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Abstract
Monsoons affect the economy, agriculture, and human health of two thirds of the world’s
population. Therefore, predicting variations in monsoon precipitation is societally important. We
explore the ability of climate models from the sixth phase of the Climate Model Intercomparison
Project to predict summer monsoon precipitation variability by using hindcasts from the Decadal
Climate Prediction Project (Component A). The multi-model ensemble-mean shows significant
skill at predicting summer monsoon precipitation from one year to 6–9 years ahead. However, this
skill is dependent on the model, monsoon domain, and lead-time. In general, the skill of the
multi-model ensemble-mean prediction is low in year 1 but increases for longer-lead times and is
largely consistent with externally forced changes. The best captured region is northern Africa for
the 2–5 and 6–9 year forecast lead times. In contrast, there is no significant skill using the
ensemble-mean over East and South Asia and, furthermore, there is significant spread in skill
among models for these domains. By sub-sampling the ensemble we show that the difference in
skill between models is tied to the simulation of the externally forced response over East and South
Asia, with models with a more skilful forced response capable of better predictions. A further
contribution is from skilful prediction of Pacific Ocean temperatures for the South Asian summer
monsoon at longer lead-times. Therefore, these results indicate that predictions of the East and
South Asian monsoons could be significantly improved.

1. Introduction

Two thirds of the world’s population lives in areas
where there is a monsoon in summer (Wang and
Ding 2006). Monsoon precipitation variability has
effects on economies, agriculture, and human health,
among other sectors. Therefore, predicting the future
evolution of monsoon precipitation is important, for
adaptation strategies (e.g., infrastructure planning).

Individual predictions systems have shown skill at
predicting monsoon precipitation on a large range of
time scales (Dunstone et al 2020, Monerie et al 2021).
Regionally, some skill has been found over East and
southern Africa (Beraki et al 2013,Monerie et al 2018,

Walker et al 2019), South America (Jones et al 2012),
Australia (King et al 2020), India (Johnson et al 2017,
Chevuturi et al 2021) and southern China (Lu et al
2017) at a seasonal time scale. On longer time scales,
prediction systems have exhibited substantial skill at
predicting decadal variations in Sahel precipitation
(Gaetani and Mohino 2013, Martin and Thorncroft
2014, Mohino et al 2016, Otero et al 2016, Sheen et al
2017, Ndiaye et al 2022).

There are multiple sources of skill for predicting
summer monsoon precipitation. The role of sea sur-
face temperatures (SSTs), among other slowly varying
lower boundary conditions, in predicting monsoon
precipitation variations, was theorized by Charney
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and Shukla (1981). On seasonal time scales, it was
shown that the El Niño Southern Oscillation is key
for providing skill at predicting precipitation over the
tropics (Shukla and Paolino 1983, Wang et al 2018,
Sohn et al 2019, Dunstone et al 2020). On decadal
time scales, theNorth Atlantic and IndianOcean SSTs
also yield a certain amount of predictability for mon-
soon precipitation (Mohino et al 2016, Wang et al
2018), due to the high prediction skill of prediction
systems for Atlantic and Indian Ocean SST (Guemas
et al 2013,García-Serrano et al 2015) and to the effects
of these oceanic basins on monsoon precipitation.

Anthropogenic forcing is a source of prediction
skill for global mean surface air temperature (Boer
et al 2016) and SST (e.g., Guemas et al 2013) and
has known effects on summermonsoon precipitation
worldwide (Marvel et al 2020, Monerie et al 2022).

Previous studies have quantified skill at predict-
ing monsoon precipitation on multi-year time scales
with a small number of climate models and ensemble
members (e.g., Bellucci et al 2015). However, pre-
diction skill values increases with ensemble size
(Smith et al 2019) and we therefore use the large
ensemble of the Decadal Climate Prediction Project
(DCPP; Boer et al 2016), reducing unpredictable
noise, and providing a better estimate of prediction
skill. The large ensemble facilitates understanding
of the causes of differences between prediction sys-
tems at predicting monsoon precipitation, including
structural differences between prediction systems. No
robust evaluation across a range of models, mon-
soon domains and timescales has been provided so
far. We thus provide, for the first time, a quanti-
fication of the ability of sixth phase of the Climate
Model Intercomparison Project (CMIP6) prediction
systems at predicting interannual to decadal summer
monsoon precipitation variability in a global mon-
soon framework. We expect skill at predicting sum-
mer monsoon precipitation to be model dependent
(as shown by Delgado-Torres et al (2022) for the sur-
face air temperature), area-dependent and lead-time
dependent.

We address the following questions:

• Are CMIP6 initialized prediction systems skilful
at predicting summer monsoon precipitation on
interannual-to-decadal time scales?

• How model dependent is the skill at predicting
summer monsoon precipitation?

• Can we identify the sources of skill?

The paper is organized as follows: section 2 describes
the simulations and the methodologies used. In
section 3we quantify skill at predictionmonsoon pre-
cipitation for themultimodelmean and for each indi-
vidual prediction system. Sources of skill are shown in
section 4. We discuss results in sections 5 and 6 con-
cludes the main findings of the study.

2. Methods and data

2.1. Data
We use hindcasts of nine climate models from DCPP
Component A (Boer et al 2016) (DCPPA here-
after). These climate predictions are initialized from
observationally constrained datasets every year from
1960 to 2019 and 5–10 ensemble members are used
depending on the climate model (table 1).We assume
5–10 ensemble members to be large enough to allow
considerably increased prediction skill of monsoon
precipitation (Jain et al 2019, Monerie et al 2021).
DCPPA simulations are initialized in November each
year and last for 5–10 years after initialization and are
forced with historical external forcing.

We assess the impact of initialization by compar-
ing DCPPA simulations to the uninitialized CMIP6
historical simulations (Eyring et al 2016; table S1),
using the same climate models. These historical sim-
ulations begin in 1850 and last for∼150 years (1850–
2014) and use the same external forcings as the
DCPPA simulations. Prior to analysis, observations
and simulations are first interpolated onto a common
1◦ horizontal grid.

We assess skill at predicting precipitation using
the data of the Climate Research Unit (CRU; Harris
et al 2014), available from 1901 to present. Skill at
predicting surface air temperature is quantified using
the NCEP reanalysis (Kanamitsu et al 2002), which is
given on a 2.5◦ × 2.5◦ horizontal resolution and from
1948 to present.

2.2. Method
2.2.1. Assessing skill
Prediction skill is estimated using the anomaly cor-
relation coefficient (ACC)metric, computed between
observed and simulated time series. We assess skill at
three lead times. The 1 year lead time allows determ-
ination of skill at predicting interannual variability in
summer monsoon precipitation and is months 14–
17 (8–11) for the southern (northern) hemisphere
in DJFM (JJAS). Years 2–5 and years 6–9 are 4 years
averaged between years 2–5 and 6–9, respectively, and
documents predictability of the summer monsoon
precipitation on longer time scales. Prediction skill is
assessed over the period 1960–2020.

We estimate the significance of the ACC by ran-
domly resampling time series of the ensemble means.
We use a 5 year block bootstrap to conserve low-
frequency variability in precipitation and temperat-
ure using 5000 permutations in aMonte Carlo frame-
work. The ACC values are judged significant at the
p < 0.05 level if the correlations are stronger than
97.5% of the randomly obtained correlation values,
using a two-sided test.

We acknowledge that ACC scores are sensitive
to the existence of linear trends (e.g., in precipita-
tion, figure S1). However, we note that removing a
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Table 1. List of DCPPA prediction systems and number of simulations used in the study.

Models Institutions
No. of ensemble

members

Length
of the

integrations
(years)

Horizontal
resolution
(lat× lon) References

CanESM5 Canadian Center for
Climate Modeling
and Analysis, Canada

10 10 64× 128 Swart et al (2019)

CMCC-CM2-SR5 Fondazione Centro
Euro-Mediterraneo
sui Cambiamenti
Climatici. Italy

6 10 192× 288 Cherchi et al
(2019)

EcEarth3 EC-Earth-
Consortium

10 10 256× 512 Wyser et al (2020)

HadGEM3-GC31-MM Met Office Hadley
Centre, United
Kingdom

10 10 324× 432 Kuhlbrodt et al
(2018)

IPSL-CM6A-LR Institut Pierre Simon
Laplace, France

10 10 144× 143 Boucher et al
(2020)

MIROC6 Japanese modeling
community, Japan

10 10 128× 256 Tatebe et al (2019)

MPI-ESM1-2-HR Deutsches
Klimarechenzentrum,
Germany

5 10 192× 384 Mauritsen et al
(2019)

MRI-ESM2-0 Meteorological
Research Institute,
Japan

10 5 160× 320 Yukimoto et al
(2019)

NorCPM1 NorESM Climate
modeling
Consortium

10 10 96× 144 Bethke et al
(2021)

linear trend can artificially improve skill (figure S2).
Therefore, we document the skill at predicting the
total summer monsoon variability (internal variab-
ility + variability induced by the externally forced
response).

2.2.2. Drift correction
DCPPA simulations are initialized from observation-
ally constrained datasets, but then drift away to reach
their own model’s climatology. The drift can res-
ult in fast and large changes in temperature and
precipitation (Hermanson et al 2018). Hence, we
remove the lead-time-dependent drift following the
World Climate Research Programme recommenda-
tions (ICPO 2011) (see drift correction in the supple-
mentary material) prior to displaying simulated time
series. Note that removing the drift does not impact
skill as defined by the ACC.

2.2.3. Persistence
The n-year persistence is computed based on the
observed values in the n years prior to the start date.
We computed a 1 year and a 4 year persistence.

2.2.4. Defining ensembles
We define ensembles to explore the spread in model
skill and to understand sources of prediction skill for
summer monsoon precipitation.

2.2.4.1. Ensemble mean (ENSM and HIST)
We assess the ability of DCPPA simulations to pre-
dict monsoon precipitation by defining the ensemble
mean across models and ensemble members, here-
after called ENSM, as:

P̄( j) =
1

m

m∑
i=1

P j
i ,

with P precipitation of all m ensemble members i
and for each start date j, and P̄ precipitation averaged
across all ensemble members and start date. m is the
total number of ensemblemembers across all models.

HIST is defined in the same way as ENSM
but using the uninitialized simulations. Uninitialized
ensemble members simulate internal climate variab-
ility, but ensemble members would not be expected
to be in-phase and the ensemble mean is an estimate
of the forced response to external drivers (e.g., Deser
et al 2012). Therefore, the comparison of ENSM and
HIST allows for an exploration of the importance of
initialization for the prediction skill.

2.2.4.2. Best model (BEST)
The prediction system that performs best is selected,
according to the ACC values, with the BEST ensemble
consisting of only one individual model, for each
monsoon domain and each lead-time.

3
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2.2.4.3. A subset of models (SUBSET and WORST
SUBSET)
The SUBSET approach follows the ENSM approach,
computing the ensemble mean with only the three
prediction systems that have the highest ACC values
over a given monsoon domain and for a given lead
time. The composition of the SUBSET ensemble is,
thus, monsoon domain and lead time dependent.

The WORST SUBSET is defined in the same way
as SUBSET but selecting the three prediction models
that have the lowest ACC values.We expect a compar-
ison of SUBSET against WORST SUBSET and ENSM
to provide information on sources of prediction skill.
Finally, the effect of initialization is here estimated
by comparing SUBSET with HIST SUBSET, which is
composed of the same models as SUBSET but using
historical uninitialized simulations only.

2.3. Monsoon domains
Monsoon domains are defined where the difference
between May to September (MJJAS) and November
toMarch (NDJFM)precipitation exceeds 2.5mm.d−1

(Wang et al 2011) in observations (GPCC; Schneider
et al 2014). We only consider precipitation that falls
within the tropical latitudes [30◦ S–30◦ N] and over
land.Monsoon domains are shown in figure 1 and are
named NAM (Northern America), NAF (Northern
Africa), SAS (South Asia), EAS (East Asia), SAM
(Southern America), SAF (Southern Africa) and AUS
(Australia), following the literature (e.g., Kitoh et al
2013). We assess skill at predicting summer monsoon
precipitation, in JJAS for theNAM,NAF, SAS andEAS
monsoon domains and in DJFM for the SAM, SAF
andAUSmonsoon domains. In addition, we averaged
monsoon precipitation of all domains in the northern
(NHM) and southern (SHM) Hemispheres.

2.4. The Interdecadal Pacific Oscillation (IPO)
We define the IPO as the difference between the
central-eastern Pacific [150◦ E–150◦ W; 10◦ S–10◦ N]
and the tropical central-eastern Pacific [170◦ W–
90◦ W; 25◦ N–45◦ N] after Huang et al (2020), using
surface air temperature. According to Huang et al
(2020), this index gives similar results that the tripole
index of Henley et al (2015).

3. DCPPA prediction skill

3.1. Quantifying DCPPA ensemble-mean
prediction skill
We assess prediction skill of ENSM for summermon-
soon precipitation at each grid point, and when aver-
aged over each monsoon domain.

We find significant skill in predicting summer
monsoonprecipitation in ENSM, but the skill appears
to increase with lead time. Figure 1(a) shows that
skill at predicting precipitation at the 1 year forecast
lead time is relatively low over much of the globe,

although there are regionswith statistically significant
prediction skill. For example, over the tropics, predic-
tion skill is significant over northern South America,
Argentina, and the western Sahel. Nevertheless, rel-
ative to the 1 year predictions, we find an increase
in skill for the 2–5 and 6–9 forecast lead times. This
increase in skill stands out over the Sahel, west-
ern India and Southeast Asia, and northern South
America (figures 1(b) and (c)).

Figure 2 shows the skill at predicting summer
monsoon precipitation when averaged over all mon-
soon domains. At the 1 year forecast lead time, ENSM
is skilful at predicting NAM and AUS precipitation,
as well as the hemisphere-wide quantities (NHM and
SHM) (figure 2(a)). However, there is no significant
skill over the NAF, SAS, EAS, SAM and SAF mon-
soon domains. For the 2–5 and 6–9 year forecast
lead times, skill remains statistically significant for
NHM, SHM, and NAM precipitation (figures 2(b)
and (c)) and increases substantially for NAF and SAM
precipitation. In contrast, ENSM does not show sig-
nificant skill for the SAS, EAS and SAF monsoon
domains for any lead-time. Results show higher skill
for ENSM than for the CMIP5 decadal prediction sys-
tems (Bellucci et al 2015).

We assess the sources of model skill at predicting
summermonsoon precipitation variability compared
with persistence forecasts and with uninitialized sim-
ulations. Figure 2 shows that ENSM prediction skill
generally exceeds persistence, implying that the skill
does not only depend on the inertia of the climate
system. We note, however, that persistence is more
skilful than ENSM for the 1 year and 2–5 year fore-
cast lead times for NAF summer monsoon precipit-
ation (figures 2(a) and (b)). The effect of initializa-
tion (defined as the difference between initialized and
uninitialized hindcasts) only emerges for a limited
number ofmonsoon domains, especially at the longer
lead times (e.g., 6–9 years), indicating that changes in
external forcing are an important source of prediction
skill on these time scales.

3.2. Understanding the range of prediction skill
So far, we have only explored the multi-model mean
skill. But modelling systems will likely exhibit dif-
ferent levels of skill. Figure 2 also shows the range
of skill for each model in the DCPPA ensemble and
there is a significant diversity of model skill for all
lead times (purple vertical lines). There is a consensus
for some monsoon domains and lead-times, with all
models exhibiting positive skill (e.g., NAM summer
monsoon precipitation for the 1 year forecast lead-
time andNAF summermonsoon precipitation for the
2–5 and 6–9 forecast lead-times). However, there is
more diversity in prediction skill for the SAS and EAS
domains, with individual models performing much
better or lesser than ENSM (figures 2(b) and (c)), as
also shownwith seasonal hindcasts (Mishra et al 2018,

4
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Figure 1. Anomaly correlation coefficient skill score for predictions of precipitation in ENSM at the (a) 1, (b) 2–5 and (c) 6–9 year
forecast lead times, relative to CRU. ACC values are shown for JJAS (DJFM) in the northern (southern) hemisphere. Stippling
indicates that ACC is significantly different to zero according to a Monte-Carlo procedure with 5000 permutations and a 95%
confidence level. Black contours show the monsoon domains.

5



Environ. Res. Lett. 18 (2023) 094002 P-A Monerie et al

Figure 2. Anomaly correlation coefficient skill score for predictions of summer monsoon precipitation averaged over each
monsoon domain and for the northern hemisphere (NHM) and the southern hemisphere (SHM). Results are given for ENSM
(bars), uninitialized simulations (black line), and persistence (orange circles), and for the (a) 1 year, (b) 2–5 year, and (c) 6–9 year
forecast lead times. The magenta vertical line shows the range in DCPPA prediction skill, defined between the lowest and highest
skill and from each prediction system. A solid blue bar indicates that ACC is significantly different to zero according to a
Monte-Carlo procedure with 5000 permutations and a 95% confidence level.

Jain et al 2019). Skill scores for each model and mon-
soon domain are shown in figures S3 and S4.

4. Sources of prediction skill

We explore the source of skill by selecting mod-
els according to their prediction skill. As expected,
the BEST and SUBSET ensembles generally show
improved skill relative to ENSM for all forecast lead
time (figure 3).

ACC value is around tripled in SUBSET
(ACC = 0.61) compared to ENSM (ACC = 0.18)
for EAS summer monsoon precipitation and the
2–5 year forecast lead time (figure 3(b) and table S2).
ACC values is approximately quadrupled in SUBSET
(ACC= 0.40) relative to ENSM (ACC= 0.09) for SAS
summer monsoon precipitation and for the 6–9 year
forecast lead time (figure 3(c) and table S3). This is a
consequence of the large diversity in prediction skill
over South and East Asia, with prediction systems

6
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Figure 3. Anomaly correlation coefficient skill score for predictions of summer monsoon precipitation averaged over the northern
hemisphere (NHM), the southern hemisphere (SHM) and each monsoon domain. Results are given for ENSM (dark blue),
persistence (orange), BEST (magenta), and SUBSET (light green). Results are given for the (a) 1 year, (b) 2–5 year, and
(c) 6–9 year forecast lead times.

exhibiting either high or low skill. Thus, skilful pre-
dictions can be obtained in the regions that ENSM
is not skilful. We used another observational dataset
(GPCC) and show that results are robust across obser-
vations (not shown).

4.1. Source of prediction skill for EAS summer
monsoon precipitation
We focus on prediction of EAS summer monsoon
precipitation for the 2–5 year forecast lead time, for
which the SUBSET-ENSM difference in skill is the

largest. The improved skill in SUBSET, relative to
ENSM, is largely due to themulti-decadal variation in
EAS summer monsoon precipitation. After applying
a 7 year running mean to the 2–5 year forecasts we
find the ACC is 0.70 in SUBSET but only 0.14 in
ENSM. This is further confirmed using a 21 year
running mean to only capture the slow variation of
the EAS summer monsoon precipitation (figure S5).
In contrast, the difference in skill between SUBSET
(ACC = 0.18) and ENSM (ACC = 0.07) is low when
considering higher frequency variability (defined as

7
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Figure 4. Precipitation anomalies in (a) EAS and (b) SAS summer monsoons, for the 2–5 and 6–9 year forecast lead times,
respectively. Observations (CRU) are shown in black, ENSM in blue, SUBSET in green, WORST SUBSET in magenta, and HIST
with discontinuous black line. Anomalies are computed relative to the 1961–1981 period. The high frequency variability is
removed using a 7 year running average after computing the 2–5 and 6–9 averages. The r number indicates the ACC value,
computed between each ensemble and observations, the r∗ number indicates the correlation coefficient between initialized and
uninitialized simulations.

the residual relative to the 7 year running mean).
Figure 4(a) shows the smoothed time series in EAS
summer monsoon precipitation. Although there is
significant skill in SUBSET, both ENSM and SUBSET
ensemble underestimate the observed variability. The
difference between SUBSET and ENSM ensembles is
that there is a long-lasting drying trend in ENSM
while SUBSET simulates a small decrease in precipita-
tion from 1960 to the 1980s and an increase in precip-
itation afterwards, hence better following the obser-
vation (figure 4(a)). In contrast, theWORST SUBSET
shows a strong drying trend. Therefore, the difference
in trends appears to be key to understand the differ-
ences in monsoon precipitation skill.

There is a large effect of the externally forced
response on the multi-annual variation in EAS sum-
mer monsoon precipitation, as evidenced by the high
correlation coefficient between the uninitialized and
initialized simulations (r∗ = 0.94 between ENSM and
HIST; figure 4(a)).

Hence, we hypothesise that the range in skill of the
DCPPA ensemble to be due to the differences in the
response to external forcing. This is assessed by com-
paring maps of SUBSET-WORST SUBSET differ-
ence in skill (figure 5(a)) to the HIST SUBSET-HIST
WORST SUBSET difference in skill (figure 5(b)). As
the skill of uninitialized simulations is due to the
response to the external forcing, the strong similarity
between figures 5(a) and (b) confirms a strong role
of the simulation of the externally forced response
on the spread in prediction skill over EAS. These res-
ults have a strong societal importance because the
increase in skill is the highest over eastern China, a
heavily populated region where precipitation variab-
ility is high (figure 5(a)).

4.2. Sources of prediction skill for SAS summer
monsoon precipitation
We focus on prediction of SAS summer monsoon
precipitation for the 6–9 year forecast lead time,
for which the SUBSET-ENSM difference in skill is
the greatest. As for EAS summer monsoon precip-
itation, the externally forced response has strong
effects on the long-term variation in simulated SAS
summer monsoon, as shown by the high correla-
tion coefficient between uninitialized and initialized
simulations (r∗ = 0.98 between ENSM and HIST;
figure 4(b)). The spread in SAS summer monsoon
prediction skill is also associated with the ability of
prediction systems to simulate themulti-decadal vari-
ation in SAS summer monsoon precipitation. This
is evidenced by the absence of pre-1990 drying in
WORST SUBSET, while SUBSET shows a multi-
decadal variation in SAS summer monsoon precip-
itation, in better agreement with the observations
(figure 4(b)).

An effect of the response to external forcing on
the spread of South Asian summer monsoon pre-
diction skill is confirmed by the similarity between
patterns of difference in prediction skill (SUBSET-
WORST SUBSET; figure 5(c), and HIST SUBSET-
HIST WORST SUBSET; figure 5(d)). However, the
response to externally forced response does not fully
explain the SUBSET-WORST SUBSET difference in
skill. We thus also expect other drivers of South Asian
summer monsoon precipitation variability to con-
tribute to the spread in SAS summer monsoon pre-
cipitation skill.

The multi-decadal variability in South Asian pre-
cipitation has been linked to the interdecadal variab-
ility of the Pacific Ocean (IPO) (Zhang et al 2018,

8
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Figure 5. SUBSET minus WORST SUBSET difference in anomaly correlation coefficient skill score for predictions of
precipitation over (a) East Asia for the 2–5 year forecast lead time, (c) South Asia for the 6–9 year forecast lead time. Skill at
predicting precipitation is computed in comparison to CRU. Green contours indicate the precipitation variance, in mm2.d−2,
(b) and (d), as in (a) and (c) but for the HIST SUBSET-HIST WORST SUBSET difference in anomaly correlation coefficient skill
score for precipitation. Stippling indicates that the difference in ACC is significantly different to zero according to a Monte-Carlo
procedure, resampling both BEST and ENSM and computing difference in ACC values. We use 5000 permutations and a 95%
confidence level. The same number of ensemble members are used for the ensembles of initialized and uninitialized simulations
(19 ensemble members for HIST SUBSET and 26 ensemble members for WORST SUBSET for EAS summer monsoon
precipitation; 30 ensemble members for HIST SUBSET and 15 ensemble members for WORST SUBSET and for the SAS summer
monsoon precipitation.).

Huang et al 2020). We show a strong relationship
between skill at predicting the IPO and that of the
SAS summer monsoon precipitation at the 6–9 year
forecast lead time (figure 6(b); r = 0.88). The spread
at predicting the IPO thus also contribute to the
spread at prediction the SAS summer monsoon pre-
cipitation. We performed the same analysis with the
uninitialized simulations and show that the result of
figure 6(b) is due to initialization (r = 0.01 with the
uninitialized simulations), and thus to the simulation
of internal climate variability and to the correction of
an incorrect forced response.

5. Discussion

Although we show improved skill over EAS and SAS
summer monsoon precipitation in SUBSET, which
we attribute to the impact of external forcing and
to the simulation of the IPO, the exact mechanisms
that explain the higher skill are unclear. For example,

we explored mechanisms focusing on known drivers
of the monsoon circulation, such as the large-scale
gradients in surface air temperature and of sur-
face air temperature over the oceans. However, dif-
ferences in skill at predicting surface air temperat-
ure between the SUBSET and ENSM ensembles are
low (figures S6 and S7). Further work could focus
on understanding differences in atmospheric circu-
lation, and regional changes between SUBSET and
ENSM. We also acknowledge that different estima-
tions of the internal components of the IPO could
lead to different conclusions and future work could
be devoted to understanding what leads to better pre-
diction skill of the IPO and its role for predicting
summermonsoonprecipitation atmulti-annual fore-
cast lead times. In addition, the results are expec-
ted to be sensitive to the estimate of the IPO (e.g.,
Parker et al 2007, Henley et al 2015) and to the
use of different observations/reanalysis. However, we
show that skill at predicting South Asian summer
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Figure 6. Anomaly correlation coefficient skill score for predictions of IPO index and (a) EAS and (b) SAS summer monsoon
precipitation for each prediction system (1-CMCC-CM2-SR5; 2-HadGEM3-GC31-MM; 3-IPSL-CM6A-LR; 4-MIROC6;
5-MPI-ESM1-2-HR; 6-CanESM5; 7-EcEarth3; 8-NorCPM1) and the 2–5 and 6–9 year forecast lead times, respectively. A 7 year
running mean was applied to both precipitation and IPO time series before to compute anomaly correlation coefficients. SUBSET
(WORST SUBSET) models are shown with a green (magenta) circle.

monsoon precipitation is sensitive to the skill at pre-
dicting the PacificOcean SSTs for the 6–9 year forecast
lead-time.

We explored further the role of the IPO indices
on summermonsoon prediction skill, correcting IPO
indices and effects on summer monsoon precipita-
tion, using observations. We show that an improved
prediction skill for the IPO leads to a better predic-
tion skill for the SAS summer monsoon precipitation
(figure S8 and text in the supplementary material).
Better predicting the IPO can allow improved predic-
tion skill over South Asia. In addition to the IPO, we
found a moderate relationship between skill at pre-
dicting North Atlantic temperature and SAS summer
monsoon precipitation (r = 0.35) for the 6–9 year
forecast lead-time. In contrast, prediction skill of the
IPOhas no effects on prediction skill for EAS summer
monsoon precipitation (figure 6(a); r = −0.18) and
we found no relationship between prediction of the
North Atlantic, Indian Ocean, and equatorial Pacific
Ocean temperature on prediction skill of EAS sum-
mer monsoon precipitation skill (not shown) for the
2–5 year forecast lead-time.

We acknowledge here that we do not suggest the
full skill of the prediction systems to arise only due
to the externally forced response. Instead, we sug-
gest that differences in skill in initialized predictions
are partly due to differences in the simulation of the
externally forced response. These differences in skill
could be due to model biases. However, we found no
relationships between biases in seasonal mean pre-
cipitation (or variability) and prediction skill, when
using monsoon domain averages (not shown). Yet,
further work might identify the importance of model
biases for prediction skill. A focus could be given to
the biases in simulation of the mean state tropical
SSTs (e.g., Turner et al 2005). We also highlight that

an increased number of models could allow increas-
ing robustness of the results.

6. Conclusions

We quantify the ability of CMIP6 initialized decadal
prediction systems (Boer et al 2016) to predict sum-
mer monsoon precipitation in a global monsoon
framework and focus on three forecast lead times
(1 year, 2–5 years, and 6–9 years). Overall, skill is low
for the forecast 1 year lead time but increases for the
2–5 and 6–9 year horizons. Furthermore, the skill is
model dependent, monsoon-domain dependent and
lead-time dependent.

We explore sources of skill for predicting sum-
mer monsoon precipitation. In particular, the impact
of initialization is rather small when focusing on the
2–5 and 6–9 forecast lead times. Therefore, the res-
ults highlight the importance of the externally forced
response for providing skill at predicting summer
monsoon precipitation. By selecting models, based
on their prediction skill, we suggest that differences
in simulating the externally forced response between
models explains a large proportion of the diversity
skill of the CMIP6 model ensemble, over South and
East Asia.

Nevertheless, differences in skill at predicting the
IPO also contributes to differences in skill between
models for predictions of the South Asian summer
monsoon precipitation at the 6–9 year forecast lead
time. We show that initialization and improved pre-
diction of the Pacific SSTs is important for prediction
of South Asian summer monsoon precipitation, but
it is unclear if this is due to improved prediction of
internal variability, a correction of an incorrect forced
response or mean state. Besides, we acknowledge that
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skill at predicting the IPO can be amanifestation of an
effect of the externally forced response on temperat-
ure over the Pacific Ocean. Therefore, improving our
understanding of the differences between howmodels
simulate the effects of external forcing and of IPO on
South and East Asian summermonsoon precipitation
could be an important avenue for improving predic-
tion skill on a multi-annual time scale. The mech-
anism (e.g., anomalies in atmospheric circulation,
in temperature gradients) that explains model skill
diversity remains unclear. Further work is needed,
focusing on, for instance, the atmosphere dynamics
or model biases.

We do not argue here that selecting models based
on their prediction skill should be used for predicting
the future evolution of the East and South Asian sum-
mer monsoon precipitation up to ten years ahead. A
reason for that is that prediction skill depends on the
period used as reference (figure S9) and the ensembles
might thus not provide the best prediction for the
coming decade.

Data availability statement

DOIs/URLs for the historical simulations are https://
doi.org/10.22033/ESGF/CMIP6.3610, https://doi.
org/10.22033/ESGF/CMIP6.3825, https://doi.org/10.
22033/ESGF/CMIP6.4700, https://doi.org/10.22033/
ESGF/CMIP6.6112, https://doi.org/10.22033/ESGF/
CMIP6.5195, https://doi.org/10.22033/ESGF/CMI
P6.5603, https://doi.org/10.22033/ESGF/CMIP6.
6594, https://doi.org/10.22033/ESGF/CMIP6.
6842, https://doi.org/10.22033/ESGF/CMIP6.10894,
respectively for CanESM5, CMCC-CM2-SR5,
EcEARTH3, HadGEM3-GC31-MM, IPSL-CM6A-
LR, MIROC6, MPI-ESM1-2-HR, MRI-ESM2-0 and
NorCPM1. DOIs/URL for the hindcasts are https://
doi.org/10.22033/ESGF/CMIP6.3557, www.wdc-
climate.de/ui/entry?acronym=C6_4368435, https://
doi.org/10.22033/ESGF/CMIP6.4553, https://doi.
org/10.22033/ESGF/CMIP6.5892, https://doi.org/
10.22033/ESGF/CMIP6.5137, https://doi.org/10.
22033/ESGF/CMIP6.890, https://doi.org/10.22033/
ESGF/CMIP6.768, https://doi.org/10.22033/ESGF/
CMIP6.630 and https://doi.org/10.22033/ESGF/
CMIP6.10865, respectively for CanESM5, CMCC-
CM2-SR5, EcEARTH3, HadGEM3-GC31-MM,
IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-HR, MRI-
ESM2-0 and NorCPM1. NCEP temperature data are
provided by the NOAA/OAR/ESRL PSL, Boulder,
Colorado, USA, from their website at https://
downloads.psl.noaa.gov/Datasets/ncep.reanalysis/
Monthlies/pressure/. CRU Precipitation is provided
by the Climate Research Unit, from the website at
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.03/
cruts.1905011326.v4.03/pre/.

The data that support the findings of this study are
openly available at the following URL/DOI: https://
esgf-index1.ceda.ac.uk/search/cmip6-ceda/.
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