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1. Introduction
The size and the spatial structure of clouds vary by several orders of magnitude (Koren et al., 2008). The size of 
the horizontal meshes of global and regional atmospheric circulation models typically range from a few kilom-
eters to a few hundred kilometers, and their vertical resolution in the troposphere is typically from ten to several 
hundred meters. Thus the geometric representation of clouds in these models at scales smaller than those of the 
mesh sizes must be parametrized, especially to compute the radiative effect of clouds that is of crucial importance 
for the climate.

The cloud geometry in a model is generally simply described by a horizontal fraction of the layer being cloudy, 
the remaining part being clear. In the cloudy part, the in-cloud liquid or solid amount of water is often assumed 
to be uniform, although some improved representations have been proposed (Hogan & Shonk, 2013; Räisänen 
et al., 2004). The cloud cover CC (defined as the fraction of the area of the entire scene i.e., covered by clouds) 
and the mean optical depth of the cloudy region (that we will call the cloud optical depth) depend on how the 
cloud fractions overlap in the vertical. If they overlap maximally, the cloud cover will be minimum and the cloud 
optical depth maximum, if they overlap minimally, the cloud cover will be maximum and the cloud optical depth 
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minimal, and if the overlap is random, the cloud cover as well as the cloud optical depth will be somewhere in 
between.

How the cloud fraction of each atmospheric layer overlap with other layers has been widely studied (Barker 
et al., 1999; Geleyn & Hollingsworth, 1979; Jakob & Klein, 1999). Many recent studies use an exponential-random 
scheme approach where the probability of two layers overlapping decreases exponentially with the distance 
between them (Bergman & Rasch, 2002; Hogan & Illingworth, 2000; Oreopoulos, Cho, & Lee, 2022; Shonk 
& Hogan, 2010; Tompkins & Di Giuseppe, 2007). The corresponding decorrelation length scale has been esti-
mated from satellite radar and lidar observations (Jing et al., 2016; Li et al., 2015), in-situ observations (Mace & 
Benson-Troth, 2002), and high resolution model simulations (Neggers et al., 2011). Studies have shown that the 
decorrelation length can be parametrized as a function of the horizontal wind profile of the column (Di Giuseppe 
& Tompkins, 2015; Pincus et al., 2005; Sulak et al., 2020).

The vertical subgrid heterogeneity of the cloud fraction has been less investigated. Atmospheric model cloud 
schemes calculate the cloud fraction as the fraction of the volume of a layer that contains clouds, Cv, but radiation 
is primarily sensitive to the areal cloud fraction Ca, which is the fraction of the area of the layer covered by clouds. 
We will keep those definitions for the rest of the study. Often implicitly, these two fractions are assumed to be 
equal, that is, the clouds are assumed to be homogeneous on the vertical in each layer. This can seem logical on 
the first order given the area/depth ratio of the layers, however, recent studies show that this may introduce signif-
icant biases, as the distribution of cloud water can be vertically heterogeneous in layers as thin as 100 m (Brooks 
et al., 2005; Jouhaud et al., 2018), and that Ca is typically greater than Cv by about 30% (Neggers et al., 2011). A 
direct consequence of not taking into account this difference is that, for a given volume cloud fraction and mean 
liquid water content, the areal cloud fraction of the clouds is too small and the water content per unit of cloud 
fraction (and therefore the cloud albedo) too large.

Considering these results, we address the following questions: can we use ERO to statistically represent the verti-
cal structure of cloud scenes, only using a small number of aggregated quantities, to simulate precisely radiative 
fluxes? How does this representation depend on the vertical resolution? What is the radiative error that is induced 
when the subgrid vertical structure of the clouds is not explicitely resolved and hence not seen by radiation? To 
answer them we propose an overlap model that ensures consistency between the overlap between cloudy layers and 
the representation of subgrid vertical heterogeneity. Indeed, we contend that both are intended to represent the same 
characteristic of clouds, their vertical distribution, and that the distinction between the two depends on the vertical 
resolution of the atmospheric model, which can vary. The cloud generator and formalism we present are able to 
take into account both the vertical resolution and the subgrid variability of the cloud fraction. As done in McICA 
radiative transfer calculations (Pincus et al., 2003), we neglect the 3D effects and keep the classical plane parallel 
assumption (each vertical profile consists of a stack of horizontally infinite and homogeneous slabs) in our 1D 
approach. Assuming that the volume cloud fraction and water content are known on a coarse vertical grid consisting 
in a single column, typical of an atmospheric model, we developed an algorithm to generate an ensemble of subcol-
umns to statistically represent the heterogeneity of clouds. As cumulus clouds are prone to the “too-few too-bright” 
bias in global models (Konsta et al., 2022), as well as marine boundary layer clouds being the main source of uncer-
tainty in tropical cloud feedbacks simulated by general circulation models (Bony & Dufresne, 2005), we focus our 
study specifically on cumulus cloud scenes, and use Large Eddy Simulations (LES) as references.

The manuscript is organized as follows: in Section 2, we consider the ERO as a Markov process and show its 
ability to represent the vertical distribution of the cloud fraction over a wide range of scales that includes both 
the subgrid scale and the overlap between layers. In Section 3 we study cloud scenes with known cloud covers, 
and compute the overlap parameters and decorrelation lengths that should be used with ERO on finer grids to 
reproduce those cloud covers, and doing so we assess the radiative impact of ERO on the SW cloud albedo of the 
generated subcolumns. We also study the effects of different simplifying assumptions. Section 4 focuses on repro-
ducing those results directly on the coarse grid, taking into account both the interlayer overlap and the subgrid 
scale, assuming again that the cloud cover is known. The implication for cloud parameterization in atmospheric 
models and for how to estimate the decorrelation lengths are presented in Section 5.

2. Statistical Representation of the Cloud Fraction Vertical Distribution
The model explored here is the so-called ERO model of Hogan and Illingworth (2000). We will only look at 
single-layer cumulus cloud fields so the “random” part of the model, which concerns cloudy layers that are 
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separated by clear layers, will not be studied. The “exponential” part of the model states that the cloud fraction of 
two cloudy layers of cloud fractions C1 and C2 is:

𝐶𝐶1,2 = 𝛼𝛼𝐶𝐶1,2,max + (1 − 𝛼𝛼)𝐶𝐶1,2,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

where C1,2, max is the combined cloud fraction of the two layers in case they overlap maximally:

𝐶𝐶1,2,max = max(𝐶𝐶1, 𝐶𝐶2) 

and C1,2,rand is the combined cloud fraction of the two layers in case they overlap randomly:

𝐶𝐶1,2,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐶𝐶1 + 𝐶𝐶2 − 𝐶𝐶1𝐶𝐶2 

In this model, “exponential” refers to the fact that α can be parametrized with an exponential function (see 
further). This model has been used in two different manners in radiative transfer parameterizations: either in a 
deterministic way, to compute the overlap matrix that is used to distribute downwelling and upwelling fluxes 
from clear and cloudy regions of a layer into clear and cloudy regions of an adjacent layer (TripleClouds, 
Shonk & Hogan, 2008), or in a probabilistic manner, to generate a sample of vertical profiles that preserve, 
when averaged, the principal characteristics of the cloud scene (the areal cloud fraction and the liquid water 
content in each layer), and upon which radiative transfer is simulated under the plane-parallel homogeneous 
assumption (McICA, Pincus et al., 2003). In this study, we generate samples of vertical profiles, as done by 
other cloud generators. The main difference with other cloud generators where the profiles are generated on the 
vertical grid of the host model, we aim at generating profiles at any vertical resolution, including finer vertical 
resolutions.

We consider that a single atmospheric column consists of 𝐴𝐴   vertical cloudy layers. From this column we assume 
the volume cloud fraction of each layer, 𝐴𝐴 (𝐶𝐶𝑣𝑣)𝑘𝑘=1. . . , is known. We consider the ERO model as a Markovian 
process and deduce the relationship between the overlap parameter α and the cloud cover CC of the whole scene. 
We then use the same result to deal with subgrid vertical heterogeneity.

2.1. ERO as a Markovian Process: A Sequence of Conditional Probabilities

Using a certain overlap scheme in an atmospheric column to generate a cloud fraction distribution from top to 
bottom can be interpreted as a Markovian process as it is a sequence of overlapping or non-overlapping events. 
It is then possible to compute its outcome as a sequence of conditional probabilities, as done by Bergman and 
Rasch (2002). To remain as general as possible, we do not specify what type of cloud fraction C is being used in 
this section, as any profile can be used.

In a single atmospheric column of 𝐴𝐴   vertical layers, let us consider a 1D subcolumn. We want to articulate how 
the overlap used for the whole atmospheric column translates to a subcolumn. We use the term cell to refer to the 
different layers of each subcolumn, and suppose a cell can have only one of two discrete states, cloudy or clear-
sky. If 𝐴𝐴 S⃗ = (S𝑘𝑘)𝑘𝑘=1. . . is the random variable representing the cloud states of the subcolumn, with the random 
variables 𝐴𝐴 S𝑘𝑘 ∈ {0, 1} (whether the cell is cloudy or not), and k is the vertical index, with k = 1 at the top of the 
column, the probability of a certain state 𝐴𝐴 S⃗ = (𝑠𝑠𝑘𝑘)𝑘𝑘=1. . . ∈ [0, 1]

 is given by:

𝑃𝑃

(
S⃗

)
=

∏

𝑘𝑘=1

𝑃𝑃 (𝑆𝑆𝑘𝑘 = 𝑠𝑠𝑘𝑘|𝑆𝑆𝑘𝑘−1 = 𝑠𝑠𝑘𝑘−1) (1)

where S0 = 0 (i.e., there is no cloud above the cloud block considered here). We use the classic upper case notation 
Sk for the random variables and the lower case notations sk for their realizations.

For any cell k in the subcolumn, the probability to have sk  =  1 is the cloud fraction of the layer, meaning 
P(sk = 1) = Ck. We'll call P(Sk = sk∣Sk−1 = sk+1) a transition probability, it is the probability that in a subcolumn, 
cell k is in the state sk, knowing the cell k − 1 is in the state sk−1. Since sk is either 0 or 1, there are only four 
possible types of transition between two cells, and being able to compute their probabilities for each layer gives 
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the probability of any combination of states for the subcolumn. Moreover, for each cell k, two out of the four 
transition probabilities are dependant, as a cell is either cloudy or clear-sky:

{

� (S� = 0|S�−1 = 1) = 1 − � (S� = 1|S�−1 = 1)
� (S� = 1|S�−1 = 0) = 1 − � (S� = 0|S�−1 = 0)

. (2)

Therefore, it is enough to know for instance the two transition probabilities P(Sk  =  1∣Sk−1  =  1) and 
P(Sk = 0∣Sk−1 = 0) for each layer k to compute the probability of any given state of overlap for the subcolumn, 
using Equation 1.

The transition probability P(Sk = 1∣Sk−1 = 1) is the probability that both cells of the subcolumn are cloudy, know-
ing that the cell k − 1 is already cloudy. By definition, we have:

𝑃𝑃 (S𝑘𝑘 = 1|S𝑘𝑘−1 = 1) =
𝑃𝑃 (S𝑘𝑘 = 1 ∩ S𝑘𝑘−1 = 1)

𝑃𝑃 (S𝑘𝑘−1 = 1)
 (3)

where (Sk = 1 ∩ Sk−1 = 1) is the event with both cells cloudy. If we assume an ERO we have:

𝑃𝑃 (S𝑘𝑘 = 1|S𝑘𝑘−1 = 1) = 𝛼𝛼𝑃𝑃max(S𝑘𝑘 = 1|S𝑘𝑘−1 = 1) + (1 − 𝛼𝛼)𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(S𝑘𝑘 = 1|S𝑘𝑘−1 = 1) (4)

where Pmax and Prand are the corresponding transition probabilities, in a subcolumn, for maximum overlap and 
random overlap between two consecutive layers of the atmospheric column. By definition of random overlap the 
probability of cell k being cloudy is independent of the conditions of cell k − 1:

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(S𝑘𝑘 = 1|S𝑘𝑘−1 = 1) = 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(S𝑘𝑘 = 1|S𝑘𝑘−1 = 0) = 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(S𝑘𝑘 = 1) = 𝐶𝐶𝑘𝑘 (5)

The transition probability in a subcolumn for maximum overlap can be obtained using Equation 3: if Ck−1 < Ck : 
Pmax(Sk = 1∣Sk−1 = 1) = 1, and on the contrary if Ck−1 ≥ Ck: 𝐴𝐴 𝐴𝐴max(S𝑘𝑘 = 1|S𝑘𝑘−1 = 1) =

𝐶𝐶𝑘𝑘

𝐶𝐶𝑘𝑘−1

 . As a result:

𝑃𝑃max(S𝑘𝑘 = 1|S𝑘𝑘−1 = 1) =
min(𝐶𝐶𝑘𝑘−1, 𝐶𝐶𝑘𝑘)

𝐶𝐶𝑘𝑘−1

 (6)

and (Equation 4) becomes:

𝑃𝑃 (S𝑘𝑘 = 1|S𝑘𝑘−1 = 1) = 𝛼𝛼
min(𝐶𝐶𝑘𝑘−1, 𝐶𝐶𝑘𝑘)

𝐶𝐶𝑘𝑘−1

+ (1 − 𝛼𝛼)𝐶𝐶𝑘𝑘 (7)

Let us compute Pmax(Sk = 0∣Sk−1 = 0) in the same way, and we get:

𝑃𝑃max(S𝑘𝑘 = 0|S𝑘𝑘−1 = 0) =
1 − max(𝐶𝐶𝑘𝑘−1, 𝐶𝐶𝑘𝑘)

1 − 𝐶𝐶𝑘𝑘−1

 

and therefore:

𝑃𝑃 (S𝑘𝑘 = 0|S𝑘𝑘−1 = 0) = 𝛼𝛼 ×
(1 − max(𝐶𝐶𝑘𝑘−1, 𝐶𝐶𝑘𝑘))

1 − 𝐶𝐶𝑘𝑘−1

+ (1 − 𝛼𝛼)(1 − 𝐶𝐶𝑘𝑘) (8)

These equations are applicable only for non overcast cloudy layers (i.e., C ∈]0,1[), because of the terms 1/Ck and 
1/(1 − Ck).

Having computed the transition probabilities between different cloud states of the cells, we can now use them 
to generate subcolumns. The details of the implementation are presented in Appendix A, along with the main 
difference with the work of Räisänen et al. (2004), from which our algorithm is very much inspired. Thanks to 
Equations 2, 7 and 8 we can now compute the different transition probabilities for each layer k, knowing α. Then 
using Equation 1 we can compute the probability to generate any cloud state combination for a subcolumn, for 
any ERO parameter α ∈ [0, 1].

2.2. The Relationship Between the Overlap Parameter α and the Cloud Cover

In a similar fashion as the work done by Barker (2008a, 2008b), we are now going to establish the relationship 
between the overlap parameter α and the cloud cover CC, assuming ERO.
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To obtain the formal expression of the cloud cover from the previous equations, it is easier to compute the 
probability of having no cloud for a whole subcolumn. Indeed P∅ corresponds to transition probabilities 
“clear-sky/clear-sky” of the form P(0|0). The probability to generate a fully clear-sky subcolumn can be seen as 
a first order Markov chain probability and therefore computed as the product of conditional probabilities, as seen 
in the previous section:

�∅ =

∏

�=1

� (S� = 0|S�−1 = 0) (9)

Using Equation 8 we get:

�∅
(

�, (��)1. . .
)

=

∏

�=1

[

� ∗ (1 − max(��−1, ��))
1 − ��−1

+ (1 − �)(1 − ��)
]

 (10)

Given this equation, if we know the overlap parameter α, the cloud cover is:

����� = 1 − �∅
(

�, (��)1. . .
)

 (11)

On the other hand if the cloud cover CC is known, we can then determine the overlap parameter α that matches 
the cloud cover CC:

� = �−1
∅ (1 − ��) (12)

where

�∅ ∶ � ∈ [0, 1] → �∅(�) = �∅
(

�, (��)1. . .
)

 

For a given 𝐴𝐴 (𝐶𝐶𝑘𝑘)𝑘𝑘=1. . . profile (with Ck ∈]0,1[ for each layer) and knowing CC, the function f∅ is strictly increasing, 
so �−1

∅  exists. We compute α with a dichotomy method using a tolerance ϵ = 10 −5. As we are only considering contig-
uous cumulus clouds in this study, we only encounter α ∈ [0, 1] (see further), but the equations remain applicable 
for minimum overlap and α < 0, which can be found for non-contiguous clouds (Oreopoulos, Cho, & Lee, 2022).

Equation 12 gives the expression of α for a given cloud cover CC and cloud fraction profile 𝐴𝐴 (𝐶𝐶𝑘𝑘)𝑘𝑘=1. . . . Equation 10 
allows us to compute CC if we know the overlap parameter α and the profile 𝐴𝐴 (𝐶𝐶𝑘𝑘)1. . . . Therefore for any given 
profile 𝐴𝐴 (𝐶𝐶𝑘𝑘)1. . . and given the ERO model, it is equivalent to know CC or α (or the decorrelation length, see further).

2.3. Vertical Subgriding

We are now going to use the same method but to define how to generate a sample of subcolumns with a 
higher vertical resolution starting from an atmospheric column with a coarse vertical resolution. We start from 
such a single column of N coarse layers from which we know the vertical volume cloud fraction distribution 

𝐴𝐴

{
𝐶𝐶𝑣𝑣

}

𝑘𝑘=1. . .𝑁𝑁

 , and we generate subcolumns with n times more vertical layers, 𝐴𝐴  = (𝑁𝑁 × 𝑛𝑛) . We introduce the 

hypothesis that at every coarse layers of the atmospheric column, the volume cloud fraction is the same for all 
the n sublayers:

∀ 𝑙𝑙 ∈ 𝑛𝑛

𝑘𝑘
, 𝐶𝐶𝑣𝑣,𝑙𝑙 = 𝐶𝐶𝑣𝑣,𝑘𝑘 

where 𝐴𝐴 𝑛𝑛

𝑘𝑘
 is the ensemble of n sublayers within the coarse layer k.

We then compute, like done previously, the probability P∅ to generate a clear-sky subcolumn. As the cloud frac-
tion in a single coarse layer is uniform, the intralayer transition probability P(Sl = 0|Sl−1 = 0) (Equation 8) between 
sublayers inside the same coarse layer k simplifies as:

𝑃𝑃 (𝑆𝑆𝑙𝑙 = 0|𝑆𝑆𝑙𝑙−1 = 0) = 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛼𝛼 + (1 − 𝛼𝛼)

(
1 − 𝐶𝐶𝑣𝑣𝑖𝑖𝑖

)
 (13)
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For two adjacent cells that belong to two adjacent coarse layers, Cv,k and Cv,k−1 can be different and the interlayer 
overlap transition probability, P(Sk = 0|Sk−1 = 0) = Pinter,k is given by Equation 8. Finally, P∅ is given by:

�∅(�,�, �, ��) =
�
∏

�=1

[

������,�

�−1
∏

1
������,�

]

=
�
∏

�=1

[

[

� + (1 − �)
(

1 − �̂�,�

)]�−1
]

×

⎡

⎢

⎢

⎢

⎣

� ∗
(

1 − max
(

�̂�,�−1, �̂�,�

))

1 − �̂�,�−1

+ (1 − �)
(

1 − �̂�,�

)

⎤

⎥

⎥

⎥

⎦

 (14)

Like done previously, we can compute the cloud cover generated by a given overlap parameter α, or if the cloud 
cover of the scene is known, we can inverse this equation using Equation 12 to compute the overlap parameter α 
that generates the same cloud cover. The next section shows the results of this subgriding: both its impacts on the 
cloud fraction profiles and the radiative properties of the ERO samples.

3. Evaluating α and the Cloud Generation
As done in many previous works such as Larson et al. (2002), Neggers, Duynkerke, and Rodts (2003), Neggers, 
Jonker, and Siebesma (2003), Neggers et al.  (2011), we use LES as reference cases to assess our ERO algo-
rithm. To test the algorithm presented in the previous section, different shallow cumulus cloud cases have been 
used. We mostly studied the Atmospheric Radiation Measurement Southern Great Plains site cloud case (Brown 

Figure 1. Method used to develop and assess our cloudy subcolumns sampling. The different shades of blue indicate different Liquid Water Contents, and white 
indicates clear-sky. The Large Eddy Simulations (LES) cloud field of resolution dx = dy = dz = 25 m is horizontally averaged into a single column and possibly 
averaged vertically to a coarse resolution Dz > dz. We then sample Ns subcolumns with a vertical resolution dz using the exponential-random overlap algorithm, and 
then assess the process by comparing the sample's cloud fraction profile and top of the atmosphere SW cloud albedo to the ones of the original LES. At each altitude of 
the sample, the Liquid Water Content (LWC) is homogeneous. The total LWC at each altitude is conserved, as well as the cloud fraction Cv.
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et al., 2002) showing the development of shallow cumulus convection over land, as well as two marine, trade-winds 
cumulus cloud cases Barbados Oceanographic Meteorological Experiment (BOMEX) (Siebesma et al., 2003) 
and Rain in Cumulus over the Ocean (RICO) (van Zanten et al., 2011), and another case of continental cumulus 
Small Cumulus Micro–physics Study (SCMS) (Neggers, Duynkerke, & Rodts, 2003). For each case we use the 
corresponding LES results obtained with the atmospheric non-hydrostatic model Mesoscale Non–Hydrostatic 
model (Lafore et al., 1998; Lac et al., 2018), and all these simulations represent a 6.4 km × 6.4 km × 4 km domain 
with a dx = dy = dz = 25 m resolution. The LES were generated using periodic boundary conditions and are 
representative of horizontally infinite domains for cumulus clouds. For each LES simulation we average all the 
cells of each vertical levels. Thus we obtain a single atmospheric column with the same vertical resolution dz, 
or a lower vertical resolution Dz, if we also perform vertical averaging, as shown in Figure 1. For each of these 
single columns we know, by means of the LES, the cloud cover CC, as well as the cloud fraction and the liquid 
water content for each layer. Doing so we go from a highly detailed 3D simulation to a single column, and we 
lose the horizontal cloud structure. Using this single column we then sample subcolumns with the ERO algorithm 
presented in the previous section. Finally, we assess this generation by comparing the statistical properties and 
solar albedo of the subcolumns with those of the LES.

3.1. Testing ERO and Subgriding Assuming the Overlap Parameter has a Vertically Constant Value

To assess the ERO generation process we first test the assumption that it is sufficient to use a single overlap parameter 
α for the whole cloud scene. We use an atmospheric column with a coarser vertical grid than the LES (Dz = 100 m 
for the coarse resolution, dz = 25 m for the LES, see Figure 2, left panel), and then use subgriding with the method 
presented in Section 2.3 to generate a sample of Ns subcolumns with a higher vertical resolution. The overlap param-
eter α used to generate this sample is computed with Equations 11, 12 and 14 to ensure the same cloud cover as the 
original scene (a similar approach is taken by Barker (2008a, 2008b)). Here and for the rest of the study, Ns ≃ 6.5 × 10 4 
subcolumns have been generated. For this number, the cloud cover of the LES is reproduced with a standard devia-
tion 2.10 −3, and it has been verified that the standard deviation is decreasing like 𝐴𝐴 1∕

√
𝑁𝑁𝑠𝑠 , where Ns is the number of 

subcolumns generated, as predicted by the central limit theorem. As a first test, we assess how the cumulative down-
ward and upward cloud fractions at altitude z varies as a function of this altitude (Figure 2). As in Barker (2008a) and 
Oreopoulos, Cho, Lee, Lebsock, and Zhang (2022), we define the cumulative downward cloud fraction at altitude z 
as the areal fraction covered by clouds at altitude z when looking downward from TOA, and the cumulative upward 
cloud fraction at altitude z as the areal fraction covered by clouds at altitude z when looking upward from the ground.

The blue lines (Figure 2, middle and right panels) are the cumulative cloud fraction profiles of the original LES, 
with a cloud cover of 0.2325. The gray lines are obtained using a maximum overlap assumption, and show a 
cloud cover of only ∼10%. Since the scene consists of a single cloud block, this corresponds to models using 

Figure 2. Vertical distribution of the volume cloud fraction (left), of the downward cumulative cloud fraction (middle) and upward cumulative cloud fraction (right, see 
text). On the middle and right panels are compared the profiles from the Large Eddy Simulations (LES) (blue) and those obtained with two overlap models: maximum 
overlap (gray) and exponential-random overlap (orange). The red dotted line shows the cloud cover CC of the scene. Both samples were made using the same initial 
single column with a vertical resolution Dz = 100 m and have the same final vertical resolution dz = 25 m than the LES. The data presented is the ARM cloud case 
(time step h = 10).
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the classical maximum-random overlap and assuming the cloud fraction is vertically uniform within each coarse 
layer. The orange line is computed with ERO to match the cloud cover of the LES (α = 0.921), with a very close 
cloud cover of 0.231 for that sample. The two plots on the right show that the ERO sampled subcolumns not only 
have the same cloud cover than the LES, but also a close cumulative cloud fraction at each altitude. The abrupt 
changes in the cumulative cloud fraction of the sampled subcolumns are a consequence of the hypothesis of a 
constant volume cloud fraction Cv in each coarse cell. Indeed, for the generation without vertical coarsening of 
the previous section (Dz = dz = 25 m), the vertical distribution of the cumulative cloud fraction is almost indis-
cernible to that of the LES (not shown).

To go further, Figure 3 shows the cloudy subcolumns of the same scene (cloudy cells in blue) sorted along the 
number of cloudy cells in each subcolumn (red). The left panel shows the cloudy subcolumns of the original 
LES, and the right panel shows the same plot for the sample of subcolumns generated by ERO. As the vertical 
distribution of cloudy cells is very close, it shows the ERO generation not only reproduces the cloud cover of the 
original scene, but also the distribution of the cloud fraction between the subcolumns.

We then assess the radiative characteristics of the sample by comparing the shortwave (SW) radiative properties 
of the LES and that of the ERO sample. We compute the mean albedo of the cloudy subcolumns (i.e., we do 
not consider any clear-sky subcolumns) for different cloud scenes using a path-tracing Monte Carlo code from 
Villefranque et al. (2019). It tracks photon paths throughout a virtual atmosphere, explicitly simulating the radiative 
processes such as scattering, absorption, and surface albedo. When a photon hits the top of the atmosphere (TOA), 
the algorithm adds its weight to a TOA counter (for reflection toward space), to a ground counter when it touches 
the ground (for ground absorption, here we put the ground albedo at zero), or to an atmospheric counter when it is 
absorbed (by liquid water or a gas). As the generated sample has no horizontal structure, we use the Independent 
Column Approximation along the Monte Carlo algorithm (McICA, Pincus et al., 2003). For different cloud scenes 
(one every hour), Figure 4 shows the cloud albedo obtained using different sampling hypotheses and using the orig-
inal LES scenes, as well as the total albedo of the scenes, and their cloud cover. For each value of the coarse resolu-
tion Dz, a new overlap parameter has been computed: the different ERO scenes hence have the same cloud covers.

The maximum overlap assumption (gray line) shows a much higher cloud albedo (top panel) since it produces 
cloud scenes with less cloud cover (lower panel) and hence brighter clouds. The maximum overlap assumption 
therefore contributes to the too-few too-bright bias. Using ERO produces a much closer cloud albedo, and the 
coarse resolution of the initial atmospheric single column has little impact: the relative difference with the cloud 
albedo of the homogeneous LES is ∼1.5% when starting with a 25 m vertical resolution and only ∼2.5% when 
starting with a 200 m vertical resolution, for the scenes between 6 and 12 hr. The middle panel shows the total 
albedo of the cloud scenes, taking into account the clear-sky part. For the ERO samples, the difference with the 

Figure 3. The cloudy subcolumns of the Large Eddy Simulations (LES) scene (left) are sorted along the number of cloudy 
cells in each subcolumns (dashed red). On the right the cloudy subcolumns out of a Ns ≃ 6.5 × 10 4 sample of subcolumns 
generated with exponential-random overlap (ERO) sorted in the same way (solid red for the number of cloudy cells of the 
ERO profile). The number of cloudy cells of the LES has been reproduced in dashed to compare it better with that of the ERO 
generation. The field used is the 10th hour of the ARM case.
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LES values follow the differences of the cloud albedo, as the scenes have the 
same cloud cover, and so also the same clear-sky cover. For the maximum 
overlap sample, the total albedo is lower than that of the LES. The smaller 
cloud covers overcome the brighter cloud albedo.

3.2. Analysis of the Overlap Parameter α

In Section 2 we established the relationship between the overlap parameter 
α and the cloud cover CC and used it in 3.1 to determine α from the cloud 
cover CC diagnosed from LES results. In this section we analyze the overlap 
parameters computed this way and compare them to the overlap parameters 
computed using other methods. For two different cloudy atmospheric layers 
at the altitudes zk, zl the overlap parameter αk,l and a decorrelation length 
Lα are usually related to each other via the following relation (Bergman & 
Rasch,  2002; Hogan & Illingworth,  2000; Mace & Benson-Troth,  2002; 
Oreopoulos, Cho, & Lee, 2022):

𝛼𝛼𝑘𝑘𝑘𝑘𝑘 = exp

(
−
∫

𝑧𝑧𝑘𝑘

𝑧𝑧𝑘𝑘

d𝑧𝑧

𝐿𝐿𝛼𝛼(𝑧𝑧)

)
 (15)

If the decorrelation length Lα is constant on the vertical (which is generally 
assumed), it becomes:

𝛼𝛼𝑘𝑘𝑘𝑘𝑘 = 𝑒𝑒
−|𝑧𝑧𝑘𝑘−𝑧𝑧𝑘𝑘|∕𝐿𝐿𝛼𝛼 (16)

The decorrelation length (and hence the overlap parameter of a scene) 
is often computed by fitting an exponential function to the profile of the 
overlap parameter dependance to the separation distance |zk − zl| (Hogan & 
Illingworth, 2000; Oreopoulos & Norris, 2011), according to Equation 16. 
Figure 5 shows the variations of the overlap parameters α computed at differ-
ent times of the day of the ARM simulations, with three different methods. 
The overlap parameter αLES,fit is computed by fitting an exponential function 
to the profile of the overlap parameter on our LES simulations with Equa-
tion 16. This profile was obtained by computing the mean overlap parameter 
for each possible separation distance by using Ca = αCmax + (1 − α)Crand. 
The overlap parameter α25,Dz corresponds to the overlap parameter computed 
using Equation 14 to reproduce the cloud cover CC with vertical subgriding 
at a resolution dz = 25 m, starting from a column with a vertical resolution 
Dz = 100 m. The overlap parameter αLES,loc is the mean of the local consecu-
tive overlap parameters αk,k−1 on the LES simulations at dz = 25 m.

Three simulation times (hours 4, 5, 13) show poorly consistent values, caused 
by a smaller cloud cover of those scenes when the cloud layer is developping 
in the morning and dissipating at the end of the day. Without these three time 
steps, for the hours 6 to 12, the mean values of those overlap parameters are 

𝐴𝐴 𝐴𝐴𝐴25,𝐷𝐷𝐷𝐷 = 0.915 , 𝐴𝐴 𝐴𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 0.916 and 𝐴𝐴 𝐴𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 0.866 . The equivalent decor-
relation lengths are 𝐴𝐴 �̄�𝐿𝛼𝛼𝛼25𝛼𝐷𝐷𝐷𝐷 = 291   m, 𝐴𝐴 �̄�𝐿𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 = 298   m and 𝐴𝐴 �̄�𝐿𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 = 205   m. 
Barker  (2008a) refers to the decorrelation length that reproduces CC the 

effective decorrelation length. The values computed locally on the LES and the ones computed for ERO are close 
and stable during the day, when the exponential fit shows much wider variations. In the BOMEX case however 
(with the same resolutions), the overlap parameter daily averages are closer to each other: we find 𝐴𝐴 𝐴𝐴𝐴25,𝐷𝐷𝐷𝐷 = 0.87 , 

𝐴𝐴 𝐴𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙 = 0.88 and 𝐴𝐴 𝐴𝐴𝐴𝑓𝑓𝑓𝑓𝑓𝑓 = 0.85 , and equivalently 𝐴𝐴 �̄�𝐿𝛼𝛼𝛼25𝛼𝐷𝐷𝐷𝐷 = 179  m, 𝐴𝐴 �̄�𝐿𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 = 195  m and 𝐴𝐴 �̄�𝐿𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 = 153  m. The decorre-
lation lengths that are computed here (Lα = 200–300 m) are comparable to those computed in the literature with 
similar LES simulations (Neggers et al., 2011; Sulak et al., 2020; Villefranque et al., 2021). However such values 
of the decorrelation lengths can appear small when the corresponding overlap parameters are close to 1. That 
is because of the high vertical resolution used here, dz/Lα ≪ 1 causing overlap parameters to be close to 1. The 
difference with decorrelation lengths in the literature that take into account the overlap of whole atmospheric 

Figure 4. Cloud albedo (top panel), total albedo (middle panel) and 
cloud cover (lower panel) for the Large Eddy Simulations (in red), for 
exponential-random overlap starting from columns with different coarse 
resolutions Dz, and for maximum overlap with the coarse resolution 
Dz = 100 m (in gray). The albedo of each scene is computed using a 
Monte-Carlo algorithm under the Indenpendent Column Approximation, for 
the ARM cloud case scenes (time steps h ∈ [4, 13]). The surface albedo is set 
at zero, Dz is the vertical resolution of the coarse atmospheric single column 
and dz that of the reconstructed sample. In all scenes the in-cloud Liquid 
Water Content is homogeneous for each layer. For each computation, 10 6 
realizations were made, with a Monte-Carlo standard deviation of the cloud 
albedo of 10 −6.
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columns, as obtained by satellite observations, and used in global models, is 
further discussed in Section 5.

We have also computed the overlap parameter α using ERO like done previ-
ously but on the individual largest clouds of the studied scenes, and found 
very similar results than for the total scene. For instance, for the scene ARM 
(h = 10) when taking into account the 45 clouds that account for 99% of 
the cloud cover (out of 67 individual clouds in the scene), the mean overlap 
parameter over the different clouds is α25,Dz = 0.913 (with a standard devia-
tion of 0.07), which is equivalent to a decorrelation length of 275 m.

4. Using ERO to Model Subgrid Heterogeneity and 
Overlap Coarse Vertical Layers
To summarize the previous section, if we know the overlap parameter α25,Dz 
or the cloud cover of the scene, the volume cloud fraction Cv and the liquid 
water content LWC for an atmospheric column of vertical resolution Dz, we 
are able to generate a sample of subcolumns with a higher vertical resolution 
(25 m, the same as the LES) with properties that are close to the LES so that 
the cloud albedo of the scene only differs by a few percent (about 2% on the 
whole day for the ARM and the BOMEX cases). But in this approach, the 
radiative computations are made on a high resolution vertical grid, not on 
the  coarse one. In this section we will focus on how to adapt the method to 

deal directly with coarse grids, without having to use a finer mesh. To do so we will characterize how the subgrid 
properties of clouds should be computed on the coarse grid, and then how they should be combined vertically 
so that both the vertical cloud structure, the cloud cover and in fine the cloud albedo remain close enough to the 
high-resolution reference case.

4.1. Subgrid Properties on the Coarse Grid

Defining subgrid properties on the coarse vertical grid requires to distinguish two cloud fractions, the areal cloud 
fraction Ca and the volume cloud fraction Cv (Del Genio et al., 1996; Jouhaud et al., 2018). Cv represents the 
volume fraction of the layer that contains clouds (i.e., where liquid or solid water particles are present), whereas 
Ca represents the areal fraction of the layer covered by clouds when looking from above or below. In other words, 
Ca is the vertical projection of Cv, and it is Ca that is used by radiation codes in GCMs and remote sensing.

At the LES grid scale, we have assumed that a grid cell's cloud state is either clear-sky or cloudy. Therefore 
Cv = Ca when the single column has the same vertical resolution as the LES. This is no longer the case when the 
vertical grid is coarsened, and ERO can be used to compute Ca, knowing Cv. For that we consider an atmospheric 
cloudy column of coarse vertical resolution Dz = n × dz. If Cv is known and vertically uniform within each coarse 
layer, we are back in the configuration we were in Section 3 when using subgriding, with 𝐴𝐴 𝐴𝐴𝑣𝑣𝑣𝑣𝑣 = 𝐴𝐴𝑣𝑣𝑣𝑣𝑣 . We can then 
compute the subgrid areal cloud fraction Ca,sg,k as the cloud cover of a single coarse layer, by using Equation 14, 
but setting to zero the volume cloud fractions above and below the coarse layer considered (N = 1):

𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 1 − (1 − 𝐶𝐶𝑣𝑣𝑎𝑎𝑎)(𝛼𝛼𝑎𝑎𝑎𝑎 + (1 − 𝛼𝛼𝑎𝑎𝑎𝑎)(1 − 𝐶𝐶𝑣𝑣𝑎𝑎𝑎))
𝑛𝑛−1 (17)

where αsg is the overlap parameter used here to compute this subgrid areal cloud fraction. Although other choices 
are possible, we choose here to use αsg = α25,Dz. If the cloud cover CC is known but not α25,Dz we can compute it 
by inverting Equation 12. The next figure illustrates the performance of that equation.

The top panels of Figure 6 show the profile of Ca obtained using the LES original data, using Equation 17, and 
also assuming maximum overlap within each layer, for two coarse resolutions (left panel at Dz = 100 m and right 
panel Dz = 200 m). The overlap parameter α25,Dz is computed for the two resolutions to ensure the same cloud 
cover (α25,100 = 0.921, α25,200 = 0.911), and then used to compute Ca,sg with Equation 17. The maximum overlap 
assumption (gray) does a poor job representing the areal cloud fraction profile, and leads to a relative error of 
30%–50%. It shows the error made when neglecting subgrid variability, that is, assumming Ca = Cv on the coarse 
grid. For this assumption, the coarser the vertical resolution, the larger the error. Using Equation 17 allows a 
better representation of the areal cloud fractions, even if a substantial error remains. For all methods, the largest 

Figure 5. Overlap parameters computed with three different methods (see 
text) at each time step of the Large Eddy Simulations simulations. The data 
used are the ARM cloud fields.
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error corresponds to the lower layer which is the bottom of the cloud. On this layer, the volume cloud fraction Cv 
decreases steeply, which makes the hypothesis of a constant Cv inaccurate.

To go further we also compare the performance of Equation 17 with that of other references in the literature 
(Figure 6, bottom panels). Neggers et al. (2011) and Jouhaud et al. (2018) have both been developed using LES 
data of small cumulus with Cv ≃ 0.1, including the ARM and BOMEX cases, and are therefore comparable to our 
method. Brooks et al. (2005) develops a lidar and radar-based parametrization of Ca using Cv, with the possibility 

Figure 6. Vertical distribution of the areal cloud fraction Ca obtained with Large Eddy Simulations (LES) full resolution results or with different approximations with 
a coarse vertical resolution of 100 m (left panels) or 200 m (right panels). The top panels compare the LES (dashed black) with exponential-random overlap using 
Equation 17 and αsg = α25,Dz (blue) as well as the maximum overlap sample (gray). The bottom panels also compare Equation 17 with other parametrizations found in 
the literature. The cloud case is ARM (h = 10).
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to take into account wind shear (not used here), and is valid on a wider range of cloud covers and situations. 
Brooks et al. (2005) and Jouhaud et al. (2018) show the smallest errors with Ca of the LES.

Our approach favors an accurate cloud cover on the whole vertical extent of the cloud layer. Results show that with 
this approach we tend to underestimate the areal cloud fraction of the coarse layers. This is because the overlap 
parameter α has been computed to match the cloud cover CC of the whole scene, not the areal cloud fraction Ca 
of each coarse layer. When only used for the subgrid scale it creates too small an areal cloud fraction. This under-
estimation is still much smaller than when considering maximum overlap. The gap in areal cloud fraction caused 
by using our method is similar to those caused by other approximations of the literature, but with an opposite sign 
in the difference. Our underestimation of Ca was already visible in Figure 2 on the panel showing “cumulative 
downward cloud fraction.” The only difference between using subgriding or not is the hypothesis Cv = constant 
in each coarse layers, so we can conclude than the underestimation of our method comes from this hypothesis.

4.2. Interlayer Overlap

We now consider that the vertical profile of the areal cloud fraction 𝐴𝐴 (𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎)𝑧𝑧 that takes into account the subgrid 
heterogeneity on the coarse grid, is known. We have to define the overlap of the coarse layers, and we again choose 
to define it to ensure the conservation of the cloud cover CC. To compute the subgrid areal cloud fraction profile 

𝐴𝐴 (𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎)𝑧𝑧 in the previous section, we were using the first part of Equation 14, which represents the subgrid over-
lap. Here we use the second part of the equation, which represents the interlayer overlap, using the unknown inter-
layer overlap αinter. This corresponds to using Equation 10 on the coarse grid with 𝐴𝐴 (𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎)𝑧𝑧 to produce the cloud cover:

𝐶𝐶𝐶𝐶 = 1 −

𝑁𝑁∏

𝑘𝑘=1

[
𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(1 − max(𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘𝑎 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘−1))

1 − 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘−1

+ (1 − 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)(1 − 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘)

]
 (18)

The overlap parameter αinter can be computed as in the previous sections, by inverting Equation 18 to constrain 
the cloud cover CC:

������ = �−1
∅ (1 − ��) (19)

4.3. Generating Subcolumns on the Coarse Grid

To summarize the previous steps, we can now compute the overlap parameter α25,Dz with Equation 12, the areal 
subgrid cloud fractions 𝐴𝐴 (𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎)𝑧𝑧 using Equation 17 with αsg = α25,Dz, and then the overlap parameter αinter using 
Equations 18 and 19 in order to overlap these coarse layers to produce the cloud cover CC. The corresponding 
decorrelation length can be computed with Equation 16 and Dz as the separation distance. However, at this stage, 

Figure 7. Overlap parameters (left) and decorrelation lengths (middle) for the ARM simulations (hours 6 to 12), for different coarse resolutions Dz and for different 
reconstructions using exponential-random overlap (see text). The daily mean value is shown. The overlap parameters are computed to match the cloud cover of the 
Large Eddy Simulations (LES). The right panel shows the corresponding relative error in SW cloud albedo at TOA compared to that of the LES when using those 
overlap parameters to generate the scenes. For each plot, the standard deviation due to the different simulation times is shown as an error bar.
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there is no evidence of a formal link between the two overlap parameters α25,Dz and αinter or decorrelation lengths, 
or of a dependence to the vertical resolution. In any case, we have not found one.

For α25,Dz and the corresponding decorrelation length (Figure 7, blue lines, left and middle panels), we find that 
they depend little on the starting coarse resolution Dz on this 25–200 m range, with mean values 𝐴𝐴 𝛼𝛼25,𝐷𝐷𝐷𝐷 = 0.915 
and 𝐴𝐴 𝐿𝐿𝛼𝛼𝛼25𝛼𝐷𝐷𝐷𝐷 = 291  m. Using this overlap and Equation 17 we then compute the subgrid profile 𝐴𝐴 (𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎)𝑧𝑧 , as well as 
the interlayer overlap parameter αinter using Equations 18 and 19.

For the overlap parameter αinter, we find that it varies with the resolution Dz but the corresponding decorrelation 
length varies little from 𝐴𝐴 𝐿𝐿𝛼𝛼𝛼𝛼𝛼𝛼𝛼 = 326 m (Figure 7, black lines, left and middle panels). The decorrelation lengths 
show small variation whether we generate the subcolumns on the fine or coarse grid, and depends little on the 
resolution of the coarse grid (Figure 7, middle panel, blue and black lines). When it comes to radiative effects 
(Figure 7, right panel), the error made on the SW cloud albedo is still small even when computed on the coarse 
grid (black line) rather than on the finer grid (blue line).

4.4. Analysis and Comparisons of Interlayer Overlap for Different Estimations of the Areal Cloud 
Fraction

Here we investigate, using Equations 18 and 19, how the overlap parameter αinter and the decorrelation length 
should vary to keep the correct value of the cloud cover for different estimations of the areal cloud fraction 
Ca in Equation  18, instead of Ca,sg. First we consider the extreme case where no subgrid heterogeneity is 
considered (Figure 7, green lines), meaning the subgrid areal cloud fraction equals the volume cloud fraction 

𝐴𝐴 (𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎−𝑠𝑠𝑠𝑠𝑠𝑠)𝑧𝑧 = (𝐶𝐶𝑣𝑣)𝑧𝑧 on the coarse grid. When the starting coarse resolution is Dz = 25 m, we are already at the 
finest resolution of the simulations (which means the coarse grid can not be finer), and all the reconstructions 
are the same. As shown in Figure 6, Cv,z < Ca,z for any z, so to generate the same cloud cover, the overlap when 
no subgrid is taken into account has to be closer to random (i.e., α closer to 0), hence αinter,no−sub <αinter,sg. For 
Dz = 200 m, the interlayer overlap without subgriding is already almost fully random. We then consider the case 
where the subgrid reconstruction takes perfectly into account the subgrid heterogeneity and reproduces perfectly 
the areal cloud fraction profile 𝐴𝐴 (𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)𝑧𝑧 (Figure 7, red lines). We then compute the interlayer overlap corre-
sponding to this profile with Equations 18 and 19. The same reason applies to explain the difference with the 
interlayer overlap parameters computed for the areal subgrid cloud fraction profile: as shown in Figure 6, Ca,sg 
approaches Ca,perfect in such a way that for any altitude, we have Ca,perfect > Ca,sg > Ca,no−sub. Hence to conserve the 
same cloud cover, the different overlap parameters follow αinter,perfect > αinter,sg > αinter,no−sub.

The middle panel of Figure 7 shows the corresponding decorrelation lengths, computed from each overlap param-
eter α with Lα = −dz/ln(α), where dz is the vertical resolution of the target grid. When doing overlap on the 
coarse grid, the final resolution is dz = Dz (red, black and green lines). When doing ERO on the finer grid, the 
final resolution is dz = 25 m (blue lines). We see that for interlayer overlap, the decorrelation lengths have a 
strong dependence to the resolution when overlapping coarse layers of which the areal fraction is either perfect 

𝐴𝐴 (𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)𝑧𝑧 or determined assuming no subgrid heterogeneity 𝐴𝐴 (𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎−𝑠𝑠𝑠𝑠𝑠𝑠)𝑧𝑧 , with important variations. This is not 
the case when the areal cloud fraction Ca,sg is computed using a consistent representation of cloud heterogeneity 
on both subgrid scale and interlayer overlap (black) or when reconstructing on the finer grid (blue). Numerical 
tests were made on artificial cloud scenes with constant cloud fractions and various cloud covers, as well as on 
the same LES clouds with double the vertical extent to go up to 400 m coarse resolutions, and this appears to be 
a consistent result: strong dependence of the decorrelation lengths with the coarse resolution when overlapping 

𝐴𝐴 (𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)𝑧𝑧 and 𝐴𝐴 (𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎−𝑠𝑠𝑠𝑠𝑠𝑠)𝑧𝑧 , but a small dependence to the resolution of the decorrelation length when overlapping 
Ca,sg. This dependence of Lα with Dz has already been mentioned by Hogan and Illingworth (2000) and Räisänen 
et al. (2004), but does not seem to be taken into account in the literature when generating cloudy subcolumns 
from GCMs or for observational simulators (Bodas-Salcedo et al., 2011; Pincus et al., 2005; Swales et al., 2018).

4.5. Cloud Albedo Dependence on the Vertical Cloud Structure

We have shown in Section 3.1 that by using ERO and a subgrid overlap parameter on a finer grid (Figure 4 and 
blue lines of Figure 7) we can reproduce the cloud albedo of those scenes with a 2% relative error. In the previous 
section we show that it is also possible to take into account the subgrid scale directly on the coarse grid by choosing 
to compute the surface cloud fraction as a bulk subgrid property using the volume cloud fraction and a subgrid 
overlap parameter. Overlapping this computed areal subgrid cloud fraction leads to a relative error in cloudy albedo 
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of ≃ 10% for coarse resolutions of 100 and 200 m (Figure 7, black line). If 
this subgrid computation were perfect to take into account the subgrid scale, 
it would lead to a slightly improved 5%–8% relative error in cloud albedo for 
coarse resolutions of 100 and 200 m (Figure 7, red line). Finally, even without 
taking into account any subgrid scale by overlapping 𝐴𝐴 (𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎−𝑠𝑠𝑠𝑠𝑠𝑠)𝑧𝑧 on the coarse 
grid, we can approach the albedo of the LES scenes within a 20% relative error 
(for a resolution of 200 m, Figure 7, green line) if the cloud cover is reproduced. 
As all the generations shown in Figure 7 have the same cloud cover and mean 
liquid water path as the LES simulations, the difference in cloud albedo are all 
due to vertical subgrid heterogeneity. If the conservation of the cloud cover is 
of first order importance for the cloud albedo, the subgrid scale information 
contained in the cloud fraction profile can have a significant impact on the 
cloud albedo as well, up to 20%. Numbers in this section are computed on 7 
scenes from the ARM cloud case, but similar results were also found consist-
ently in several other cases, see Figures S1–S3 in Supporting Information S1.

5. Implications
In this last section we address some more global implications of our method, 
especially on the use and estimate of the decorrelation lengths, as well as the 
radiative impact of LWC horizontal heterogeneity, which had not been taken 
into account in this paper until now.

5.1. How to Generate the Cloud Vertical Profile

The starting point of the developments in Section 3 and 4 was to determine 
how to correctly represent the cloud cover and the SW cloud albedo of a 
cloud scene in the context of ERO. We have shown in Section 3 that by defin-
ing the appropriate decorrelation length Lα,25,Dz we can generate a cloud scene 
with the correct cloud cover and a close SW cloud albedo. This can be done 
on a new grid with higher vertical resolution (25 m here) as long as the initial 
coarse resolution and the final resolution are both taken into account in the 
computation of the overlap. This can also be done directly on the coarse grid 
without losing much accuracy on the cloud albedo by taking into account 
both the subgrid scale and the interlayer overlap (Section 4.3). So far we have 
assumed that the cloud cover is known, whereas in general we are trying to 
determine the cloud cover. So we have to reverse  the previous problem and 
address the following question: how to create the right cloud cover and the 
right cloud albedo from the information given by a column with a coarse 
vertical grid? In this context, an important result of Section 4.3 is that if we 
consistently account for subgrid heterogeneity and coarse layer overlap, then 
the decorrelation lengths used for the subgrid and the overlap are almost the 
same and they depend weakly on the vertical resolution, as we can see on 
Figure 7.

The procedure for reconstructing a cloud scene that we propose is as follow: given any volume cloud frac-
tion profile 𝐴𝐴 (𝐶𝐶𝑣𝑣)𝑧𝑧 at resolution Dz and the decorrelation length Lα for a reference resolution (here dz = 25 m), 
the subgrid heterogeneity is taken into account by computing a profile of the areal cloud fraction 𝐴𝐴 (𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎)𝑧𝑧 with 
Equation 17, with n = Dz/dz in the equation. The same decorrelation length Lα, allows to overlap these coarse 
layers and to compute the cloud cover (Equation  18). As we can see on Figure  7 for the case studied here, 
Lα,25,Dz ≃ 291 m and Lα,sg ≃ 326 m, so for both steps of this reconstruction we choose to use the unique decor-
relation length that is the mean of the two: 𝐴𝐴 �̄�𝐿𝛼𝛼 = 309  m. We find similar results than those shown on Figure 7 
for  three other cumulus cloud cases simulated by the same LES, with Lα,25,Dz and Lα,sg relatively independent of 
the resolution Dz. For the RICO case we have 𝐴𝐴 �̄�𝐿𝛼𝛼 = 217  m, for BOMEX 𝐴𝐴 �̄�𝐿𝛼𝛼 = 202  m and for SCMS 𝐴𝐴 �̄�𝐿𝛼𝛼 = 273  m 
(see Figures S1–S3 in Supporting Information S1). Here a different decorrelation length has been computed for 

Figure 8. Cloud albedo (top panel), total albedo (middle panel) and 
cloud cover (lower panel) for the Large Eddy Simulations (in black), our 
reconstruction using exponential-random overlap (in red) and a maximum 
overlap reconstruction (gray). The constant decorrelation length used here both 
for the subgrid computation of the areal cloud fraction profile and its interlayer 
overlap is Lα = 309 m. The scenes are the ARM case (time steps h ∈ [4, 13]). 
In all scenes the Liquid Water Content is homogeneous for each layer.
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each cloud case. The determination of this decorrelation length in a more general case is beyond the scope of 
this study. As it can be seen on Figure 8, the scenes generated with this method show a good reproduction of the 
cloud cover, cloud albedo and total albedo, with relative errors compared to the LES of only −10%, 11%, and 
−3% respectively, which is significantly better than the errors caused by the maximum-random assumption. We 
also see from this figure that the maximum overlap causes a “too few too bright” bias here, with a cloud cover 
too small and a cloud albedo too large. But the two errors do not compensate and the total albedo of the scenes 
is underestimated. Increasing the liquid water content seen in the radiative computations to balance the mean 
radiative flux at TOA could correct the value of total albedo but in the same time would also worsen the “too 
bright” part of the bias. Similar results are found for the three other cloud cases and can be found in Supporting 
Information S1 on Figures S4 to S6.

5.2. Variations of the Decorrelation Length With the Measurement Resolution

Decorrelation lengths used in GCMs are often derived from observational data from active remote sensing (Jing 
et al., 2016; Oreopoulos & Norris, 2011; Oreopoulos, Cho, & Lee, 2022). As shown in the previous section, the 
vertical resolution of the grid on which we generate the cloud scene can have a significant impact on the values 
of overlap parameters and decorrelation lengths. This may also be applied to the vertical resolution at which 
those instruments measure cloud fraction profiles, their overlap and hence decorrelation lengths. At the vertical 
resolution of those instruments, for example, 480 m for CloudSat, a layer is identified as entirely cloudy even if 
the cloud does not fully extend on the vertical of the layer. Hence the measured profile is the areal cloud fraction 

𝐴𝐴 (𝐶𝐶𝑎𝑎)𝑧𝑧 for a coarse layer of thickness Dz = 480 m. Combining Equations 17–19, we can compute overlap parame-
ters in various situations, including when dealing with different vertical resolutions. This can be used to compare 
overlap parameters given by observational measures with different resolutions.

We will consider that two different instruments I1 and I2 have the vertical resolutions dz1 and dz2, which is finer, with 
dz1 = n × dz2. We suppose they observe the same cloud scene and detect the same cloud cover. Those instruments 
give us access to two sets of data statistically representing the same cloud scene: 𝐴𝐴 (𝐶𝐶𝑎𝑎𝑎1)𝑧𝑧 , Lα,1, and 𝐴𝐴 (𝐶𝐶𝑎𝑎𝑎2)𝑧𝑧 , Lα,2, where 
Lα,i are the decorrelation lengths corresponding to the measured areal cloud fraction profiles. Using the cloud fraction 
profile with finer vertical resolution Ca,2 we can use interlayer ERO with Lα,2 on blocks of n fine layers to compute 
the corresponding areal cloud fraction profile at the resolution dz1, 𝐴𝐴 𝐴𝐴′

𝑎𝑎𝑎1
 . Knowing the cloud cover CC, we can then 

compute with Equation 19, the decorrelation length 𝐴𝐴 𝐴𝐴′

𝛼𝛼𝛼1
 that would generate CC with this profile. We can compare 

Lα,1 and 𝐴𝐴 𝐴𝐴′

𝛼𝛼𝛼1
 now that they refer to similar resolutions. For the ARM simulations used on Figure 7, let us consider 

I1 with resolution dz1 = 200 m and I2 with resolution dz2 = 25 m. This example is studied in Section 4.4, where we 
analyzed the evolution of Lα with the vertical resolution for a perfect estimation of the areal cloud fraction profile. I2 
would measure a decorrelation length Lα,2 = 320 m, while I1 would measure Lα,1 = 658 m (Figure 7 middle panel, 
in red). We get a factor 2 on the estimation of the decorrelation length in this case. The vertical extent of the studied 
clouds is too small to be able to compute the decorrelation length in the case of the vertical resolution of CloudSat at 
480 m, but an even larger effect is expected.

The decorrelation lengths computed from observations with a low vertical resolution (a couple hunder meters) are 
often much larger than the ones computed in this study, with Lα ∼2 km (Barker, 2008a; Hogan & Illingworth, 2000; 
Jing et al., 2016; Oreopoulos & Norris, 2011; Willèn et al., 2005). This difference can then partly be explained by 
the difference in vertical resolution, as the decorrelation lengths shown here are comparable to those computed 
in the literature with LES simulations with similar vertical resolutions (Neggers et al., 2011; Sulak et al., 2020; 
Villefranque et al., 2021). The difference in horizontal resolutions (Astin & Di Girolamo, 2014; Naud et al., 2008; 
Tompkins & Di Giuseppe, 2015) can also impact the overlap, but it is not studied here.

5.3. Considering LWC Distributions

Until now, we focused on the vertical distribution of the cloud fraction and cover, and therefore assumed an 
homogeneous LWC in each horizontal layer. In this section we add distributions of the LWC between the subcol-
umns and study its impact on the radiative properties of the generated scenes. The impact of the LWC heterogene-
ity on the cloud albedo of a scene is well documented and known to be of second order compared to the accurate 
reproduction of the cloud cover (Barker et al., 1999; Barker & Räisänen, 2005; Oreopoulos et al., 2012). We want 
to check the ability of our method to reproduce those results, and compare the second order impacts of the LWC 
horizontal heterogeneity to those of the cloud fraction subgrid vertical heterogeneity shown in Section 4.5. To do 
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so we use ERO with vertical subgriding, assuming that the horizontal distribution of the LWC in each horizontal 
layer follows the following gamma distribution, as done in Räisänen et al. (2004):

𝑓𝑓 (𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) =
𝑥𝑥𝑥𝑥−1𝑒𝑒

−
𝑥𝑥

𝑥𝑥

Γ(𝑥𝑥)𝑥𝑥𝑥𝑥
for 𝑥𝑥 𝑥 0 𝑥𝑥𝑥 𝑥𝑥 𝑥 0 

where x is the liquid water content in kg/kg, kθ is the mean of the distribution and kθ 2 its variance, Γ(k) is the 
gamma function, with Re(k) > 0:

Γ(𝑧𝑧) =
∫

∞

0

𝑡𝑡
𝑧𝑧−1

𝑒𝑒
−𝑡𝑡
𝑑𝑑𝑡𝑡 

This distribution can be described by its first two moments. In addition to the first moment, which we have 
already assumed to be known, the second moment must therefore be specified for each horizontal layer. We 
have chosen not to take into account the rank correlation here, as its radiative impact was shown to be of a lesser 
importance for the integrated cloud albedo (Oreopoulos et al., 2012).

We generate the cloud field with LWC distributions from an atmospheric column (Dz = 100 m) to a sample of 
subcolumns with the same vertical resolution as the LES (dz = 25 m), and display on Figure 9 the LWC of both 
scenes' cloudy subcolumns after they have been sorted along their vertical Liquid Water Path (LWP, bottom 
panels). The equivalent generation with no horizontal heterogeneity of the LWC is shown as a comparison in the 
top panels. When using LWC distributions, the generated subcolumns shows the same characteristics than the 
LES: a lot of subcolumns with a small LWP, as well as a LWP increasing with the altitude, and a small number 
of subcolumns with a high amount of LWP. The generated subcolumns shows demarcations every 100 m that 
are coming from the coarse vertical resolution of the atmospheric column because the profile 𝐴𝐴 (𝐶𝐶𝑣𝑣)𝑧𝑧 and the LWC 

Figure 9. The liquid water content of each scene's cloudy subcolumns in the Large Eddy Simulations (LES) simulations (left panels) and reconstructed using 
exponential-random overlap (right panels). The subcolumns have been sorted along their Liquid Water Path (LWP) (red lines). The red lines represent the LES (dashed 
line) and generated (solid line) LWP, the former being represented on the right panels as well to facilitate the comparison. Top panels are homogeneous Liquid Water 
Content for each layer and whereas it varies in the bottom panels.
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properties are assumed to be constant in each coarse horizontal layer. The LWC heterogeneity also causes more 
disparity in the LWC values, especially high values, which are smoothed out in the homogeneous plots.

We then quantify the impact of the LWC horizontal distribution on radiative properties. To do so we look at the rela-
tive difference of cloud albedo between LES simulations with the exact LWC heterogeneity and their ERO genera-
tions with and without LWC heterogeneity. They were generated from the coarse resolution Dz = 100 m to the LES 
vertical resolution dz = 25 m like done in Section 3, for the two cases ARM and BOMEX. Introducing LWC hori-
zontal distributions significantly improves the cloudy albedo: the mean relative difference with that of the LES with 
exact LWC goes from 8.5% to 2.4% for ARM and from 12.7% to 2% for BOMEX. Comparing the LES with exact 
LWC and their homogeneous versions we find the scenes without LWC horizontal heterogeneity are ≃10% brighter, 
which confirms the previous findings of Barker et al. (2003), Wu and Liang (2005), and Shonk and Hogan (2010).

Our method is able to reproduce the known impact of LWC horizontal heterogeneity, which is comparable to the 
impact of the subgrid vertical heterogeneity of the cloud fraction, discussed in Section 4.3.

6. Summary and Conclusion
In this paper we presented a method based on the ERO assumption that allows to statistically represent the vertical 
structure of cloud scenes at different vertical resolutions. We focus on low-level clouds and show that a single 
value of the overlap parameter, a fundamental parameter of ERO that is directly related to the decorrelation 
length, is sufficient to represent the whole cloud scene.

We propose an algorithm to generate the cloud fraction on a high resolution vertical grid for an ensemble of 
subcolumns using a single low resolution atmospheric column and either the cloud cover or the overlap param-
eter. Compared to reference LES simulations, the generated cloud scenes show a correct representation of both 
the downward and upward cumulative cloud fractions. We suggest that they are simple diagnostics that would 
usefully complement the usual cloud fraction vertical profile when comparing models with observations or when 
developing models. The generated cloudy albedos are very close to the ones of the original LES cloud scenes, 
with only a 2% relative error for the best samples.

To avoid having to generate the cloud fraction profile on a high resolution vertical grid, we investigate how 
to represent both the subgrid variability within coarse layers and the overlap of these coarse layers to ensure 
correct values of cloud cover and cloud albedo. We demonstrate that, depending on how the subgrid variability is 
represented, the decorrelation length used to overlap the coarse layers may be highly dependent on their vertical 
resolution. However, we show that the subgrid variability and the interlayer overlap can be defined in such a way 
to define a decorrelation length almost independent of the resolution.

We also demonstrate that the decorrelation lengths obtained from remote sensing depend on the vertical reso-
lution of the instruments. For a same cloud scene, the decorrelation length obtained from an instrument with 
a vertical resolution of 200 m can be two times larger that the one obtained with an instrument with a vertical 
resolution of 25 m. This may partly explain why the decorrelation lengths obtained by the studies using CloudSat 
observations are about 7 times larger that those obtained from high resolution models. If the decorrelation length 
can take into account the distance between cloudy layers to compute the overlap parameters, the thickness of 
the layers also has to be taken into account when estimating decorrelation lengths, as well as whether the cloud 
fractions are based on volume or area. We provide a framework that allows to go from one vertical resolution to 
an other, and this needs more investigations, especially to be adapted to the varying vertical resolutions of GCMs.

To our best knowledge, most current atmospheric models assume a maximum-random overlap of cloud layers or a 
ERO with a quite large decorrelation length (≃2–3 km). Those overlap assumptions can lead to an underestimation of 
the cloud cover by a factor up to two, at least for low-level clouds, and therefore explain a significant part of the under-
estimation of these clouds that is identified in current climate models (Konsta et al., 2022). Atmospheric models also 
neglect the subgrid vertical variability of the cloud fraction. This can be explained by the fact that in global models, the 
layers' horizontal extent is about a hundred times larger than their height (Dz ≃ 200 m and Dx ≃ Dy ≃ 20–100 km). 
But this shape ratio corresponds to the grid's layers, not to the numerous clouds they contain. Their complex geom-
etries create subgrid vertical variability and we show it matters, even at the vertical scale of the layers. This first 
impacts the areal cloud fraction, that can be underestimated by ∼40% when the subgrid heterogeneity is not taken 
into account. Also, for a low-level cloud scene with a given cloud cover and cloud water path, the cloud albedo can 
change by about 20% according to what assumptions is made to represent the subgrid vertical variability of the cloud 
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fraction. A better consideration of subgrid heterogeneity and cloud overlap in the models should allow this bias to be 
reduced, but would also require a significant revision of the amount of condensed water so that the global albedo does 
not change too much. This would contribute to reduce the current “too few too bright” bias.

Further work would be needed to extrapolate the results of this work to other types of clouds, especially deep 
convective clouds, as well as ice and mixed-phase clouds. As we focused on the vertical structure of clouds 
within the plan parallel approximation, we have not taken into account the solar angle or 3D radiative effects. 
We computed that averaged over a whole day, the relative 3D effects on the SW cloud albedo are about 7%–18% 
for the cases used in this study. Further work would be needed to link ERO with a 3D representation of clouds.

Appendix A: Implementation and Difference Between ERO and Räisänen's Cloud 
Generating Algorithm
For a cloudy block that extends continuously between the vertical layers [kbase, ktop] (with 𝐴𝐴 #

([
𝑘𝑘𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡

])
=   

our algorithm works as follows:

We generate a sample of Ns subcolumns. The 𝐴𝐴 𝐴𝐴𝑠𝑠 ×  different cells of this sample are represented by the indices 
i ∈ [1, Ns] and k ∈ [kbase, ktop]. Starting from the top of each subcolumn, the algorithm computes for each cell the cloud 
state Si,k ∈ {0, 1}, which corresponds to whether the cell is cloudy or not, as well as the Liquid Water Content LWC.

For the top cell of the subcolumn i, 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡
 is computed as:

��,���� =

{

0 for ��1�,���� ≤ 1 − ����� ( clear )
1 for ��1�,���� > 1 − ����� ( cloudy )

� ∈ [1, ��] (A1)

where RN1 are random numbers evenly distributed on [0,1]. Working its way down, the algorithm computes the 
next cloud states, as follows, for each cell (i, k): let RN2i,k be new random numbers evenly distributed on [0,1].

•  maximum overlap: if RN2i,k < α, the cell is in maximum overlap with the one above (i, k − 1). Its cloud state 
Si,k is computed as:

𝑆𝑆𝑖𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑖𝑖𝑖𝑖𝑖−1(1|1)max + (1 − 𝐶𝐶𝑖𝑖𝑖𝑖𝑖−1)(1|0)max 

where 𝐴𝐴 (𝑆𝑆𝑘𝑘|𝑆𝑆𝑘𝑘−1)max are booleans computed according to the transition probabilities Pmax(Sk = sk∣Sk−1 = sk−1). The 
probability Pmax(Sk = 1∣Sk−1 = 1) is given by Equation 8, and Pmax(Sk = 1∣Sk−1 = 0) by Equations 2 and 6:

𝑃𝑃max(S𝑘𝑘 = 1|S𝑘𝑘−1 = 0) = 1 − 𝑃𝑃max(S𝑘𝑘 = 0|S𝑘𝑘−1 = 0) =
max(𝐶𝐶𝑘𝑘−1, 𝐶𝐶𝑘𝑘)

1 − 𝐶𝐶𝑘𝑘−1

 (A2)

•  random overlap: if RN2i,k > α, it's in random overlap with the cell above. Its cloud state Si,k is computed as:

𝑆𝑆𝑖𝑖𝑖𝑖𝑖 = (1|1)𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = (1|0)𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

where 𝐴𝐴 (𝑆𝑆𝑘𝑘|𝑆𝑆𝑘𝑘−1)𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 are booleans computed with the transition probability Prand defined by Equation 5.

After this we have generated a cloud field with a cloud cover of CC, with a standard deviation decreasing as 
𝐴𝐴 1∕

√
𝑁𝑁𝑠𝑠 , and with conservation of the initial cloud fraction Ck, k ∈ [kbase, ktop].

This algorithm is mainly based on Räisänen et al. (2004). The main difference between those two algorithms is 
about the generation on random numbers. When generating the cloud fraction (as well as the cloud condensate 
amount) of a given cell k, Räisänen generator computes xk ∈ [0, 1] to compare it to the cloud fraction of the layer 
Ck and decide whether the cell is cloudy or not. The computation to get xk is:

𝑥𝑥𝑘𝑘 =

⎧
⎪
⎨
⎪
⎩

𝑥𝑥𝑘𝑘−1, for RN2 𝑘𝑘 ≤ 𝛼𝛼𝑘𝑘−1,𝑘𝑘

RN3 𝑘𝑘, for RN2 𝑘𝑘 > 𝛼𝛼𝑘𝑘−1,𝑘𝑘

 (A3)

where αk−1,k is the overlap parameter between layers k and k − 1, and RN2 and RN3 are two random numbers 
evenly distributed between 0 and 1.
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In the first case, the two cells are in maximum overlap and in the second one they are in random overlap, a new 
independent random number being drawn. With only two layers our method is equivalent, but for more than two 
layers, Räisänen's method can create correlation on the whole vertical subcolumn being generated, as the same 
random number can be kept for many different cells.

By computing directly the transition probabilities to generate the cloud fraction of a cell (Pmax(1∣1), Pmax(1∣0), 
Prand(1∣1), Prand(1∣0)), and by using a different random number every time it is needed, we conserve the cloud 
fraction without creating this correlation between the layers.

Data Availability Statement
A repository containing the scripts for the ERO algorithm presented in this paper is pulished on GitHub at https://
github.com/raphleb/ERO.git (Lebrun, 2022). The software htrdr (version 0.9.1) used in this paper for the radia-
tive computations is available at https://gitlab.com/meso-star/htrdr (Forest et al., 2023).
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