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Abstract. We have created a performance-based assessment of CMIP6 models for Europe that can be used to
inform the sub-selection of models for this region. Our assessment covers criteria indicative of the ability of
individual models to capture a range of large-scale processes that are important for the representation of present-
day European climate. We use this study to provide examples of how this performance-based assessment may
be applied to a multi-model ensemble of CMIP6 models to (a) filter the ensemble for performance against these
climatological and processed-based criteria and (b) create a smaller subset of models based on performance that
also maintains model diversity and the filtered projection range as far as possible.

Filtering by excluding the least-realistic models leads to higher-sensitivity models remaining in the ensemble
as an emergent consequence of the assessment. This results in both the 25th percentile and the median of the
projected temperature range being shifted towards greater warming for the filtered set of models. We also weight
the unfiltered ensemble against global trends. In contrast, this shifts the distribution towards less warming. This
highlights a tension for regional model selection in terms of selection based on regional climate processes versus
the global mean warming trend.
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1 Applications and motivations for regional
sub-selection

Global climate models (GCMs) represent one of the key
datasets for exploring potential future climate impact, vulner-
abilities and risks. However, not all GCMs are equally skilful
in capturing the climate processes that drive climate variabil-
ity and change, particularly at regional scales (Eyring et al.,
2019). There is a growing interest, therefore, in assessing
models and selecting them for their suitability if they are to
be used to underpin or inform decision making. Such assess-
ments are time consuming, often pulling on diverse strands
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of evidence across the important physical and dynamical pro-
cesses, which will vary according to region, application and
variable of interest. This assessment information is also not
commonly available to the broader public making or using
climate projection information. In this study, we illustrate
how such an assessment can be made of the Coupled Model
Intercomparison Project 6 (CMIP6) generation models for
projections in European regions. This provides an assessment
of how well these current models are able to capture the im-
portant regional processes over Europe. This information can
be used either by those focusing on particular processes or as
a combined assessment to identify which subset of models
may be more able to capture the relevant drivers of European
climate change.

Historically, the climate-modelling community has been
cautious about weighting or eliminating poorly performing
members due to the difficulties of linking performance over
the historical period with future projection plausibility, de-
faulting to a “one model, one vote” approach (e.g. Knutti,
2010; IPCC, 2007, 2013). Whetton et al. (2007) evaluate the
link between model performance in the historical period and
model performance for future projections by investigating
the model similarity in terms of patterns of the current cli-
mate and the inter-model similarity in terms of regional pat-
terns in response to CO2 forcing. They find that similarity
in current regional climate patterns of temperature, precipi-
tation and mean sea level pressure (MSLP) from GCMs is
related to similarity in the patterns of change of these vari-
ables in the models.

In addition, while global temperature biases in the histor-
ical record are not correlated with future projected warming
(e.g. Flato et al., 2013), this is not the case regionally for Eu-
rope, where biases in the summer temperatures have been
found to be important for constraining future projections
(Selten et al., 2020). In addition, projections of the Arctic
sea ice extent have also been linked to historical temperature
biases (Knutti et al., 2017). An increasing body of literature
does link shortcomings in the ability of a model to realisti-
cally represent an observed baseline to being an indicator that
the model’s future projections are less reliable (e.g. Whetton
et al., 2007; Overland et al., 2011; Lutz et al., 2016; Jin et al.,
2020; Chen et al., 2022; Ruane and McDermid, 2017). Re-
gional model sub-selection is guided by a range of choices,
and there is always an element of subjectivity in terms of how
the criteria are determined. For example, if a model performs
well for a particular target variable but then performs poorly
for another season, variable or location, this indicates that the
regional climate processes are suspect (Whetton et al., 2007;
Overland et al., 2011).

To assess the model performance in terms of the regional
climate processes, we firstly identify the key drivers of the
European climate as our criteria. We then use these to as-
sess the performance of the CMIP6 models across a range
of variables. The approach that we take is one of elimination
rather than of selection, and we do not recommend any in-

dividual model. Rather, in our examples of our approach to
sub-selection, we examine the impact on the projection range
resulting from the elimination of the models that perform rel-
atively poorly in terms of these key criteria.

While there are strong arguments for filtering the ensem-
bles for regional applications, the practical implementation
requires us to navigate several challenges, such as how to
select appropriate criteria, where the appropriate thresholds
should lie for acceptable vs. unacceptable models and how
to deal with models that perform well against some criteria
but poorly against others. This inevitably introduces a degree
of subjectivity in both the selection of the qualifying cri-
teria and the decision regarding the appropriate thresholds.
For example, assessments of future changes in wintertime
extreme rainfall in northern Europe are likely to emphasise
the ability of simulations to capture the observed storm track
position, whereas those assessments looking at summertime
heat waves in central Europe may place more emphasis on
the ability of models to adequately represent summer block-
ing and land–atmosphere interaction processes. Advances in
model development have led to significant improvements in
the realism of regional processes, with incremental improve-
ments in a number of long-standing biases and key processes
(Bock et al., 2020).

Assessments and sub-selections of GCMs for regional ap-
plications have been implemented for CMIP6 using metric-
based approaches (e.g. Zhang et al., 2022; Shiogama et al.,
2021). These studies aim to score or rank models for a par-
ticular region (Shiogama et al., 2021) or for a range of re-
gions based on a number of metrics (Zhang et al., 2022).
Other regional approaches may weight GCMs based on re-
gional performance against a range of metrics (e.g. Brunner
et al., 2019). However, weighting models regionally based on
a range of metrics may produce mixed results and may not al-
ways improve the ensemble mean bias. Assessments that are
based on process-based analysis and that emphasise region-
specific processes may produce better results (Bukovsky et
al., 2019). The Inter-Sectoral Impact Model Intercomparison
Project (ISIMIP) aims to collate climate impact data that are
consistent for both global and regional scales and across dif-
ferent sectors (Rosenzweig et al., 2017; Lange and Büchner,
2021). These studies use a limited number of GCMs (from
CMIP5 and CMIP6) that are largely selected based on the
availability of daily data for the required variables (Hempel
et al., 2013). There have been concerns, however, that the
four GCMs used from CMIP5 in ISIMIP2b may be unable
represent the full range of uncertainty for future climate pro-
jections, especially for precipitation (McSweeney and Jones,
2016; Ito et al., 2020).

In this paper, we illustrate how current climate models can
be assessed in terms of their ability to capture a broad range
of large-scale climate processes that are important for the Eu-
ropean climate in the recent historical period. The rationale
for doing so is that models which do not adequately represent
processes known to be important in the historical period for
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Europe will not provide useful projections of future changes
in these processes.

A processed-based assessment such as this has several use-
ful potential applications, which are outlined as follows.

1. More robust European climate projections. By exclud-
ing models with the least-realistic representation of re-
gional climate drivers, we ensure that European pro-
jections are based only on those which can adequately
capture present-day processes. These remaining mod-
els are better candidates for understanding downstream
impacts, both because their model biases are likely to be
reduced compared to models that are unable to represent
key features of the climate in the historical period and
because we can have more confidence that they can cap-
ture the regional processes relevant to future changes.

2. As an assessment of whether process-based evaluation
has an impact on the range of expected future changes.
Such an assessment provides an opportunity to explore
whether there may be any relationship between the qual-
ity of regional process representation and the range of
changes projected from these models.

3. As an aid to further model development. The identifi-
cation of where individual climate models have prob-
lems with particular regional climate processes can be
used to inform the type of model processes where fur-
ther model development would be beneficial, both for
individual models and for GCMs in general.

4. The definition of a reduced set of more reliable climate
projections to inform subsequent sub-selections. Several
approaches make use of small(er) subsets of simulations
for computational or practical reasons or to simplify
climate projection information. A performance-filtered
subset ensemble represents an important starting point
for such a selection, and there are different approaches
that may be used; these are outlined as follows.

a. Sub-selection matrix. Sub-selection is often used
to identify a simpler set of data that retains the
characteristics of the underlying range of projected
changes. This might be motivated either by compu-
tation (or other practical) limitations on the number
of models and/or by the climate realisations that can
be used in a particular application. In the case of
sub-selecting a GCM matrix for downscaling, re-
gional climate models (RCMs) will inherit errors
from GCM boundary conditions. Therefore, the se-
lection of models based on their ability to repro-
duce regional boundary conditions, such as features
of large-scale circulation, is desirable (Bukovsky et
al., 2019). Alternatively, it might be motivated by
the desire to reduce the complexity by sub-selecting
from the multi-model ensemble to still represent
the underlying distribution as far as possible. Here,

there is a need to balance criteria in terms of cred-
ibility with other criteria to ensure that the subset
can capture the broader range of potential changes
and that it consists of as many independent models
as possible.

b. Selecting individual realisations for use as climate
narratives. Individual realisations are often used to
exemplify responses in certain parts of potential
climate projection space – for example, selecting
realisations to represent what central estimates or
worst-case estimates of future changes might look
like. Alternatively, there is the selection of realisa-
tions that can be used to illustrate changes by par-
ticular drivers (e.g. the impact of strong changes
in the North Atlantic Oscillation – NAO; van den
Hurk et al., 2014) or dynamical drivers of regional
changes (e.g. Shepherd, 2019, 2014; Zappa and
Shepherd, 2017). Pre-filtered ensembles based on
regional performance metrics help identify more
credible realisations that could be used as climate
narratives.

Here, we demonstrate performance filtering for CMIP6
models against a broad range of climate process-based cri-
teria relevant to Europe. This filtered subset can be used as a
starting point by others to inform a selection of climate sim-
ulations appropriate for their own applications. This could be
used by either drawing on individual assessment criteria or,
as we go on to show here, the outcome of filtering for the
full set of assessment criteria. In this paper, we illustrate the
implication of this filtering for the range of expected changes
over Europe (point 2 above) and work through an example of
how this could be used in conjunction with model diversity
criteria to identify a smaller subset of realisations suitable for
driving downstream impacts relevant modelling.

The selection of GCMs for a particular region is an oppor-
tunity to exclude models that are considered to be inadequate
in terms of their ability to represent key drivers of the re-
gional climate. This has been attempted in a number of stud-
ies (McSweeney et al., 2015; Lutz et al., 2016; Prein et al.,
2019; Ruane and McDermid, 2017), but it is still a challenge
in terms of how to identify which models are inadequate and
how the decision to eliminate these models should be made,
particularly if their removal results in a significantly reduced
projection range. Where the removal of a model that is not
considered to be able to give meaningful or useful informa-
tion about the present or future climate reduces the range of
projections, this needs to be carefully justified. In addition to
classifying models as either adequate or inadequate, we look
to classify models in a more informative way and to provide
further information about how each of the CMIP6 models
may perform in terms of key processes that influence the cli-
mate in the main European regions. The assessment is bro-
ken down into a number of different criteria that are scored
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individually, providing information regarding how individual
models perform for each of these.

We build on the approach developed in McSweeney et al.
(2015, 2018) previously applied to CMIP5. In McSweeney
et al. (2015, 2018), CMIP5 models were assessed in terms of
a range of regional criteria, including the circulation clima-
tology, distribution of the daily storm track position and the
annual cycle of local precipitation and temperature in Euro-
pean sub-regions. These characteristics were assessed using
a qualitative framework for flagging poorly performing mod-
els as implausible, significantly biased or biased. This perfor-
mance information was subsequently used together with in-
formation about projection spread (McSweeney et al., 2015)
or model inter-dependencies (McSweeney et al., 2018) to ar-
rive at subsets of the required size.

Many of the individual models and higher-resolution
model versions in CMIP6 show significant improvements in
terms of common model biases compared to CMIP5 (Bock
et al., 2020). There are also a number of assessments in the
literature that show an improvement in many of the processes
that are key drivers of the climate for Europe, e.g. storm
tracks (Priestley et al., 2020, 2023), blocking frequency
(Davini and d’Andrea, 2020) and North Atlantic (NA) sub-
polar gyre (SPG) sea surface temperature (SST) (Borchert
et al., 2021b). We draw on these analyses already in the litera-
ture to assess these large-scale processes for the European re-
gion along with the assessment of features such as large-scale
circulation patterns, precipitation annual cycle and surface
temperature biases using the method of McSweeney et al.
(2015). Additionally, we look to classify models in a more in-
formative way than simply keeping or rejecting them for sub-
selection in order to provide further information about how
said models may perform in terms of key processes that influ-
ence the climate in a particular European region. Finally, we
note that our assessment is based solely on process-based cri-
teria and does not use any regional or global warming trends,
which separates it from many recent global assessments of
CMIP6 (Tokarska et al., 2020; Brunner et al., 2020b).

In the following section, we describe each of the criteria
that have been selected along with their relevance for the
European climate. We then define how each of the classifi-
cations that we use for the criteria are defined. In Sect. 3,
we present the methodology along with examples of how in-
dividual criteria have been assessed. In Sect. 4, we exam-
ine the impact of filtering out models that fail to reproduce
key processes in relation to the projected range. We then use
these performance-filtered models to create a smaller sub-
selection that also considers model diversity and maintains
the projected range of the filtered models as far as possible.
In Sects. 5 and 6 we discuss these results and present our
conclusions, respectively.

2 Performance assessment for Europe

2.1 Criteria

2.1.1 Atmospheric criteria

The near-surface temperature and precipitation are key vari-
ables for future climate and are of primary consideration in
impact studies, especially in terms of future hydrology con-
siderations (e.g. White et al., 2011; McDermid et al., 2014;
Ruane et al., 2014). They have been considered as key vari-
ables in previous subsampling approaches (e.g. Ruane and
McDermid, 2017; McSweeney et al., 2015).

A number of previous studies have considered the impor-
tance of capturing the main synoptic features and large-scale
atmospheric circulation patterns (e.g. McSweeney et al.,
2012, 2015; Prein et al., 2019) as key criteria for GCM
subsetting. For northern Europe in particular, large-scale
weather patterns and the passage of weather systems that
make up the North Atlantic (NA) storm track dominate the
climate, especially in the winter. Extratropical cyclones are
the dominant weather type at mid-latitudes, where they can
have a significant impact due to associated extreme precip-
itation and wind speeds (Browning, 2004; Priestley et al.,
2020). They have an important role in the general circulation
in the poleward transport of heat, moisture and momentum
(Kaspi and Schneider, 2013) and in maintaining the latitu-
dinal westerly flow. In the winter (DJF), many GCMs have
a southern bias in the peak storm track density, with the
prevailing winds being too zonal, resulting in higher-than-
observed wind speeds across central Europe (Priestley et al.,
2020; Zappa et al., 2013). In the summer (JJA), the prevailing
wind direction is more westerly and less strong, but it is still
an important driver of weather systems and is key for repre-
senting the climate. We assess the large-scale circulation by
comparing a baseline climatology with the ERA5 data (e.g.
1995–2014) using a similar approach to McSweeney et al.
(2015). We use the analysis of Priestley et al. (2020) to as-
sess the NA storm track over Europe in individual CMIP6
models.

Blocking by high-pressure weather systems is known to
cause periods of cold, dry weather in the winter and sum-
mer heatwaves. Blocking is typically under-represented in
GCMs, and this is still the case for large parts of Europe in
CMIP6, although there has been some improvement in the
bias in many CMIP6 models (Davini and d’Andrea, 2020;
Schiemann et al., 2020). We use the results of the analysis
carried out by Davini and d’Andrea (2020) to assess the per-
formance of the CMIP6 models based on RMSE, bias and
correlation.

2.1.2 Ocean criteria

The literature indicates that there is a link between NA sea
surface temperature (SST) and variability in the European
climate (e.g. Dong et al., 2013; Ossó et al., 2020; Carvalho-
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Oliveira et al., 2021; Börgel et al., 2022; Sutton and Dong,
2012; Booth et al., 2012; Borchert et al., 2021a). The link be-
tween NA SST and drivers of the European climate is com-
plex, and how the atmosphere and NA interact over differ-
ent timescales has not been fully determined. Representation
of the NA SSTs in GCMs has also been shown to be key
for other features such as blocking frequency (Scaife et al.,
2011; Keeley et al., 2012; Sutton and Dong, 2012), storm
tracks (Priestley et al., 2023) and the NA jet stream (Simp-
son et al., 2018). GCMs commonly feature a cold bias to the
south of Greenland (Tsujino et al., 2020), which is associ-
ated with biases in the latitude of the North Atlantic storm
track due to unrepresented latent heat fluxes (Priestley et al.,
2023). This cold bias commonly causes the storm track to
be situated too far south (Athanasiadis et al., 2022). Remov-
ing this SST bias results in improvements in the latitude of
the atmospheric circulation (Keeley et al., 2012) and in the
simulation of other atmospheric phenomena such as block-
ing (Scaife et al., 2011). If this link between NA SSTs and
the European climate remains important in the future, a sat-
isfactory representation of NA SSTs is required for also pre-
dicting the future European climate (e.g. Gervais et al., 2019;
Oudar et al., 2020). In particular, there also appears to be
some improvement in skill in terms of the representation of
the decadal NA and subpolar gyre in CMIP6 compared to
in CMIP5 (Borchert et al., 2021b), which may be a factor
for improvements in the representation of storm tracks (Lee
et al., 2018) and blocking frequency (Keeley et al., 2012)
for the European region in CMIP6 models compared in to
CMIP5.

The Atlantic meridional overturning circulation (AMOC)
also plays a significant role in the present and future Euro-
pean climate due to its role in the poleward transfer of heat
and ocean circulation. It also impacts on the NA SST (Jack-
son et al., 2022; Zhang, 2008; Zhang et al., 2019; Yeager and
Robson, 2017), thereby influencing the SST impact on Eu-
ropean climate discussed above. The CMIP5 and CMIP6 en-
sembles both predict a reduction in the AMOC by the end of
century for higher emission pathways (Menary et al., 2020;
Bellomo et al., 2021). The AMOC model comparison with
rapid data from the analysis of Menary et al. (2020) is used
to assess the AMOC in relation to the GCMs.

2.2 Classification definitions

The purpose of this assessment is to identify models within
the multi-model ensemble that are less capable of reproduc-
ing the processes that are relevant for the regional Euro-
pean climate. In terms of assessing the plausibility and per-
formance of climate models, a degree of subjectivity is in-
evitably involved. One approach is to assess and rank the
performance of the models based on a number of purely nu-
merical measures of model error (RMSE, bias, variance and
correlation) – this provides valuable and objective informa-
tion about the relative performance of the models, but it does

not assess what the implications of the errors are in terms of
how they impact the ability of the model to make a meaning-
ful regional projection. The addition of a qualitative element
to the assessment can add value with regard to interpreting
how these errors impact the overall performance of the model
in terms of the regional climate and can help inform the ques-
tion of why these errors may cause a model projection to be
less reliable.

A mix of quantitative (RMSE, bias, variance and corre-
lation) and qualitative (e.g. inspection of circulation wind
patterns) metrics have been used, and the models have been
graded for each criterion using a coloured-flag system. Vi-
sual inspection allows us to understand the characteristic of
the error and to consider its impact on other aspects of the
model.

The models are given a classification flag for each of
the criteria described in the previous section, creating a ta-
ble or coloured map that summarises the performance of
each model. This approach has been chosen, as opposed to
a more quantitative metric for the assessment, to indicate
where model performance for a variable is an issue. Where
the qualitative assessment has been applied, the quantitative
metrics have been used as a guide to sort the models into
classifications and also to ensure consistency as far as pos-
sible. The full details of how this has been applied to each
criterion are described in the Appendices (two examples are
also given in the following section). In our assessment, mod-
els are therefore grouped into classifications that we define
as follows.

Red indicates that the models are inadequate in
terms of performance criterion and should there-
fore be excluded from the subsample.

Orange indicates that the models are unsatisfac-
tory, meaning here that they have substantial errors
in remote regions where downstream effects could
be expected to impact the reliability of regional in-
formation and/or the local region of interest.

White indicates that the models are satisfactory,
meaning here that model errors are not widespread
or are not substantial in the local region of inter-
est. The location of substantial remote errors is not
known to have a downstream impact on the local
region of interest. These models capture the key
characteristics of the criteria spatially and/or tem-
porarily.

Grey indicates that data and/or analysis are not
available.
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3 Materials and methods

3.1 Data sources

Details of the models from the CMIP6 multi-model ensem-
ble (Eyring et al., 2016) that are included in this study can
be viewed in Table S1 in the Supplement. We use a baseline
period of 1995–2014 and the period 2081–2100 (end of cen-
tury) for future projections. These time periods have been
selected for consistency with existing EUCP analyses (e.g.
Brunner et al., 2020a). We use the SSP585 scenario for com-
parison, as this is the scenario with the strongest climate sig-
nal. The model data for the large area averages (for compari-
son of temperature and precipitation changes) were regridded
onto a 2.5◦× 2.5◦ grid, and a land–sea mask was applied, as
used in Brunner et al. (2020a) and Palmer et al. (2021), us-
ing a standard nearest-neighbour interpolation. The data were
averaged spatially using a weighted area mean.

The ERA5 reanalysis data and E-OBS (Hersbach et al.,
2020; Cornes et al., 2018) gridded observational dataset (to
evaluate the precipitation annual cycle) were used to assess
the model error. Monthly mean data are used for the assess-
ment, with the exception of the blocking frequency analy-
sis, which uses daily data fields. Details of how these as-
sessments have been carried out for each of the criteria are
given in the Appendices. Examples of the assessments for
large-scale circulation and storm tracks are also shown in the
following section (Sect. 3.2).

We use the results of the assessment, as described in the
previous sections and summarised for the CMIP6 models,
where sufficient assessment information was available, as
seen in Fig. 5. We use only the first realisation for each of the
models in this assessment and assume that this is generally
representative of the model performance. We acknowledge,
however, that internal variability may play a role in pushing
a model across assessment classifications. The largest uncer-
tainty due to internal variability of the diagnostics we use is
likely to be from the historical trends (which are not part of
the assessment but are used in an illustrative capacity). Brun-
ner et al. (2020b) found that, for the global case, the spread
in the temperature trend fields between ensembles members
of one model can be on the same order of magnitude as the
spread across the multi-model ensemble. For the temperature
climatology, in turn, the spread between ensemble members
of the same model is typically less than 10 % of the multi-
model spread. This gives some indication that we can ex-
pect there to be relatively low variation in the performance
of the models across the climatology for temperature based
on which member is used. For the AMOC, which is a sig-
nificant contributor to regional and global climate variability,
Menary et al. (2020) noted that links to North Atlantic SSTs
were sensitive to the removal (or lack thereof) of forced vari-
ability, but individual model realisations were not systemati-
cally different.

A case study is conducted to assess the role of internal
variability in large-scale circulation (in which we may expect
larger variability across ensemble members than for the tem-
perature climatology) in the CanESM5 model across all 25
realisations. This can be viewed in the Supplement (Figs. S5
and S6). This context suggests that the analysis presented in
this paper, based on the first ensemble member, likely pro-
vides an indicative picture typical of the response across
any wider initial-condition ensemble. However, future as-
sessments may want to look for individual ensemble mem-
bers which may show weaker manifestations of particular bi-
ases, particularly where a model lies close to classification
boundaries.

3.2 Assessment examples

In this section, we show two examples of the assessment
method for two of the criteria discussed in Sect. 2. Examples
for all the criteria are given in the Appendices.

For the assessment of each criterion, we refer to the model
RMSE, bias and, in some cases, correlation with the reanaly-
sis (e.g. for the precipitation annual cycle – see Appendix A1
for details) in addition to a qualitative assessment of the
model climatology in terms of how errors impact the ability
of the model to represent the regional climate. In the process
of classifying the performance of the models, the qualitative
interpretation of the errors has an element of subjectivity, as
does the decision of where to place various thresholds for
the quantitative measures. We aim to keep the assessment
process as transparent as possible. In addition, it is impor-
tant that, while the qualitative assessment for an individual
classification may occasionally differ to some degree from a
purely quantitative approach, these decisions should not lead
to the retention of models with objectively larger errors in the
sub-selection process. In the following Sect. 3.2.1 (and in the
Appendices), we refer to both the fields of the model clima-
tology and Fig. 1, which summaries the RMSE for each of
the models.

3.2.1 Large-scale circulation patterns

The large-scale seasonal circulation pattern was assessed for
winter (DJF) and summer (JJA) based on the mean climatol-
ogy at 850 hPa for the baseline time period 1995–2014; the
ERA 5 reanalysis was used for comparison (Fig. 2).

In DJF, European weather is dominated by the passage of
weather systems that make up the NA storm track; the pre-
vailing direction for these is from the southwest, as can be
seen in the climatology in ERA5 (Fig. 2a). The model large-
scale RMSEs for the 850 hPa wind vectors (e.g. Ashfaq et al.,
2022; Chaudhuri et al., 2014) and a qualitative assessment of
the overall circulation pattern were used to assess the models
for this criterion. Figure 1 shows that the wind vector RMSE
is less than that of the multi-model mean for CNRM-CM6-1
and HadGEM-GC31-LL. Where the wind vector errors for
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Figure 1. Summary of RMSE values for the large-scale assessment criteria and regional temperature. The regions are abbreviated as follows:
northern Europe (NEU), central Europe (CEU) and the Mediterranean (MED). Tas refers to near-surface air temperature, SPG refers to
subpolar gyre, and UA and V A are the eastward and northward wind vectors at 850 hPa, respectively. The colour scale is determine by the
ratio of the model RMSE to the ensemble mean RMSE. RMSE values are absolute, and the mean score is the average of the relative error
(normalised by the ensemble mean) across each of the criteria.

a model are less than the multi-model mean, the large-scale
circulation is found to be reasonably well represented. Fig-
ure 2b and c show that these models capture the overall cir-
culation pattern well and have relatively low wind speed bi-
ases. Where the models have a larger RMSE for wind vectors
than the multi-model mean, the threshold for an unsatisfac-
tory model requires some consideration. For these cases, a
qualitative approach is used to understand how these errors
may impact the European climate and to guide where this
threshold should lie.

The model with the largest errors of the satisfactory mod-
els is CESM2, with an area of positive bias over the UK;
however, this model was still assessed as satisfactory due to
the well-defined southwesterly wind patterns and the good
representation of the winds over most of the European land
areas. The strength of the southwesterlies over the UK and
Scandinavia is too weak in some of the models (e.g. IPSL-

CM6A-LR; Fig. 2f), along with the prevailing wind direction
being too westerly. These models were flagged as unsatisfac-
tory. These models feature a variety of structural biases – for
example, INM-CM4-8, which had a lower spatially averaged
RMSE wind speed error but lacked a clear representation of
the southwesterlies over northern Europe. The winds are too
weak in these areas, and there are areas of negative bias in
the Mediterranean. This model was classified as unsatisfac-
tory due to its lack of representation of the circulation pat-
tern and due to the general wind direction being too west-
erly (Fig. 2g). This is also reflected in the wind vector errors
(Fig. 1).

Models flagged as inadequate have an almost entirely
westerly (no southwesterlies) wind pattern, and the wind
speed errors over large parts of Europe are widespread and
substantial (e.g. CanESM5, FGOALS-g3; Fig. 2h–j). These
models nearly all have a large (positive) bias over European
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land regions (e.g. > 6 m s−1). MIROC-ES2L has the largest
errors for the wind vectors in the ensemble for DJF (more
than twice the ensemble mean error for the eastward wind,
UA); the errors do not follow the same pattern as the other
inadequate models, with a large negative bias over most of
Europe and an almost northerly wind direction in the NA
(Fig. 2i).

Circulation patterns are more westerly with weaker winds
in the summer (JJA). These were assessed using the same
approach for comparison as for winter circulation (Fig. 3).
Many CMIP6 models capture the general pattern well (e.g.
HadGEM-GC31-LL, GFDL-ESM4; Fig. 3b and d). The UA

and V A (northward wind) RMSEs for both of these mod-
els are less than the ensemble mean RMSE. Again, where
the models perform above the average for the multi-model
ensemble, the overall circulation pattern is well represented
with relatively low wind speed bias. As with the case for the
DJF circulation, where the models have larger errors than the
multi-model mean for JJA wind vectors, the threshold is to
warrant a flag as unsatisfactory or inadequate, as determined
alongside some qualitative interpretation of the model errors.

Some of the models had westerly patterns over the UK
and central Europe that were too weak (e.g. MIROC6, INM-
CM4-8; Fig. 3f and h); as a result, there were larger errors
in European land regions, and these models were therefore
classified as unsatisfactory or, in the case of INM-CM4-8,
where these errors are more pronounced, inadequate. In the
case of MIROC6, we note that the magnitude of the UA and
V A errors over the large-scale region assessed as a whole
were on the borderline of the threshold between satisfactory
and unsatisfactory compared to the other models. The rela-
tively weak circulation and low bias in wind speed over the
European land regions tare the reason for the unsatisfactory
flag in this case (Fig. 3e).

The INM-CM4-8 (and, to a similar extent, the INM-CM5-
0) model has some of the largest errors for the JJA wind vec-
tors in the multi-model ensemble. It is noted that these mod-
els are also flagged as inadequate for both severe JJA block-
ing errors and severe errors in representing the annual precip-
itation cycle in central Europe. There are also issues with the
temperature bias in central Europe for this model (flagged as
inadequate). These severe errors in central Europe are likely
to be related to the representation of the large-scale circula-
tion.

For NorESM2-LM and ACCESS-ESM1-5 (Fig. 3i and j),
the westerly pattern was too far north, leading to a large area
of positive bias over northern Europe. These models have the
largest RMSEs for wind vectors in the multi-model ensem-
ble, along with the INM-CM4-8 and INM-CM5-0 models,
and the largest RMSEs for wind speed. The large region of
substantial positive bias over the NA and much of Europe in-
dicates that this error is likely to have an impact on the JJA
storm track over Europe for these models. As the storm track
assessment is available for both these models, this can be
confirmed to be the case. The storm track RMSE is in the top

85th percentile for the models assessed for the storm tracks
(see the following section on the storm track assessment),
and Fig. 1 shows that these models have the largest errors for
the JJA storm track in the ensemble.

3.2.2 Storm track large-scale assessment

The track density is calculated using an objective cyclone-
tracking and identification method based on the 850 hPa rela-
tive vorticity (Hodges, 1994, 1995). The method and data are
the same as those used in Priestley et al. (2020). The zonal
mean of the model mean track density from 20◦W to 20◦ E
was taken to get a profile of storm number by latitude. Then,
the RMSE of the models was calculated and compared to the
profile obtained from ERA5. The RMSE was calculated from
25 to 80◦ N.

The storm track has been assessed as a large-scale fea-
ture using an assessment of the characteristic trimodal pat-
tern (Fig. 4), calculated as the zonal mean of the seasonal
track density between 25–80◦ N and 20◦W–20◦ E compared
to ERA5 reanalysis data. The baseline time period used for
this assessment is 1979/1980–2013 (as in Priestley et al.,
2020). The RMSE of the zonal mean track density from
20◦W to 20◦ E is used to initially sort the models into cate-
gories; while a hard cutoff threshold was not applied for each
category, it was helpful to sort the models into < 65th, 65th,
85th and > 85th percentiles for RMSE. The different model
groups were then inspected visually, and it was found that, al-
though some of the models in the< 65th percentile had some
significant biases, the models in this group had clearly de-
fined peaks in their number of cyclones at the correct latitude
and therefore captured the passage of storms across west-
ern and central Europe satisfactorily (Fig. 4a). This was not
found to be the case for the models in the 65th–85th RMSE
percentiles, where there was a lack of a northern peak; this
indicates a zonal bias in these models, which is a character-
istic bias in GCMs (Fig. 4b). These models were classed as
unsatisfactory; the errors were not large enough on visual in-
spection to class them as inadequate, with the exception of
MIROC-ES2L.

Models with > 85th percentile RMSEs failed to capture
the trimodal pattern and had large biases in the number of
cyclones at each of the peaks (Fig. 4c). In particular, there
was a lack of a northern peak and an amplification of the er-
rors in this group, with a large zonal bias in the track density.
These models were considered to be unable to represent this
feature and were flagged as inadequate. Examples of indi-
vidual models for each of the groups are shown in Fig. 4d–f.
The RMSE values for each of the models in the multi-model
ensemble are also shown in Fig. 1.
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Figure 2. Examples of DJF circulation (850 hPa) classifications for a sample of individual models. Top panel shows ERA5 climatology.
Wind speed and direction are shown as a 20-year mean (1995–2014). Arrows show the direction (absolute) of wind speed (scaled by wind
speed) for climatology across all panels. The shading for the three panels shows the difference in wind speed between the model and ERA
climatology.

3.3 Weighting for performance against global trends
and model independence with the ClimWIP method

We also compare our results with the Climate model
Weighting by Independence and Performance (ClimWIP)
method (Knutti et al., 2017; Lorenz et al., 2018; Brun-
ner et al., 2019, 2020b; Merrifield et al., 2020) to as-
sess differences between our process-based filtering and an
assessment based on historical warming. ClimWIP com-
bines model performance weighting based on one or more
metrics with an assessment of model independence (i.e.
overlaps in the models’ source code or development his-
tory). Here, we use an adaptation of the approach de-
scribed in Brunner et al. (2020b) and publicly available
via the ESMValTool (https://docs.esmvaltool.org/en/latest/
recipes/recipe_climwip.html, last access: 14 April 2023).
Performance weights are calculated based on global tem-
perature trends compared to ERA5 for the period 1980–
2014. Independence weights are based on global model out-
put fields for temperature and sea-level pressure, which have
been shown to reliably identify model dependencies (Brun-
ner et al., 2020b; Merrifield et al., 2020). Here, we use
ClimWIP in two setups: one only based on performance
weights and one only based on independence weights, as de-
tailed later.

4 Results: assessment and applications for
sub-selection

4.1 Assessment table

The assessments for each of the CMIP6 models are collated
into Fig. 5, with the classification for each of the criteria,
where the relevant data and/or analyses are available. Fig-
ure 5 creates a summary of each model’s performance against
a range of criteria that are essential for a meaningful repre-
sentation of the European climate. This summarises the skill,
across a multi-model ensemble from CMIP6, in terms of their
ability to capture the key processes for the European climate.
The assessment criteria are divided into large-scale and re-
gional assessments. The large-scale assessment criteria, such
as large-scale circulation and blocking frequency, are crite-
ria that have a pan-European impact and are not specific to a
particular region. The regional assessment criteria have been
scored individually for each of the three main European re-
gions used in the EUCP study and as defined in Brunner
et al. (2020a) and Gutiérrez et al. (2021). These are, northern
Europe (NEU), western and central Europe (CEU), and the
Mediterranean (MED; see Fig. S1 in the Supplement). We
focus in the assessment on summer (JJA) and winter (DJF).
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Figure 3. Examples of JJA circulation (850 hPa) classifications for a sample of individual models. Top panel shows ERA5 climatology.
Wind speed and direction are shown as a 20-year mean (1995–2014). Arrows show the direction (absolute) and wind speed (scaled by wind
speed) for climatology across all panels. The shading for the three panels shows the difference in wind speed between the model and ERA
climatology.

Some of the criteria were assessed both at the large scale
and regionally. For example, it is useful to know if a model
has a widespread temperature bias that extends over Eu-
rope and the NA, but it is also the case that some models
have more localised temperature biases that affect individ-
ual regions. For the regional assessment where surface vari-
ables (e.g. precipitation and temperature) are assessed, mod-
els were scored for their performance solely over the land
regions.

The classifications in Fig. 5 can be applied to create a be-
spoke subset of CMIP6 models depending on the motivation
for sub-selecting. Here, we have used the red classification of
inadequate to indicate that a model should be removed, but it
may be the case that a less strict approach to performance fil-
tering than what we have applied here would be acceptable in
some cases. Likewise, it may be the case that an unsatisfac-
tory (orange) flag for a certain criterion, such as the regional
precipitation, may be particularly undesirable. In the follow-
ing section, we use the table to create two different subsets
from the multi-model ensemble.

4.2 Excluding the models least representative of key
regional processes

In this section, we explore the implications of screening out
poor models based on the process-based performance as-
sessment alone for the range of projected regional changes.
The aim is to revisit the range of projected regional climate
changes, excluding those shown to struggle with represent-
ing regionally relevant processes. Note that, for this reason,
we do not include in this section any criteria based on cli-
mate sensitivity or global temperature trends. These addi-
tional considerations and how they could be applied will be
discussed along with the results.

For the sub-selection process, we refer back to the defini-
tion of the classifications in Sect. 2.2. The inadequate cat-
egory (shown as a red flag in Fig. 5) is used to indicate
that a model fails to represent a key feature of the regional
climate and should be removed from the sub-selection. We
also differentiate between large-scale criteria that can be ex-
pected to have pan-European effects on the model perfor-
mance (and may also be inherited from the GCM in case
of down-scaling) and regional criteria that may only be of
concern in the local region. Here, we consider the impact
on the projection range of excluding any model with one or
more inadequate (red) flags for any of the large-scale cri-
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Figure 4. Examples of DJF storm track classifications; (a), (b) and (c) show the RMSEs of the zonal mean track (20◦W–20◦ E) for individual
models and the classification mean for satisfactory (a), unsatisfactory (b) and inadequate (c). In (a)–(c), grey lines are the individual models,
solid-coloured lines are the group average, and the solid black line is ERA5. Individual examples are shown in the lower panel for track
density bias for satisfactory (d), unsatisfactory (e) and inadequate (f) models. Units of (d)–(f) are cyclones per season per 5◦ spherical cap.

teria. We then go on to consider any further changes in the
projected temperature range as a result of removing any re-
maining models with a regional inadequate flag.

Once all the models in Fig. 5 that have a red flag
for the large-scale criteria are removed, the following
models remain in the sub-selection: ACCESS-CM2,
BCC-CSM2-MR, CESM2, CESM2-WACCM, CNRM-
CM6-1, CNRM-CM6-1-HR, CNRM-ESM2-1, EC-Earth3,
EC-Earth3-Veg, GFDL-CM4, GFDL-ESM4, HadGEM3-
GC31-LL, HadGEM-GC31-MM, MPI-ESM1-2-HR,
MRI-ESM2-0, KACE-1-0-G, TaiEMS1 and UKESM1-0-
LL. This sub-selection from the qualitative assessment can
also be compared to the RMSE values in Fig. 1. If we look at
the scores for the large-scale criteria (all categories in Fig. 1,
excluding regional temperature), it can be seen that the
excluded models include all those with an RMSE more than
1.5 times the ensemble mean in at least one of the large-scale
categories. It is also the case that, for the retained models, the
RMSE does not exceed 1.5 times the multi-model ensemble
mean for any large-scale category. The retained models also
perform better than or are at least equal to the ensemble
mean across all the categories. This indicates that, in our
application of the assessment, objectively poorer models
have been removed (in terms of large-scale performance),
and those with objectively smaller errors have been retained.

Figure 6 shows the difference in the projected tempera-
ture range for the large-scale process-based filtered subset
and the unfiltered multi-model ensemble. The difference in
DJF is small (Fig. 6b); however, in JJA, the lower part of
the range is reduced, and the upper part is shifted upwards
(Fig. 6a). This shift in the projection range indicates that
more of the higher-sensitivity models are retained by filtering
using process-based performance criteria.

In the second stage of filtering, we again refer to the re-
gional criteria in the assessment table. There are inadequate
(red) flags for regional precipitation (in central Europe) and
for regional temperature in a few of the models (Fig. 5).
The models with an inadequate classification for precipi-
tation (INM-CM4-8, INM-CM5-0, ACCESS-ESM1-5 and
FGOALS-g3) already have at least one inadequate flag for
the large-scale atmospheric criteria. Therefore, these mod-
els have already been removed from the performance-filtered
subset. The KACE-1-0-G model has two inadequate flags for
regional temperature in two regions, namely NEU and CEU.
The UKESM1-0-LL model has a single inadequate (red) flag
for temperature in DJF (NEU). Figure 1 shows these temper-
ature errors in both models to be relatively large compared
to the multi-model-ensemble mean RMSE. In addition, the
UKESM1-0-LL model has a relatively large DJF temperature
error for CEU, indicating that this temperature bias extends
over two of the European land regions. These errors that are
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Figure 5. Model assessment summary for qualitative European criteria. Assessment criteria for the large scale are as follows: blocking –
blocking frequency; circulation – large-scale circulation assessed by 850 hPa wind speed and direction; NA SST – NA SST bias; Tas – surface
air temperature bias at 2 m; storm track – based on RMSE of the zonal mean track 20◦W–20◦ E; and AMOC – based on strength at 1000 m
at 26◦ N. Assessment criteria for the European regions are as follows: Tas – surface air temperature bias at 2 m; Precip – annual precipitation
cycle; and ST – storm track assessed as cyclones per season within the European region.

Figure 6. (a) Projected range of JJA temperature change for Europe in CMIP6 (SSP585; 2081–2100 relative to 1994–2014) for the raw
unweighted multi-model ensemble and the large-scale performance-filtered subset. Boxes show the 25th to 75th percentiles. Whiskers show
the 5th and 95th percentiles. (b) As for (a) but for DJF.
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limited to specific regions may be considered acceptable for
some applications, and so there may not necessarily always
be a reason to exclude a model from a sub-selection. Here,
we filter the subset further by removing these models. Re-
ferring to Fig. 1, we can confirm that our excluded models
include only those with a relatively large RMSE (1.5 times
the ensemble mean) in at least one of the criteria and that the
eliminated models, on average across the criteria, have a rel-
ative error at least equal to or larger than the ensemble mean
(Fig. 1). Therefore, it is again the case that the qualitative
assessment has removed the models with objectively larger
errors in the key criteria.

Figure 7a shows the difference in the range of projected
temperature in the large-scale and regional performance-
filtered subsets compared to the raw unweighted ensemble
for JJA. In comparison, the shift in the projected range for
DJF is small (Fig. S2). The lower part of the range is substan-
tially reduced for the processes that are performance filtered
in JJA (Fig. 7a).

The filtered subset of models retains more of the models
with higher sensitivity; this contrasts with the existing liter-
ature regarding observational constraints on regional climate
projections in CMIP6. There is existing literature that has
used the ability of CMIP6 to capture either regional temper-
ature trends (e.g. Ribes et al., 2022) or global trends (Liang
et al., 2020; Ribes et al., 2021; Tokarska et al., 2020; Brunner
et al., 2020b) that down-weight models with larger climate
sensitivities in favour of models with more modest climate
sensitivities. We illustrate the contrast between this existing
literature and our results by using the methodology of Brun-
ner et al. (2020b) to illustrate the typical constraint on projec-
tions indicated in this literature. We use the method of Brun-
ner et al. (2020b) (see Sect. 3.3), applying it to the global
temperature trends to calculate performance weights for each
model using the first ensemble member. These weightings
shift the projected temperature range downwards compared
to the unweighted raw ensemble (Fig. 7a). Our emergent rela-
tionship between less robust regional projections and lower-
sensitivity models was unexpected and represents an appar-
ent tension with the existing observational-constraint litera-
ture based on temperature trends.

A regional consolidated performance index was created by
giving the satisfactory (white), unsatisfactory (orange) and
inadequate (red) flags a numerical score of 1 for satisfactory,
2 for unsatisfactory and 3 for inadequate. The overall score
for each model was then averaged by the total number of
assessed criteria to give an indication of how the model per-
formed overall. Many of the models that performed well for
the process-based criteria do not fall within the IPCC AR6
likely range for equilibrium climate sensitivity (ECS; Forster
et al., 2021; Fig. 7b).

Our result does not include any consideration of climate
sensitivity, and while these models are identified here as per-
forming relatively well in a process-based assessment, the
subset temperature range shown in Fig. 7 should not be

viewed as a constraint that gives a more accurate projected
range for Europe. Here, we only highlight that more of the
models that perform well in terms of regional physical pro-
cesses have a higher climate sensitivity. It may be appropriate
to select only the better-performing models from within the
very-likely IPCC range for ECS or to retain just one of the
models above this range to account for a higher-impact sce-
nario. It may also be appropriate to select models that are
marginal from the lower part of the IPCC very-likely range.
Alternatively, using an approach that considers regional im-
pacts using global warming levels could be applied to the
subset; this is discussed further in Sect. 5.

4.3 Sub-selection for performance and model diversity

In this section, we consider how a sub-selection of a small
number of example models that represent the broader char-
acteristics of the wider filtered projection spread could be
carried out. In this example application, we look for a subset
of GCMs that are both in our filtered subset and sample this
spread. The motivating criterion is the identification of mod-
els that perform well across the whole European domain and
retain as much of the spread of future projections as possible.
Such an approach might be adopted by those looking for a
smaller subset to drive downstream models – for example, as
a selection tool for a potential regional climate model (RCM)
matrix, as data for a pan-European assessment of food secu-
rity or for any other impact needing pan-European physically
coherent climate projections, where the GCMs would then
provide the climate-driving data.

The models from the process performance subset are
placed into clusters of models that had clear dependencies
(Table 1). The Euclidean distance of the models is deter-
mined using the ClimWIP method (see Sect. 3.3) for the
comparison of model independence (Brunner et al., 2020b).
Fig.S3 shows the independence matrix for the different mod-
els, which was used to create clusters of models that had de-
pendencies. Models with a Euclidean distance of 5 0.6 were
combined into clusters. Three models were found not to have
a sufficient dependency in relation to the other models to be
placed in any cluster (see Table 1). In most cases, many of
the models with similarities were from the same institution
or were known to share significant code components, such
as the same atmosphere model in the HadGEM-GC-3.1 and
ACCESS-CM2 models.

In this application, to maintain model diversity as far as
possible, one model was selected from each of the clusters
(and two from models that fell into no cluster). Using Fig. S4
to determine where the models are situated in the projected
temperature and precipitation range for each region, these
individual models are also selected to include as much of
the temperature and precipitation range of the filtered multi-
model ensemble as possible. The selection chosen for this ex-
ample is illustrative, and it may be appropriate to sub-select
differently depending on the intended application of the sub-
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Figure 7. (a) Projected range of JJA temperature change for Europe in CMIP6 (SSP585; 2081–2100 relative to 1994–2014) for the raw
unweighted multi-model ensemble, the performance-filtered subset and the raw ensemble weighted for performance against global trends
using the ClimWIP method. Boxes show the 25th to 75th percentiles. Whiskers show the 5th and 95th percentiles. (b) CMIP6 model ECS
compared to consolidated regional performance index. The yellow bounds show the IPCC AR6 likely range for ECS; the grey bounds show
the very-likely range.

selection. The selected models for this example are shown in
blue (Fig. 8).

In this section, we have shown one example of sub-
selection of a smaller subset using the filtered models from
the previous section. There are a number of different smaller
subsets that could be selected using the information from the
assessment tables (Fig. 5). Depending on the intended ap-
plication of the sub-selection, a different approach (for ex-
ample, one that includes plausible outliers – e.g. models that
do not have red flags in large-scale criteria) may be more
appropriate in order to sample high-impact, low-probability
regional responses.

5 Discussion

An overall aim of this study is to provide an assessment of
CMIP6 models that can be applied by users that wish to cre-
ate filtered subsets for Europe for a range of applications and
that also wish to remove the least-representative models. The
assessment information could be applied to a filtering ap-
proach that is tailored according to the criteria of interest.
The assessment used in this study combines a qualitative and
quantitative approach. To some extent, there is always a de-
gree of subjectivity when grading models for performance;
even where more objective techniques are used, such as clus-
tering based on evaluation statistics (e.g. seasonal RMSE,
correlation, bias as used for the blocking frequency here),
there is still the difficulty of identifying where the thresh-
olds for satisfactory or inadequate models should lie in ad-

dition to the assessment of the relative importance of one
metric versus another (Knutti, 2010). The assessment of a
satisfactory model will also inevitably be relative to the per-
formance of other models in the ensemble. In the approach
shown here, where the quantitative thresholds were used to
guide the model classifications, these thresholds were largely
determined according to the distribution of performance for
the ensemble. It has also been an aim throughout to maintain
consistency in the way that the classifications are applied for
each of the assessment criteria. In practice, this can be diffi-
cult to achieve due to the fact that, for each criterion, many
of the GCMs generally capture some of the large-scale pro-
cesses (e.g. blocking frequency and CEU precipitation) rel-
atively poorly in comparison to others, while other criteria
(e.g. AMOC) can be difficult to evaluate.

A further challenge is that not all models have been
assessed against all criteria. Analyses that assessed storm
tracks, blocking frequency and the AMOC provide valuable
further information regarding the performance of the models
but were not available for every model in the study; there-
fore, it was necessary to consider whether a model should be
eliminated on the basis of one of these criteria when other
models, whose performance was unknown, may have been
kept in the selection. It was found to be the case that the flags
for exclusion did not occur in isolation. Severe errors (red
flags) for large-scale circulation, storm tracks and blocking
frequency often occurred in more than one criterion (or, in
some cases, alongside multiple orange flags). Severe errors
(or inadequate flags – i.e. those flagged red) in the AMOC,
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Table 1. Table showing models clustered based on Euclidean distance.

No cluster* Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

BCC-CSM2-MR GFDL-ESM4 EC-Earth3 CESM2 CNRM-CM6-1 ACCESS-CM2
MRI-ESM2-0 GFDL-CM4 EC-Earth-Veg CESM2-WACCM CNRM-ESM2-1 HadGEM-GC31-LL
MPI-ESM2-HR TaiESM1 CNRM-CM6-1-HR HadGEM-GC31-MM

∗ Models were not found to have sufficient dependencies to be placed in a cluster. Selected models are shown in bold.

Figure 8. Temperature and precipitation projection range (SSP585; 2018–2100 relative to 1995–2014) for CMIP6 multi-model ensemble.
Excluded models are shown in red. Models selected from each of the seven clusters in Table 1 are shown in blue. Models from the process-
performance-filtered subset that were not selected are shown in grey. Models from the same cluster are indicated by symbols.

another criterion where data were limited, were due to a very
weak representation of this feature, and where this was the
case, a severe cold bias in the SPG region was also present
(NESM3).

Considering the regional impact of eliminating the models
flagged as inadequate (flagged red; Fig. 5), the lowest tem-
perature response models are excluded in summer (JJA) for
the NEU, CEU and MED (Fig. 8). For summer rainfall, in the
NEU and MED, many of the models showing a more neutral
change in rainfall are excluded. Greater warming is generally
linked to stronger summer drying and increased winter pre-
cipitation. The exclusion of many of the models with a more
modest projected temperature increase also results in the ex-
clusion of many of the models with more neutral projected
changes in precipitation.

Filtering of the CMIP6 ensemble by excluding the least-
realistic models for Europe leads to the removal of mod-
els throughout the projected temperature range but particu-
larly models that have a more modest response. The reten-
tion of higher-sensitivity models is due to more of the higher-
sensitivity models demonstrating a greater skill in reproduc-
ing regional processes. The revised temperature projections
for the filtered GCMs for each region lead to a shift up-
wards in the median of the projected JJA temperature range
due to more of the higher-sensitivity models performing well

against the process-based criteria (Fig. 7). This may repre-
sent a particular challenge for potential applications where
sampling regional climate responses in the lower end of the
IPCC climate sensitivity (ECS) range is required, as many of
the CMIP6 models in the lower part of the ECS likely range
were excluded by our processed-based assessment (Fig. 7b).
Using the IPCC AR6 likely range for ECS (and for TCR;
Hausfather et al., 2022) has also been suggested as an ap-
proach to model screening for the CMIP6 ensemble. Other
regional sub-selection studies for CMIP6 have eliminated
models with high global sensitivity (Mahony et al., 2022).
Any assessment that excludes models based on both the per-
formance criteria here and metrics like global climate sen-
sitivity or global trend criteria (which tend to exclude mod-
els with higher climate sensitivities) will be left with only
a small subset of adequate models. This apparent tension is
likely to be less evident where global warming levels are in-
stead adopted. Using this approach when adopting a selection
based on climate performance, such as that presented here,
would enable the exploration of a broader set of adequate re-
alisations.

Our results contrast with the existing literature in terms of
evaluation against historical temperature trends (Liang et al.,
2020; Ribes et al., 2021; Tokarska et al., 2020). Many of the
models that score well against process-based criteria have a
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higher ECS. ECS is not considered in this study as a sub-
selection criterion because the focus of this work was on the
assessment of how well models capture the main regional
climate processes. Links between the plausibility of CMIP6
projections, based either on their historical global or regional
temperature trends or climate sensitivity (Hausfather et al.,
2022), are well established in the literature for CMIP6 (Ribes
et al., 2021; Liang et al., 2020; Tokarska et al., 2020). When
the raw ensemble is weighted against performance for global
trends (Fig. 7a), the effect is to shift the temperature range
downwards. This shift for our raw ensemble is not as large
as that typically seen in other studies for global trends (e.g.
Liang et al., 2020; Ribes et al., 2021; Tokarska et al., 2020).
This may be due to our use of a single ensemble member
for this study, some differences in methodology or summer
warming in Europe being thought to be about 30 % higher
than the annual mean global warming (Ribes et al., 2022).

Ribes et al. (2022) find a constrained regional projection
range for mainland France for ssp585 (5.2 to 8.2◦) that is sim-
ilar to the projected range of our performance-filtered sub-
set for summer using a combination of modelling results and
observations. Our upper 95th percentile and lower 5th per-
centile are a little lower than this (for a pan-European range);
our median for the performance-filtered range is very similar
to their central estimate of 6.7 ◦C (Fig. 7a). For assessments
of model performance against historical temperature trends,
where the regional trends are also taken into account, there
may be less of a tension with our assessment than is the case
with those that are based on global trends alone (e.g. Liang
et al., 2020; Ribes et al., 2021).

6 Conclusions

We provide an assessment of regional processes and biases
(Fig. 5) for a multi-model ensemble from CMIP6 that can be
used to inform sub-selection for the European region. This
can be used to aid the creation of bespoke sub-selections for
a particular application (e.g. sub-selection of a small num-
ber of representative ensemble members for downscaling or
impact assessments); alternatively, the subsets that have been
demonstrated here can be also be used directly.

Filtering an ensemble of CMIP6 models based on per-
formance in terms of key process-based criteria results in
the projected temperature range being shifted upwards. This
is due to the removal of a larger proportion of the lower-
climate-sensitivity models that do not perform adequately
against the assessment criteria. We also find that many of
the higher-sensitivity models score well against the process-
based assessment and that these models are better able to rep-
resent the features of the European climate. It is not clear
whether the emergent relationships we found (between bet-
ter models and higher sensitivities) are circumstantial or re-
flect an underlying physical basis. If they reflect an un-
derlying physical relationship (where atmospheric processes

needed to capture regional feedbacks also drive stronger cli-
mate feedbacks), then this might imply greater confidence in
higher-end regional changes. If, on the other hand, the sam-
pling of higher-sensitivity models is circumstantial (simply
due to chance), this represents a challenge, as there are few
CMIP6 models that sample the central and lower end of the
IPCC AR6 likely climate sensitivity range. This remains an
open question, which we have not been able to resolve in this
work.

Our results highlight a tension in terms of regional sub-
selection between performance measured against the global
temperature trend and the ability of the models to capture the
features of the regional climate in the CMIP6 multi-model
ensemble. For cases where changes in temperature are not the
only variable of interest (or the primary concern), many of
the higher-sensitivity models are likely to provide more reli-
able information regarding the future climate. Potential users
of regional climate projections should be aware that there is
a potential tension between constraints from large-scale tem-
perature change or climate sensitivity and the assessment of
regional processes, at least for Europe.

Appendix A

A1 Annual precipitation cycle

The annual precipitation cycle was assessed as a regional cri-
terion for each of the European land regions (Gutiérrez et al.,
2021; see Fig. S1). The precipitation cycle for each model
was assessed against the E-OBS (Cornes et al., 2018) data
as monthly means (see Fig. A1) using the baseline period
of 1995–2014. A combination of the correlation and RMSEs
for each of the four seasons is used to assess whether models
should be categorised as either satisfactory or unsatisfactory.

In order to sort the models into categories, the seasonal
RMSE and correlation were used as a guide (Fig. A1b–e). It
was observed that, in most regions, a poor correlation with
the observed cycle had a large seasonal RMSE compared to
other models (> 0.75 mm d−1) in at least one season. The
exception was in CEU, where most models had a poor cor-
relation with the observations. The models with a relatively
low error of less than 0.6 mm d−1 for all four seasons were
classified as satisfactory. Models with an RMSE greater than
0.75 mm d−1 in one season were classified as unsatisfactory.

In CEU, the models with a substantially negative cor-
relation (approx. −0.25) had a large seasonal RMSE (>
1 mm d−1) and very poor agreement with the seasonal cycle,
where they essentially showed a strong seasonal drying in the
wet season for CEU (Fig. A1). These models are classified as
excluded.

There were some models (RMSE> 0.6 mm d−1<

0.74 mm d−1) that did not fall immediately into any
classification. Where the RMSE error in all seasons was
� 0.74 mm d−1, the model performance was generally
satisfactory. However, in the case of some models closer
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to this threshold, a lower correlation with the E-OBS data
rendered them unsatisfactory.

A2 Sea surface temperature bias

Seasonal average sea surface temperatures (SSTs) were as-
sessed for each of the models using the HadISST1 (Rayner
et al., 2003) reanalysis (Fig. A2) for the baseline period
1995–2014. Surface skin temperatures from the atmospheric
models were used; the corresponding ice concentration fields
from the atmosphere model were only available for a smaller
number of models. To estimate the ice extent and to avoid
errors in the assessment of the SST bias in areas affected by
ice, a seasonal average TS< 0 ◦C is used as a proxy for the
5 % ice concentration to mask these areas. The areas masked
by this proxy are compared to the extent of the 5 % ice con-
centration in the models and are found to be a good approx-
imation. As the area affected by ice is approximated, this is
not compared directly to the 5 % ice field from HadISST1
for the assessment; however, where the masked areas are sig-
nificantly larger than the 5 % ice concentration in HadISST1
(Fig. A2, bottom right), a large cold bias in these areas is
inferred (Fig. A2). This bias in sea ice and the SST sur-
rounding northern Europe is found to be well captured by
the large-scale near-surface temperature bias (see Sect. A3).
Therefore, it is noted here as an important consideration for
the European climate, but it is not included explicitly in the
assessment of the NA SST error classifications. For the NA
SST assessment, we focus on errors in key regions of the NA
for the European climate.

The NA SST assessment is based on two key areas of the
NA, the subpolar gyre (SPG) and the Gulf Stream northwest
corner (GS) regions. These have been selected from Ossó
et al. (2020), who identified a northwestern region of the
North Atlantic GS as important for weather patterns over Eu-
rope, and from Borchert et al. (2021b) to define the SPG re-
gion, which has previously been shown to modulate the prob-
ability of the occurrence of summer temperature extremes
in central Europe (Borchert et al., 2019; Fig. S7). These re-
gions, as well as their gradients, have been demonstrated to
carry relevance for the dynamical atmospheric influences of
NA SST on European summer climate (Carvalho-Oliveira
et al., 2022), highlighting their relevance in the context of
this study. During a qualitative inspection of the models (see
Fig. A2), these regions were also identified as areas that rou-
tinely show a substantial bias in the models.

A small number of models had extensive areas with a very
large winter negative SST bias (Fig. A2, bottom row); this
results in a substantial overestimation of winter ice extent
to the north of Scandinavia and around Greenland. NESM3
and CAMS-CSM1-0 had a large, widespread negative bias
that extended beyond the regions of sea ice to the NA and
SPG (Fig. A2). The models with the largest SPG RMSE are
NESM3, CanESM5, CAMS-CSM1-0 (shown in Fig. 1) and
FGOALS-f3-L. In addition, FGOALS-f3-L has an RMSE

for the GS region of more than 2 times the ensemble mean
RMSE. These models are all flagged as inadequate.

A number of models also had areas with substantial but
limited areas of warm bias (> 6 K) in the area around
the Gulf Stream and larger areas in the SPG (> 3 K), e.g.
CESM2, INM-CM50 and NorESM2-LM (Fig. A2). In addi-
tion, these models also had areas with cold bias in the SPG.
This combination of warm and cold biases in different areas
also results in a poor representation of the SPG temperature
gradient. These models also had an RMSE larger than that of
the ensemble mean in the SPG assessment region and were
classified as unsatisfactory. The INM models are an excep-
tion in the unsatisfactory category in terms of not having a
large SPG error; however, these two models have some of
the largest errors in the GS region, with the exception of
FGOALS-f3-L.

Satisfactory models had a lower bias in all areas. Some had
small areas with a larger bias (often around the Gulf Stream
or in some parts of the SPG, e.g. ACCESS-CM2), but the ef-
fect of these areas did not prevent a reasonable representation
of the SPG gradient. The models classified as satisfactory all
have an RMSE in the assessed region that is less than the
ensemble mean.

In JJA, the satisfactory models again had smaller areas
of bias (> 3 K) around coastal regions, but these were not
widespread (Fig. A3). Models flagged as satisfactory also
had SST RMSE in the SPG and GS regions that were less
than the ensemble mean error. Although the model errors in
the SPG and GS are satisfactory, there is a cold bias in the
SSTs in the Norwegian and Barents seas in the FGOALS-g3
(and GISS-E2-1-G) model. In the FGOALS-g3 model, there
is also an excess in the sea ice extent in the Barents region.
While the SST assessment has been focused on the NA SST
region, it is noted that biases in this region are also impor-
tant for the European climate. These biases are captured in
the model classification for temperature bias (which includes
near-surface temperature bias over the ocean).

The unsatisfactory models had larger regions with a sub-
stantial cold bias in the SPG and/or larger biases in the
GS region that were larger than the ensemble mean. The
CAMS-CSM1-0, CanESM5 and FGOALS-f3-L models with
the largest SPG errors were classed as inadequate.
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Figure A1. Precipitation annual cycle for CEU (a); model comparison with E-OBS (shown as solid black line). Correlation (over 12 months)
and seasonal RMSEs for each model. Monthly averages are taken over a 20-year climatology (1995–2014). The RMSEs and correlations are
calculated from the monthly averages.

Figure A2. Model SST bias (compared to HadISST) for DJF. Sea-
sonal average calculated for a 20-year climatology (1995–2014).
Areas where the model SST< 0 ◦C are masked in black (this was
found to approximate 5 % ice concentration). Top row shows the
HadISST and 5 % ice concentration field.

Figure A3. Model SST bias (compared to HadISST) for JJA. Sea-
sonal average calculated for a 20-year climatology (1995–2014).
Areas where the model SST< 0 ◦C are masked in black (this was
found to approximate 5 % ice concentration). Top row shows the
HadISST and 5 % ice concentration field.

A3 Near-surface temperature bias

A3.1 Large-scale bias

The model near-surface temperatures are compared to ERA5
reanalysis (Fig. A4) for the baseline period 1995–2014.
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These were assessed for the large-scale domain (including
surrounding areas over the NA, Norwegian Sea, Barents Sea
and nearby Arctic regions) criteria (Fig. A4) and also, more
specifically, for the land points of each SREX (Special Re-
port on Managing the Risks of Extreme Events and Dis-
asters to Advance Climate Change Adaptation) region (see
Sect. A3.2).

For the large-scale assessment, there is inevitably some
overlap with the assessment of SST temperatures, as near-
surface temperature over North Atlantic regions is taken
into account. The large-scale qualitative assessment consid-
ers whether there are widespread areas of temperature bias
in land regions of Europe or in other regions where they
could be expected to have downstream impacts, e.g. nearby
land areas in the NA or other ocean regions nearby the Eu-
ropean land areas. A more widespread bias as opposed to a
smaller, more regionally based temperature bias indicates an
issue with the large-scale processes that will affect all the
European regions, while a more local area of bias is likely
to indicate issues related to processes in a particular region.
Where biases in land regions are found in more than one Eu-
ropean region, however, these are likely to also indicate an
issue that may affect the whole European area. The RMSE
over the region as a whole and over each of the land regions
is taken into consideration for the model calculation alone,
with a more qualitative assessment of regions of bias.

For JJA, MIROC6 has a large, widespread positive sum-
mer bias over European land regions, north Africa and
Greenland. This bias is largest in the CEU and MED, but
this is not extended over the NA, where there is a cool bias.
The warm bias in the MED and CEU regions is exception-
ally large (> 8 K in some areas), but it is not limited to these
regions, with a smaller but still-substantial bias for all land
regions (Fig. A4). The RMSE is the largest in the model en-
semble for the whole region and for the northern and cen-
tral regions. MIROC-ES2L has a similar pattern of errors as
MIROC6 (although not quite as large, it is still more than
1.5 times the ensemble mean RMSE). CAMS-CSM1-0 has
a large, widespread negative bias in all areas of Europe; this
model also has a large cold bias in JJA for both land and SST.
It has one of the largest RMSEs for the large-scale region and
the largest in the ensemble for northern Europe. FGOALS-g3
also had widespread biases, with an unusual pattern showing
an area of exceptionally large cold bias to the north of Scan-
dinavia and the UK (> 8 K), while also having a substan-
tial warm bias in the eastern area of CEU (4–6 K around the
Black Sea area). The RMSE for the whole region is above av-
erage but not exceptionally large compared to the rest of the
ensemble. This is largely due to a relatively small bias in the
NA, as noted in the SST assessment. The RMSE error in the
central European region is more than 1.5 times the ensemble
mean. The additional area of large low bias in the areas of
the Norwegian and Barents seas, with the resulting excessive
sea ice (see Fig. A3), has led to this model also being rated
as inadequate. The INM-CM4-8 model has a large positive

Figure A4. Model temperature bias for the large-scale domain.
Seasonal JJA average calculated for a 20-year climatology (1995–
2014).

bias in both the central and Mediterranean regions, and the
RMSE for both these regions and the SPG is more than 1.5
times the ensemble mean error; therefore, this model has also
been classified as inadequate.

Examples of models classified as unsatisfactory in terms
of JJA bias include NESM3, GISS-E2-1-G and INM-CM4-
8 (Fig. A4). NESM3 has a substantial warm bias in eastern
CEU and MED regions (> 4 in some areas) and areas of cold
bias in the NA (4–7 K). GISS-E2-1-G has substantially more
widespread areas of cold bias (Fig. A4). The INM-CM5-0
model has a substantial warm bias in the central European
region and SPG area. Its overall RMSE for the large-scale
area is larger than the ensemble mean RMSE. This model is
classified as unsatisfactory.

Examples of satisfactory models with a bias of 5 2 K in
most regions and up to 4 K in limited regions for JJA include
GFDL-CM4, CNRM-CM6-1-HR and EC-Earth3 (Fig. A4,
top row). Models classified as satisfactory had large-scale
RMSEs that were less than or close to (slightly above) the
ensemble mean RMSE.

For DJF, the cold bias in the models that are classified as
inadequate is pronounced, especially in northern European
areas (Fig. A5). These models all had an RMSE for the large-
scale area that was more than 1.5 times the ensemble mean
RMSE. In the case of FGOALS-g3, it was more than 2 times
the ensemble mean error.

The unsatisfactory models included those with a substan-
tial cold bias in areas that, while not directly over Euro-
pean land regions, can be expected to have some downstream
impacts on them (e.g. NESM3 and GISS-E2-1-G). In sev-
eral cases, substantial biases are present in the land regions
of interest (e.g. NorESM2-LM). The models classified as
unsatisfactory all had RMSE errors large than that of the
multi-model mean. The only exception is the UKESM1-0-
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Figure A5. Model large-scale temperature bias for the large-scale
domain. Seasonal DJF average calculated for a 20-year climatology
(1995–2014).

LL, which had an RMSE for the large-scale area that was
slightly lower but also had substantial errors in two European
land regions (northern and central Europe) that were among
the largest in the multi-model ensemble. Satisfactory models
had smaller biases over all regions and an RMSE for the large
scale that was smaller than that of the multi-model ensemble
mean.

A3.2 European land regions

In addition to the large-scale assessment, the three IPCC AR6
land regions (Gutiérrez et al., 2021) were individually as-
sessed to identify land areas of seasonal temperature bias.
The spatial mean seasonal RMSE for all land points in each
region was calculated and used as a guide for assessment
along with a visual inspection of the spatial temperature bias.
A small number of models were classified as inadequate for
individual regions due to areas with a large local bias that
were not excluded due to a temperature bias in the large-
scale assessment. These models may be considered inade-
quate only for the region.

The RMSE for each region is used to classify the mod-
els. For JJA, the thresholds were < 2.5 K for satisfactory,
> 2.5 K but < 4 K for unsatisfactory and > 4 K for inade-
quate. As is the case in determining any threshold, there is a
degree of subjectivity, and these thresholds are based on the
relative performance of the models across the ensemble. For
DJF, the thresholds were the same, except that the threshold
for inadequate was increased to > 5 K.

A4 Atlantic meridional overturning circulation

The representation of the AMOC is still considered to be de-
ficient even in state-of-the-art GCMs, where its associated

Figure A6. AMOC strength at 1000 m (from v (velocities) com-
pared to rapid array (annual mean Sv)) at 26◦ N. AMOC data are
from Menary et al. (2020).

Figure A7. Boxplots of cyclone numbers per DJF season for the
NEU region (coordinates). Boxes are shown for ERA5 (red), 32
CMIP6 models (light blue), and the CMIP6 (purple) and CMIP5
model ensembles (orange). Boxes extend to the 25th and 75th per-
centiles of the distributions, with whiskers extending to 1.5 times
the interquartile range. Horizonal yellow lines indicate the medians.
Notches around the medians show its uncertainty based on 10 000
random resamples. Horizontal grey lines indicate the ERA5 25th
and 75th percentiles.

climate impacts are also thought to have been underestimated
(Zhang et al., 2019). In addition, due to the limited avail-
ability of observational data, there is still considerable uncer-
tainty in the recent AMOC evolution (Menary et al., 2020),
and an accurate assessment of the AMOC in climate mod-
els remains challenging. For this study, some assessment of
the AMOC is considered to be important due to its potential
role in future changes in the European climate. The aim is to
identify and flag the poorest models with large errors in the
representation of the AMOC compared to the observational
data from the rapid array (Frajka-Williams et al., 2021). Ex-
amples of the overturning stream function for each model
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Figure A8. Examples of DJF blocking-frequency classifications for a sample of individual models.

shown (Fig. A6) are calculated using the method of Menary
et al. (2020).

NESM3 and IPSL-CM6A-LR both show poor agreement
with the observational data, with a consistently weak AMOC
(Fig. A6). NESM3 was classified as inadequate, and the im-
pact of the AMOC on the NA SSTs is also flagged due to a
large cold bias. The AMOC for IPSL-CM6A-LR is flagged
as unsatisfactory; the error may impact the representation
of the NA, but the impact on the reliability of future pro-
jections is not clear. A similar error was present in CAMS-
CSM1-0, which is also flagged as unsatisfactory. In contrast,
the NorESM2-LM model has a consistently strong AMOC
through the historical period, with a rapid decrease in more
recent years, which is not seen in the observational data. This
model is also classified as unsatisfactory. The other models
for which AMOC data were available are classified as satis-
factory (e.g.INM-CM4-8 and INM-CM5-0), as they do not
show a large deviation from the observations.

A5 Storm tracks

A5.1 Regional assessment

The storm tracks were also assessed regionally to determine
whether the number and variability of the cyclones in a par-
ticular region were captured satisfactorily by the models.
This used the analysis of Priestley et al. (2020) for the indi-
vidual European regions. The baseline time period used for
this assessment is 1979/1980–2013 for CMIP6 (1979/1980–
2004/2005 for CMIP5), and the model data are compared to
ERA5.

Where the 25th and 75th percentiles of the range over-
lapped and were similar in size to the ERA5 data, the model
was classified as satisfactory. If the interquartile range of
the model had no overlap with ERA5 data or if the size
of the interquartile range was substantially smaller, then the
model was categorised as unsatisfactory for the region (see
Fig. A7). Models are not excluded based on the regional anal-
ysis; these flags are for information only.
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A6 Blocking frequency

Atmospheric blocking is a recurrent weather pattern typi-
cally occurring in the mid-latitudes at the exit of storm track
(Rex, 1950; Pelly and Hoskins, 2003). It is characterised by a
high-pressure low-potential-vorticity quasi-stationary large-
scale anomaly which is able to block or divert the move-
ment of the travelling cyclones, creating anomalous weather
in its underlying region. One challenging issue for the cli-
mate community is the struggle that weather and climate
models have in reproducing the observed frequency of at-
mospheric blocking (D’Andrea, 1998; Masato et al., 2013).
Indeed, state-of-the-art climate models are known for un-
derestimating the frequency of atmospheric blocking, espe-
cially over the Euro-Atlantic sector, albeit notable improve-
ments have been observed with the last generation of models
(Davini and d’Andrea, 2020).

In this work, atmospheric blocking is identified with an
objective index based on the reversal of the daily geopo-
tential height gradient measured at 500 hPa, making use of
the blocking index developed by Davini et al. (2012). The
index is the 2 d extension from 30 to 75◦ N of the canoni-
cal definition by Tibaldi and Molteni (1990). However, here,
we adopt a blocking definition which includes a third sup-
plementary condition south of the blocked region which is
aimed at excluding the low-latitude blocking events (see
Davini et al., 2012 for details). Defining Z500 as the daily
geopotential height at 500 hPa interpolated on a common reg-
ular 2.5◦×2.5◦ grid, the following three meridional gradients
are considered:

GHGS(λ0,φ0)=
Z500(λ0,φ0)−Z500(λ0,φS)

φ0−φS
, (A1)

GHGN(λ0,φ0)=
Z500(λ0,φN)−Z500(λ0,φ0)

φN−φ0
, (A2)

GHGS2(λ0,φ0)=
Z500(λ0,φS)−Z500(λ0,φS2)

φS−φS2
, (A3)

where φ0 ranges from 30 to 75◦ N, while λ0 ranges from 0
to 360◦; φS = φ0−15◦, φN = φ0+15◦, and φS2 = φ0−30◦.
Instantaneous blocking is thus identified when

GHGS(λ0,φ0)> 0

GHGN(λ0,φ0)<−10mdeg−1 lat

GHGS2(λ0,φ0)<−5mdeg−1 lat. (A4)

As done by Davini and d’Andrea (2020), no spatial or tem-
poral filtering is applied.

A total of 29 CMIP6 models are taken into consideration
for the time window 1961–2000. In order to define an objec-
tive method to classify into categories the atmospheric block-
ing bias over the Euro-Atlantic region (35–75◦ N, 60◦W–
40◦ E for winter and 45–75◦ N for summer, 60◦W–40◦ E),
two basic metrics has been introduced, namely the RMSE
and Pearson correlation coefficient, evaluated against ERA5

reanalysis. Both RMSE and Pearson correlation coefficients
are then standardised and used as non-dimensional param-
eters to perform a k-means clustering (Michelangeli et al.,
1995), with k = 3. In this way, climate models showing sim-
ilar bias in both magnitude and pattern are clustered together,
taking into account not only the size of the bias but also
its shape. An example of the classification is provided in
Fig. A8.

Code and data availability. The code used to apply the
ClimWIP method is publicly available via the ESMValTool
(https://docs.esmvaltool.org/en/latest/recipes/recipe_climwip.html,
ESMValTool, 2022). The data used in this study are avail-
able through the ESGF data portal at https://esgf-node.llnl.
gov/projects/cmip6/ (CMIP, 2022). Further assessment plots
for the models used in this paper are available on GitHub
at https://github.com/tepmo42/cmip6_european_assessment
(https://doi.org/10.5281/zenodo.782884, Palmer et al., 2023),
as is a spreadsheet of all available assessments (for Europe)
carried out for CMIP6 models to date. The RAPID-MOC
monitoring project is funded by the Natural Environment
Research Council and data (Frajka-Williams et al., 2021).
E-OBS data (v.14.0, Cornes et al., 2018) can be found
at https://www.ecad.eu/download/ensembles/download.php,
in Cornes et al. (2018). The HadISST dataset (Rayner
et al., 2003) is publicly available for download at
https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html.
The ERA5 data (Hersbach et al., 2020) are available for down-
load through the Copernicus Climate Change Service (2017) at
https://cds.climate.copernicus.eu/cdsapp#!/home.
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Lorenz, R., Herger, N., Sedláček, J., Eyring, V., Fischer, E. M.,
and Knutti, R.: Prospects and Caveats of Weighting Climate
Models for Summer Maximum Temperature Projections Over

North America, J. Geophys. Res.-Atmos., 123, 4509–4526,
https://doi.org/10.1029/2017JD027992, 2018.

Lutz, A. F., ter Maat, H. W., Biemans, H., Shrestha, A. B.,
Wester, P., and Immerzeel, W. W.: Selecting representative cli-
mate models for climate change impact studies: an advanced
envelope-based selection approach, Int. J. Clim., 36, 3988–4005,
https://doi.org/10.1002/joc.4608, 2016.

Mahony, C. R., Wang, T., Hamann, A., and Cannon, A. J.: A
global climate model ensemble for downscaled monthly climate
normals over North America, Int. J. Climatol., 42, 5871–5891,
https://doi.org/10.1002/joc.7566, 2022.

Masato, G., Hoskins, B. J., and Woollings, T.: Winter and summer
Northern Hemisphere blocking in CMIP5 models, J. Clim., 26,
7044–7059, https://doi.org/10.1175/JCLI-D-12-00466.1, 2013.

McDermid, S. P., Ruane, A. C., Rosenzweig, C., Hudson, N. I.,
Morales, M. D., Agalawatte, P., Ahmad, S., Ahuja, L. R., Amien,
I., Anapalli, S. S., Anothai, J., Asseng, S., Biggs, J., Bert, F.,
Bertuzzi, P., Bhatia, V. S., Bindi, M., Broad, I., Cammarano, D.,
Carretero, R., Chattha, A. A., Chung, U., Debats, S., Deligios,
P., De Sanctis, G., Dhliwayo, T., Dumont, B., Estes, L., Ewert,
F., Ferrise, R., Gaiser, T., Garcia, G., Gbegbelegbe, S., Geetha-
lakshmi, V., Gerardeaux, E., Goldberg, R., Grant, B., Guevara,
E., Hickman, J., Hoffmann, H., Huang, H., Hussain, J., Justino,
F. B., Karunaratne, A. S., Koehler, A.-K., Kouakou, P. K., Ku-
mar, S. N., Lakshmanan, A., Lieffering, M., Lin, X., Luo, Q.,
Magrin, G., Mancini, M., Marin, F. R., Marta, A. D., Masu-
tomi, Y., Mavromatis, T., McLean, G., Meira, S., Mohanty, M.,
Moriondo, M., Nasim, W., Negm, L., Orlando, F., Orlandini,
S., Ozturk, I., Soares Pinto, H. M., Podesta, G., Qi, Z., Ra-
marohetra, J., ur Rahman, M. H., Raynal, H., Rodriguez, G.,
Rötter, R., Sharda, V., Shuo, L., Smith, W., Snow, V., Soltani,
A., Srinivas, K., Sultan, B., Swain, D. K., Tao, F., Tesfaye, K.,
Travasso, M. I., Trombi, G., Topaj, A., Vanuytrecht, E., Vis-
carra, F. E., Aftab Wajid, S., Wang, E., Wang, H., Wang, J.,
Wijekoon, E., Byun-Woo, L., Xiaoguang, Y., Young, B. H.,
Yun, J. I., Zhao, Z., and Zubair, L.: The AgMIP Coordi-
nated Climate-Crop Modeling Project (C3MP): Methods and
Protocols, in: Handbook of Climate Change and Agroecosys-
tems, Vol. 3, ICP Series on Climate Change Impacts, Adapta-
tion, and Mitigation, 191–220, IMPERIAL COLLEGE PRESS,
https://doi.org/10.1142/9781783265640_0008, 2014.

McSweeney, C., Murphy, J., Sexton, D., Rostron, J., Yamazaki,
K., and Harris, G.: Selection of CMIP5 members to augment a
perturbed–parameter ensemble of global realisations of future
climate for the UKCP18 scenarios, Tech. rep., Hadley Centre
Technical Note 102, HCTN_102_2018P, Met Office UA, 2018.

McSweeney, C. F. and Jones, R. G.: How representa-
tive is the spread of climate projections from the 5
CMIP5 GCMs used in ISI-MIP?, Clim. Serv., 1, 24–29,
https://doi.org/10.1016/j.cliser.2016.02.001, 2016.

McSweeney, C. F., Jones, R. G., and Booth, B. B. B.: Selecting
Ensemble Members to Provide Regional Climate Change Infor-
mation, J. Clim., 25, 7100–7121, https://doi.org/10.1175/JCLI-
D-11-00526.1, 2012.

McSweeney, C. F., Jones, R. G., Lee, R. W., and Rowell, D. P.:
Selecting CMIP5 GCMs for downscaling over multiple regions,
Clim. Dynam., 44, 3237–3260, https://doi.org/10.1007/s00382-
014-2418-8, 2015.

https://doi.org/10.5194/esd-14-457-2023 Earth Syst. Dynam., 14, 457–483, 2023

https://doi.org/10.1175/1520-0493(1994)122<2573:AGMFTA>2.0.CO;2
https://doi.org/10.1175/1520-0493(1994)122<2573:AGMFTA>2.0.CO;2
https://www.ipcc.ch/report/ar4/wg1/
https://www.ipcc.ch/report/ar5/wg1/
https://doi.org/10.5194/gmd-13-859-2020
https://doi.org/10.1038/s43017-022-00263-2
https://doi.org/10.1175/JCLI-D-20-0236.1
https://doi.org/10.1175/JCLI-D-20-0236.1
https://doi.org/10.1175/JAS-D-12-082.1
https://doi.org/10.1002/qj.1912
https://doi.org/10.1007/s10584-010-9800-2
https://doi.org/10.1002/2016GL072012
https://doi.org/10.48364/ISIMIP.842396.1
https://doi.org/10.1007/s00382-018-4083-9
https://doi.org/10.1029/2019GL086757
https://doi.org/10.1029/2017JD027992
https://doi.org/10.1002/joc.4608
https://doi.org/10.1002/joc.7566
https://doi.org/10.1175/JCLI-D-12-00466.1
https://doi.org/10.1142/9781783265640_0008
https://doi.org/10.1016/j.cliser.2016.02.001
https://doi.org/10.1175/JCLI-D-11-00526.1
https://doi.org/10.1175/JCLI-D-11-00526.1
https://doi.org/10.1007/s00382-014-2418-8
https://doi.org/10.1007/s00382-014-2418-8


482 T. E. Palmer et al.: Performance-based sub-selection of CMIP6 models

Menary, M. B., Robson, J., Allan, R. P., Booth, B. B. B.,
Cassou, C., Gastineau, G., Gregory, J., Hodson, D., Jones,
C., Mignot, J., Ringer, M., Sutton, R., Wilcox, L., and
Zhang, R.: Aerosol-Forced AMOC Changes in CMIP6 His-
torical Simulations, Geophys. Res. Lett., 47, e2020GL088166,
https://doi.org/10.1029/2020GL088166, 2020.

Merrifield, A. L., Brunner, L., Lorenz, R., Medhaug, I., and Knutti,
R.: An investigation of weighting schemes suitable for incorpo-
rating large ensembles into multi-model ensembles, Earth Syst.
Dynam., 11, 807–834, https://doi.org/10.5194/esd-11-807-2020,
2020.

Michelangeli, P.-A., Vautard, R., and Legras, B.: Weather
Regimes: Recurrence and Quasi Stationarity, J. At-
mos. Sci., 52, 1237–1256, https://doi.org/10.1175/1520-
0469(1995)052<1237:WRRAQS>2.0.CO;2, 1995.

Bukovsky, M. S., Thompson, J. A., and Mearns, L. O.: Weighting
a regional climate model ensemble: Does it make a difference?
Can it make a difference?, Clim. Res., 77, 23–43, 2019.

Ossó, A., Sutton, R., Shaffrey, L., and Dong, B.: Development, Am-
plification, and Decay of Atlantic/European Summer Weather
Patterns Linked to Spring North Atlantic Sea Surface Temper-
atures, J. Clim., 33, 5939–5951, https://doi.org/10.1175/JCLI-D-
19-0613.1, 2020.

Oudar, T., Cattiaux, J., and Douville, H.: Drivers of the North-
ern Extratropical Eddy-Driven Jet Change in CMIP5 and
CMIP6 Models, Geophys. Res. Lett., 47, e2019GL086695,
https://doi.org/10.1029/2019GL086695, 2020.

Overland, J. E., Wang, M., Bond, N. A., Walsh, J. E., Kattsov,
V. M., and Chapman, W. L.: Considerations in the Selec-
tion of Global Climate Models for Regional Climate Projec-
tions: The Arctic as a Case Study, J. Clim., 24, 1583–1597,
https://doi.org/10.1175/2010JCLI3462.1, 2011.

Palmer, T. E., Booth, B. B. B., and McSweeney, C. F.: How
does the CMIP6 ensemble change the picture for Euro-
pean climate projections?, Environ. Res. Lett., 16, 094042,
https://doi.org/10.1088/1748-9326/ac1ed9, 2021.

Palmer, T. E., McSweeney, C. F., Booth, B. B. B., Priest-
ley, M. D. K., Davini, P., Brunner, L., Borchert, L.,
and Menary, M. B.: tepmo42/cmip6_european_assessment:
Performance-based sub-selection of CMIP6 models for im-
pact assessments in Europe additional plots, Zenodo [data set],
https://doi.org/10.5281/zenodo.7828845, 2023.

Pelly, J. and Hoskins, B.: A new perspective on blocking,
J. Atmos. Sci., 60, 743–755, https://doi.org/10.1175/1520-
0469(2003)060<0743:ANPOB>2.0.CO;2, 2003.

Prein, A. F., Bukovsky, M. S., Mearns, L. O., Bruyère, C. L., and
Done, J. M.: Simulating North American Weather Types With
Regional Climate Models, Front. Environ. Sci., 7, p. 36, 2019.

Priestley, M. D., Ackerley, D., Catto, J. L., Hodges, K. I., Mc-
Donald, R. E., and Lee, R. W.: An Overview of the Extratrop-
ical Storm Tracks in CMIP6 Historical Simulations, J. Clim., 33,
6315–6343, https://doi.org/10.1175/JCLI-D-19-0928.1, 2020.

Priestley, M. D. K., Ackerley, D., Catto, J. L., and Hodges,
K. I.: Drivers of Biases in the CMIP6 Extratropical Storm
Tracks, Part I: Northern Hemisphere, J. Clim., 36, 1451–1467,
https://doi.org/10.1175/JCLI-D-20-0976.1, 2023.

Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexan-
der, L. V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global
analyses of sea surface temperature, sea ice, and night marine

air temperature since the late nineteenth century, J. Geophys.
Res., 108, 4407, https://doi.org/10.1029/2002JD002670, 2003
(data available at https://www.metoffice.gov.uk/hadobs/hadisst/
data/download.html, last access: December 2022).

Rex, D.: Blocking action in the middle troposphere and its effect
upon regional climate: I. An aerological study of blocking action,
Tellus, 2, 196–211, 1950.

Ribes, A., Qasmi, S., and Gillett, N. P.: Making climate projections
conditional on historical observations, Sci. Adv., 7, eabc0671,
https://doi.org/10.1126/sciadv.abc0671, 2021.

Ribes, A., Boé, J., Qasmi, S., Dubuisson, B., Douville, H., and
Terray, L.: An updated assessment of past and future warm-
ing over France based on a regional observational constraint,
Earth Syst. Dynam., 13, 1397–1415, https://doi.org/10.5194/esd-
13-1397-2022, 2022.

Rosenzweig, C., Arnell, N. W., Ebi, K. L., Lotze-Campen, H., Raes,
F., Rapley, C., Smith, M. S., Cramer, W., Frieler, K., Reyer,
C. P., Schewe, J., Van Vuuren, D., and Warszawski, L.: As-
sessing inter-sectoral climate change risks: The role of ISIMIP,
Environ. Res. Lett., 12, 010301, https://doi.org/10.1088/1748-
9326/12/1/010301, 2017.

Ruane, A. C. and McDermid, S. P.: Selection of a representative
subset of global climate models that captures the profile of re-
gional changes for integrated climate impacts assessment, Earth
Perspect., 4, 1–20, https://doi.org/10.1186/s40322-017-0036-4,
2017.

Ruane, A. C., McDermid, S., Rosenzweig, C., Baigorria, G. A.,
Jones, J. W., Romero, C. C., and DeWayne Cecil, L.: Carbon–
Temperature–Water change analysis for peanut production under
climate change: a prototype for the AgMIP Coordinated Climate-
Crop Modeling Project (C3MP), Glob. Change Biol., 20, 394–
407, https://doi.org/10.1111/gcb.12412, 2014.

Scaife, A. A., Copsey, D., Gordon, C., Harris, C., Hinton, T., Kee-
ley, S., O’Neill, A., Roberts, M., and Williams, K.: Improved At-
lantic winter blocking in a climate model, Geophys. Res. Lett.,
38, L23703, https://doi.org/10.1029/2011GL049573, 2011.

Schiemann, R., Athanasiadis, P., Barriopedro, D., Doblas-Reyes,
F., Lohmann, K., Roberts, M. J., Sein, D. V., Roberts, C. D.,
Terray, L., and Vidale, P. L.: Northern Hemisphere blocking
simulation in current climate models: evaluating progress from
the Climate Model Intercomparison Project Phase 5 to 6 and
sensitivity to resolution, Weather Clim. Dynam., 1, 277–292,
https://doi.org/10.5194/wcd-1-277-2020, 2020.

Selten, F. M., Bintanja, R., Vautard, R., and van den Hurk, B. J.
J. M.: Future continental summer warming constrained by the
present-day seasonal cycle of surface hydrology, Sci. Rep., 10,
4721, https://doi.org/10.1038/s41598-020-61721-9, 2020.

Shepherd, T. G.: Atmospheric circulation as a source of uncer-
tainty in climate change projections, Nat. Geosci., 7, 703–708,
https://doi.org/10.1038/ngeo2253, 2014.

Shepherd, T. G.: Storyline approach to the construction of regional
climate change information, Proc. Roy. Soc. A, 475, 20190013,
https://doi.org/10.1098/rspa.2019.0013, 2019.

Shiogama, H., Ishizaki, N. N., Hanasaki, N., Takahashi, K., Emori,
S., Ito, R., Nakaegawa, T., Takayabu, I., Hijioka, Y., Takayabu,
Y. N., and Shibuya, R.: Selecting CMIP6-Based Future Climate
Scenarios for Impact and Adaptation Studies, SOLA, 17, 57–62,
https://doi.org/10.2151/sola.2021-009, 2021.

Earth Syst. Dynam., 14, 457–483, 2023 https://doi.org/10.5194/esd-14-457-2023

https://doi.org/10.1029/2020GL088166
https://doi.org/10.5194/esd-11-807-2020
https://doi.org/10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO;2
https://doi.org/10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO;2
https://doi.org/10.1175/JCLI-D-19-0613.1
https://doi.org/10.1175/JCLI-D-19-0613.1
https://doi.org/10.1029/2019GL086695
https://doi.org/10.1175/2010JCLI3462.1
https://doi.org/10.1088/1748-9326/ac1ed9
https://doi.org/10.5281/zenodo.7828845
https://doi.org/10.1175/1520-0469(2003)060<0743:ANPOB>2.0.CO;2
https://doi.org/10.1175/1520-0469(2003)060<0743:ANPOB>2.0.CO;2
https://doi.org/10.1175/JCLI-D-19-0928.1
https://doi.org/10.1175/JCLI-D-20-0976.1
https://doi.org/10.1029/2002JD002670
https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html
https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html
https://doi.org/10.1126/sciadv.abc0671
https://doi.org/10.5194/esd-13-1397-2022
https://doi.org/10.5194/esd-13-1397-2022
https://doi.org/10.1088/1748-9326/12/1/010301
https://doi.org/10.1088/1748-9326/12/1/010301
https://doi.org/10.1186/s40322-017-0036-4
https://doi.org/10.1111/gcb.12412
https://doi.org/10.1029/2011GL049573
https://doi.org/10.5194/wcd-1-277-2020
https://doi.org/10.1038/s41598-020-61721-9
https://doi.org/10.1038/ngeo2253
https://doi.org/10.1098/rspa.2019.0013
https://doi.org/10.2151/sola.2021-009


T. E. Palmer et al.: Performance-based sub-selection of CMIP6 models 483

Simpson, I. R., Deser, C., McKinnon, K. A., and Barnes, E. A.:
Modeled and Observed Multidecadal Variability in the North At-
lantic Jet Stream and Its Connection to Sea Surface Tempera-
tures, J. Clim., 31, 8313–8338, https://doi.org/10.1175/JCLI-D-
18-0168.1, 2018.

Sutton, R. T. and Dong, B.: Atlantic Ocean influence on a shift
in European climate in the 1990s, Nat. Geosci., 5, 788–792,
https://doi.org/10.1038/ngeo1595, 2012.

Tibaldi, S. and Molteni, F.: On the operational pre-
dictability of blocking, Tellus A, 42, 343–365,
https://doi.org/10.3402/tellusa.v42i3.11882, 1990.

Tokarska, K. B., Stolpe, M. B., Sippel, S., Fischer, E. M., Smith,
C. J., Lehner, F., and Knutti, R.: Past warming trend con-
strains future warming in CMIP6 models, Sci. Adv., 6, eaaz9549,
https://doi.org/10.1126/sciadv.aaz9549, 2020.

Tsujino, H., Urakawa, L. S., Griffies, S. M., Danabasoglu, G., Ad-
croft, A. J., Amaral, A. E., Arsouze, T., Bentsen, M., Bernardello,
R., Böning, C. W., Bozec, A., Chassignet, E. P., Danilov, S.,
Dussin, R., Exarchou, E., Fogli, P. G., Fox-Kemper, B., Guo,
C., Ilicak, M., Iovino, D., Kim, W. M., Koldunov, N., Lapin,
V., Li, Y., Lin, P., Lindsay, K., Liu, H., Long, M. C., Komuro,
Y., Marsland, S. J., Masina, S., Nummelin, A., Rieck, J. K.,
Ruprich-Robert, Y., Scheinert, M., Sicardi, V., Sidorenko, D.,
Suzuki, T., Tatebe, H., Wang, Q., Yeager, S. G., and Yu, Z.:
Evaluation of global ocean–sea-ice model simulations based on
the experimental protocols of the Ocean Model Intercomparison
Project phase 2 (OMIP-2), Geosci. Model Dev., 13, 3643–3708,
https://doi.org/10.5194/gmd-13-3643-2020, 2020.

van den Hurk, B., Siegmund, P., Klien Tank (Eds), A., Attema, J.,
Bakker, A., Beersma, J., Bessembinder, J., Boers, R., Brandsma,
T., van de Brink, H., Drijfhout, S., Eskes, H., Haarsma, R.,
Hazeleger, W., Jilderda, R., Katsman, C., Lenderink, G., Lori-
aux, J., van de Meijgaard, E., van Noije, T., van Oldenborgh,
G. J., Selten, F., Siebesma, P., Sterl, A., de Vries, H., Van
Weele, M., de Winter, R., and van Zadelhoff, G.-J.: KNMI’14:
Climate Change scenarios for the 21st Century – A Nether-
lands perspective, Tech. Rep., Royal Netherlands Meteorolog-
ical Istitute Ministry of Infrastructure and Water Management,
https://www.knmiprojects.nl/projects/climate-scenarios (last ac-
cess: 14 April 2023), 2014.

Whetton, P., Macadam, I., Bathols, J., and O’Grady, J.: As-
sessment of the use of current climate patterns to eval-
uate regional enhanced greenhouse response patterns
of climate models, Geophys. Res. Lett., 34, L14701,
https://doi.org/10.1029/2007GL030025, 2007.

White, J. W., Hoogenboom, G., Kimball, B. A., and Wall,
G. W.: Methodologies for simulating impacts of climate
change on crop production, Field Crop. Res., 124, 357–368,
https://doi.org/10.1016/j.fcr.2011.07.001, 2011.

Yeager, S. G. and Robson, J. I.: Recent Progress in Understanding
and Predicting Atlantic Decadal Climate Variability, Curr. Clim.
Change Rep., 3, 112–127, https://doi.org/10.1007/s40641-017-
0064-z, 2017.

Zappa, G. and Shepherd, T. G.: Storylines of atmospheric cir-
culation change for European regional climate impact assess-
ment, J. Clim., 30, 6561–6577, https://doi.org/10.1175/JCLI-D-
16-0807.1, 2017.

Zappa, G., Shaffrey, L. C., and Hodges, K. I.: The ability of
CMIP5 models to simulate North Atlantic extratropical cy-
clones, J. Clim., 26, 5379–5396, https://doi.org/10.1175/JCLI-D-
12-00501.1, 2013.

Zhang, M.-Z., Xu, Z., Han, Y., and Guo, W.: Evaluation of CMIP6
models toward dynamical downscaling over 14 CORDEX do-
mains, Clim. Dynam., 1–15, https://doi.org/10.1007/s00382-
022-06355-5, 2022.

Zhang, R.: Coherent surface-subsurface fingerprint of the Atlantic
meridional overturning circulation, Geophys. Res. Lett., 35,
L20705, https://doi.org/10.1029/2008GL035463, 2008.

Zhang, R., Sutton, R., Danabasoglu, G., Kwon, Y., Marsh,
R., Yeager, S. G., Amrhein, D. E., and Little, C. M.:
A Review of the Role of the Atlantic Meridional Over-
turning Circulation in Atlantic Multidecadal Variability and
Associated Climate Impacts, Rev. Geophys., 57, 316–375,
https://doi.org/10.1029/2019RG000644, 2019.

https://doi.org/10.5194/esd-14-457-2023 Earth Syst. Dynam., 14, 457–483, 2023

https://doi.org/10.1175/JCLI-D-18-0168.1
https://doi.org/10.1175/JCLI-D-18-0168.1
https://doi.org/10.1038/ngeo1595
https://doi.org/10.3402/tellusa.v42i3.11882
https://doi.org/10.1126/sciadv.aaz9549
https://doi.org/10.5194/gmd-13-3643-2020
https://www.knmiprojects.nl/projects/climate-scenarios
https://doi.org/10.1029/2007GL030025
https://doi.org/10.1016/j.fcr.2011.07.001
https://doi.org/10.1007/s40641-017-0064-z
https://doi.org/10.1007/s40641-017-0064-z
https://doi.org/10.1175/JCLI-D-16-0807.1
https://doi.org/10.1175/JCLI-D-16-0807.1
https://doi.org/10.1175/JCLI-D-12-00501.1
https://doi.org/10.1175/JCLI-D-12-00501.1
https://doi.org/10.1007/s00382-022-06355-5
https://doi.org/10.1007/s00382-022-06355-5
https://doi.org/10.1029/2008GL035463
https://doi.org/10.1029/2019RG000644

	Abstract
	Copyright statement
	Applications and motivations for regional sub-selection
	Performance assessment for Europe
	Criteria
	Atmospheric criteria
	Ocean criteria

	Classification definitions

	Materials and methods
	Data sources
	Assessment examples
	Large-scale circulation patterns
	Storm track large-scale assessment

	Weighting for performance against global trends and model independence with the ClimWIP method

	Results: assessment and applications for sub-selection
	Assessment table
	Excluding the models least representative of key regional processes
	Sub-selection for performance and model diversity

	Discussion
	Conclusions
	Appendix A
	Appendix A1: Annual precipitation cycle
	Appendix A2: Sea surface temperature bias
	Appendix A3: Near-surface temperature bias
	Appendix A3.1: Large-scale bias
	Appendix A3.2: European land regions

	Appendix A4: Atlantic meridional overturning circulation
	Appendix A5: Storm tracks
	Appendix A5.1: Regional assessment

	Appendix A6: Blocking frequency

	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

