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A B S T R A C T 

Dynamic exploration around non-spherical bodies has increased in recent decades due to the interest in studying the motion 

of spacecraft orbits, moons, and particle ring around these bodies. The dynamic structure around these objects is defined by 

regular and chaotic regions. The Poincar ́e surface of section technique allows mapping these regions, identifying the location of 
resonances, and the size of regular and chaotic zones, thus helping us to understand the dynamics around these bodies. Using 

this technique, we map in the a –e space the stable and unstable regions around ellipsoidal bodies, such as the dwarf planet 
Haumea, the centaur Chariklo, and other five hypothetical bodies, in which we keep part of the physical parameters of Haumea 
but we varied its period of rotation and ellipticity, to analyse the impact of these alterations in the extensions of the stable and 

unstable regions due to first kind orbits and spin-orbit type resonances. We identified a large region of stability, in semimajor 
axis and eccentricity, due to the first kind orbits. Periodic orbits of the first kind are present in a large semimajor axis interval 
for all considered systems and have almost zero eccentricity, while resonant and quasi-periodic orbits have high eccentricities. 
Furthermore, we identified the bifurcation of the 2:6 resonance when there is a spin reduction of a body with the same physical 
parameters as Haumea. This bifurcation generates a chaotic region, reducing the extension of the stability zone. 

Key words: celestial mechanics – Kuiper belt objects: individual: (136108) Haumea – minor planets, asteroids: general – planets 
and satellites: dynamical evolution and stability. 
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 I N T RO D U C T I O N  

ith the increasing disco v eries of small non-spherical bodies, such as
steroids, centaurs, comets, and trans-Neptunian objects, the interest
n understanding the dynamics of regions around these bodies,
ubjected to non-spherical gravitational potentials, has increased.
his is because the orbits around these bodies generally differ from

he Keplerian orbits of the two-body problem (Hu & Scheeres 2004 ;
ibeiro et al. 2021 ), as irregularities in their shape cause distur-
ances in their gravitational fields. To study the dynamics around
hese bodies, through numerical simulations, it is necessary to use
hysical models that adequately represent their shapes. Modelling by
riaxial and Jacobi ellipsoids or the Maclaurin spheroid are widely
sed because they demand lower computational costs and they are
ood approximations for symmetrical and non-spherical bodies. The
aclaurin spheroid consists of a body with an equatorial radius A

ifferent from the polar radius C , the triaxial ellipsoid is formed by
hree semi-axes with different sizes, A > B > C , and the Jacobi
llipsoid is an ellipsoid triaxial that revolves around the minor
xis (Chandrasekhar 1942 ). Ho we ver, other modelling methods are
eeded for bodies with more irregular shapes, as the case of the
steroid Kleopatra. The Mascons model, developed by Geissler et al.
 1996 ), and the Polyhedra model, created by Werner ( 1994 ), are
 E-mail: tais.a.ribeiro@unesp.br 

r  
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Pub
apable of representing the surface contours of these objects with
etter precision, ho we v er, the y demand higher computational costs. 
The rele v ance of this type of dynamic exploration is justified

y the interest in studying the motion of spacecraft orbits, moons,
nd ring particles around these bodies. Celestial bodies that can be
odelled using ellipsoids or spheroids, the gravitational field can

e studied by adding spherical harmonics. For oblate spheroids,
he terms J n are included, for example, J 2 , J 4 , and J 6 , which
orrespond to the oblateness of the poles. For prolate ellipsoids,
n addition to J n , the term C 22 is also added, which is related to
he ellipticity in the equatorial region of the body. The effect of
he gravitational potential generated by oblate spheroids is well
nown due to e xtensiv e studies of the dynamics of planetary rings
nd the orbits of artificial satellites, since planets with orbital rings
n the solar system, such as Saturn, are oblate spheroids and, in
he case of orbits of near Earth artificial satellites, it its necessary
o take into account is oblateness of the planet. The same does
ot occur for prolate bodies, since the inclusion of the ellipticity
erm in the gravitational potential, produces effects that have been
bserved in recent decades, as in Hu & Scheeres ( 2004 ), which,
ntending to study the motion of a spacecraft around the equator of
he asteroid Castalia, mapped the stable region around this body,
sing numerical integrations for a gravitational field of a uniformly
otating prolate body. For this, Hu & Scheeres ( 2004 ) modelled
astalia using a triaxial ellipsoid. Furthermore, they demonstrated

hat resonances between a rotating body and the mean orbital
© 2023 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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Figure 1. Schematic diagram of an equatorial path around a Jacobi ellipsoid. 
The plane Oxy is fixed on the body, x 0 marks the initial position of the 
trajectory and the arrow indicates the initial velocity. 
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otion can play an important role in determining the stability of 
rbits. 
In Olsen ( 2006 ), Castalia is used again as a target object for the

tudy of stable regions around it, analysing prograde orbits with an 
nclination of 60 ◦ and retrograde orbits with an inclination of 150 ◦. In
he same work, the region around Itokawa is explored because it is an
steroid with slower rotation, compared to Castalia. In addition to the 
umerical experiments, Olsen ( 2006 ) derives analytical expressions 
or the widths of the mean motion resonances in gravitational fields
f a uniformly rotating prolate body. The comparison made between 
he two models, analytical and numerical, points to a disagreement 
etween theory and experiment for distances close to the asteroids 
hat were objects of study. In Mysen, Olsen & Aksnes ( 2006 )
nd Mysen & Aksnes ( 2007 ), a similar approach to the work
tudied in Olsen ( 2006 ) is performed for the comet 67P/Churyumov-
erasimenko, modelling the body as a triaxial ellipsoid and mapping 

he unstable and stable zones. 
In this work, the second in a series of articles that study Non-

pherical Symmetric Bodies (Madeira et al. 2022 ), we also seek to
ap the region around ellipsoidal bodies using the Poincar ́e surface 

f section technique. One of the target bodies of this work is the dwarf
lanet Haumea, which, because it is quite elongated and has a ring of
articles, has become the object of study in several works in recent
ears. Ortiz et al. ( 2017 ) suggests that the ring is at the location of the
:3 resonance between the orbital period of the ring particles and the
pin of Haumea. Ho we ver , W inter , Borderes-Motta & Ribeiro ( 2019 )
sing the Poincar ́e surfaces of sections technique, shows that the 
rbits of this resonance have high eccentricities, abo v e the limiting
ccentricity to maintain the estimated ring width, concluding that the 
aumea ring is not in resonance with the spin of the central body

nd the rings are possibly associated with the first kind orbits. They
lso show that the 1:3 resonance is double (2:6), generating a large
egion of chaos in the resonance separatrix. In addition, they mapped 
he stable zone of this resonance and the first kind orbits close to the
ing. 

We also mapped the region around the centaur 10 199 Chariklo, 
hich has a system with two narrow rings and possibly small

atellites (Braga-Ribas et al. 2014 ; B ́erard et al. 2017 ). Sicardy et al.
 2019 ) discusses the possibility that the centaur is spherical and has an
nomalous mass at its equator. Other studies, based on observational 
ata, suggest that Chariklo has a triaxial or Jacobi ellipsoid shape 
Lei v a et al. 2017 ; Morgado et al. 2021 ). In this work, we model
hariklo as an ellipsoid using the most recent observational data on 

ts shape (Morgado et al. 2021 ). 
In addition to Chariklo and Haumea, we map the stable and un-

table regions of five other systems. These systems are hypothetical 
odies in which we maintain part of the physical parameters of
aumea, but vary its ellipticity and period of rotation, to analyse the

mpact of these changes on the extensions of the stable and unstable
egions. 

The dynamic system adopted and the Poincar ́e surface of sec- 
ion technique are considered in the next section. The dynamic 
haracteristics of some of the controlled orbits found in this study
re explored in Section 3 . Maps of stable and unstable regions are
resented and discussed in Section 4 . The applications of this study
re explored in Section 5 and finally, we present our conclusions in
ection 6 . 

 DY NA M I C A L  SYSTEM  

n this work, we analyse the dynamics of particles around prolate 
odies in the rotating system (Fig. 1 ). Observational data from the
orks of Ortiz et al. ( 2017 ); Morgado et al. ( 2021 ) suggests the Jacobi
llipsoid as a possible shape for the bodies chosen as the target of this
tudy. Therefore, the gravitational potential of these bodies will be 
omposed by the spherical harmonics J 2 and C 22 defined as (Balmino
994 ): 

 2 = −2 C 

2 − A 

2 − B 

2 

10 R 

2 
e 

, (1) 

nd 

 22 = 

A 

2 − B 

2 

20 R 

2 
e 

. (2) 

e take R e = ( ABC ) 1/3 as the equi v alent radius. 
The equations of motion, with a plane Oxy fixed on the central

ody and rotating with the same period of rotation as the central
ody, as illustrated in Fig. 1 , are given by (Hu & Scheeres 2004 ): 

¨ − 2 ω ̇y = ω 

2 x + U x , (3) 

nd 

¨ + 2 ω ̇x = ω 

2 y + U y , (4) 

where ω is the velocity of rotation of the central body, U x and U y 

re the deri v ati ves of the gravitational potential defined as: 

( x , y ) = 

GM 

r 

( 

1 −
(

R e 

r 

)2 [−J 2 

2 
− 3 C 22 

r 2 

(
x 2 − y 2 

)]) 

, (5) 

here r = 

√ 

x 2 + y 2 , G is the gravitational constant and M is the
ass of the central body. 
The systems e xplored hav e the Jacobi constant C j that can be given

y (Hu & Scheeres 2004 ): 

 j = ω 

2 
(
x 2 + y 2 

) + 2 U ( x , y ) − ẋ 2 − ẏ 2 , (6) 

hich will be used to obtain the Poincar ́e surface of section. The unit
f Jacobi’s constant is km 

2 s −2 , ho we ver, for practicality, we will omit
his information in the figures presented in this work. In the following
ubsections, we explore the Poincar ́e surface of section technique and
ome of the families of periodic orbits found in the systems studied
n this work. 

.1 Poincar ́e surface of section 

oincar ́e surface of section are maps generated by crossing points of
he trajectories in the phase space with a fixed section of the system.
hese maps are generated in phase space for fixed values of the Jacobi
onstant (equation 6 ). This technique has been used e xtensiv ely in
MNRAS 525, 44–56 (2023) 
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M

Figure 2. Poincar ́e surface of section for a system considering Haumea as an 
oblate body, i.e. the ellipticity coefficient ( C 22 ) is equal to zero. The islands 
in red are quasi-periodic orbits associated with a family of periodic orbits, 
indicated by the single point at the centre of all the islands. 
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Figure 3. Poincar ́e surface of section for two different values of the Jacobi 
constant ( C j ). The stability islands of the 2:5 resonance are shown at the top, 
indicated by the blue colour, while the double stability islands of the 2:6 
resonance are shown in the bottom figure, represented by different shades of 
green. On both Poincar ́e surfaces of sections, there is the presence of islands 
of quasi-periodic orbits associated with periodic orbits of the first kind (closed 
red curves), in addition to the unstable region, filled randomly by red points. 
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elestial dynamics as a tool for identifying the location and extent
f stable and unstable regions in the circular restricted three-body
roblem (H ́enon 1965a , b , 1966a , b , 1969 ; Jefferys 1971 ; Winter &
urray 1994a , b , 1997a , b ). Ho we ver, in recent years, Poincar ́e

urface of section has been applied to the two-body problem,
hose central body rotates and has a non-spherical mass distribution

Borderes-Motta & Winter 2018 ; Winter et al. 2019 ; Madeira et al.
022 ). Fig. 2 shows a Poincar ́e surface of section applied to the
wo-body problem whose central object is oblate. The primary body
as the same physical parameters as Haumea (these parameters can
e seen in Table 1 ) but with the coefficient C 22 equals to zero. In
his case, when there is no ellipticity, we only have elliptical orbits,
ndicated by the red curves, a circular orbit, represented by the point
n the centre of the red curves, and hyperbolic trajectories that collide
ith the central body or are ejected, indicated by isolated red points.
In cases where the body is prolate, the ellipticity of the body

ogether with its rotation are responsible for disturbing the region and
enerating more complex structures, related to resonances between
he rotation of the primary and the orbital motion of the particles,
s can be seen in the Fig. 3 , which shows two Poincar ́e surfaces
f sections of the Haumea system. The physical parameters used
an be consulted in Table 1 . First, a few dozen initial conditions
ere distributed for distances 2000 < x < 2300 km and ẋ = 0
s −1 . Through a set of numerical integration, the Poincar ́e surface of

ections are generated. The points randomly distributed correspond
o chaotic orbits and determine the dynamically unstable regions. The
table regions are delimited by points that form closed curves, which
o not cross each other. These curves are called islands of stability.
andom points from chaotic orbits do not enter these stable regions.
ach island of stability is formed by a quasi-periodic orbit, which

eceives this nomenclature because it does not have a defined orbital
eriod. Ho we ver, these quasi-periodic orbits follow the behaviour of
he periodic orbits that are located in the centre of stability islands.
NRAS 525, 44–56 (2023) 

able 1. Physical parameters of central bodies used in the numerical simulations. 

ystem Chariklo Haumea Haumea a 

ass (kg) 1, 2 6.432 × 10 18 4.006 × 10 21 4.006 × 10 21

qui v alent radius (km) 124.8 798 798 
pin (h) 1, 3 7.004 3.9155 3.9155 
 2 0.124 0.243 0.243 
 22 0.007 0.049 0.034 

ote. 1 Lei v a et al. ( 2017 ). 2 Ragozzine & Brown ( 2009 ). 3 Rabinowitz et al. ( 2006 ).
eriodic orbits, whenev er the y cross the Poincar ́e surface of section,
ass through the same points in the phase space. 
The periodic orbits present in Fig. 3 can be classified, according

o Poincar ́e ( 1895 ), as first or second kinds. The first kind is quasi-
ircular orbits that are not associated with any resonance. Fig. 3 are
he points in the centres of the islands of stability represented by
he red colour. The second kind are the periodic orbits associated
ith resonances. In this case, spin-orbit resonances, i.e. resonances
etween the rotation of the primary body and the orbital motion of
he secondary body. Periodic orbits of the first kind are identified by
ingle islands of stability in the Poincar ́e surface of section, while
hose of the second kind can be identified by unit islands, pairs, or
n integer number of islands of stability. This number is equal to the
rder of the resonance. For example, in Fig. 3 (a) there are three blue
slands, therefore it is a third-order resonance associated with 2:5
Haumea b Haumea c Haumea d Haumea e 

 4.006 × 10 21 4.006 × 10 21 4.006 × 10 21 4.006 × 10 21 

798 798 798 798 
3.9155 3.9155 11.7465 19.5775 
0.243 0.243 0.243 0.243 
0.018 0.003 0.049 0.049 
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Figure 4. Poincar ́e surface of section of the Haumea d system (see Table 1 ) 
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light blue (F1) and dark blue (F2). 
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esonance. These islands of stability related to the same resonance 
r the first kind periodic orbits, occur along an interval of C j values,
arying their location and size. This set of periodic orbits is called a
amily. 

Fig. 3 (b) shows two pairs of stability islands in light green and
ark green. These are tw o f amilies belonging to the same resonance.
uplicity in families is a natural feature due to the potential of

he body being invariant under a rotation π (Sicardy 2020 ) and it
ccurs for all 1: n . Because of that, following Sicardy ( 2020 ), we will
all them 2:2 n resonance. Thus, the two families in Fig. 3 (b) are
ssociated with the 2:6 resonance. 

.2 Other periodic orbits 

here are periodic orbits that do not fit the first and second kinds
lassifications but also delimit regions of stability. Broucke ( 1968 ) 
apped and classified several of these orbits in the Earth–Moon 

ystem and Winter & Neto ( 2002 ) investigated the stability zones
elimited by them, in the same Earth–Moon system. In this work, we
ound two families of these periodic orbits in the system composed 
f a central body with the same physical parameters as Haumea, but
ith three times the rotation period of the dwarf planet (see data

n Table 1 , case Haumea d ). Fig. 4 presents the evolution of the two
amilies (in shades of blue) for four Jacobi constant values. Due 
o the shape of the trajectory these two families fit into the F-type
lassification, defined in the work of Broucke ( 1968 ). For simplicity,
hey will be called F1 and F2. Furthermore, the periodic orbits of
hese tw o f amilies are symmetric trajectories and with a large radial
ariation. 

These two families delimit regions of stability that will be 
iscussed in Section 4 . Next, we present the evolution of the families
ssociated with resonances of up to the third order. 

.3 Resonances 

n this work, we use the Poincar ́e surface of section technique to
etermine stable and unstable regions around prolate bodies. Part of 
he stable region found is due to the presence of resonances. We will
nalyse the resonances of up to the third order, which is the strongest
resence in the systems considered in this work. To demonstrate the 
volution of these resonance families in the phase space, we show 

n this section some of the Poincar ́e surfaces of sections for four
ases of the central body of the system: the dwarf planet Haumea; the
ypothetical Haumea c body, which has the same physical parameters 
s Haumea, except for the ellipticity, with a minimum value for
he Poincar ́e surface of section to appear resonant structures; and 
he hypothetical system Haumea e , which has a rotation period five 
imes slower than that of Haumea. In addition to these four cases,
he study extends to three more hypothetical central bodies, which 
re variations of the rotation period and ellipticity coefficient of 
aumea and to the Chariklo system case. The variation of these 

w o parameters w as made to analyse its implications in the stability
egions of the systems. The physical parameters used in the numerical 
imulations for each system are shown in Table 1 . 

Fig. 5 presents a sequence of the Poincar ́e surface of section for six
alues of the Jacobi constant, allowing the visualization of the evo- 
ution of the structures of the first and second kinds periodic/quasi- 
eriodic orbits. Three resonances are highlighted: 2:4 ((a) and (b)), 
:5 ((c) and (d)) and 2:4 ((e) and (f)). The 2:4 resonance is double,
epresented by the pink and purple islands in Figs 5 (a) and (b). For the
rst Jacobi constant value, there are no periodic/quasi-periodic orbits 
f the first kind, as the entire region is chaotic, as indicated by the
andom red points that fill the region around the islands of stability
f the 2:4 resonance. This is due to the proximity to the central body,
he particles collide or are ejected. In Fig. 5 (b) the existence of the
haotic region can still be seen, but there is a region of stability
ssociated with quasi-periodic orbits of the first kind, closed red 
urves. The islands of stability associated with the 2:4 resonance 
re closer and smaller, a natural motion when the Jacobi constant is
ncreased. Due to this approximation, a separatrix appears between 
he islands, generating a narrow region of chaos. The chaos between
he islands destroys the periodic orbit of the first kind. Therefore, for
he Jacobi constant interval, in which it is possible to identify the
xistence of the 2:4 resonance, the first kind of periodic orbit does
ot exist. 
Fig. 5 (c) shows the stability islands associated with the 2:5

esonance, in blue. There is a small region with periodic/quasi- 
eriodic orbits of the first kind and, around it, a large region of
MNRAS 525, 44–56 (2023) 
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Figure 5. Poincar ́e surfaces of sections of the Haumea system for six different values of the Jacobi constant ( C j ), showing the evolution of the 2:4, 2:5, and 2:6 
resonances. The stability islands of the 2:4 resonance (plots (a) and (b)) are duplicated and are represented by pink and purple colours. The same phenomenon 
occurs with the islands of the 2:6 resonance (plots (e) and (f)), indicated by different shades of green. The 2:5 resonance is shown by the islands in blue in plots 
(c) and (d). The islands in red are quasi-periodic orbits associated with a family of periodic orbits of the first kind. 

c  

o  

t  

p  

f  

P
 

f  

c  

a  

t  

g

s  

H  

s  

o  

t  

r  

p  

o  

r  

<  

o  

p  

c  

c  

a

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/525/1/44/7237478 by guest on 09 February 2024
haos. In the following plot, 5 (d), it can be seen that the islands
f the 2:5 resonance are closer and smaller, ho we ver, in this case,
hese islands do not continue to approach the centre of the first kind
eriodic orbits. This is the closest approximation between them and
or larger values of C j , these islands are no longer identified in the
oincar ́e surface of section. 
Changing on to the Poincar ́e surface of section where the two

amilies of the 2:6 resonance appears, Figs 5 (e) and (f), there is a
onsiderable increase in the stable region, both limited by first kind
nd resonance orbits. This fact is explained by the distance from
he central body, reducing the perturbation due to ellipticity in the
ravitational field. 
Fig. 6 shows a set of Poincar ́e surface of section for the Haumea c 

ystem, which has the ellipticity coefficient lower than the real
NRAS 525, 44–56 (2023) 
aumea value of C 22 . This is the smallest value of C 22 that generates
tructures related to spin-orbit resonances, for this system. The first
bservable change is the displacement of the structures on the x axis:
hey are closer to the central body. Note that, in general, the unstable
egion is smaller, identified by the random red points. The family of
eriodic orbits of the first kind still does not coexist with the families
f the 2:4 resonance. In Fig. 6 (b), the points that follow a curve in the
egion between 1765 < x < 1770 km for ẋ < 0 m s −1 and 1783 < x
 1790 km for ẋ > 0 m s −1 are orbits that initially have the motion

f quasi-periodic orbits, but collide with the central body after some
eriod of time. The collision occurs because the proximity to the
entral body increases the probability of more eccentric trajectories
olliding with the primary. The same phenomenon occurs in Figs 6 (b)
nd (c). 
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Figure 6. Poincar ́e surface of section of the Haumea c system for six different values of the Jacobi constant ( C j ), showing the evolution of the 2:4, 2:5 and 2:6 
resonances. The stability islands of the 2:4 resonance (plots (a) and (b)) are duplicated and are represented by pink and purple colors. The same phenomenon 
occurs with the islands of the 2:6 resonance (plots (e) and (f)), indicated by different shades of green. The 2:5 resonance is shown by the islands in blue in plots 
(c) and (d). The islands in red are quasi-periodic orbits associated with a family of periodic orbits of the first kind. 
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Haumea’s high spin, added to its elongated shape, causes for those 
articles orbiting close to it to collide or to be ejected from the
ystem. Decreasing the rotation, all the resonant semimajor axes 
o v e a way from the central body, allowing other resonances to

ppear, for example, the 4:7 resonance represented by the yellow 

slands in Fig. 7 present in the Haumea e system. Also, on this system
ccurs the bifurcation of the 2:6 resonance, which can be seen in
ig. 8 (a) by the dark and light green points. Previously, each periodic
rbit associated with the 2:6 resonance crossed the phase space at 
nly two points, but due to the bifurcation, it now crosses at four
ifferent points. Figs 8 (b) and (c) shows the zoom of the bifurcated
slands of one of the families associated with the 2:6 resonance. 
round them, there is a region of chaos intrinsic to the separatrix,
enerated by the bifurcation, restricting the extension of the stable 
egion of the resonance, compared to cases in which there is no
ifurcation. This phenomenon entails some implications, such as the 
adial extension of a possible ring around this body in 2:6 spin-orbit
esonance: the chaos generated by the separatrix would produce a 
ap inside the ring. The evolution of these families in phase space
an be seen in Fig. 9 . 

 PERI ODI C  ORBI TS  A RO U N D  PROLATE  

O D I E S  

he orbits associated with the resonances discussed in Section 2.3 are
tudied here in order to discuss their dynamical characteristics. For 
MNRAS 525, 44–56 (2023) 
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Figure 7. Poincar ́e surface of section of the Haumea e . The 4:7 resonance 
is represented by the islands in yellow. The islands in red are quasi-periodic 
orbits associated with a family of periodic orbits of the first kind. The islands 
in pink and lilac belong to the 2:4 resonance. 
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Figure 8. Poincar ́e surface of section of the Haumea e system for C j = 

2.6115 × 10 −1 km 

2 s −2 . (a) The stability islands of the 2:4 resonance 
are duplicated and are represented by pink and purple colours, the same 
phenomenon occurs with the islands of the 2:6 resonance indicated by 
different shades of green, the 2:5 resonance is shown by the islands in blue 
and the islands in red are quasi-periodic orbits associated with a family of 
periodic orbits of the first kind. (b) and (c) zoom of the bifurcation of one of 
the families associated with 2:6 resonance. 
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his, we choose a periodic orbit for each resonance of the Haumea
ystem and a periodic orbit of the 4:7 resonance of the Haumea e 

ystem. It is noteworthy that the behaviour of the resonant orbits of
he other analysed systems are similar to the one presented in this
ection. As said, the 2:4 resonance has two families of periodic/quasi-
eriodic orbits, so in Fig. 10 a pair of these periodic orbits are
resented for C j = 0.7903 km 

2 s −2 , one from each family. Fig. 10 (a)
efers to the periodic orbit represented by the central point interior
o the pink islands of the Poincar ́e surface of section and Fig. 10 (b)
efers to the purple periodic orbit, both shown in Fig. 5 (a). The
rajectories are in the rotating system and are retrograde. The orbit
s closed because the particle is at the fixed point of the resonance.
he temporal evolution is given by the numbered points that are
qually spaced in time, while the scale and colours give the velocity
n the inertial system. The points closest to the central body have
he highest velocity modules, indicating the pericentre of the orbit.
ike wise, the lo west v alues of velocities indicate the region of the
pocentre of the orbit. The trajectories are mirror images of each
ther about the line O y . These are consequences that result from the
ravitational potential being invariant under a rotation π (equation
 ). The period of these orbits corresponds to two periods of rotation
f Haumea. 
Fig. 11 shows the periodic orbit, in the rotating system, associated

ith the 2:5 resonance for a C j = 0.8030 km 

2 s −2 . This orbit is
epresented by the central point interior to the blue islands of stability
n Fig. 5 (c). In this case, the orbit is symmetrical in both axes, the O x
xis and the O y axis. The period of this orbit is approximately five
imes the period of rotation of Haumea and it is a closed trajectory
ecause it is at the resonance fixed point. 
As it happens for the 2:4 resonance, there is a duplicity of families

f periodic/quasi-periodic orbits in the 2:6 resonance, as seen in
he Poincar ́e surface of section in subsection 2.3 . Fig. 12 presents a
ample of these periodic orbits for the value of C j = 0.8200 km 

2 s −2 .
n Fig. 12 (a), there is the trajectory of the central point interior
o the light green islands of the Poincar ́e surface of section and
ig. 12 (b) shows the central point interior to the islands in dark
reen colour, both shown in Fig. 5 (e). The orbital period is three
imes the rotational period of Haumea. As it is a double family
elonging to the same resonance, the orbits are mirror images of
ach other about the O x axis. In the O y axis, there is a division of
he orbits into symmetrical parts, due to the symmetry of the body
o the same aforementioned axis. The closest points of the trajectory
ith the central body are the same where the velocity module

ssumes the highest values, indicating the pericentre locations. At
NRAS 525, 44–56 (2023) 
he points of closest approximation to Haumea, the velocities are
ower, corresponding to the apocentres. 

Fig. 13 shows the periodic orbit, in the rotating system, asso-
iated with the 4:7 resonance of the Haumea e system for a C j =
.25536 km 

2 s −2 . This orbit is represented by the central point interior
o the yellow stability islands in Fig. 7 . Because it is not a double
esonance, the orbit is symmetrical in both axes, the O x axis and the
 y axis. The period of this orbit is seven times the period of rotation
f Haumea. 
The plots in Fig. 14 show the temporal evolution of the radial

istance of the periodic orbits associated with the (i) 2:4, (ii) 2:5,
iii) 2:6, and (iv) 4:7 resonances. Figs 14 (a) and (c) refer to the
amilies that were represented by pink and light green colours, in the
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Figure 9. Evolution of the families associated with the 2:6 resonance in 
the Poincar ́e surface of section for the Haumea e system. The plot presents 
a sample of the largest islands of stability, an intermediate island, and the 
internal points that represent the periodic orbit, showing the structure for 
dif ferent v alues of C j . The colours indicate the v alues of C j . 
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Figure 10. Periodic orbits of the 2:4 resonance for C j = 0.7903 km 

2 s −2 

in the rotating system. The temporal evolution of the orbits is given by the 
numbered points that are equally spaced in time, while the colour scale 
gives the velocity in the inertial system. (a) The periodic orbit of the family 
represented by the pink colour in Fig. 5 (a). (b) The periodic orbit of the family 
represented by the purple colour in Fig. 5 (a). 

T  

v
2  

a  

h  

t  

w
 

d
b  

2
c
c  

w  

o

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/525/1/44/7237478 by guest on 09 February 2024
oincar ́e surface of section of Fig. 5 . The colours of the solid lines
ndicate distinct values of the Jacobi constant. The orbits with the 
ighest radial amplitudes (yellow) correspond to the lowest values 
f C j , while the trajectories with the lowest radial amplitude (solid
rey lines) correspond to the highest values of C j . The intervals of
he considered Jacobi constants can be seen in the captions of each
lot present in Fig. 14 . The comparison between the orbits of the
ame family for different C j shows that the greater the value of C j ,
he smaller is the amplitude of the radial variation. This attenuation 
ccurs as the islands of stability approach the first kind orbit in the
oincar ́e surface of section. The dotted and dashed lines delimit the

ocation of the resonant semimajor axis using two different methods: 
hrough the epicyclic frequencies (Borderies & Longaretti 1987 ; 
ongaretti & Borderies 1991 ; Borderies & Longaretti 1994 ) and the
eometry of the orbit. The η and κ frequencies are defined as (Sicardy 
020 ): 

2 = 

GM 

a 3 

[ 

1 + 

3 f 

5 

(
R 

a 

)2 
] 

(7) 

nd 

2 = 

GM 

a 3 

[ 

1 − 3 f 

5 

(
R 

a 

)2 
] 

, (8) 

here f = 2.5 J 2 . The resonant semimajor axis, a , is obtained by
 numerical iteration process using the two frequencies (for more 
etails see Renner & Sicardy 2006 ). The values presented in the
raphs of Fig. 14 (dotted lines) using this method are the same
alues obtained in Sicardy ( 2020 ). 

The second method for finding the resonant semimajor axis is 
erived from the geometry of the orbit. This method was discussed
n Ribeiro et al. ( 2021 ), which consists of calculating the semimajor
xis using the equation: 

 = 

r max + r min 

2 
, (9) 

here a is the semimajor axis due to the geometry of the orbit,
 max and r min are the largest and smallest radial distances of the
ame orbit, respectively. The diagram in Fig. 15 shows an o v erview
f the comparison between the three methods used to locate the 
entres of resonances and the radial width of the resonant orbits. The
iagram is divided into three horizontal bands. Each track refers to 
ne resonance. The grey regions limit the width of the orbital radius
ariation of the trajectories indicated by the grey colours in Fig. 14 .
hese are the periodic orbits with smaller amplitudes of the radial
ariation. Among the three orbits analysed, the one associated with 
:5 resonance is the one with the greatest extent of radial variation,
round � r = 307 km, while the orbit associated with 2:4 resonance
as � r = 83 km and at 2:6 has � r = 118 km. The radial extent of
he 2:5 resonance orbits is larger because its family is not double, as
ell as the 2:4 and 2:6 resonances. 
As explored in Ribeiro et al. ( 2021 ), there is a difficulty in

escribing, in terms of orbital elements, trajectories around prolate 
odies. The diagram in Fig. 15 highlights this difficulty. In the
:4 resonance range the location of the resonant semimajor axis 
alculated using the two-body problem (pink dotted line), which 
onsiders the central body to be spherical, is outside the radial
idth of the orbit and distant about 133 km from the r min of this
rbit. The same occurs with the resonant semimajor axis obtained 
MNRAS 525, 44–56 (2023) 
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Figure 11. Periodic orbit of the 2:5 resonance for C j = 0.8030 km 

2 s −2 

in the rotating system. The temporal evolution of the orbit is given by the 
numbered points that are equally spaced in time, while the colour scale gives 
the velocity in the inertial system. 
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Figure 12. Periodic orbits of the 2:6 resonance for C j = 0.8200 km 

2 s −2 

in the rotating system. The temporal evolution of the orbits is given by the 
numbered points that are equally spaced in time, while the colour scale 
gives the velocity in the inertial system. (a) The periodic orbit of the family 
represented by the light green colour in Fig. 5 . (b) The periodic orbit of the 
family is represented by the dark green colour in Fig. 5 . 
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hrough the epicyclic frequencies (pink dot-dash line), which only
onsiders the perturbation of the oblateness of the body. Going back
o Fig. 14 (a), note that the 2:4 resonant semimajor axis obtained by
he epicyclic frequencies is outside the region of the orbit with the
reatest amplitude of radial variation (yellow line). Both method do
ot take into account the perturbation due to the ellipticity of the
entral body. 

Because they are farther from the primary body, particles at the 2:5
esonance are less affected by the effect of the ellipticity of the body,
ompared to the particles at the 2:4 resonance. For this reason, the
ifference between the resonant semimajor axis calculated by the two
entioned methods is closer to the centre of the radial band of the

rbit. Ho we ver, this dif ference, around 69 km, is still considerable.
or the 2:6 resonant orbit, the difference does not reach 2 km. Because

he theoretical models are not accurate to determine the resonant
emimajor axis, especially those closer to the central body, to use the
rbit geometry method becomes an alternative. The dashed lines in
he diagram of Fig. 15 indicate the semi-axis of each of the resonances

aking use of the geometry of the orbit of smaller radial amplitude
solid grey lines). In the following section, the stable and unstable
egions around prolate bodies are identified using this method. 

 W I D T H  O F  R E S O NA N C E S  

aving defined the method that best fits the calculation of the
esonant semimajor axis, we extend this application to determine the
idth of resonances and the limits of the stable and unstable regions

round bodies with ellipticity. Fig. 16 shows how the resonance width
s determined for a given value of C j . In Fig. 16 , we have the temporal
volution of the radial variation of the periodic (pink line) and quasi-
eriodic (yellow line) orbits associated with the 2:4 resonance. The
uasi-periodic orbit chosen is al w ays the largest island of stability
ound in the Poincar ́e surface of section, as this guarantees the
aximum width of the resonance. With the periodic orbit, the centre

f resonance is determined, while with the quasi-periodic orbit, the
imits of the width of the resonance can be obtained. To determine the
ower limit, the equation a = ( r min + r max )/2 is used again, where the
alues of the maximum and minimum radii are those indicated by the
NRAS 525, 44–56 (2023) 
ashed lines and yellow arrows, which is the smallest difference of
he radial variation. For the upper width limit, use the radius values
f the greatest radial variation, indicated by the dashed lines and
rey arrows. This process is done for all orbits of the 4:7, 2:4, 2:5,
:6 resonances and for orbits of the first kind family. In addition
o calculating the semimajor axis due to geometry, its respective
ccentricities are also calculated by the equation e = 1 − r min / a .
ith these data, it is possible to build the map of the unstable and

table regions in the a − e space. This process was done for all the
even systems addressed in this work. 

Fig. 17 shows the mapping of the region around the Haumea sys-
ems, Haumea, a Haumea ,b and Haumea c . Starting with the Haumea
ystem, Fig. 17 (a), since it is a very elongated body, the region of
tability due to the family of the first kind orbits (white region limited
y red lines), is greatly affected by the unstable re gion (in gre y). This
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Figure 13. Periodic orbit of the 4:7 resonance of the Haumea e system for 
C j = 0.25536 km 

2 s −2 in the rotating system. The temporal evolution of the 
orbit is given by the numbered points that are equally spaced in time, while 
the colour scale gives the velocity in the inertial system. 
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Figure 14. Temporal evolution of the radial distance of the periodic orbits 
associated with the resonances, for different values of C j . Time refers to an 
orbital period in the rotating system. The dashed lines indicate the resonant 
semimajor axis location obtained from two different methods. 
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henomenon can also be noticed by analysing the Poincar ́e surface 
f section, Fig. 5 , with the presence of regions of chaos, indicated by
he red points randomly filling the spaces. The pink, blue, and green
egions correspond to the widths of the 2:4, 2:5, and 2:6 resonances,
espectively. Of the three, the largest in semimajor axis length and 
ccentricity is the 2:6 resonance. Due to the proximity to the central
ody, the width of the 2:4 resonance is considerably small. As seen
n the Poincar ́e surface of section, this resonance is surrounded by
 large region of chaos. It is observed that for lo w v alues of the
ccentricity, e < 0.018, there are no regions of stability associated 
ith any of the three considered resonances. Ho we ver, the periodic
rbits of the first kind, represented by the lower red line, al w ays
emain with an eccentricity below 0.02. 

Observing the maps of the Haumea a and Haumea b systems, see 
igs 17 (b) and (c), it is noted that the stable region due to the
rst kind orbits is greater as the ellipticity of the body decreases.
urthermore, the eccentricity of periodic orbits of the first kind is
lso closer to zero. Fig. 17 (d) shows the mapping of regions around
he Haumea c system, which has the lowest ellipticity coefficient of the 
ystems considered in this work. For this case, the coefficient C 22 was
inimized to 0.003, which is the smallest v alue suf ficient to generate
ore complex structures, involving resonances between the Haumea 

otation and the orbital motion of the particles. With the perturbation 
f the reduced ellipticity of the body, the stable region becomes 
arger and the upper red line has a smooth gro w, dif ferent from what
s shown in Fig. 17 (a), where there are sharp drops on the eccentricity
f quasi-periodic orbits of the first kind. The lower red line, which is
elated to periodic orbits of the first kind, shows that the eccentricity
s approximately zero. As for the widths of the resonances, for the
ase of the 2:4 resonance there was a considerable reduction in its
ize and the 2:5 and 2:6 resonances became less asymmetrical about 
heir respective centres (dashed lines), consequences caused by the 
ttenuation of the ellipticity of the central body. 

Fig. 18 shows the maps for the systems where only the rotation
eriod has changed in relation to the physical data of Haumea. In
eneral, in both cases, the regions of stability due to the resonances
ecame wider in the semimajor axis and co v ered a wider range
f eccentricity. This occurs because the rotation is slower, which 
MNRAS 525, 44–56 (2023) 
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Figure 15. Diagram comparing the location of the semimajor axis of the 
2:4, 2:5, and 2:6 resonances, calculated by three different methods: two-body 
problem, epicyclic frequencies ( η and κ) and orbit geometry. The types of 
dashes indicate which method was used. The pink, blue, and green colours 
are related to the resonances and the grey regions indicate the radial variation 
of the less eccentric periodic orbit of each considered resonance. In the case 
of the 2:4 resonance, the locations of the resonant semimajor axis calculated 
through the two-body problem and epicyclic frequencies are very close, with 
the lines almost o v erlapping. 

Figure 16. Temporal evolution of the radial variation of the periodic (in 
pink) and quasi-periodic (in yellow) orbits. The quasi-periodic orbit refers 
to the largest island associated with 2:4 resonance for the Jacobi constant 
C j = 0.7912 km 

2 s −2 . The yellow and grey dashed lines and arrows indicate 
the maximum and minimum radial distance values used to calculate the 
semimajor axis and eccentricity limits of the quasi-periodic orbits, while the 
pink dashed lines and arrows point to the maximum and minimum values of 
the radial distance considered to calculate the centre of resonance. 
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Figure 17. Maps of the stable and unstable regions in the a − e space of the 
systems (a) Haumea, (b) Haumea a , (c) Hamuea b and (d) Haumea c . Maps were 
obtained from the Poincar ́e surface of section. Particles with semi-major axis 
and eccentricity within the gray region either collide with the central body 
or are ejected. In the other regions, the particles remain stable for more than 
10 000 orbits. The pink, blue and green regions are related to the 2:4, 2:5 
and 2:6 resonances, respectively. The black dashed lines indicate the centres 
of each resonance determined by the geometry of the resonant orbits. The 
lower red line corresponds to the semi-major axis and eccentricity of first 
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eaves the resonances considered further away from the central body,
inimizing collisions and ejections. In the Haumea e system, see
ig. 18 (b), in addition to the slower rotation period allowing the
mergence of the 4:7 resonance, yellow region, one can note the
egmentation of the stability region due to the orbits of the first
ind. This segmentation is caused by the chaos of the separatrix
f the 2:4 resonance. Unlike the other cases, in Haumea e , the
eriodic orbits of the first kind have also higher eccentricities,
tarting at e ≈ 0.1. In the stability region of the 2:6 resonance,
ig. 18 (b), we can observe a curvature in the resonant semima-

or axis, a black dashed line, caused by the bifurcation of the 
esonance. 
NRAS 525, 44–56 (2023) 

kind periodic orbits and the upper red line to quasi-periodic orbits. 
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Figure 18. Maps of the stable and unstable regions in the a –e space of the 
systems (a) Haumea d and (b) Haumea e , obtained from the Poincar ́e surface 
of section. Particles with semimajor axis and eccentricity within the grey 
region either collide with the central body or are ejected. In the other regions, 
the particles remain stable for more than 10 000 orbits. The yellow, pink, 
blue, and green regions are related to the 4:7, 2:4, 2:5, and 2:6 resonances, 
respectively. The purple region in plot (a) refers to the F1 and F2 family. 
The black dashed lines indicate the centres of each resonance determined by 
the geometry of the resonant orbits. The lower red line corresponds to the 
semimajor axis and eccentricity of first kind periodic orbits and the upper red 
line to quasi-periodic orbits. 

Figure 19. Map of the stable and unstable regions in the a –e space of the 
Chariklo system, obtained from the Poincar ́e surface of section. Particles with 
semimajor axis and eccentricity within the grey region either collide with the 
central body or are ejected. In the other regions, the particles remain stable for 
more than 10 000 orbits. The pink, blue, and green regions are related to the 
2:4, 2:5, and 2:6 resonances, respectively. The black dashed lines indicate the 
centres of each resonance determined through the geometry of the resonant 
orbits. The lower red line corresponds to the semimajor axis and eccentricity 
of first kind periodic orbits and the upper red line to quasi-periodic orbits. 
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Changing systems again, Fig. 19 shows the mapping of the region
round Chariklo. This centaur is considerably less elongated and 
otates more slowly compared to Haumea. Consequently, the stable 
egion (in white) is larger and without abrupt drops in eccentricity
n the upper red line, associated with quasi-periodic orbits of the
rst kind. The width of the 2:4 resonance is narrower than the others.
he orbits associated with the 2:6 resonance are more eccentric, with
ariations between 0.05 < e < 0.29. 

The maps presented in this section show the impact of the
llipticity and spin of the central body on the stable and unstable
egions and, consequently, on the widths of the resonances. It is
ommon to build the a –e maps through theoretical models using the
ircular restricted three-body problem. Ho we ver, it was not possible
o use this model in the systems analysed in this work, due to
he difficulty in describing orbital elements of trajectories around 
rolate bodies. This disagreement between the analytical model and 
umerical results was pointed out in the work of Olsen ( 2006 ), who
ound discrepancies in the location of resonances close to the central
ody (see their figs 1, 3, 4, and 5). 

 APPLICATIONS:  SP  AC ECRAFT  ,  RINGS,  A N D  

ATELLITES  

n this study, we identified chaotic and stable regions around prolate
odies. Stability zones are associated with periodic and quasi- 
eriodic orbits, some of them are resonant and some are not. These
nalyses can be used in several applications, such as space missions,
atural satellites, or rings particle. Next, we present some of these
pplications. 

Periodic orbits , resonant or non-resonant, have characteristic 
rajectories format, which is repeated o v er time as, for example, those
hown in Figs 10 to 13 . Identifying the location of periodic orbits can
e advantageous for space missions, as that by placing a spacecraft
n this trajectory it is possible to predict what its behaviour will
e o v er time, in addition, the spacecraft will be inserted in a stable
one, since around periodic orbit there is a region of quasi-periodic
rbits, as shown in Figs 4 , 5 , 6 , and 7 . Several works have been
eveloped in the last decades in order to disco v er periodic orbits for
pace missions around smaller and irregular celestial bodies, as is 
he case of the work of Jiang et al. ( 2018 ) that explores this type
f trajectory around the asteroids 243 Ida, 433 Eros, 6489 Golevka,
01 955 Bennu, and comet 1P/Halley. 
Stable regions , linked to resonances or other periodic orbits, 

orrespond to the birth environment of rings and satellites. Ring 
articles located in stable regions are expected to have long lifetimes
n the absence of external perturbation, possibly giving rise to moons
Madeira, Charnoz & Hyodo 2023a ; Madeira et al. 2023b ). Satellites
n stable regions, in turn, can give rise to rings, for example, by
jecting material due to external impacts (Madeira & Giuliatti Winter 
020 , 2022 ). On the other hand, these regions can be dangerous for
 space mission, as they can be populated by natural objects. 

The chaotic regions are also interesting for spacecraft, they be 
n areas devoid of natural material. Over time, rings or moons that
ormed in the region are removed due to instability. In the systems
tudied in this work, we found an e xtensiv e re gion of chaos, for
 xample, the re gion internal to the 2:4 resonance, as shown in the
aps of Figs 17 , 18 , and 19 . This is an area close to the body

hat becomes interesting for missions that seek to study its surface.
ecause they are in unstable zones, it is necessary to use some
ontrol mechanism to guide the spacecraft for the time stipulated by
he mission. 
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 C O N C L U S I O N S  

n this work, we seek to present an analysis of the dynamics of the
egion around prolate bodies. For this, we used the Poincar ́e surface
f section technique, which provided the necessary information for
he identification of stable and unstable regions in the phase space of
he seven considered systems. The central bodies were modelled by
n ellipsoidal gravitational potential of an ellipsoidal body. Among
hese systems, we change the rotation period, ellipticity, and mass
f the primary, to identify how the region around these bodies is
ffected by these physical parameters. Our results are summarized
elow: 

(i) On the Poincar ́e surface of section, we identify the double
esonances, which were pointed out in the works of Winter et al.
 2019 ) and Sicardy ( 2020 ). In addition, in the Haumea e system we
dentify the bifurcation of the 2:6 resonance. Analysing the Poincar ́e
urface of section, we find that both the ellipticity of the central body
nd the spin affect the location of the resonances. 

(ii) To measure the extent of stable and unstable regions, delimited
y periodic and quasi-periodic orbits, we used the method discussed
n Ribeiro et al. ( 2021 ). The use of epicyclic frequencies to calculate
he semimajor axis of orbits around prolate bodies leads to incon-
istencies with the numerical results for regions close to the central
ody. Such disagreements were also identified in the work of Olsen
 2006 ), who compared numerical simulations with an analytical
ethod (mean elements) for determining the width of spin-orbit

esonances around prolate bodies. 
(iii) Having defined the method to calculate the semimajor axis

nd eccentricity of the orbits, we build stability maps in the a –e
pace. With the maps, we identified that the widths of the resonances
re not symmetrical about the centre of the resonance, defined by the
esonant semimajor axis. 

(iv) It was possible to identify a large region of stability, in
emimajor axis and eccentricity, due to the first kind of orbits.
eriodic orbits of the first kind, in general, have almost zero
ccentricity and are present in a large semimajor axis interval for
ll studied systems, while resonant and quasi-periodic orbits have
igh eccentricities. 
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