), who
found discrepancies in the location of resonances close to the central
body (see their figs 1, 3, 4, and 5).

5 APPLICATIONS: SPACECRAFT, RINGS, AND
SATELLITES

In this study, we identified chaotic and stable regions around prolate
bodies. Stability zones are associated with periodic and quasi-
periodic orbits, some of them are resonant and some are not. These
analyses can be used in several applications, such as space missions,
natural satellites, or rings particle. Next, we present some of these
applications.

Periodic orbits, resonant or non-resonant, have characteristic
trajectories format, which is repeated over time as, for example, those
shown in Figs 10 to 13. Identifying the location of periodic orbits can
be advantageous for space missions, as that by placing a spacecraft
on this trajectory it is possible to predict what its behaviour will
be over time, in addition, the spacecraft will be inserted in a stable
zone, since around periodic orbit there is a region of quasi-periodic
orbits, as shown in Figs 4, 5, 6, and 7. Several works have been
developed in the last decades in order to discover periodic orbits for
space missions around smaller and irregular celestial bodies, as is
the case of the work of Jiang et al. (2018) that explores this type
of trajectory around the asteroids 243 Ida, 433 Eros, 6489 Golevka,
101 955 Bennu, and comet 1P/Halley.

Stable regions, linked to resonances or other periodic orbits,
correspond to the birth environment of rings and satellites. Ring
particles located in stable regions are expected to have long lifetimes
in the absence of external perturbation, possibly giving rise to moons
(Madeira, Charnoz & Hyodo 2023a; Madeira et al. 2023b). Satellites
in stable regions, in turn, can give rise to rings, for example, by
ejecting material due to external impacts (Madeira & Giuliatti Winter
2020, 2022). On the other hand, these regions can be dangerous for
a space mission, as they can be populated by natural objects.

The chaotic regions are also interesting for spacecraft, they be
an areas devoid of natural material. Over time, rings or moons that
formed in the region are removed due to instability. In the systems
studied in this work, we found an extensive region of chaos, for
example, the region internal to the 2:4 resonance, as shown in the
maps of Figs 17, 18, and 19. This is an area close to the body
that becomes interesting for missions that seek to study its surface.
Because they are in unstable zones, it is necessary to use some
control mechanism to guide the spacecraft for the time stipulated by
the mission.
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6 CONCLUSIONS

In this work, we seek to present an analysis of the dynamics of the
region around prolate bodies. For this, we used the Poincaré surface
of section technique, which provided the necessary information for
the identification of stable and unstable regions in the phase space of
the seven considered systems. The central bodies were modelled by
an ellipsoidal gravitational potential of an ellipsoidal body. Among
these systems, we change the rotation period, ellipticity, and mass
of the primary, to identify how the region around these bodies is
affected by these physical parameters. Our results are summarized
below:

(i) On the Poincaré surface of section, we identify the double
resonances, which were pointed out in the works of Winter et al.
(2019) and Sicardy (2020). In addition, in the Haumea® system we
identify the bifurcation of the 2:6 resonance. Analysing the Poincaré
surface of section, we find that both the ellipticity of the central body
and the spin affect the location of the resonances.

(ii) To measure the extent of stable and unstable regions, delimited
by periodic and quasi-periodic orbits, we used the method discussed
in Ribeiro et al. (2021). The use of epicyclic frequencies to calculate
the semimajor axis of orbits around prolate bodies leads to incon-
sistencies with the numerical results for regions close to the central
body. Such disagreements were also identified in the work of Olsen
(2006), who compared numerical simulations with an analytical
method (mean elements) for determining the width of spin-orbit
resonances around prolate bodies.

(iii) Having defined the method to calculate the semimajor axis
and eccentricity of the orbits, we build stability maps in the a—e
space. With the maps, we identified that the widths of the resonances
are not symmetrical about the centre of the resonance, defined by the
resonant semimajor axis.

(iv) It was possible to identify a large region of stability, in
semimajor axis and eccentricity, due to the first kind of orbits.
Periodic orbits of the first kind, in general, have almost zero
eccentricity and are present in a large semimajor axis interval for
all studied systems, while resonant and quasi-periodic orbits have
high eccentricities.
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