

Blurring the limits of anaxyelid subfamilies: a new genus and species (Hymenoptera: Anaxyelidae) from the Albian of the Republic of Korea

Simon Rosse-Guillevic, Dmitry Kopylov, Alexandr Rasnitsyn, Gi-Soo Nam, Seung-Hyuk Kwon, Corentin Jouault

▶ To cite this version:

Simon Rosse-Guillevic, Dmitry Kopylov, Alexandr Rasnitsyn, Gi-Soo Nam, Seung-Hyuk Kwon, et al.. Blurring the limits of anaxyelid subfamilies: a new genus and species (Hymenoptera: Anaxyelidae) from the Albian of the Republic of Korea. Palaeoentomology, 2023, 6 (4), pp.424-434. 10.11646/palaeoentomology.6.4.13. insu-04190458

HAL Id: insu-04190458 https://insu.hal.science/insu-04190458

Submitted on 29 Aug 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	nd specie	S
2	a	
3		
4	.SNITSYN ^{3,}	5,
5		
6		
7		
8	!. 123, 11764	!7
9		
10		
11		
12	public of Kore	a
13	toire naturell	e,
14	F-75005 Pari	S,
15		
16	le Montpellier),
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		

27	
28	
29	
30	strated from the
31	the subfamily
32	out differs from
33	wice as long as
34	curved distally
35	tiation between
36	lue of the wing
37	onsequently, the
38	ae.
39	
40	
41	
42	
43	
44	ning greatly, in
45	no et al., 2021;
46	amely: Syntexis
47	curs throughout
48	ex Don, 1824;
49	– Pseudotsuga
50	ı, 1967). Its life
51	osperms, with a
52	

53	nner Mongolia,
54	e with age (i.e.,
55	ist et al., 2012;
56	Anaxyelidae is
57	: Nyman, 2014;
58	es of anaxyelid
59	s the difference
60	
61	
62	
63	
64	ngchon section
65	see Park et al.,
66	lary of the Jinju
67	the age of the
68	s referred to as
69	The fossils are
70	e specimens are
71	GNUE218003,
72	GNUE218044.
73	on EF 100 mm
74	
75	1 in ZooBank
76	(reference):
77	

79		
80		
81		
82		
83		
84		
85		
86		
87		
88		
89	, which mea	ıns
90	τηξις, meani	ng
91	ily Syntexina	ìе.
92		
93	rd of wing (R	:1,
94	ll; 2r-rs arisi	ng
95	ilar length as	1-
96	the same wid	lth
97	curved distal	lly
98	1, but distinct	tly
99) slender, sho	ort
100		
101		
102	imily Syntexin	ae
103	widened apical	lly
104	;in.	

105	<i>Syntexis</i> than to
106	died specimens,
107	
108	ue of previously
109	a combination of
110	1-cu suggests its
111	ng twice as long
112	shape of cell 2r
113	r. Similarly, the
114	and Anaxyelinae.
115	he pterostigma's
116	3r supports its
117	we extensively
118	e wing venation
119	
120	
121	
122	
123	
124	
125	18003 (paratype,
126	2/GNUE218044
127	al University of
128	
129	h means 'heretic'
130	

131	inju, Republic of
132	
133	
134	ngth (excluding
135	nctive coloration
136	
137	l lateral surface.
138	y; antennomeres
139	
140	mur ca. 1.5 mm
141	cally. Metafemur
142	
143	gma ca. 1.5 mm
144	mm wide (2.14 \times
145	de). Cell 3r 2.3×
146	type). Cell 2+3m
147	dest along 3r-m.
148	vide). Cell 2mcu
149	d 0.82 mm wide
150	Cu (ca. 0.54 mm
151	;). Vein 1-Rs+M
152	s curved basally,
153	ets 1-Rs without
154	8 mm long) and
155	n the holotype).
156	ular, longer than

157	ated well before
158	
159	3 long as wide).
160	ngth distally (in
161	ly wider basally
162	abdomen apex
163	forewing length
164	
165	he holotype. For
166	s: GNUE218003
167	positor about 4.6
168	; at least 6.5 mm
169	l body at least 7
170	3.8 mm long (as
171	t 4.17 mm long,
172	
173	
174	ılt <i>et al.</i> , 2022):
175	2
176	6
177	3
178	orter than cell
179	5
180	.2 (2-A1 0.2× as
181	exis Wang et al.,
182	

183	aced from a1-a2
184	4
185	as long as
186	Rasnitsyn, 1990
187	as long as
188	ault <i>et al</i> ., 2022
189	vith cell 3r
190	syntexis Gao et
191	
192	vith cell 3r
193	Gao et al., 2022
194	in apical third of
195	ov, 2019
196	7
197	n basal third of
198	Kopylov, 2019
199	from middle of
200	8
201	lov et al., 2020
202	9
203	1.8× longer than
204	is gen. nov.
205	1 3r longer than
206	10
207	eu present; distal
208	Kopylov, 2019

209	cu absent; distal
210	ohwer, 1915
211	
212	
213	
214	
215	ticotomidae, and
216	es of thinner and
217	Gao et al., 2009,
218	st of the time, a
219	new fossils), and
220	m not fused and
221	gellinae: Mason,
222	venation in the
223	al (e.g., Engel et
224	dae are excluded
225	(e.g., Gao et al.,
226	r forewings with
227	7; Jouault et al.,
228	ts nearly aligned
229	ıthredinoidea s.l.
230	al., 2015; Nel et
231	new specimens)
232	redinoidea (e.g.,
233	
234	rphology go the

235	& Zhang, 2004).
236	because of their
237	and lacking the
238	
239	wings with 1-Rs
240	originating close
241	with 1m-cu (vs.
242	the crossvein 2r-
243	
244	iricidae), a long,
245	wing membrane
246	these characters
247	'ang et al., 2018;
248	
249	often overlap the
250	ng with venation
251	basal section of
252	: Pseudosiricidae
253	new specimens
254	resent (note that
255	eins). The most
256	osence of strong
257	and 1m-cu to the
258	
259	ig this family is
260	(N. Oyama, pers.

261	unusually long
262	Besides, none of
263	ween the base of
264	
265	ause no forewing
266	pulcidae, 2r-m is
267	er having a very
268	sly membranous
269	sils). In the new
270	n GNUE218032
271	notum associated
272	cide to place the
273	
274	in the subfamily
275	of cell 3r; cell 2r
276	chostigmatinae);
277	vhich all species
278	
279	rinae because of
280	10stic characters
281	not distinctively
282	; pterostigma) is
283	axyela destructa
284	tasnitsyn, 1968).
285	naxyelinae rather
286	most diagnostic

287	shares numerous
288	
289	l from Kopylov,
290	llowing couplets
291	exis Rasnitsyn &
292	2, Sclerosyntexis
293	2022); forewing
294	ving (excluding
295	of 3r cell; 2r-rs
296	', 2019); 1-M of
297	
298	cause of (most of
299	as (most notably
300	in length to the
301	s well as 1Rs+M
302	se of the cells 2r
303	es (most notably
304	r sheaths (longer
305	IS.
306	
307	
308	Syntexinae and
309	d genus exhibits
310	e morphological
311	eatures for these
312	icant characters

313	ing a novel one.
314	two subfamilies
315	ther.
316	ution in regard to
317	of 1m-cu, usually
318	, the bifurcation
319	yntexis antonovi
320	e other hand, in
321	m-cu. In certain
322	ırs before 1m-cu
323	h of Rs+M. We
324	
325	the Anaxyelidae
326	times its width,
327	ern is generally
328	oup. For instance,
329	, Sphenosyntexis
330) have the cell 2r
331	gen. et sp. nov.
332	xis magadanicus
333	2r. Additionally,
334	e trace of 1r-rs,
335	osyntexis primus
336	exis khasurtensis
337	
338	ae. Typically, in

339	lescribed species
340	almost parallel-
341	at approximately
342	he differences in
343	ly when clearly
344	
345	Anaxyelinae. In
346	rostigma near its
347	till noticeable in
348	gen. et sp. nov.,
349	pterostigma. On
350	l quarter of the
351	und in Anaxyela
352	
353	ement within the
354	ounded, and the
355	ction with C. In
356	alting in a sharp
357	oth Anaxyelinae
358	Hanguksyntexis
359	lar characteristic
360	
300	of the cell apex.
361	of the cell apex.
361	ı clarity.

365	is result could be
366	completeness of
367	f the family.
368	
369	Pelclòs, 2000
370	tich was initially
371	syn & Martinez-
372	he bifurcation of
373	the pterostigma.
374	sembles that of
375	ein based on the
376	ttern observed in
377	the subfamily
378	
379	
380	
381	
382	nificantly to our
383	genus represents
384	ular interest, this
385	g the boundaries
386	ated the value of
387	propose that the
388	or distinguishing
389	noptera from the
390	order during the

391	
392	
393	
394	
395	ts to improve the
396	ed funding.
397	
398	
399	
400	
401	
402	
403	
404	(Hymenoptera:
405	s, western North
406	
407	
408	l Entomological
409	i Entomotogicui
410	
411	te Paleontology.
412	rsity of Kansas,
413	
414	Fossil Xyelidae
415	13, 383.

416	
417	eage of sawflies
418	ous Research, 60,
419	
420	
421	es of Myrmicium
422	Early Cretaceous
423	le Ciências, 92,
424	
425	
426	elid wood wasps
427	era). Journal of
428	
429	
430	xiphydriid wood
431	association with
432	
433	
434	from the Middle
435	596.
436	

437	optera) from the
438	1C Evolutionary
439	
440	
441	uide to families.
442	
443	pidea) in west-
444	
445	e early diverged
446	24, 379–393.
447	
448) (Hymenoptera:
449	éontologie, 108,
450	
451	
452	optera: Siricidae)
453	382–389.
454	
455	pamphiliid genus
456	73–182.
457	
458	the Jurassic of
459	

460	
461	taceous of Asia.
462	
463	
464	ozoic. Euroasian
465	
466	Dmitriev, V.Yu.,
467	A., Lukashevich,
468	., Prokin, A.A.,
469	Strelnikova, O.D.,
470	& Zmarzły, M.
471	1221–1394.
472	
473	e of Daohugou:
474	Daosyntexis and
475	04–114.
476	
477	is in the eastern
478	ıl of Asian Earth
479	
480	
481	new pieces into
482	

483	
484	in Turkestan. 3.
485	
486	n: Goulet, H. &
487	milies. Research
488	
489	ovas espécies de
490	aleógeno) Minas
491	
492	esentatives of the
493	: (Hymenoptera,
494	
495	
496	c, S.M. & Malm,
497	fly superfamilies
498	giosperm hosts.
499	
500	
501	ıa from the Jinju
502	ology, 17, 1271–
503	
504	

505	icheskii Zhurnal,
506	
507	ymphata) [New
508	aratau [Jurassic
509	
510	ykh. Akademiya
511	
512	ceous of Asia.
513	
514	(Hymenoptera:
515	a, 70, 68–73.
516	nye Vostochnogo
517	39, 177–205.
518	optera) from the
519	
520	u hymenopteran
521	. Palaeontology,
522	
523	
524	e Entomological
525	

526	itsyn, A.P. (2012)
527	radiation of the
528	
529	
530	e (Hymenoptera)
531	
532	
533	he Hymenoptera
534	
535	
536	ral diversity and
537	Hymenoptera):
538	22–194.
539	
540	awflies from the
541	dae). Historical
542	
543	
544	of basal horntail
545	is Research, 91,
546	
547	

548) Mirolydidae, a
549	saic evolution of
550	
551	
552	'.P. (2020) A new
553	Ayanmar amber.
554	
555	
556	wfly of the genus
557	ary of Altkirch,
558	
559	
560	ıtexis libocedrii
561	60, 1291–1295.
562	
563	New genus and
564	etaceous Kachin
565	27, 104940.
566	
567	pamphiliids with
568	Jortheast China
569	
570	

571	
572	
573	138. A , Part. B ,
574	
575	(GNUE218032).
576	D , Interpretative
577	
578	ГUE218004). В ,
579	D, Interpretative
580	
581	TUE218044). B ,
582	