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1. Introduction
Diurnal temperature range (DTR), referring to the difference between the maximum and minimum near-surface 
air temperature within a 24-hr period, has been identified as a critical research gap in the Sixth Assessment 
Report (AR6) of the Intergovernmental Panel on Climate Change (IPCC, 2021). Since daily maximum and mini-
mum temperatures are respectively mainly determined by shortwave and longwave radiation, DTR can be used to 
assess radiative forcing effects (Makowski et al., 2008). Tracking DTR changes allows for deeper understanding 
of the boundary layer dynamics, near-surface stability, and processes (e.g., the photosynthesis and respiration 
processes in plants) involving air temperature variability (Christy et al., 2009; Holtslag et al., 2013; Lindvall & 
Svensson, 2015; Peng et al., 2013). DTR is an important parameter for ecology and agriculture that affects species 
performance and crop yield (Lobell, 2007; Vasseur et al., 2014). It also acts as a well-known risk factor for public 
health, as increasing DTR is highly associated with increased mortality (Lee et al., 2018; Lim et al., 2012).

From the 1950s, in both observations and simulations, global DTR declined substantially as daily minimum air 
temperature increased faster than daily maximum air temperature (Lindvall & Svensson, 2015; Sun et al., 2018; 
Vose et al., 2005). DTR change displayed heterogeneous spatial patterns and seasonal variations (Lauritsen & 

Abstract The 2021 IPCC report found that most studies show declining trends for the global diurnal 
temperature range (DTR) since the 1950s, decreasing mainly during 1960–1980. This issue is revisited here 
using an up-to-date in-situ data set, Hadley Center Integrated Surface Database, constrained by rigorous station 
selection conditions. The global observed DTR trend was found to reverse during 1980–2021, increasing 
significantly at a rate of 0.091 ± 0.008°C decade −1. The trend was dominated by a faster rate of increasing 
daily maximum air temperature. This increasing observed trend in the past four decades was not fully captured 
in raw CMIP6 models, as models only partially capture the spatial patterns. With global CMIP6 outputs and 
regionally-available observations, the global land DTR was then estimated, through emergent constraints, to 
be 0.063 ± 0.012°C decade −1. The study raises concern for risks of increasing DTR globally and provides new 
insights into global DTR assessment.

Plain Language Summary In 2021, the IPCC reported a decrease in the near-surface diurnal air 
temperature range (DTR) since the 1950s. However, using the in-situ surface air temperature observations, the 
global DTR trend was found to reverse after the 1980s, as daily maximum air temperature increased faster  than 
the daily minimum air temperature did between 1980 and 2021. The observed results for 1980–2014 were 
used to assess the historical simulations within CMIP6. Models generally depicted similar spatial variability 
as observed results but high variation existed between models. Most of the models did not capture the reversal 
of the global DTR trend and underestimated regional results. To narrow down the uncertainty and produce a 
complete global land DTR estimation, we applied the emergent constraint approach by combining observation 
data and model results. The global DTR trend from 1980 to 2014 was 0.063 ± 0.012°C decade −1. The 
constraining data was also used at a regional scale. It was shown that DTR trends for North America retained 
high uncertainty (−0.011 ± 0.026°C decade −1), while Europe and Asia showed reduced uncertainty with 
increasing DTR.
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Rogers, 2012; Makowski et al., 2008; Rai et al., 2012; Vose et al., 2005). Numerous factors impact DTR and 
can produce complex interactions and feedbacks, which increases challenges to assess DTR changes worldwide. 
On the one hand, solar radiation is directly correlated with decadal DTR variability (Wang & Dickinson, 2013). 
Increasing cloud cover reduces DTR by reflecting shortwave radiation during the day and preventing outgoing 
longwave radiation at night, reducing maximum air temperature and increasing minimum air temperature (Dai 
et al., 1999; Roy & Balling, 2005). Greenhouse gases and aerosols contribute to the change of cloud properties, 
reflecting more solar radiation and thus cooling the daytime maximum temperature (Dai et  al.,  1997; Stjern 
et al., 2020). Increasing soil moisture and precipitation also reduce maximum air temperature through evapora-
tive cooling in the daytime, especially in arid and semi-arid regions (Dai et al., 1999; Zhou et al., 2009). On the 
other hand, enhancing solar radiation increases DTR values (e.g., Europe; Makowski et al., 2008). Additionally, 
local factors (e.g., land cover changes) may also play a critical role in increasing DTR (e.g., Mexico; Englehart 
& Douglas, 2005).

Shortwave radiation varied significantly in the past few decades: it first decreased (global dimming) from the 
1950s-to-1980s, and then began to reverse (global brightening) since the 1980s (Schwarz et  al.,  2020; Wild 
et al., 2005). During the overall period, anthropogenic emissions of greenhouse gases remained at a high level, 
accelerating the global warming, with the global hydrological cycle intensified and more extreme events, includ-
ing droughts, floods, and heat waves (Al-Ghussain, 2019). The ongoing land use and land cover change in recent 
decades provided important forcing impacting the Earth system (Song et al., 2018). Under such circumstances, 
assessing DTR variation is challenging. Most previous studies focused on global DTR analysis for long-terms 
(e.g., from the 1950s to present) but few investigated the near-term DTR trends (e.g., since the 1980s; Braganza 
et al., 2004; Zhou et al., 2009; Sun et al., 2018). Recent near-term DTR studies are limited to a regional scale 
(Feng et al., 2018; Yang & Ren, 2017), and research on a global scale is seldom performed (Rohde et al., 2013; 
Sun et al., 2018). In the last IPCC report, the major conclusion drawn from the near-term DTR analysis mainly 
covered the period before 2004 due to data availability (IPCC, 2021; Thorne et al., 2016). Therefore, it is critical 
to assess global DTR trends using up-to-date datasets.

Currently, global analysis based on observational station data is limited by the spatial data coverage due to the 
quality and completeness of the long-term station records. Missing records have led to large gaps in South Amer-
ica, Africa, and areas at the North Pole where stations fail to pass selection criteria (Sun et al., 2018; Thorne 
et al., 2016; Vose et al., 2005). DTR investigations in these regions are generally performed using gridded inter-
polation. Another approach for a complete global land study is numerical simulation. However, in numerical 
studies, simulated DTR results have high discrepancies between models and the values are generally underesti-
mated when compared with observed mean DTR values (Sun et al., 2018), probably resulting from deficiencies of 
modeling cloud and aerosol effects (Lindvall & Svensson, 2015). To fill these research gaps, we analyzed global 
observational DTR trends for 1980–2021 using the up-to-date in-situ Hadley Center Integrated Surface Database 
(HadISD) data set. The observed results between 1980 and 2014 (limited by CMIP6 historical period) are applied 
to assess the simulated DTR trends from CMIP6 historical outputs. The discrepancies between the two results 
are investigated and discussed. We combine model outputs and the in-situ data set using the emergent constraint 
approach and estimate the global complete land DTR trends for 1980–2014.

2. Materials and Methods
We use the in-situ sub-daily HadISD data set (version 3.3.0.202205p) developed by the UK Met Office Hadley 
Center (Dunn, 2019; Dunn et al., 2012, 2016). HadISD is based on the ISD data set (Smith et al., 2011), devel-
oped by NOAA's National Climatic Data Center. This version of the HadISD contains 9,555 station-observed 
time series since 1 January 1931 for numerous variables, including air temperature, wind speed, and sea level 
pressure, with at least 4 observations per day (reporting from 6-hourly to hourly). Various quality control proce-
dures have been applied to the data set, including duplicate checks, distribution gap checks, and climatological 
outlier checks (Dunn et al., 2012, 2016).

We adopt strict station selection criteria. For all stations, a day is declared valid if there are at least 5 observations 
(excluding 6-hourly observations for more precise results), otherwise, it is identified as a missing day. Based on 
the WMO standard practices, a month is discarded if there are more than 11 missing days overall or 5 or more 
consecutive days are missing (WMO, 2017). For the 1980–2021 period, only stations with less or equal to 5 miss-
ing months are retained, such that the missing rate is smaller than 1% (5 of 504 months). After selection, 1,571 
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stations are retained in the analysis. They are mainly located in the United States of America, Europe, China, 
and Japan, with poor coverage in South America, Africa, Australia, and central Russia (Figure S1 in Supporting 
Information S1). The selection results in temporal resolution of 3-hourly and hourly, with observed times evenly 
distributed within the day (Figure S2 in Supporting Information  S1). For each station, we first calculate the 
monthly mean DTR from the valid days in the month. We then derive the annual mean DTR based on monthly 
values. The station-based values are finally averaged onto 5° × 5° grid cells, with at least one station available in 
each grid, following Vose et al. (2005) and Sun et al. (2018). For the conservation purpose in a latitude-longitude 
coordinate system, grid values are weighted by the cosine of latitude at the central point of each grid. Finally, 
we construct the global and regional annual time series by averaging all area-weighted variables of all grids. 
The linear trends are determined by the least-squares method. The t-test is applied to examine the significance at 
α = 0.05. The above procedures are also applied to the regional trend analysis.

Due to the limited coverage of meteorological stations given our strict selection criteria, we process the emergent 
constraint approach to further assess the range of global DTR trends, including all land areas with and without 
observation records (Eyring et al., 2019). The emergent constraint integrates two diagnostic variables across model 
ensembles, within which one can be compared with observational data and the other cannot (Wang et al., 2020). 
The method has reduced uncertainties for land-atmospheric interactions modeling and has been widely used (Chai 
et al., 2022; Cox et al., 2018; Wang et al., 2020). Here, we use HadISD observations to constrain CMIP6 model 
outputs. We obtain the daily maximum and minimum near-surface air temperature from all available CMIP6 
historical simulations (35 models in total) of variant label “r1i1p1f1”, with detailed descriptions displayed in 
Table S1 in Supporting Information S1. Since historical runs cover the 1850–2014 period, the emergent constraint 
approach for our DTR analysis is set for 1980–2014. All models are re-gridded to 5° × 5° grid cells to correspond 
to the observation grids and the DTR values are calculated. We then compute area-weighted linear DTR trends of 
grids with HadISD observed data available (HadISD grids) and the area-weighted linear DTR trends of all land 
grids for each model. The linear relationship between two series of trends is defined following Cox et al. (2018).

𝑓𝑓𝑛𝑛 = 𝑎𝑎 + 𝑏𝑏𝑏𝑏𝑛𝑛, (1)

𝑏𝑏 =

∑𝑁𝑁

𝑛𝑛=1

(

𝑥𝑥𝑛𝑛 − 𝑥𝑥
)(

𝑦𝑦𝑛𝑛 − 𝑦𝑦
)

∑𝑁𝑁

𝑛𝑛=1

(

𝑥𝑥𝑛𝑛 − 𝑥𝑥
)2

, (2)

where fn denotes the linear regression between series of DTR trends of HadISD grids (xn) and series of DTR 
trends of global grids (yn, 1 ≤ n ≤ 35), a and b represent the intercept and gradient, respectively. N denotes the 
total data points and 𝐴𝐴 𝑥𝑥 and 𝐴𝐴 𝑦𝑦 represents the average of xn and yn, respectively. The prediction error (σf) is calcu-
lated as:

𝜎𝜎𝑓𝑓 = 𝑠𝑠

√

√

√

√

√1 +
1

𝑁𝑁
+
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where s is calculated from the estimation of the variance (s 2) in yn − fn:

𝑠𝑠2 =
1

𝑁𝑁 − 2

∑𝑁𝑁

𝑛𝑛=1
(𝑦𝑦𝑛𝑛 − 𝑓𝑓𝑛𝑛)

2
, (4)

The probability density function (PDF) of y given x (P(y|x)) is:

𝑃𝑃 (𝑦𝑦|𝑥𝑥) =
1

√

2𝜋𝜋𝜋𝜋2

𝑓𝑓

𝑒𝑒
−
(𝑦𝑦−𝑓𝑓 (𝑥𝑥))2

2𝜋𝜋2
𝑓𝑓 , (5)

Similarly, the PDF for observed HadISD trend P(x) also follows the Gaussian distribution. The PDF after emer-
gent constraint (P(y)) is:

𝑃𝑃 (𝑦𝑦) =

∞

∫
−∞

𝑃𝑃 (𝑦𝑦|𝑥𝑥)𝑃𝑃 (𝑥𝑥)𝑑𝑑𝑥𝑥𝑑 (6)
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The constrained global DTR trend and the uncertainty are then derived from P(y).

3. Results
3.1. Observed DTR Trends

While most of the DTR declines occurred between 1960 and 1980 (Thorne et  al.,  2016), the DTR values 
increase since the 1980s using the observation-based HadISD data set, suggesting that the global DTR trend 
has reversed for recent decades (Figure S3 in Supporting Information S1). This is the result of 1980–2021 maxi-
mum air temperature increasing at 0.344 ± 0.025°C decade −1, whereas minimum air temperature, although also 
increasing, progress at a lower rate of 0.254 ± 0.025°C decade −1. Together they result in an increase of DTR of 
0.091 ± 0.008°C decade −1. Different magnitudes in the changes of maximum air temperature and minimum air 
temperature are also identified spatially (Figure S4 in Supporting Information S1). Increases in maximum air 
temperature are detected worldwide, with only a few exceptions in South America (Figure S4a in Supporting 
Information S1). Minimum air temperature shows similar patterns of increase as maximum air temperature, but 
opposite trends are identified in South America and southern Africa (Figure S4b in Supporting Information S1). 
The changes in DTR have high spatial variability worldwide (Figure 1a). Significant (p < 0.05) DTR increases 
are observed in the western United States, Europe, South Africa, and western Asia. Regionally, high DTR trends 
in Europe and Asia (0.199 ± 0.014°C decade −1 and 0.096 ± 0.012°C decade −1, respectively) are mainly respon-
sible for the global trends (Figures 1b, 1d, and 1e). The DTR trend for North America is weak and not significant 
(p > 0.05; Figure 1c).

3.2. Assessment of Model-Simulated DTR Trends

The CMIP6 model performance is first assessed inter-models globally. Overall, the CMIP6 models agree 
with the conclusion that global DTR decline between 1980 and 2014, with a mean significant trend of 
−0.019 ± 0.001°C decade −1 for global land grids (Figure 2a). For the 33 models with decreasing trends, 78.8% 
of the models report declining DTR trends less than −0.03°C decade −1 (26 models; Figure 2b). Only 2 models 
show small magnitudes of increasing trends (<0.01°C decade −1), namely NorCPM1 and NorESM2-MM. Despite 
the high model agreement in temporal trends, models display rather large variations in average spatial DTR 
trends and inter-model comparison (Figure S5 in Supporting Information S1 and Figure 2c). The spatial pattern 
for average DTR trends of 35 CMIP6 models during 1980–2014 is highly heterogeneous. The areas of increase 
are mainly located in part of subtropical to temperate regions in the northern hemisphere (30°N–55°N) and 
tropical to sub-tropical regions in the southern hemisphere (10°S–30°S), such as United States, Europe, South 
America, and Australia, while decreases are found mainly in tropical, boreal and part of sub-tropical regions, 
including Asia, northern North America, and large parts of Africa (Figure S5 in Supporting Information S1). 
Models largely agree on the decreasing DTR values in central Africa and in boreal high-latitude regions. High 
consistency in increasing DTR is found mainly in southern Europe, eastern United States, and eastern Australia. 
However, large model discrepancies still exist between regions. Models display an agreement of less than 70% in 
western Canada, western Australia, and especially large parts of Asia and South America. The overall inconsist-
ency indicates high model uncertainties worldwide.

The model performance is further evaluated by the observed results during 1980–2014, only considering 
the model grids with HadISD data available (grids shown in Figure 1a). Though showing high uncertainties 
spatially, models still produce similar patterns as the observed results, mainly in western United States, South 
America, Europe, and Japan (Figures 1a and 2c, and Figure S6 in Supporting Information S1). For temporal 
trends, we find that the trends in observational data are not fully captured by the CMIP6 models. For all grids 
with observed HadISD data, over 60% of models show decreasing DTR (24 models), which contrasts with the 
observed trends (0.112 ± 0.010°C decade −1; Figure 3a). Though the other 11 models capture the increasing DTR, 
the trends are all underestimated, with magnitudes of less than 0.02°C decade −1. Regionally, in North Amer-
ica, both the HadISD data set and the models show high uncertainty. Fifteen models displayed declining DTR 
values while the other 20 models show the opposite (Figure 3b). The HadISD data set shows no significant trend 
(0.006 ± 0.032°C decade −1, p > 0.05). Twenty four out of thirty five models agreed with the increasing DTR 
in HadISD over Europe but underestimated the magnitude by over half, as the maximum trend is measured to 
be 0.085 ± 0.030°C decade −1 and the observed trend is in the range 0.205 ± 0.019°C decade −1 (Figure 3c). The 
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largest disparity lies in Asia, as nearly all models (32 of 35) show decreases in DTR but HadISD shows reversed 
trends (0.124 ± 0.014°C decade −1; Figure 3d). Only 3 models capture the increasing trends, but with magnitudes 
below 0.02°C decade −1.

3.3. Emergent Constraint for Complete Global and Regional DTR Trends

Through the assessment, we find that models have high agreement temporally but are less likely to capture the 
reversal trends, and depict part of the spatial pattern generally well but with high inter-model variation. This 
implies that although model simulations provide results over the complete global land area, models alone are 
unable to replicate accurate measurements. Therefore, the global DTR trends are further investigated through 
emergent constraints (Figure 4a). The model grids with HadISD data (denoted “HadISD grids” herein) experi-
ence larger magnitudes of DTR change than all model grids (termed “global grids” herein). The temporal trends 
for most of the models (24 of 35) decrease for both HadISD grids and global grids, and some (9 of 35) display 
contrasting trends, meaning an increase in HadISD grids but decrease in global grids. Few models (2 of 35) show 
consistently increasing trends in HadISD and global grids. Regardless of the large variation, the linear fit of the 

Figure 1. Spatial distribution and temporal DTR trends from HadISD observations. (a) Global spatial distribution of linear trend of annual DTR, 1980–2021. Black 
crosses denote a significant trend with p < 0.05. The red polygons outline North America, Europe, and Asia, respectively. Annual DTR trends during 1980–2021 in the 
HadISD data set (black line) are shown for (b) global, (c) North America, (d) Europe, and (e) Asia. In (b) to (e) the red line is the line of best fit of the time series, and 
the slope and probability statistics of that line are shown in black text on each sub-plot. The gray shadings denote the uncertainty calculated as the interquartile range of 
the results by randomly selecting 40% of the grids and repeating 300 times. North America is defined by the opposing rectangle corners being 170°W, 75°N and 60°W, 
15°N. For Europe these locations are 10°W, 75°N and 45°E, 30°N, for Asia they are 45°E, 75°N and 160°E, 0°N.
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Figure 2. Global DTR trends and agreement among models. (a) Annual DTR anomaly of the 35 CMIP6 models. The gray lines represent DTR anomaly for each model 
and the black line denote the mean for all models. The red line is the line of best fit of the mean of all models, and the slope and probability statistics of that line are 
shown in red text in the bottom-left corner. (b) Frequency distribution of global DTR trends (°C decade −1) for the 35 CMIP6 models during 1980–2014. The blue (red) 
bars denote model trends less (greater) than zero. (c) Percentage of models showing increasing (decreasing) DTR trends in each 5° by 5° grid.
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two trends for different models agrees well with an R-squared value of 0.78. The trend of global land is then esti-
mated to be 0.063 ± 0.012°C decade −1 according to the linear fit set by models (Figure 4b). The results suggest 
that global DTR experiences a reversal of trends in the recent decades (1980–2014), decreasing from the 1950s to 
the 1980s whereas from 1980 to 2014 the DTR trend is increasing. The reversal trends are not only restricted to 
lands with HadISD observations, they also extend to most of the CMIP6-based simulated global lands.

Figure 3. Frequency distribution of simulated DTR trends for HadISD grids shown in Figure 1(a) and the corresponding DTR trends in the observed HadISD data set 
(red bar) in (a) global, (b) North America, (c) Europe, and (d) Asia. The blue (light red) bars denote negative (positive) model trends. Data provided in the top-left of 
each sub-part refers to the values of the observed HadISD DTR trend (as shown by the red bar). The three geographic regions are defined in Figure 1 caption.
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The emergent relationship is also adopted on regional DTR trend estimation in North America, Europe, and Asia, 
as there still exist 5° × 5° grids cells in each region without HadISD observations (Figure 4b). The high spatial 
variation between western and eastern North America leads to large uncertainty there, revealed by both models 
and HadISD data (Figure 1a and Figure S7a in Supporting Information S1). The missing observed areas of North 
America are mainly in Canada and Mexico (Figure 1a). When the model constraint method is employed, the 
North American DTR trend is estimated to be −0.011 ± 0.026°C decade −1 (Figure 4b). In Europe, the HadISD 
stations cover nearly all land grids (Figure 1a), which produces a high correlation between trends for HadISD 
grids and trends for land grids (Figure S7b in Supporting Information  S1). Therefore, the model estimation 
reveals little difference in the observational trends, at the value of 0.187 ± 0.020°C decade −1 (Figure 4b). In 
Asia, large areas in Russia, parts of central Asia, and north India exist with no HadISD observations (Figure 1a). 
Models produce a high correlation (R 2  =  0.87), which made the assessment more applicable (Figure S7c in 
Supporting Information S1). The trend is estimated to be 0.098 ± 0.017°C decade −1 (Figure 4b), smaller than the 
European DTR trends, but still shows a strong increase. Overall, the emergent constraint provides right-shifted 
results with reduced uncertainty (Figure S8 in Supporting Information S1).

4. Discussion
Thorne et al. (2016) reported a non-significant trend in global DTR since 1979 and showed inter-data set disa-
greement. Here we find that global DTR has reversed from decreasing to increasing during the past four decades 
using the HadISD data set. We are aware that being a sub-daily data set, the DTR for each station may be affected 
by the increasing observation frequency, since the DTR may be underestimated in the past but more accurately 
measured more recently as the observation frequency increases. Therefore, we test another method (“fixed hour 
method”) to eliminate the potential effect. For each station, we note the observation times available in 1980 and 
depict the mean diurnal air temperature cycle for 1980–2021 only using these times. Then we determine the hours 
of maximum air temperature (Tmax hour) and minimum air temperature (Tmin hour) of these periods. The “valid 
day” is then determined if both the Tmax hour and Tmin hour are available. The daily DTR is calculated as the 
difference of the values of Tmax hour and Tmin hour. As shown in Figure S9a in Supporting Information S1, the 

Figure 4. Emergent constraint approach. (a) The emergent relationship between trends of grids for global land and trends of grids with observed data for 1980–2014. 
The orange solid line shows the linear regression with prediction error (orange shading) and the gray vertical solid line denotes the trend of HadISD data during 
1980–2014 and one standard deviation (gray shading). The horizontal blue solid line shows the best estimation and blue shading shows the uncertainty for trends of 
global land. (b) The estimated DTR trends through emergent relationship globally and regionally. Error bars indicate the estimation of ± one standard deviation. The 
three geographic regions are defined in Figure 1 caption.
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true DTR could be underestimated due to less reporting periods (e.g., 3-hr period), but as we keep the Tmax hour 
and Tmin hour fixed, the change of measured DTR reflected the change of true DTR (Figures S9b and S9c in 
Supporting Information S1). Generally, the two methods display similar spatial patterns (Figure S9d in Support-
ing Information S1). Although the “fixed hour method” shows a smaller magnitude of DTR trends (Figure S9e in 
Supporting Information S1), the mean global DTR still shows increasing results.

The increasing DTR has been reported by Rohde et al. (2013) using the Berkeley data set, and also mentioned as 
faster rate of increasing maximum air temperature by Dunn et al. (2019) using HadISD over 1973–2018. Now we 
further confirm the increasing trend in the past four decades. The global spatial patterns of DTR from HadISD are 
consistent with the patterns of Berkeley and HadGHCND datasets in Thorne et al. (2016). Our results are further 
proved by using the Berkeley data set over 1980–2021 (Figure S10 in Supporting Information S1). Regional 
patterns of North America and Europe also corroborate a number of studies using different datasets (Thorne 
et al., 2016; Vose et al., 2005), such as HadEX2 (Donat et al., 2013a), GHCNDEX (Donat et al., 2013b), and 
CMA-LSAT (Sun et al., 2018). Compared with the datasets showing global decreasing DTR, the largest discrep-
ancies are found in Asia. Increased DTR in southeastern China (Yang & Ren, 2017), south India (Kothawale 
et al., 2012), and central Asia (Feng et al., 2018) have been previously observed. Recent research has concluded 
several potential factors responsible for increasing DTR trends. Increasing surface solar radiation globally since 
the 1980s, in which aerosol and greenhouse gases have played a crucial role, has increased the DTR (Wild 
et al., 2007; Makowski et al., 2008; Kothawale et al., 2012). The transition from solar dimming to brightening is 
more evident in recent years in China (Wang & Wild, 2016; Yang et al., 2019), which may explain the increasing 
DTR in Asia. Moreover, the reduction of cloud cover and water vapor leads to limited precipitation, all of which 
combined with the gradual brightening are believed to be major explanations for the DTR increase in Asia (Feng 
et al., 2018; Wang & Wild, 2016; Yang & Ren, 2017). Land cover change in China, for example, grassland degra-
dation, may also be a factor of increasing DTR (Shen et al., 2017).

Several studies have reported underestimation and discrepancies of simulated DTR trends in models compared 
to observational data (Lewis & Karoly, 2013; Sillmann et al., 2013). The discrepancies still exist in our analysis 
of CMIP6 models, with HadISD observations (increasing, Figure 2b) and CMIP6 models (decreasing, Figure 1a) 
providing contrasting 1980–2014 DTR trends. Our finding is consistent with previous studies (Fan et al., 2020; 
Wang & Clow, 2020). The simulated solar radiation is probably the most crucial factor for DTR discrepancies. 
The increased DTR before the 1950s also fails to be captured since models simulate declining solar radiation 
while the observed records increase, which leads to less warming of maximum air temperature, therefore display-
ing decreased simulated DTR (Wang & Clow, 2020). As global brightening continues, the deficiencies of radi-
ation simulation may be one of the major reasons to explain the contradictory DTR trends between models and 
observations. Anthropogenic forcing influences DTR trends by changing clouds, land surface processes, and 
radiative fluxes, but accurate representations of these forcing largely failed in models (Lewis & Karoly, 2013; 
Zhou et al., 2010).

Due to the current limitation of model's simulation of DTR, use of the emergent relationship to constrain DTR 
trend appears to be useful for its comprehensive estimation and for narrowing uncertainties. Reducing uncertain-
ties enables models to be better improved through more accurate evaluations (Brient, 2020), and may also allow 
a more efficient adaptation planning toward increasing DTR (Williamson et al., 2021). The use of high-quality 
observation data set with rigorous selection criteria maintains the continuity of time series, preserving the orig-
inal trends for each station, improving the accuracy of a global assessment. The reverse DTR trends are now 
observed globally in the context of global brightening. As the world population keeps rising, the increase of DTR 
may provide greater risks to human beings, raising the precaution of increasing mortality (United Nations, 2022). 
The emergent constraint approach is not only limited to DTR assessment but also applicable on other climate 
indicators that fail to be well-captured by the current suite of models.

5. Conclusion
The DTR trends since the 1980s are investigated through the up-to-date HadISD observational data set. Obser-
vational data shows a reversed global trend, increasing for 1980–2021. This reversal is not captured by most of 
the CMIP6 models globally and regionally in North America, Europe and Asia. The observed spatial variability 
is partially depicted by models but with high inter-model disagreement. To offer a complete global land DTR 
assessment, the emergent constraint approach used observational data to constrain the CMIP6 model simulated 
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DTR. The DTR trends during 1980–2014 were estimated to be 0.063 ± 0.012°C decade −1 globally. Regionally, 
the estimated DTR for North America decreased with high uncertainty, while Europe and Asia showed increas-
ing DTR with lower uncertainty. The study reveals the global DTR reversal, from declining to increasing in 
recent decades, which may raise concerns about the potential influence on ecology and human health from DTR 
increase. The approach of emergent constraint provides new insights and serves as a reference for the global 
assessment of climate indicators.
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