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Abstract. We are building a 3D description of upper tropospheric (UT) cloud systems in order to study the re-
lation between convection and cirrus anvils. For this purpose we used cloud data from the Atmospheric InfraRed
Sounder and the Infrared Atmospheric Sounding Interferometer and atmospheric and surface properties from the
meteorological reanalyses ERA-Interim and machine learning techniques. The different artificial neural network
models were trained on collocated radar–lidar data from the A-Train in order to add cloud top height, cloud
vertical extent and cloud layering, as well as a rain intensity classification to describe the UT cloud systems.
The latter has an accuracy of about 65 % to 70 % and allows us to build objects of strong precipitation, used to
identify convective organization. This rain intensity classification is more efficient to detect large latent heating
than cold cloud temperature. In combination with a cloud system analysis, we found that deeper convection leads
to larger heavy rain areas and a larger detrainment, with a slightly smaller thick anvil emissivity. This kind of
analysis can be used for a process-oriented evaluation of convective precipitation parameterizations in climate
models. Furthermore, we have shown the usefulness of our data to investigate tropical convective organization
metrics. A comparison of different tropical convective organization indices and proxies to define convective ar-
eas has revealed that all indices show a similar annual cycle in convective organization, in phase with convective
core height and anvil detrainment. The geographical patterns and magnitudes in radiative heating rate interan-
nual changes with respect to one specific convective organization index (Iorg) for the period 2008 to 2018 are
similar to the ones related to the El Niño–Southern Oscillation. However, since the interannual anomalies of the
convective organization indices are very small and noisy, it was impossible to find a coherent relationship with
those of other tropical mean variables such as surface temperature, thin cirrus area or subsidence area.

1 Introduction

Upper tropospheric (UT) clouds represent about 60 % of the
total cloud cover in the deep tropics (e.g. Stubenrauch et al.,
2013, 2017). These clouds, when created as anvil outflow
from deep convection, often build large systems (e.g. Houze,
2004). The creation and maintenance of these mesoscale con-
vective systems (MCSs) is strongly dependent on the mois-
ture available in the lower troposphere and is influenced
by wind shear (e.g. Laing and Fritsch, 2000; Chen et al.,
2015; Schiro et al., 2020). Observational and cloud-resolving

model (CRM) studies (e.g. Del Genio and Kovari, 200; Pos-
selt et al., 2012) have shown that tropical storm systems over
warmer water are denser with more intense precipitation and
cover wider areas than those over cooler water. Thin cir-
rus surround the highest anvils (Protopapadaki et al., 2017),
which may be explained by UT humidification originating
from deep convection (e.g. Su et al., 2006). Their structure
and amount may respond to changing convection induced by
climate warming. Organized convection, leading to MCSs
and therefore associated to extreme precipitation, is a re-
search subject of high interest, in particular in regard to cli-
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mate warming, and many results have been published (e.g.
Popp and Bony, 2020; Bony et al., 2020; Pendergrass, 2020;
Bläckberg and Singh, 2022).

The goal of this article is to present a coherent long-term
3D dataset which describes tropical UT cloud systems and
which can be used on the one hand for a process-oriented
evaluation of convective parameterizations in climate models
and on the other hand for the study of convective organiza-
tion.

For the study of the relation between cirrus anvils and con-
vection, we coupled horizontal and vertical structure of UT
clouds, including precipitation and 3D radiative heating. As
single datasets are incomplete, we used their synergy and ma-
chine learning (ML) to get a more complete 3D description
as well as simultaneous information on precipitation. A cloud
system approach makes it possible to link the anvil proper-
ties to convection. Furthermore, the horizontal structure of
intense rain areas within these cloud systems can be used to
derive tropical convective organization indices.

The cross-track scanning Atmospheric Infrared Sounder
(AIRS) and the Infrared Atmospheric Sounding Interfer-
ometers (IASI), aboard the polar-orbiting Aqua and Metop
satellites, provide cloud properties (CIRS, Clouds from IR
Sounders; Stubenrauch et al., 2017) with a large instanta-
neous horizontal coverage. These have been used to recon-
struct UT cloud systems (Protopapadaki et al., 2017). The
good spectral resolution of IR sounders makes them sensi-
tive to cirrus, down to a visible optical depth of 0.1, during
daytime and nighttime. The vertical cloud structure is derived
by combined radar–lidar measurements of the CloudSat and
CALIPSO missions (Stephens et al., 2018) but only along
successive narrow nadir tracks separated by about 2500 km.
In order to get a more complete instantaneous picture, re-
quired for process studies, Stubenrauch et al. (2021) have
demonstrated that the radiative heating rate profiles derived
along these nadir tracks (CloudSat FLXHR-lidar; Henderson
et al., 2013) can be horizontally extended by artificial neural
network (ANN) regression models applied on cloud proper-
ties retrieved from AIRS and atmospheric and surface prop-
erties from meteorological re-analyses from the European
Centre for Medium-range Weather Forecasts (ECMWF). The
15-year time series reveals a connection of the heating by
MCSs in the upper and middle troposphere and the (low-
level) cloud cooling in the lower atmosphere in the cool re-
gions, with a correlation coefficient equal to 0.72, supporting
the hypothesis of an energetic connection between the con-
vective regions and the subsidence regions.

This article presents additional variables expanded to the
horizontal coverage of AIRS and IASI by machine learn-
ing models, trained with collocated CloudSat-lidar retrievals:
cloud top height, cloud vertical extent and cloud layering
(above and below the clouds identified by CIRS), as well as
a precipitation intensity classification (no, light or heavy).

Apart from the conclusions and outlook given in Sect. 4,
the article is divided into two main sections: Sect. 2 describes

the data, methods and evaluation; and Sect. 3 highlights sci-
entific results which show the applicability of these newly
derived variables.

Section 2 first describes the collocated data, the neural net-
work development as well as an evaluation of the predictions
on the collocated data. In addition, it presents the creation of
the 3D dataset containing the additional variables (Sect. 2.3)
and the cloud system reconstruction (Sect. 2.4). The last sub-
section (Sect. 2.5) gives a short overview of existing convec-
tive organization indices and proxies for defining the con-
vective objects. Section 3 first shows the coherence of these
ML-derived properties, in particular the rain intensity classi-
fication, using the complete 3D dataset (Sect. 3.1). Then, in
combination with a cloud system analysis, Sect. 3.2 presents
the MCS properties with respect to their life cycle stage and
their convective depth. The last subsection (Sect. 3.3) ex-
plores tropical convective organization: we compare differ-
ent proxies for convection and resulting indices of convective
organization, by investigating annual cycle and interannual
variability. The latter is small over the considered time pe-
riod (2008–2018), but we find interesting geographical pat-
terns in changes of radiative heating rate fields in relation to
the tropical convective organization.

2 Data, methods and evaluation

Satellite observations have become a major tool to observe
our planet. However, they do not provide instantaneous com-
plete views, because passive remote sensing is not able to
provide the vertical structure of clouds and active radar–lidar
measurements are only available along very narrow nadir
tracks. In order to build a complete 3D cloud dataset, we
combine the complementary information from passive and
active remote sensing, and we train artificial neural networks
over these collocated data.

2.1 Collocated AIRS–CloudSat-lidar–ERA-Interim data

The satellite observations used for the training originate from
the A-Train constellation (Stephens et al., 2018), with local
overpass times around 01:30 and 13:30. As input variables
for the ANNs, we use cloud properties retrieved from AIRS
measurements by the CIRS (Clouds from IR Sounders) algo-
rithm (Stubenrauch et al., 2017) and coincident atmospheric
and surface properties from meteorological reanalyses ERA-
Interim (Dee et al., 2011). CIRS cloud types are defined ac-
cording to cloud pressure (pcld) and cloud emissivity (εcld)
from AIRS–CIRS as high-level clouds with pcld< 440 hPa
and further as high opaque with εcld> 0.95, cirrus with
0.95>εcld> 0.5 and thin cirrus with 0.5>εcld> 0.05. Mid-
level clouds (440 hPa<pcld< 680 hPa) and low-level clouds
(pcld> 680 hPa) are both separated into two categories:
opaque with εcld> 0.5 and partly cloudy with εcld< 0.5.

The target variables are products derived from combined
radar–lidar measurements from the CloudSat and CALIPSO
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missions. Cloud top height (ztop), cloud vertical extent (DZ,
difference between cloud top and cloud base) and num-
ber of vertical cloud layers are given by the CloudSat 2B–
GEOPROF–lidar dataset (Mace et al., 2009), while the pre-
cipitation rate and its quality are given by the 2C–PRECIP–
COLUMN dataset (Haynes et al., 2009). From these one
can calculate the “cloud fuzziness” as the difference between
cloud top height and cloud height retrieved by CIRS (zcld):
the larger the vertical path to attain opaqueness, the larger the
cloud fuzziness. As zcld corresponds to the height at which
the cloud reaches an optical depth of about 0.5 (Stuben-
rauch et al., 2017), we define a cloud fuzziness indicator as
(ztop−zcld)/DZ. We collocated these datasets over the period
2007 to 2010, as described in Stubenrauch et al. (2021) and
used the latitude band 30◦ N–30◦ S for the training and ap-
plication. Input and target variables, as well as derived vari-
ables, are presented in Table 1.

2.2 Artificial neural network predictions and evaluation

2.2.1 Development of prediction models

We developed artificial neural network (ANN) regression
models for cloud top height (ztop) and cloud vertical extent
(DZ) and classification models for cloud vertical layering and
rain intensity (rain rate) separately for high-level clouds and
for mid-/low-level clouds. The training was executed sepa-
rately over ocean and over land.

The prediction of the rain rate is the most difficult, partly
because its distribution is highly skewed with a very large
peak at 0 mm h−1. Therefore we only predict a “rain rate clas-
sification”, with three classes: 0 – no rain, 1 – small rain rate
(> 0 and < 5 mm h−1) and 2 – large rain rate (> 5 mm h−1).
The CloudSat 2C–PRECIP–COLUMN data also provide a
quality flag, varying between no, possible, likely and cer-
tain rain. We transformed this flag into a binary flag with 1
for certain rain and 0 for anything else. Due to the skew-
ness of the distributions, we introduced class weights for
the training, to balance statistics, comparing (0.25, 0.25 and
0.5) and (0.2, 0.3 and 0.5) for the rain rate classification
and (0.5, 0.5) and (0.4, 0.6) for the determination of certain
rain. We also investigated a model development separately
for three cloud scenes of (i) high opaque, (ii) cirrus/thin cir-
rus and (iii) mid-/low-level clouds and for two cloud scenes
of (i) high clouds excluding thin cirrus and (ii) mid-/low-
level clouds. The samples for the development of these scene
type dependent models vary from 4.8 million data points for
mid- and low-level clouds over ocean to 94 000 data points
for opaque high-level clouds over land.

For the regression models, the final ANNs consist of an
input layer with approximately 30 input variables (Table 1),
one hidden layer with 64 neurons, one with 32 neurons, one
with 16 neurons and one output layer. We used the rectified
linear unit (ReLU) layer activation function. The activation
function is sigmoid for binary classification and Softmax for

multi-classification for the output layer. Furthermore, we use
the Adaptive Moment Estimation (Adam) optimizer with a
learning rate of 0.0001 and a batch size of 256. For the train-
ing, we use 80 % of the dataset chosen at random. The re-
maining 20 % is used for validation. The random data choice
is stratified by day–night and by cloud type (Sect. 2.1), in
order to have similar statistics in these portions.

As many input variable distributions are not Gaussian, and
to avoid outliers, we determined for each variable acceptable
minimum and maximum values, adapted to each scene for
which the models were trained: ocean or land, high clouds or
mid-/low-level clouds. Then we normalized the input vari-
ables by subtracting the minimum value and then dividing
by the difference between maximum and minimum. Before
the application of the models, all input variables are first
bounded between these minimum and maximum values.

The model parameters are fitted by minimizing a loss func-
tion, corresponding to the average of the squared differences
(square mean error, SME) for the regression and correspond-
ing to the cross entropy for the classification between the pre-
dicted and the target value.

2.2.2 Evaluation using collocated data along the narrow
nadir tracks

The ANN models are evaluated using the mean absolute error
(MAE) between the predicted and observed target values for
the regression and the accuracy for the classification. In order
to avoid overfitting, we stop the fitting when the minimum
loss does not further improve during 20 iterations (epochs).
The accuracy (ratio of correctly classified samples and over-
all number of samples) for unbalanced datasets provides an
overoptimistic estimation of the classifier ability on the ma-
jority class, and therefore we present the Matthews corre-
lation coefficient (MCC) in Table 3. MCC produces only a
high score if the prediction obtains good results in all of the
four confusion matrix categories (true positives, false neg-
atives, true negatives and false positives), proportionally to
both the size of positive elements and the size of negative el-
ements in the dataset. As MCC ranges from −1 to +1, with
MCC= 0 meaning a random result, we use the normalized
MCC, (MCC+ 1) / 2, which better compares with accuracy,
with 0.5 meaning a random result.

Tables 2 and 3 present the uncertainties given by the MAE
for the regression models and the normalized MCC for the
classification models, separately for different cloud types,
over ocean and over land. In the case of vertical extent DZ
and the classifications of cloud layering and rain intensity,
we compare results for two modelling strategies:

1. Iterative approach, using predicted variables as addi-
tional input. We first develop a regression model for the
prediction of ztop. Then the predicted ztop is used as an
additional input variable for the prediction of DZ. Fi-
nally predicted ztop and DZ are used as additional input
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Table 1. List of input and output variables regarding the prediction of cloud vertical structure and precipitation rate.

Input

Clouds

CIRS cloud properties and uncertainties εcld, pcld, Tcld, zcld, dεcld, dpcld, dTcld, dzcld, χ2
min

Cloud spectral emissivity difference εcld (12 µm)− εcld (9 µm)

Atmosphere

AIRS TB at 0.5◦× 0.5◦ TB (11.85 µm), σ (TB), TB (7.18 µm)
ERA-Interim atmospheric properties total precipitable water, ptropopause
ERA-Interim relative humidity profile RH (determined from T and water vapour) within 10 layers

Surface

ERA-Interim surface properties psurf, Tsurf, number of atm. layers down to psurf
IASI spectral surface emissivity εsurf (9, 10, 12 µm) (monthly mean climatology over land)
day–night flag, land–ocean flag

Target/output

Cloud top height ztop
Cloud vertical extent DZ= ztop− zbase

Classifications

Cloud layers below 0 or 1
Cloud layers above 0 or 1
Rain rate 0: no rain, 1: rain rate< 5 mm h−1, 2: rain rate >5 mm h−1

Certain rain 0: no, possible or likely rain, 1: certain rain

Variables deduced from target variables

Normalized cloud vertical extent DZ /ztop
Cloud fuzziness (ztop− zcld)/DZ

variables for the classifications of cloud layering, rain
rate and certain rain. For ztop, DZ and cloud layering,
the models have been separately developed over high-
and mid-/low-level clouds, while for rain rate and cer-
tain rain, the training datasets for high clouds have been
further divided into Cb and Ci/thin Ci.

2. Using only ML-independent variables as input. We de-
termine each variable independently and do not use pre-
dicted variables in the prediction of DZ, cloud layering,
rain rate and certain rain. Instead, for the rain rate and
certain rain classification, we exclude thin cirrus and use
slightly different class weights (see above) for balancing
the training statistics. For the prediction of cloud layers
below, we exclude low-level clouds.

The MAEs and normalized MCCs are very similar for both
strategies. The uncertainty of the cloud top height is about
1 km for high- and mid-level clouds (6 % and 9 %) and about
0.5 km for low-level clouds (20 %). The quartiles indicated
by the boxes in Fig. S1 are about half of the MAEs. The
uncertainty of DZ varies from 0.5 km (37 %) for low-level
clouds to 2.9 km (33 %) for Cb. The quartiles of the relative
differences between predicted and observed DZ are about

25 % to 35 %. Mean biases are small (a few metres). The nor-
malized frequency distributions of observed and predicted
ztop in Fig. 1 agree quite well for each of the cloud types
(Cb, Ci, thin Ci and mid-/low-level clouds). It is interesting
to note that the features of slightly higher clouds and more
mid-level clouds over land than over ocean are also well ob-
tained by the predictions. However, the ztop distributions of
the predicted values are slightly narrower than the ones of
the observations. The normalized frequency distributions of
observed and predicted DZ in Fig. 1 also agree very well for
Ci, thin cirrus and mid-/low-level clouds, with decreasing DZ
when cloud emissivity and cloud height decrease. However,
the bimodality for Cb, with a large peak around 15 km corre-
sponding to the convective towers and a smaller peak around
6 km, probably corresponding to thick anvils, could not be
reproduced. By investigating further, Fig. S2 shows that for
those Cb for which a DZ< 10 km is predicted, there is no
bias, but when a DZ> 10 km is predicted, corresponding to
most of the convective towers, DZ is underestimated on aver-
age by about 1.5 km over ocean and by about 2 km over land.
This systematic bias may be corrected by adding these values
to the predicted DZ for those cases.

Atmos. Chem. Phys., 23, 5867–5884, 2023 https://doi.org/10.5194/acp-23-5867-2023



C. J. Stubenrauch et al.: Convective organization and 3D structure of tropical cloud systems 5871

Figure 1. Density distributions of Ztop (above) and DZ (below), separately for Cb, Ci, thin Ci and mid-/low-level clouds (identified by
CIRS), separately over ocean and land. The prediction models have been applied to 20 % of the collocated data and are compared with the
results derived from CloudSat-lidar 2B GEOPROF data (obs).

The normalized MCCs for the classifications of certain
rain, rain rate and cloud layers additional to the one iden-
tified by CIRS are about 0.7. Merely the prediction of rain
from thin cirrus is close to random. This is because thin cir-
rus do not precipitate, and detected rain can only be linked to
the clouds underneath, for which the CIRS data do not have
any information. Therefore we trained the second model only
for Cb and Ci, assuming no rain for thin cirrus. With this
assumption, we miss about 2 % of rainy areas beneath thin
cirrus.

2.3 Construction of the 3D dataset by applying the ML
models

The results in Sect. 2.2.2 do not clearly show which of ei-
ther models is performing better. For the prediction of DZ,
the inclusion of the predicted ztop may lead to slightly better
results, as the quartiles are slightly smaller (Fig. S1). For fur-
ther investigation, we have applied both sets of ANN models
to the whole AIRS–CIRS–ERA-Interim dataset over the pe-
riod 2004–2018.

For the construction of the convective organization indices
(Sect. 2.5), we have also applied these models on IASI–
CIRS–ERA-Interim data, provided at local observation times
of 09:30 and 21:30. This is possible, because the models use
input variables which are available in both datasets.

While these new target variables have been obtained from
machine learning per AIRS footprint (spatial resolution of
15 km), the final dataset has been gridded to 0.5◦ lati-
tude× 0.5◦ longitude. The substructure of this dataset has
been kept by averaging over the most frequent cloud scene
type (defined as high-level clouds or mid-/low-level clouds)

and by keeping the fraction of coverage by Cb, Ci, thin Ci,
mid-/low-level clouds and clear sky per grid box. In order to
give an information on the rain intensity, we constructed a
rain rate indicator at footprint resolution by combining both
rain rate classification and rain quality binary classification
with values of 0 (0 and 0), 1 (0 and 1), 1.5 (1 and 0), 2.5 (1
and 1), 5 (2 and 0) and 7.5 (2 and 1). This rain rate indicator
has then been averaged over 0.5◦. In addition, we estimated
the fractions within 0.5◦ of no rain and of certain rain as well
as of light rain rate and of strong rain rate.

We illustrate the newly gained benefit by presenting in
Fig. 2 snapshots of the horizontal structure of some of these
variables, at a specific day in January, once during a La Niña
situation (2008) and once during an El Niño situation (2016),
at two local times (01:30 and 21:30). The gaps between or-
bits (corresponding to about 30 % in the tropics) have been
iteratively filled by the data closest in time. By using the
data which are 4 h apart, the data coverage has increased
from 70 % to 90 %. Including also data which are 8 h apart
increases the coverage to 97 %, and finally, including data
which are 12 h apart leads to complete coverage. These in-
stantaneous horizontal structures, which are not possible to
obtain from CloudSat-lidar data alone (Fig. 1 of Stubenrauch
et al., 2021), are quite different between La Niña and El
Niño: while during the La Niña situation, a very large multi-
cell convective system evolved over Indonesia, the convec-
tive systems are more evenly distributed over the whole trop-
ical band during the El Niño case. The latter can be explained
by the shift of warmer sea surface temperature (SST) towards
the Central Pacific. The multi-cell convective cluster during
the La Niña case shows bands of large DZ and rain rate,

https://doi.org/10.5194/acp-23-5867-2023 Atmos. Chem. Phys., 23, 5867–5884, 2023
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Table 2. MAE and relative MAE for the prediction of ztop and DZ, over ocean and over land. For DZ, results are shown for predicted ztop
included and not included as input parameter. Relative MAE refers to strategy 2.

Ocean Cb Ci Thin Ci Low-level Mid-level

ztop 0.8 km
4.4 %

1.1 km
6.5 %

0.90 km
5.0 %

0.5 km
18.9 %

0.8 km
8.8 %

DZ 2.9/2.9 km
31 %

2.4/2.5 km
38 %

1.2/1.3 km
32 %

0.5/0.6 km
36 %

1.8/1.9 km
82 %

Land Cb Ci Thin Ci Low-level Mid-level

ztop 0.9 km
5.1 %

1.3 km
7.0 %

1.0 km
5.4 %

0.6 km
21.3 %

0.9 km
21.3 %

DZ 3.2/3.2 km
39 %

2.6/2.8 km
43 %

1.4/1.5 km
37 %

0.7/0.8 km
47 %

2.0/2.1 km
91 %

Table 3. Normalized Matthews correlation coefficient for the prediction of rain rate (no, small, large), certain rain, cloud layer above and
below, over ocean and over land. Two results are compared: the first includes predicted ztop and DZ as input parameters, the second does not.
Instead, we used the hypotheses of no rain from thin Ci and no clouds underneath low-level clouds.

Ocean Cb Ci Thin Ci Low-level Mid-level

Rain rate 0.65/0.64 0.69/0.70 0.55/− 0.62/0.62 0.68/0.67
Certain rain 0.68/0.68 0.67/0.68 0.52/− 0.55/0.57 0.65/0.68
Cloud layer above 0.64/0.67 0.71/0.72 0.68/0.69 0.69/0.71 0.67/0.68
Cloud layer below 0.54/0.55 0.67/0.67 0.65/0.65 0.56/− 0.69/0.67

Land Cb Ci Thin Ci Low-level Mid-level

Rain rate 0.63/0.63 0.65/0.70 0.52/− 0.58/0.59 0.61/0.62
Certain rain 0.66/0.67 0.64/0.70 0.50/− 0.57/0.51 0.64/0.60
Cloud layer above 0.66/0.71 0.74/0.74 0.66/0.70 0.70/0.72 0.67/0.70
Cloud layer below 0.53/0.52 0.65/0.65 0.64/0.64 0.50/− 0.66/0.69

while during the El Niño case, these are more scattered. The
different horizontal structure in precipitating areas over the
tropical band between La Niña and El Niño suggests to de-
rive metrics for convective organization from these data (see
Sect. 2.5). Figure 2 also indicates clouds above and below the
CIRS clouds. We observe clouds below the edges of the cir-
rus anvils and multiple layer clouds in the region of thin cir-
rus bands. The latter are continued as very thin clouds above
low-level clouds. All in all, these horizontal structures ob-
tained from machine learning seem to be coherent, and also
those obtained from IASI, which are very similar to those
from AIRS.

When investigating monthly mean anomalies in the time
series, we have seen a small artificial peak for the rain rate
indicator in March 2014 for the AIRS observations. This
peak was larger for the first model than for the second model.
Therefore we show in the following all results using the sec-
ond model which does not include predicted variables as in-
put for the rain rate classification. At the end of this distur-
bance, most probably evoked by cosmic particles during a so-
lar flare event, the AIRS instrument shut down on 22 March,
as its electronic circuit was affected. The instrument was op-

erational again by the end of March. No obvious failure is
seen in the retrieved cloud variables, but many small areas
with strong rain rate appear during this period.

2.4 UT cloud system reconstruction

The cloud system reconstruction (Protopapadaki et al., 2017)
is based on two independent variables, pcld and εcld, over
grid cells of 0.5◦ latitude× 0.5◦ longitude. This method
is different with respect to other mesoscale cloud system
analyses based on IR brightness temperature alone (e.g.
Machado et al., 1998; Roca et al., 2014). After the fill-
ing of data gaps between adjacent orbits, UT cloud sys-
tems were built from adjacent elements, containing at least
90 % UT clouds (pcld< 440 hPa) of similar cloud height
(within 6 hPa× ln(pcld[hPa]), which corresponds to 27 hPa
for pcld = 100 and to 37 hPa for pcld = 400 hPa). In a next
step, the cloud emissivity was used to distinguish between
convective cores (εcld> 0.98), cirrus anvil (0.98>εcld> 0.5)
and surrounding thin cirrus (0.5>εcld> 0.05). In order to re-
duce the noise in the determination of the number of convec-
tive cores, one searches for grid cells with εcld> 0.98 within
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Figure 2. Horizontal structure for one specific day during a La Niña (left) and El Niño situation (right) at 01:30 and at 21:30 LT of (a) CIRS
scene type (b) cloud top height, (c) cloud vertical extent, (d) rain rate indicator and (e) cloud layers in addition to the identified UT clouds
by CIRS.

regions of εcld> 0.93. The convective core fraction within a
MCS is then the total number of these grid cells divided by
the number of grid cells belonging to the whole system, and
the number of convective cells corresponds to the number of
regions with εcld> 0.93 which include at least one grid cell
with εcld> 0.98. Each of these regions with at least one such
grid cell counts as a convective core. With this definition, the
mesoscale UT cloud system coverage is about 20 % within
the latitude band 30◦ N–30◦ S. MCSs with at least one con-
vective core cover 15 % of this latitude band, while the cov-
erage of all UT clouds (pcld< 440 hPa) is about 35 %.

Figure 3 compares the normalized frequency distributions
of the normalized vertical extent of the convective cores, cir-
rus anvils and surrounding thin cirrus within the MCSs for
the 30 % warmest (SST> 302 K) and coolest (SST< 300 K)
tropical ocean. As expected, this variable is close to 1 for
a convective tower, with a peak of the distribution at 0.8

for convective cores, and decreases with the optical depth
or emissivity of the anvil parts, with a peak of the distri-
bution at 0.2 for the surrounding thin cirrus. While the dis-
tributions of convective cores and thin cirrus are well sep-
arated, the distribution of the cirrus anvils lies in between.
The overlapping between cirrus anvils and convective cores
is however larger over the cooler ocean regions. This indi-
cates that the convective cores in these regions are probably
less well defined by εcld > 0.98 than the ones of the MCSs
in the warmer regions, the latter being more convective (e.g.
Fig. 10 of Stubenrauch et al., 2021). Since we now have the
normalized vertical cloud extent from the machine learning,
we use it to improve the definition of convective cores, by
adding the condition DZ /ztop> 0.6 (cloud filling more than
60 % between the surface and cloud top). All grid cells which
do not fulfill the condition DZ /ztop> 0.6 are then counted
back as cirrus anvil.
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Figure 3. Density distributions of normalized vertical extent
(DZ /Ztop) of MCS convective cores, Ci anvils and surrounding thin
Ci, separately over the 30 % warmest regions (a) and over the 30 %
coolest regions (b) over ocean. Statistics are for 2008–2018.

2.5 Indicators of tropical convective organization

Convective aggregation, which refers to the clustering of
convective cells, occurs at multiple spatial scales in the trop-
ics. Organized convection, leading to MCSs and therefore as-
sociated to extreme precipitation, is a research subject of high
interest, in particular in regard to climate warming. With the
spatial resolution of our data, we are mainly able to consider
the organization of MSCs into large squall lines, hurricanes
or super clusters. This type of organization should be more
influenced by the large-scale environment and circulation.

There are two main factors that play a role in estimating
the degree of organization: the variable used to define con-
vection (Sect. 2.5.1) and the metric used to compute the de-
gree of organization (Sect. 2.5.2).

2.5.1 Definition of convective areas within UT clouds

Studies have used cold IR brightness temperatures (e.g. To-
bin et al., 2012; Bony et al., 2020) as well as precipitation
rate (e.g. Popp and Bony, 2020; Bläckberg and Singh, 2022)
to define convective objects for the determination of convec-
tive organization metrics.

In order to estimate the organization of convection, mea-
sures of convection without missing data are needed. Since
both AIRS and IASI data still show gaps of missing data be-
tween the orbits, we have filled these gaps with the measure-
ments that are nearest in time. First we excluded snapshots
which have a data coverage in the latitudinal band 30◦ N–
30◦ S less than 68 % for AIRS and less than 74 % for IASI
(as the swath is slightly larger for IASI). This ensures com-
plete orbits. As described in Sect. 2.3, gaps between orbits
are then iteratively filled by using the observations closest in
time. In general with four observations per day, we get com-
plete snapshots (coverage larger than 99.5 %).

In general, strong vertical updraft, strong precipitation and
very cold and optically thick cloud tops indicate deep con-
vective towers (e.g. Machado et al., 1998; Liu and Zipser,
2007; Yuan and Houze, 2010). Cold and optically thick cloud

tops can be identified by a threshold in IR brightness tem-
perature, TB, a measurement available by any radiometer
aboard geostationary and polar orbiting satellites over a long
time period. However, as this variable depends on both cloud
height and emissivity (Fig. 2 of Protopapadaki et al., 2017),
for TB> 230 K, very cold semi-transparent cirrus may be
misidentified as lower opaque clouds, leading to uncertain-
ties in the sizes of the convective areas.

Figure 4 compares latent heating (LH) profiles derived
from the precipitation radar measurements of the Tropical
Rain Measurement Mission (TRMM) for the same percentile
statistics, using cold TB, precipitation intensity (given by the
ML-deduced rain rate indicator) and horizontal extent of rain
within each grid cell of 0.5◦ (given by the fraction of any
precipitation deduced by ML). These LH profiles have been
retrieved by the Spectral Latent Heating (SLH) algorithm
(Shige et al., 2009) and are averaged over 0.5◦. The time in-
terval with the AIRS–CIRS data are within 20 min. The same
percentile statistics allows to directly compare the efficiency
of each variable to identify large latent heating, an indica-
tor of deep convection. In all cases, the LH increases with
decreasing TB, increasing rain rate indicator and increasing
horizontal rain coverage per grid cell, showing that both vari-
ables can be used as proxies for deep convection. Moreover,
at fixed percentiles, the ML-derived rain rate indicator as well
as the grid cell rain coverage both lead to a larger LH than TB.
This means that the ML-derived rain rate classification, to-
gether with the CIRS identification of UT clouds, is a slightly
better proxy for regions of large latent heating than TB.

2.5.2 Convective organization indices

It is not easy to define suitable organization metrics. The or-
ganization index Iorg (e.g. Tompkins and Semie, 2017) com-
pares a cumulative distribution of nearest-neighbour distance
(NNCDF) to the one expected by randomly distributed points
in the domain. Iorg lies between 0 and 1, with 0.5 correspond-
ing to randomly distributed objects. Iorg> 0.5 indicates an
organized state. However, Weger et al. (1992), who initially
developed this method to study the distribution of cumulus
clouds, pointed out that the NNCDF is sensitive to the num-
ber of areas and to their size, in particular when the total area
is larger than 5 % to 15 % of the studied domain: in that case,
possible merging of the objects leads to an artificial decrease
of Iorg. When using Iorg, one has therefore to use a proxy for
the definition of convective areas which corresponds to a to-
tal area that only covers a small fraction of the region to be
studied.

Therefore White et al. (2018) developed the convective
organization potential (COP), by assuming that 2D objects
that are larger and closer together are more likely to inter-
act with each other in the horizontal plane. It uses the dis-
tance between the centres of the objects and radii of equal
area circles. Jin et al. (2022) have further developed COP to
the area-based convective organization potential (ABCOP)
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Figure 4. Comparison of latent heating rate profiles from TRMM (Shige et al., 2009) averaged over the same percentile statistics, using the
coldest brightness temperature (TB), the largest rain rate indicator (b) and the largest spatial extension of rain within a grid cell of 0.5◦ (a).
Since the grid cell precipitation coverage saturates at 1, one can only go down to the 10 % largest cover. Statistics of collocated TRMM –
AIRS data in the period 2008–2013.

by using the area rather than the radius and by changing the
distances between centres to distances between outer bound-
aries. Furthermore, the interaction potentials are computed
for only one pair per aggregate and summed up instead of
averaged over all pairs. ABCOP is however very sensitive to
the total area of the objects (Sect. 3.3).

The Radar Organization MEtric (ROME) developed by
Retsch et al. (2020) considers the average size, proximity
and size distribution of the convective objects in a domain
and is similar to COP, but like ABCOP, it employs the dis-
tance between the outer boundaries. ROME defines interac-
tions between pairs by assigning a weight to each pair that
decreases with the distance and increases essentially with the
area of the larger object, adding a contribution of the smaller
area, depending on the separation distance. It is given in units
of km2 and lies between the mean area of the objects and
twice their mean area. Hence ROME is very sensitive to the
mean areas of the objects (Sect. 3.3).

3 Results

As application examples, we highlight results from analy-
ses using this long-term 3D dataset. We particularly con-
centrate our interest on the ML-derived rain rate indicator.
Section 3.1 shows the coherence of this newly derived vari-
able. The cloud system approach enables us to study the be-
haviour of the MCSs with respect to their life cycle stage
and convective depth. This process-oriented analysis pre-
sented in Sect. 3.2 can be used to evaluate parameterizations
in climate models (Stubenrauch et al., 2019). In Sect. 3.3,
we show results concerning mesoscale convective organiza-
tion. Mesoscale convective organization has been identified
by larger and higher systems, which also live longer than un-
organized systems (e.g. Rossow and Pearl, 2007; Takahashi

et al., 2021), and they also lead to increases in tropical rain-
fall (e.g. Tan et al., 2015). We first compare convective orga-
nization indices derived from objects defined by strong rain
and by cold cloud temperature and then investigate changes
in geographical patterns of radiative heating with respect to
one of these indices (Iorg).

3.1 Coherence of ML-derived rain intensity classification

First we test the coherence between the ML-derived rain rate
classification and the collocated TRMM LH profiles already
presented in Sect. 2.5.1. Figure 5 compares the LH profiles
averaged over all UT clouds and over all mid- and low-level
clouds and separately over those with no rain, light rain and
heavy rain according to the rain rate classification described
in Sect. 2.3. Indeed, when the rain rate classification indi-
cates no rain, the latent heating from TRMM is very small.
The latent heating is on average about 10 (5) times larger for
grid cells which include heavy precipitation than the tropical
average for UT clouds (mid- and low-level clouds). While la-
tent heating profiles have a peak between 400 and 500 hPa for
heavily precipitating UT clouds, the peak lies around 850 hPa
for strongly precipitating mid- and low-level clouds. This in-
dicates that the ML-derived rain rate classification seems to
be coherent for UT clouds as well as for lower clouds, though
the noise for the latter may be larger.

Figure 6 compares normalized frequency distributions of
εcld, ztop, cloud fuzziness and normalized vertical extent
of non-precipitating, lightly and heavily precipitating UT
clouds. From these figures, we clearly deduce that heavily
precipitating UT clouds in the tropics have an emissivity
close to 1, are in general higher, have a much less fuzzy cloud
top and a much larger vertical extent than non-precipitating
UT clouds. These results are coherent with expectations and

https://doi.org/10.5194/acp-23-5867-2023 Atmos. Chem. Phys., 23, 5867–5884, 2023



5876 C. J. Stubenrauch et al.: Convective organization and 3D structure of tropical cloud systems

Figure 5. Latent heating profiles derived from TRMM averaged over UT clouds (a) and over mid- and low-level clouds (b) identified by
AIRS. In addition means over non-precipitating, lightly precipitating and heavily precipitating clouds are shown. These precipitation condi-
tions are given by the rain rate indicator classification derived from ML models applied to AIRS–ERA-Interim and trained with CloudSat.
Statistics of collocated TRMM–AIRS in the period 2008–2013.

again confirm the quality of the rain rate classification de-
rived by our machine learning procedure.

3.2 Process-oriented behaviour of mesoscale
convective systems

The cloud system concept described in Sect. 2.4 permits us to
link the convective core and anvil properties: the fraction of
the convective core area within a cloud system indicates the
life cycle stage (e.g. Machado et al., 1998), with a large frac-
tion indicating the developing stage and a decreasing fraction
during dissipation. Once the systems have reached maturity,
the minimum temperature within a convective core is a proxy
for the convective depth.

According to Takahashi et al. (2021), using a convection-
tracking analysis on data from Intergrated Multisatellite
Retrievals for GPM (IMERG), the fraction of precipitat-
ing cores (adjacent grid cells with a rain rate > 5 mm h−1)
within precipitation systems (adjacent grid cells with rain
rate > 0.5 mm h−1) first increases and then decreases during
the evolution of these systems. The maximum of the strong
rain area relative to the whole precipitating area as well as
the maximum and average intensity of the precipitation in-
crease with the lifetime of the systems. This behaviour was
also found by Roca et al. (2017).

Our data do not provide the absolute system lifetime, but
the convective core fraction within a system indicates the
maturity stage in a normalized life cycle. Figure 7 presents
the statistical evolution during the life cycle of (a) the pre-
cipitating area relative to the whole MCS area and (b) the
strong rain area relative to the precipitating area, for single
core MCSs. As the rain rate classification was obtained per
CIRS footprint, a grid cell of 0.5◦× 0.5◦ can be declared as
precipitating by using different thresholds on the fraction of
footprints with rain rate > 0 mm h−1. The same applies for
grid cells including strong rain. Results using three different

thresholds to define the precipitating and strongly precipitat-
ing areas are compared. For all thresholds, the precipitating
area is very large in the beginning of the life cycle, when the
anvil is just developing and then decreases, while the fraction
of strong rain stays constant until the anvil reaches 40 % of
the system size and only then decreases. With our coarse spa-
tial resolution we did not see the increase in strong rain after
the developing stage, which has been observed by Fiolleau
and Roca (2013) and Takahashi et al. (2021), using data with
better time and space resolution. This means that we miss
the very first development of the convective tower itself, as
can also be seen in Fig. 7c, which presents the evolution of
the convective core size and the convective core top height.
The latter varies much less than the convective core size, with
an average of already 12.8 km for a convective core fraction
close to 1. So due to the coarse spatial resolution and consid-
ering only high-level clouds, we start to identify the systems
when they are already near to their maximum height, which
is attained just before the decrease of the heavy rain portion.

The core size increases rapidly and then stays stable until
dissipation of the system. We identify MCS maturity by a
core fraction between 0.2 and 0.4, because by then the core
size has attained its maximum.

Once the convective systems are mature, we can study
their properties with respect to their convective depth: Fig. 8
presents, as a function of the minimum temperature within
the convective cores, (a) the strong rain area relative to the
precipitating area (again considering three thresholds); (b)
the volume of the thick anvil (εcld> 0.5) relative to the vol-
ume of the convective core, which is a proxy for detrain-
ment, and the emissivity of the thick anvil; and (c) the size
of the surrounding thin cirrus relative to the total anvil size
as well as the 50 % warmest surface temperature underneath
the MCSs. We deduce that deeper convection clearly leads
to (1) larger areas of heavy rain within the precipitating ar-
eas, in agreement with earlier studies; (2) a larger volume

Atmos. Chem. Phys., 23, 5867–5884, 2023 https://doi.org/10.5194/acp-23-5867-2023



C. J. Stubenrauch et al.: Convective organization and 3D structure of tropical cloud systems 5877

Figure 6. Density distributions of (a) cloud emissivity, (b) cloud top height, (c) cloud fuzziness and (d) normalized cloud vertical extent, for
non-precipitating, lightly precipitating and heavily precipitating UT clouds. Statistics are for 2008–2015 at 01:30.

Figure 7. MCS properties as a function of their life cycle stage, given by fraction of convective core area within the system (1 corresponds
to developing phase with no anvil and 0.1 to dissipating stage). Only cloud systems with a single convective core are considered: (a) ratio of
precipitating area over MCS size, (b) ratio of strong rain area over precipitating area and (c) size and top height of the convective cores. For
(a) and (b), different thresholds on the rain fraction per grid cell are compared. The condition on strong rain also includes the condition that
at least 50 % of the grid cells are covered by any rain. Statistics combine observations at 01:30 and 13:30, for 2008–2018.

detrainment but with a slightly smaller emissivity; and (3)
more surrounding thin cirrus. From Fig. 8 we also conclude
that deeper convection occurs in general in the warmer re-
gions of the tropics, as expected.

3.3 Tropical convective organization

In this section we demonstrate the usefulness of this new
dataset by analyzing the convective organization in the trop-
ics. We compare results using various metrics of convective
organization and proxies to define convective objects, as de-
scribed in Sect. 2.5. A spatial resolution of 0.5◦ relates to an
organization of MSCs at a scale which is more linked to the
large-scale environment and circulation. We first consider the
annual cycle of convective organization and then highlight an
application on interannual variability.

Figure 9 presents the annual cycle of (a) Iorg, (b) ROME,
(c) COP, (d) total area and (e) mean area of the convective ob-
jects and (f) their number. We also investigate different vari-
ables to define these objects, in particular precipitation inten-
sity (given by ML-derived rain rate indicator) of UT clouds
(pcld< 350 hPa) and cold cloud temperature (Tcld< 230 K)
of opaque clouds (εcld> 0.95). The latter definition is similar
to TB< 230 K but without any contamination of colder, thin-
ner Ci. Since ROME is strongly related to the size of the con-

vective objects, we have also computed the annual anomalies
of the three indices by using only 2 % of the largest precipita-
tion intensities for constructing the convective objects. This
corresponds to comparing the indices for a constant total area
of convection. A similar approach was undertaken in a study
by Bläckberg and Singh (2022), using the precipitation in-
tensity and ROME as proxies for convection and convective
organization, respectively.

All three indices reveal a clear annual cycle of convective
organization, with a minimum in April and November and
a maximum in July and August and in January and Febru-
ary, though with differences in magnitude and width of the
oscillations due to the choice of proxy for convective area.
While the amplitude of the annual cycle is the smallest for
Iorg (0.04), the seasonal anomalies of COP are the less sen-
sitive and those of ROME the most sensitive to the choice of
proxy. The latter look very similar to those of the mean area
of the convective objects (with a correlation coefficient larger
than 0.9). Thus the seasonal anomalies of ROME primarily
reflect the ones of the mean areas of the convective objects.
We also observe in Fig. 9e that the minima and maxima in the
annual cycle of the mean area of objects with intensive rain
are shifted compared to those with cold opaque cloud. When
using a fixed total area of intense precipitation, the magnitude
of the seasonal anomalies is much smaller and the shift in be-
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Figure 8. Mature MCS system properties as a function of their convective depth, given by decreasing minimum temperature within the
convective cores: (a) ratio of strong rain area over precipitating area, (b) volume detrainment and thick anvil emissivity and (c) 50 % warmest
surface temperature underneath the MCSs and ratio of thin cirrus over total anvil area. For (a), different thresholds on the fraction of strong
rain per grid cell are compared, and at least 50 % of the grid cells are covered by any rain. Statistics combine observations at 01:30 and 13:30,
for 2008–2018.

Figure 9. Annual cycle of (a) Iorg, (b) ROME, (c) COP, (d) total area of convective objects, (e) mean convective area and (f) number
of convective areas. These areas are built from grid cells covered by at least 90 % UT clouds, with rain rate indicator> 2 (dark blue),
Tcld< 230 K and εcld> 0.95 (red), or using the 2 % largest rain rate indicator values (cyan). The latter leads to a constant total area of
convection. Monthly statistics of UT clouds averaged over four observation times from 2008–2018.

haviour compared to using the proxy of cold opaque clouds
disappears.

The annual cycle of the total area of convective objects can
be reconstructed by the one of the mean area times the one of
the number of the convective objects (Fig. 9d–f): the relative
flatness of the seasonal cycle of the total area of cold cloud
objects can be explained by a nearly opposite seasonal cycle
in their mean size and number, whereas for intense precip-
itation their cycles are in phase which then leads to a pro-
nounced cycle in their total area.

The absolute values of the convective organization in-
dices, presented in Fig. S3 of the Supplement, depend more
strongly on the proxy used to define the convective objects:
the absolute maximum of COP is the same for all proxies
during boreal summer, while for other seasons, COP, like
Iorg, is larger when considering precipitation intensity. While
ROME primarily reflects the mean area, ABCOP reflects the
total area of the convective objects (both with a correlation
coefficient larger than 0.8). Whereas the mean area of the

convective objects is clearly an indication of mesoscale con-
vective organization, the total area may not be directly linked
to convective organization, only perhaps if one considers lo-
cal regions. Iorg, only considering the distance between con-
vective objects, seems to add another aspect. Iorg indicates
a more organized convection when precipitation intensity is
used instead of cold cloud temperature to identify the con-
vective objects, though the total area of intense precipitation
areas is smaller than the one of the cold cloud objects. The
difference in the absolute peak values of the Iorg and COP
anomalies between boreal summer and boreal winter may
be explained by regional shifts in intense precipitation oc-
currence, as shown in Fig. S4 and in agreement with earlier
results (e.g. Berry and Reeder, 2014).

Figure 10 presents the annual cycle of MCS properties dis-
cussed in the earlier sections: the core height of the MCSs,
the anvil horizontal detrainment estimated by the ratio of
anvil over convective core size and the vertical extent of the
anvil (Fig. S5) are in phase with the annual cycle of Iorg and
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COP. This shows that in seasons with larger tropical con-
vective organization, the MCSs have in general higher cloud
tops and larger anvils. The fraction of single-core MCSs and
the ratio of thin cirrus over total anvil size are in opposite
phase. The first confirms that convective organization corre-
sponds to multi-core MCSs. The latter may not be directly
expected as we have seen that this ratio increases with the
height of the MCSs (convective depth). On second thought,
it may be explained by the fact that clustering of convective
systems leaves less space for the thin cirrus between them. It
is interesting to note that the annual cycle of the relative sub-
sidence area (clear sky and low-level clouds) is also in phase
with the one of Iorg and COP. This means that larger heating
of the upper and middle tropospheric heating by more orga-
nized MCSs leads to more cooling of the lower troposphere
in the subsidence regions, which has recently been found by
Stubenrauch et al. (2021).

Changes in gradients of tropospheric radiative heating re-
late to changes in atmospheric circulation. We link interan-
nual anomalies of the 3D radiative heating rate (HR) fields of
Stubenrauch et al. (2021) to those of Iorg over the period from
2008 to 2018. In order to remove the seasonal dependency,
we computed the 121 12-month running mean anomalies for
these variables. The geographical distribution of changes in
radiative heating with respect to convective organization are
presented in Fig. 11, separately for the upper, middle and low
troposphere and for the two proxies to define convective ob-
jects. These geographical maps have been obtained by linear
regression per grid cell of the 121 pairs of heating rate and
Iorg anomaly (see examples in Fig. S6 in the Supplement).

The geographical patterns and magnitudes in HR change
with respect to change in Iorg are similar for both proxies but
with slightly larger derivatives for strong precipitation areas.
This may be expected as intense precipitation should be a
more direct proxy for convection than cold cloud top. In gen-
eral the derivatives are large because interannual changes in
Iorg are very small, as shown in Fig. 12. In the upper tropo-
sphere, we observe increased heating north and south of the
Equator in the Central Pacific and a decrease over the Warm
Pool, while in the middle and low troposphere there is an in-
crease in heating around the Equator over the whole Pacific
and Indian Ocean and a decrease in heating over the Warm
Pool and in the Atlantic. The HR pattern changes in the con-
vective regions are induced by relative changes of thin cirrus,
cirrus and high opaque clouds, which are similar but not iden-
tical to the ones related to the El Niño–Southern Oscillation
(ENSO) during this period (Fig. S7), with increasing convec-
tion close to the Equator and increasing cirrus and thin cir-
rus around the Equator. Indeed, the correlation between Iorg
and the oceanic Niño index (ONI) is positive (with correla-
tion coefficients of 0.7 and 0.3 for cold cloud temperature
and precipitation intensity as a proxy, respectively). In the
stratocumulus regions off the western coasts of the Ameri-
cas and of Australia there seems to be less cooling in the low
troposphere, probably due to a recent reduction in low-level

clouds, in particular in the NE Pacific, which was found in
coincidence with a shift in the phase of the Pacific Decadal
Oscillation (Loeb et al., 2018, 2020; Sun et al., 2022). The
similarity between the maps obtained with the two selections
validates once again the reliability of the rain rate indicator
obtained with ML. The slightly stronger patterns lead to the
conclusion that strong precipitation is a slightly better proxy
to define convective areas than cold temperature.

Whereas the geographical patterns of the derivatives of
heating/cooling with respect to Iorg show a coherent picture,
we did not find any correlation between the very small inter-
annual anomalies of Iorg (shown in Fig. 12) and the ones of
the tropical means of different variables like surface temper-
ature, thin cirrus area and subsidence area. The correlations
depend on the proxies for the definition of the convective ar-
eas and in particular on the metrics for convective organi-
zation. Already the time series of the interannual anomalies
of the different indices have a different behaviour as can be
seen in Fig. S8 in the Supplement. We have also investigated
tighter thresholds on the variables which define deep con-
vection (like rain rate indicator> 2.5 or Tcld< 210 K); how-
ever we are left with only about 0.5 % total area, which in-
creases the noise level. In addition, we found that the results
also change when we exclude objects with the size of only
one grid cell (not shown), as already pointed out by Jin et
al. (2022). Therefore we do not consider it meaningful to use
the discussed convective organization indices for an estima-
tion of tropical mean changes with respect to changes in con-
vective organization.

While we have seen that the convective organization in-
dices vary much more seasonally than interannually, Fig. 13
suggests that the difference of the density distributions of
convective core height and strong rain area within the MCSs
between April and July or between cool years (2008/2011)
and warm years (2015/2016) is of the same order, with a shift
towards higher core height and a longer tail in strong rain
area. However, the size distributions of the MCSs are simi-
lar. The tail in the mean area of strong precipitation within
the MCSs is clearly larger in the case of warmer years. This
indicates that a shift in tropical surface temperature changes
only a small part of the MCSs, with more extreme values.
Such behaviour cannot be identified using a convective orga-
nization index computed over the whole tropics.

4 Conclusions and outlook

We have presented a methodology to extend spatially and
temporally information on the cloud vertical structure and
precipitation derived from active lidar and radar measure-
ments of CALIPSO and CloudSat missions. This new ap-
proach made use of CIRS data obtained from advanced IR
sounder measurements of AIRS and IASI combined with
ERA-Interim reanalyses and machine learning technologies
using ANN. The resulting 3D dataset of UT cloud sys-

https://doi.org/10.5194/acp-23-5867-2023 Atmos. Chem. Phys., 23, 5867–5884, 2023



5880 C. J. Stubenrauch et al.: Convective organization and 3D structure of tropical cloud systems

Figure 10. Right: annual cycle of (a) MCS core top height (blue), horizontal detrainment (green) and fraction of subsidence area (given by
clear sky and low-level clouds) over the tropics (red), and (b) ratio of thin cirrus over total anvil size (blue) and fraction of single core MCSs
(green). Monthly statistics averaged over four observation times from 2008–2018.

Figure 11. Change in radiative heating rates with respect to deseasonalized Iorg computed from convective areas defined by grid cells with
rain indicator > 2 and by grid cells with Tcld< 230 K and εcld> 0.95 . The troposphere is divided into three layers: (a, b) upper troposphere
(100–200 hPa), (c, d) mid-troposphere (200–600 hPa) and (e, f) low troposphere (600–900 hPa). Monthly statistics from 2008–2018.

Figure 12. Time series of deseasonalized monthly anomalies of
Iorg, using different proxies to define the convective areas. The de-
seasonalization was done by computing 12-month running means.
The monthly anomalies are shown in light grey.

tems, covering 2008–2018, together with a similarly pro-
duced dataset of radiative heating rates (Stubenrauch et al.,
2021), can be used to improve our understanding of the rela-
tionship between tropical convection and resulting anvils and
how they are impacted by and feed back to climate change.

Though the uncertainties in the predicted variables and
classifications are relatively large (with an accuracy of about
65 % to 70 % for the rain intensity classification), this new
dataset allows to study their horizontal structures on specific
snapshots in time. For a complete instantaneous coverage,
necessary to compute indices of tropical convective organi-

zation, the gaps between the orbits have been filled iteratively
with the four observations per day of AIRS and IASI data,
starting with those closest in time (already leading to 90 %
coverage). We have demonstrated that the newly developed
precipitation intensity classification is slightly more efficient
to detect large latent heating and therefore deep convection
compared to the cold cloud temperature.

The cloud system approach developed by Protopapadaki
et al. (2017) has been slightly modified, and the normalized
vertical extent obtained from the ML approach has been em-
ployed to slightly improve the identification of the convec-
tive cores, in particular in the cooler tropical regions. The
cloud system concept allows a process-oriented evaluation
of parameterizations in climate models. In agreement with
earlier studies (e.g. Schumacher and Houze, 2003; Roca et
al., 2014; Takahashi et al., 2021), we found that deeper con-
vection leads to larger areas of heavy rain. These results also
confirm the quality of the ML-derived precipitation rate clas-
sification. With increasing convective depth, mature MCSs
also show an increase in volume detrainment, while the anvil
emissivity slightly decreases.

Moreover we have shown the usefulness of our new
dataset by investigating convective organization metrics. By
comparing different organization indices (Iorg, COP, ABCOP
and ROME) and proxies to define convective objects, we
have shown that the indices indicate a similar annual cycle of
convective organization. However, ABCOP and ROME are
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Figure 13. Density distributions of MCS system properties, comparing April and July (a, b, c) and cooler and warmer years (d, e, f): height
of convective cores (a, d), size of areas with strong precipitation (b, e) and system size (c, f). Statistics combine observations at 01:30 and
13:30, for 2008–2018, for MCSs with core fraction > 0.1.

strongly correlated to the total and mean area of the objects,
respectively. While the mean area of the objects is certainly
an indication of convective organization, their total area at
tropical scale seems to be less linked to organization. The
index Iorg, which only considers the distance between con-
vective objects, seems to add another information. The core
height of the MCSs and their anvil detrainment are in phase
with the annual cycle of Iorg and COP, as well as the relative
subsidence area. This also shows a link between the MCSs
and subsidence areas. It is interesting to note that the annual
cycles of the total area of cold cloud objects and of intense
precipitation objects are very different. This can be related to
a nearly opposite cycle in their mean size and number for the
first and to a cycle in phase for the latter.

Changes in gradients of tropospheric radiative heating re-
late to changes in atmospheric circulation. The geographi-
cal patterns and magnitudes in radiative heating rate changes
with respect to Iorg are similar for both proxies but slightly
larger for strong precipitation areas. This may be expected
as intense precipitation should be a more direct proxy for
convection than cold cloud top. Furthermore, the HR pattern
changes are similar to the ones related to ENSO during this
period.

However, the time series of the interannual anomalies of
convective organization strongly depend on the convective
organization metrics, and correlations between these anoma-
lies and those of tropical means of different atmospheric vari-
ables do not show consistent results. The tail of the distribu-

tion of strong rain areas seems to be more related to warmer
tropics than the indices themselves. Therefore one has to be
careful using only one of these organization indices and prox-
ies to study climate change. More detailed studies are neces-
sary to show the behaviour of these indices with spatial res-
olution and domain size.

This database of UT cloud systems, their vertical structure
and precipitation areas is being constructed within the frame-
work of the GEWEX (Global Energy and Water Exchanges)
Process Evaluation Study on Upper Tropospheric Clouds
and Convection (GEWEX UTCC PROES) to advance our
knowledge on the climate feedbacks of UT clouds. It will be
made available within this year via https://gewex-utcc-proes.
aeris-data.fr/. For the future it will also be interesting to use
this dataset for the study of cold pools, using data of Garg et
al. (2020).

In order to continue this dataset beyond 2018, we are now
preparing a new version of CIRS data, using ERA5 (Hers-
bach et al., 2020) instead of ERA-Interim ancillary data, and
newly calibrated AIRS L1C radiances (Manning et al., 2019)
as input.

Code and data availability. All satellite L2 data used are pub-
licly available and have been downloaded from their offi-
cial websites. CIRS L2 data are distributed at https://cirs.
aeris-data.fr (last access: 10 February 2022, CIRS, 2022, Stuben-
rauch et al., 2017). The TRMM latent heating rates corre-
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spond to Tropical Rainfall Measuring Mission (TRMM) (2018),
GPM PR on TRMM Spectral Latent Heating Profiles L3
1 Day 0.5× 0.5◦ V06, Greenbelt, MD, Goddard Earth Sci-
ences Data and Information Services Center (GES DISC),
https://doi.org/10.5067/GPM/PR/TRMM/SLH/3A-DAY/06 (Shige
et al., 2009). Monthly indices of the oceanic Niño index (ONI) were
obtained from NOAA (https://origin.cpc.ncep.noaa.gov/products/
analysis_monitoring/ensostuff/detrend.nino34.ascii.txt, last access:
22 August 2022, NOAA-ONI, 2020, Huang et al., 2017). The ERA-
Interim reanalysis dataset was downloaded from the Copernicus
Climate Data Store. The CloudSat-lidar data have been provided
by the AERIS ICARE data and services center (https://www.icare.
univ-lille.fr/, last access: July 2019, Dee et al., 2011).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/acp-23-5867-2023-supplement.
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