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Abstract

In the Earth system models (ESMs) participating in the Coupled Models Intercomparison Project
phase 6 (CMIP6), the tropical low-cloud feedback is 50% more positive than its predecessors (CMIP5)
and continues to dominate the spread in simulated climate sensitivity. In the context of recent studies
reporting larger feedbacks for stratocumulus (Sc) than shallow cumulus (Cu) clouds, it appears crucial
to faithfully represent the geographical extent of each cloud type to simulate realistic low-cloud
feedbacks. Here we use a novel observation-based method to distinguish Sc and Cu clouds together
with satellite data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations
(CALIPSO) and Clouds and the Earth’s Radiant Energy System (CERES) to evaluate Sc and Cu cloud
fractions, cloud radiative effects and cloud feedbacks in the two latest generations of CMIP ESMs.
Opverall, the CMIP6 models perform better than the CMIP5 models in most aspects considered here,
indicating progress. Yet the ensemble mean continues to underestimate the marine tropical low-cloud
fraction, mostly attributable to Sc. Decomposition of the bias reveals that the Sc-regime cloud fraction
is better represented in CMIP6, although Sc regimes occur too infrequently—even less frequently
than in CMIP5. Building on our Sc and Cu discrimination method, we demonstrate that CMIP6
models also simulate more realistic low-cloud feedbacks than CMIP5 models, especially the Sc
component. Finally, our results suggest that part of the CMIP6 low-cloud feedback increase can be
traced back to greater cloud fraction in Sc-dominated regions.

1. Introduction

How clouds will respond to global warming, which is the essence of cloud feedback, continues to be aleading
source of uncertainty in the two most recent Coupled Models Intercomparison Project (CMIP) generations
(Zelinka et al 2016, 2020). The associated diversity of behavior impedes our ability to project the magnitude of
future climate change and associated impacts (Vial et al 2013, Caldwell et al 2016, Zelinka et al 2020). More
specifically, tropical low-cloud feedbacks, which are about 50% larger in CMIP6 (Cesana and del Genio 2021),
remain particularly challenging because they dominate the spread among Earth system model (ESM) estimates
of equilibrium climate sensitivity (ECS), a measure of the globally averaged surface air warming resulting from a
doubling of CO, (Bony and Dufresne 2005, Andrews et al 2012, Vial et al 2013, Caldwell er al 2016).

Low clouds may be separated into two main categories: stratocumulus (Sc, including stratus clouds),
typically driven by cloud-top radiative cooling, and shallow cumulus (Cu), driven by surface heat fluxes. Since
these low clouds are dominated by different processes, they are typically represented by different
parametrizations (i.e., turbulence for Sc and plume-like convection for Cu), and they exhibit distinct sensitivities
to sea surface temperature (SST) and estimated inversion strength ([EIS]; Cesana and del Genio 2021,
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Myers et al 2021), the two main low-cloud controlling factors (Qu et al 2015, Klein et al 2017). As a result, Sc and
Cu clouds generate distinct feedbacks that are modulated by SST and EIS patterns (e.g., Andrews and

Webb 2018, Cesana and del Genio 2021). Consequently, simulating Sc or Cu clouds in the wrong places may
result in unrealistic feedbacks, which explains why the issue of the Sc and Cu geographical extent emerges as
being essential to estimating low-cloud feedbacks and the contribution to simulated ECS.

However, most past studies have investigated low-cloud feedbacks as a whole rather than separating the
contribution of Sc and Cu (Bony and Dufresne 2005, Soden and Held 2006, Zelinka et al 2013, 2016). This
limitation is partly driven by a lack of observations that distinguish these cloud regimes (mostly field campaigns
and ground-based sites, e.g., Rémillard et al 2012) and partly because it has been difficult to distinguish them in
ESM outputs. The advent of new Sc and Cu global-scale datasets, such as the Cumulus And Stratocumulus
CloudSat-CAlipso Dataset (CASCCAD; Cesana et al 2019b), provide new possibilities in ESM evaluation of Sc
and Cu cloud fractions, radiative effects and cloud feedbacks.

Here we leverage the CASCCAD dataset to develop a novel method that separates Sc- from Cu-dominated
regimes over tropical oceans. We then use it with the General circulation model-oriented Cloud-Aerosol Lidar
and Infrared Pathfinder Satellite Observations (CALIPSO) cloud product (CALIPSO-GOCCP) to evaluate the
evolution of tropical Sc and Cu cloud fractions from CMIP5 to CMIP6 ESM generations. Finally, we investigate
how changes in ESMs Sc and Cu cloud properties affect low-cloud feedback.

2.Data and methods

2.1. Observations

To evaluate the models in sections 3.1 and 3.2, we use monthly low-cloud fraction (LCF) maps (cloud heights
<3.36 km) over the tropical oceans, defined as 35°S to 35°N, from CALIPSO-GOCCP observations (Chepfer
etal 2010), which sample every 333 m along-track near-nadir lidar backscatter profiles for 480 m height
intervals. CALIPSO-GOCCP LCF is consistent with the CALIPSO lidar simulator LCF outputs from the models,
described in the next section.

To quantify the shortwave cloud radiative effect in the supplementary information (SWCRE, defined as
clear-sky minus all-sky fluxes) at the top-of-atmosphere (TOA), we use the monthly mean fluxes from CERES-
Energy Balanced and Filled product (CERES-EBAF Ed4.1; Loeb et al 2018), which are designed to be compared
directly compared with CMIP model outputs.

To select subsidence regimes, we use monthly large-scale pressure vertical wind at 500 hPa (wso, > 0 hPa
d ") from three reanalyses: the 5th generation European Centre for Medium-Range Weather Forecasts
atmospheric reanalysis (ERAS5, Hersbach et al 2020), Modern-Era Retrospective analysis for Research and
Applications version 2 (MERRA-2), and National Centers for Environmental Prediction/Department of Energy
(NCEP/DOE) reanalysis 2 (Kanamitsu et al 2002). Since it is unclear which reanalysis dataset best depicts wsgo,
we average them together to arguably obtain a best estimate. Using a specific reanalysis dataset instead of the
mean does not change qualitatively or quantitatively the results: the associated change in Sc and Cu cloud
fractions are smaller than 1% absolute (not shown).

To validate our Sc and Cu discrimination method in section 2.3, we use CASCCAD (Cesana et al 2019b),
which separates Sc and Cu based on cloud morphology. More specifically, the CASCCAD algorithm identifies
overcast Sc, broken Sc, Cu under Sc, Cu with stratiform outflow and isolated Cu using cloud top height,
horizontal cloud fraction, vertical cloud fraction variability and horizontal continuity through orbit granules.

All satellite and reanalysis datasets used in this study are monthly means over the 2007-2016 period and over
a2.5° x 2.5°% grid.

For cloud feedback estimates (section 3.3), we use the inferred low, Sc and Cu cloud feedbacks from
CASCCAD observations over tropical oceans as described in Cesana and Del Genio (2021; see also
Supplementary text S1). These feedbacks were computed from the product of CASCCAD-based sensitivities to
SST and EIS and potential future SST and EIS pattern changes under an abrupt 4xCO, warming scenario and
weighted by Sc/(Sc+Cu) fraction. These estimates of cloud feedbacks are in good agreement with other
independent observationally inferred estimates (Ceppi and Nowack 2021, Myers et al 2021).

2.2.Model simulations

For the model evaluation in sections 3.1 and 3.2, we analyze monthly outputs from global simulations with
prescribed SST (following the Atmospheric Model Intercomparison Project, AMIP) from a subset of ten CMIP6
ESMs and their CMIP5 counterparts from the same modeling center, as listed in table 1. We use the last eight
years of the CMIP6 simulations (2007-2014) because it partially overlaps with the observational record, and the
last eight years of the CMIP5 simulations (2001-2008) to remain consistent. Using the 2001-2008 time period
for CMIP6 models does not change qualitatively or quantitatively the results: the changes in multimodel mean
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Table 1. We use a subset of 10 CMIP5 and 10 CMIP6 ESMs from the same institutions to best characterize the changes that occurred between
CMIP5 and CMIP6 model generations.

Institution CMIP6 CMIP5

Beijing Climate Centre (BCC) BCC-CSM2-MR bec-csml-1-m
Canadian Centre for Climate Modelling and Analysis (CCCma) CanESM5 CanAM4
National Center for Atmospheric Research (NCAR) CESM2 CCSM4
Centre national de recherches météorologiques (CNRM) CNRM-CM6-1 CNRM-CM5
Geophysical Fluid Dynamics Laboratory (GFDL) GFDL-CM4 GFDL-CM3
Goddard Institute for Space Studies (GISS) GISS-E2-1-G GISS-E2-R
Met Office Hadley Centre (MOHC) HadGEM3-GC31-LL HadGEM2-A
Institut Pierre-Simon Laplace (IPSL) IPSL-CM6A-LR IPSL-CM5B-LR
Model for Interdisciplinary Research on Climate (MIROC) MIROC6 MIROC5
Meteorological Research Institute (MRI) MRI-ESM2-0 MRI-CGCM3

Scand Cu cloud fractions are smaller than 0.04% absolute (not shown). We ensure a fair evaluation that
accounts for CALIPSO lidar limitations and uses similar cloud definitions as in CALIPSO-GOCCP by utilizing
CALIPSO-like model outputs, which explains why we are limited to these ten modeling centers. These outputs
were generated using the CALIPSO lidar simulator (Chepfer et al 2008) and we further interpolate them on the
CALIPSO-GOCCP 2.5° x 2.5° grid. Finally, consistent with the observations, we focus our analysis on
subsidence regimes over tropical oceans (wsgo > 0 hPa d ™', between 35°S and 35°N), where the high-cloud
fraction (cloud heights > 6.72 km) is small and minimally affects the detection of low clouds (see figure S2 of
Cesanaetal 2019a).

In the supplementary information, we compute SWCRE using TOA monthly all-sky (called rsut) and clear-
sky (called rsutcs) fluxes, which can be directly compared with CERES-EBAF observations.

In section 3.3, we use cloud feedbacks from Zelinka et al (2020), obtained using ESM outputs from the CMIP
database in which the atmospheric CO, levels were instantaneously quadrupled (4xCO, experiment) compared
to a pre-industrial atmosphere (piControl experiment). The cloud feedback is then computed using the non-
cloud radiative kernel method, which quantities the sensitivity of TOA radiation to small perturbations and is
adjusted for non-cloud influences (Soden et al 2008). In this study, we focus on low-cloud feedbacks, defined as
cloud feedbacks from low-level clouds with a cloud-top pressure greater than 680 hPa.

2.3.Scand Cu discrimination methods

While convective and stratiform clouds are often parameterized separately, distinct low-level convective and
stratiform cloud fractions are not typically available in the CMIP5 or CMIP6 archives. As a result, it is
particularly difficult to evaluate separately Sc and Cu clouds in widely available climate model output. Perhaps
the most straightforward approach to separate Sc- and Cu-dominated gridboxes in an ESM (or any other global
dataset) is to define Sc and Cu regimes based on geographical distributions of Sc and Cu using CASCCAD
observations. For that purpose, we can identify Sc and Cu regimes using the fraction of Sc clouds, with a metric
computed as Sc/(Sc+Cu) in subsidence regime (wsgo > 0 hPa d ™), to avoid middle- and high-level cloud
overlap, for each month. Here we consider Sc as being all low clouds that are not isolated Cu and therefore the
sum of Sc + Cu = LCF. Where Sc/(Sc+Cu) > 0.5, we define LCFs for Sc and Cu respectively as being LCFg,

= LCFand LCF¢, = 0. Conversely, where Sc/(Sc+Cu) < 0.5, LCFs. = 0 and LCF¢, = LCF. However, we note
that matching the observations using this geographical method (referred to as Geo method) assumes that ESMs
simulate the correct Sc and Cu monthly regimes geographically and necessitates comparing ESM outputs over
the same time period as CASCCAD, which is possible for CMIP6 models but not CMIP5.

To address these shortcomings, we have developed another method that can distinguish Sc and Cu monthly
cloud regimes in any climate model or observational dataset. This method can be used over any period of time
and is independent of environmental variables (e.g., vertical wind, EIS), which have often been used to separate
Scand Cu cloud regimes (e.g., Medeiros and Stevens 2011, Nam et al 2012, Myers et al 2021) although
shortcomings of this traditional method have been noted (Cesana and del Genio 2021, Crnivec et al 2023). It is
based on the greater area coverage of Sc compared to Cu clouds, that is, their cloud fraction is typically larger
than that of Cu over the typical size of an ESM gridbox (~100 km; Cesana et al 2019a).

Building on this discriminating characteristic, we separate monthly Sc- and Cu-dominated gridboxes
depending on whether their low-cloud fraction is greater or less than the monthly mean LCF over the tropical
ocean (M) in subsidence regimes, instead of using the CASCCAD-derived Sc/(Sc+Cu) fraction. For each
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Figure 1. Maps of (left to right) Sc, Cu cloud fractions and Sc/(Cu+-Sc) fraction for (top to bottom) CALIPSO-CASCCAD

(representing the reference distribution) and CALIPSO-GOCCP v2.9 (2007-2016) using the Geo, CF and EIS methods to separate Sc
and Cu clouds (see section 2.3). The means are given in the upper left corner of each map. The linear correlation coefficients between

SCgeos Cligeos S¢/(Cu+-S¢)geo and Scp, Cucr, Sc/(Cu+Sc) rare 0.94, 0.69 and 0.86.
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Figure 2. Same as figure 1 but for GISS-ModelE3 model (2007-2014; Cesana et al 2021). The linear correlation coefficients between
SCges Cligeo s S¢/(Cu+Sc)geo and Scc, Cuc, Sc/(Cu+-Sc)crare 0.95, 0.73 and 0.66.

monthly mean, LCFs. = LCFand LCF, = 0 where LCF > LCFyopics> and conversely, LCFs. = 0 and LCFc,

= LCF where LCF < LCFyopics. In the remainder of the study, we present monthly means of these LCFs. and
LCE, over the eight-year time period. In addition, we use the same method to define the monthly frequency of
occurrence of Sc and Cu cloud regimes in a gridbox for each month, which can correspond to either the Sc or Cu
cloud regime, used in figures 5 and 7. Finally, we also compute the Sc and Cu LCF monthly means within their
regime, respectively, which we refer to as LCF;gjme.» in figures 5, 6 and 7. This effectively corresponds to

averaging LCF where LCF > LCFyopics, for LCFs regime and where LCF < LCFyqpics for LCFcy regime-

We validate this cloud fraction (CF) method, by comparing the resulting Sc and Cu cloud fractions to those
obtained from the CASCCAD-based Geo method, which, by definition, generates Sc- and Cu-dominated cloud
fractions the closest to the true CASCCAD Sc and Cu cloud fraction. We find that the Sc- and Cu-dominated
cloud fractions from the CF method are highly correlated with that using the Geo method (figure 1), even better
than using a threshold based on estimated inversion strength (e.g., EIS = 1 K). The CF method also works very
well (and better than the EIS method) with monthly means from the latest version of the GISS-ModelE3 climate
model (Cesana et al 2021), for which we have access to the constituent Sc and Cu cloud fractions (figure 2). For
the sake of simplicity, we refer to these Sc- and Cu-dominated cloud fractions as Sc and Cu cloud fractions in the
remainder of the manuscript.
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Figure 3. Maps of (left to right) Sc, Cu cloud fractions and Sc/(Cu+-Sc) fraction for (top to bottom) CALIPSO-GOCCP v2.9
(2007-2016) and for the CMIP6 and CMIP5 multimodel biases (models minus observations, 2007-2014), using the CF method to
separate Sc and Cu clouds (see section 2.3). Note that the CMIP Sc/(Cu+Sc) fractions are actual values and not biases. The linear
correlations between observed and simulated Sc, Cuand Sc/(Sc+Cu) ratio are 0.91, 0.82 and 0.88 for the CMIP6 models and 0.87,
0.76 and 0.85 for CMIP5 models, respectively.

3. Results

3.1. Geographical distributions

To evaluate Sc and Cu clouds in CMIP ESMs and their evolution between CMIP5 and CMIP6, we apply the CF
method to both CALIPSO-GOCCP observations and the corresponding monthly CMIP simulator outputs from
a fixed set of 10 modeling centers across the two CMIP generations (see table 1). Figure 3 shows maps of Scand
Cu cloud fractions—sometimes refer to as cloud covers in the literature—and Sc/(Sc 4+ Cu) fraction for the
CALIPSO-GOCCP and the corresponding biases (models minus observations) for CMIP6 and CMIP5
multimodel means. The large Sc decks off the west coasts of continents are well captured in the observations with
cloud fractions larger than 90% at the heart of the main decks. By contrast, the Sc cloud fraction is far smaller in
the trade wind regions, where Cu clouds dominate and peak at around 30% in some regions. Overall, Scand Cu
clouds appear to be well confined with relatively small overlapping areas, as in CASCCAD observations (figure 1,
top row). The CMIP6 multimodel mean reproduces the observed Sc and Cu cloud patterns very well with a
notable improvement over that of CMIP5 models, which simulates too much Sc and Cu cloud in Cu- and Sc-
dominated regions, respectively, as exemplified by the Sc/(Sc + Cu) fraction (figure 3). However, although
collectively, CMIP6 models have substantially increased Sc cloud fraction and slightly increased Cu cloud
fraction, both cloud fractions are largely underestimated compared to observations, especially over Sc decks.
This issue is investigated into more detail by Crnivec et al (2023) with a slightly larger number of models.

We next focus on the zonal distributions of Sc and Cu clouds (figure 4). For this purpose, we not only analyze
Scand Cu cloud fractions (figure 4, top row) but also the frequency of occurrence of each regime (figure 4,
middle row) and the cloud fraction mean within each regime (figure 4, bottom row), as described in section 2.3.
This decomposition reveals that Sc and Cu cloud fractions within their regimes, and therefore the associated
model biases, are rather constant across latitudes in both observations and models, and therefore the variability
of CMIP Sc and Cu cloud fraction biases is driven by differences in the frequency of occurrence of Sc and Cu
regimes. For example, between 5°S and 15°N, the CMIP Sc cloud fraction bias is very small (figure 4, top row)
because the underestimate of the Sc cloud fraction within the Sc regime (figure 4, bottom panel) is compensated
by the overestimate of Sc-regime occurrences (figure 4, middle panel). By contrast, between 25°S and 10°S, the
CMIP models underestimate both the Sc-regime occurrence and cloud fraction, which results in the largest bias
of the Sc cloud fraction across the tropics: an underestimation by a factor of two compared to the observations.
On average, the CMIP models overestimate the frequency of occurrence of the Sc regime within the deep tropics
(approximately 10°S to 10°N), while they underestimate it elsewhere, and vice versa for the Cu regime. However,
here again, our results show that CMIP6 models better depict the observed frequency of Sc and Cu regimes and
their associated cloud fractions than their CMIP5 predecessors. Similarly, we find that the overestimate of the
shortwave radiative effect —clouds being too bright—has improved in the CMIP6 ensemble but remain large
(figure S1). The persistence of the ‘too few too bright’ problem in CMIP6 models is consistent with a recent study
(Konsta et al 2022) and is explored in more depth for Sc and Cu regimes by Crnivec et al (2023).

3.2. Intermodel variability

While on average, both CMIP6 and CMIP5 ensemble averages fail to reproduce the observed magnitude of Sc
and Cu cloud fractions, individual models may do better. For this reason, we explore intermodel tropical means
of Scand Cu cloud fractions, frequencies and regime cloud fractions (figure 5). We find that all ESMs
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Figure 4. Zonal mean of Sc (solid) and Cu (dashed; top to bottom) cloud fraction means, frequency of regime occurrence and cloud
fraction mean within each regime. The black, red and blue lines correspond to the observations, CMIP6 and CMIP5 ESMs,
respectively. The shading corresponds to the observed annual standard deviation.

underestimate Cu cloud fraction and all but MIROC5, MIROC6 and IPSL-CM6A underestimate the Sc cloud
fraction (figure 5, top panel). Out of these three models, only IPSL-CM6A manages to match the observed Sc
frequency and regime mean (figure 5, middle and bottom panels, respectively). The Sc overestimates for
MIROCS5 and MIROCS is the result of a large overestimate of the frequency of occurrence of Sc clouds, which
more than compensate for the underestimated Sc-regime cloud fraction. On average, CMIP5 ESMs simulate the
correct global mean Sc and Cu frequencies (figure 5, middle panel) but the intermodel spread is very large. The
CMIP6 ESMs on the other hand slightly underestimate (overestimate) the frequency of Sc (Cu) clouds although
their intermodel spread is largely reduced. Furthermore, we note that the zonal variability of Sc and Cu
frequencies is better simulated by CMIP6 models (figure 4). In terms of regime mean, CMIP5 and CMIP6 ESMs
show a comparable intermodel spread and no specific improvement is noticeable in CMIP6 ESMs beyond a
larger multimodel mean for Sc clouds, as reported in the previous section. Finally, it is notable that the ratio of Sc
to Cu cloud fraction is overestimated by most models compared to observations—appearing below the black
line in figure 5 top panel—with possible implications for cloud feedback given that Sc are more sensitive to
warming than Cu (Cesana and Del Genio 2021, Myers et al 2021).

3.3. Cloud feedback
In the previous section, we have characterized biases in the representation of Sc and Cu clouds in CMIP ESMs
and changes from the CMIP5 to the CMIP6 generation. In this section, we now want to evaluate cloud feedback
in Sc- and Cu-dominated regions and explore a possible link between Sc and Cu cloud representation and
feedback. For this purpose, we develop a method slightly different from that introduced in section 2.3.

Although observationally inferred Sc and Cu cloud feedbacks are available from CALIPSO-CASCCAD
observations (Cesana and Del Genio 2021, Supplementary text S1), there are no equivalent Sc and Cu CMIP-
specified model outputs to compare with. As in section 2.3, we design a new method to estimate Scand Cu
feedbacks from the low-cloud feedback and Sc and Cu present-day cloud fractions that can be applied to both
observations and simulations for a consistent evaluation. Unlike section 2.3 though, we cannot use the same CF
method because it would require monthly mean low-cloud feedbacks, i.e., feedbacks with time dimension,
which is missing in the feedbacks we use (Zelinka et al 2020).

Instead, we multiply the simulated and observed low-cloud feedback maps by the present-day climatology of
either Sc or Cu cloud fraction map with respect to all clouds (i.e., no time dependence) to obtain CF-derived Sc
and Cu cloud feedback maps, respectively. By doing so, we implicitly assume that Sc and Cu 2D-geographical
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Figure 5. Scatter plot of the tropical mean Sc and Cu (from top to bottom) cloud fraction, frequency of regime occurrence and cloud
fraction mean within each regime for the CALIPSO-GOCCP observations (black), the CMIP6 models (red) and the corresponding
CMIP5 models (blue). The black lines in the top and bottom panels correspond to the ratio Sc/Cu, meaning that any model below that
line favors Sc over Cu clouds compared to observations. The shading corresponds to the observed annual standard deviation.

distributions will remain identical in a warmer climate, which introduces some small uncertainty based on the
marginal interannual variability of Sc and Cu clouds (Cesana and Del Genio 2021). This assumption is further
supported by results using GISS-ModelE3 (see figure S2), for which using Sc and Cu 2D-geographical
distributions from a warmer climate marginally reduces the Sc feedback, and therefore increases Cu feedback, by
0.03 Wm ™ 2K (figure $3). Additionally, we use 0.7 LCPyopics threshold rather than LCFyqpics, as in section 2.3,
to distinguish the Scand Cu cloud regimes derived from the CF method. Using this smaller threshold in the
observations helps increase Sc-dominated and reduce Cu-dominated areas and obtain CF-derived Sc and Cu
feedbacks that compare better with our reference CASCCAD-inferred feedbacks, both in terms of mean and
pattern correlation (figure 6). Additionally, we note that although using such a threshold respectively increases
and decreases Sc and Cu cloud fractions, it does not qualitatively alter the conclusions of our analysis in

sections 3.1 and 3.2 (figure S4). On the one hand, we acknowledge that the pattern correlation between the
adjusted CF-derived and reference Cu feedbacks and the reference is small, albeit their global means are close.
On the other hand, the adjusted CF-method results in a very high pattern correlation and a realistic global mean
compared to the reference for the Sc feedback, which drives most of the total low-cloud feedback. Finally, we
apply the same method to ESMs to compute Sc- and Cu-dominated feedbacks.

Figure 7 shows tropical maps of Sc and Cu cloud feedback, using the adjusted CF method, for the CASCCAD
and CALIPSO-GOCCP observations and the CMIP6 and CMIP5 multimodel means. As in the cloud fraction
evaluation, collectively, CMIP6 ESMs substantially improved depiction of Sc cloud feedback both in terms of
mean and pattern correlation, as also for Cu clouds to a lesser extent, compared to CMIP5. Yet, we note that both
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Figure 6. Maps of (left to right) CASCCAD-inferred Sc and Cu (top to bottom) and adjusted CF-derived feedbacks. The means are
given in the upper left corner of each map. The linear correlation coefficients between Sc and Cu CASCCAD-inferred feedbacks and

Sc.rand Cu,sfeedbacks are 0.92 and 0.22, respectively.

CMIP6

W
-4
—
=
Q
30°S — & TR P L
[ 60°E 120°E 180°W 120°W 60°W 0° E 120°E 180°W 120°W 60°W 0°
Sc Feedback (Wm2K™) Cu Feedback (Wm™2K™")
-8 -l4 -1 06 02 02 06 1 14 18-09 07 05 03 -001 01 03 05 07 09
' r ‘ T ee—

Figure 7. Maps of (left to right) Sc and Cu adjusted CF-derived cloud feedback for (top to bottom) CASCCAD and CALIPSO-GOCCP
and for the CMIP6 and CMIP5 models. The means are given in the upper left corner of each map. The linear correlation coefficients
between observations and CMIP6 and CMIP5 models are 0.39 and 0.20 for Sc, and 0.30 and 0.22 for Cu, respectively.

generations underestimate the magnitude of the positive feedback. The regions in which the CMIP6 multimodel
mean simulates more Sc clouds relative to CMIP5 (the subtropics and in the Peruvian and Namibian decks)
loosely correspond to increased Sc positive feedback, implying that the present-day mean state of Sc clouds is at
least partly related to how they will evolve in a warmer climate.

We further pursue this hypothesis by showing that the change in low-cloud feedback between CMIP5 and
CMIP6 ESMs within the same modeling center correlates well with the change in Sc cloud fraction over Sc-
dominated regions, that is in regions where the climatological mean of Sc/(Sc+Cu) fraction over the full period
is greater than 0.5 (figure 8). As the Sc cloud fraction in Sc-dominated regions increases between CMIP5 and
CMIP6 ESMs, their low-cloud feedback becomes more positive, which partly explains the increase in tropical
cloud feedback in the CMIP6 generation (Zelinka et al 2020, Cesana and Del Genio 2021). Put simply, the
addition of positive-feedback-producing Sc clouds in CMIP6 models naturally resulted in a more positive low-
cloud feedback. Even though the correlation (r = 0.75) is statistically significant (p < 0.05), our sample of models
is limited (ten modeling centers). Additionally, we cannot rule out other changes between CMIP5 and 6 model
versions contributing to increased low-cloud feedback, which is consistent with the positive intercept of the
correlation line between ALow feedback and ASc (figure 8). On the other hand, we find no significant
correlation (r = 0.24, p > 0.05) between ALow feedback and ACu (change in Cu cloud fraction within the same
modeling center over Cu-dominated regions). Such a result is not surprising since most of the low-cloud

feedback is driven by Sc.
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Figure 8. Relationship between the change of Sc-dominated-region cloud fraction and the change low-cloud feedback in CMIP
models (CMIP6 minus CMIP5). Linear correlation coefficient (r) is 0.75 and p-value (p) is 0.01.

4. Conclusions and discussions

This study focuses on developing a novel method to distinguish Sc and Cu clouds in observations and climate
models based on low-cloud fraction. Our method is independent of traditionally used environmental variables
that have limitations. The use of this method together with CALIPSO-GOCCP and CASCCAD satellite
observations allows for an evaluation of Sc and Cu clouds and their feedback in the two most recent generations
of CMIP ESMs (CMIP6 and CMIP5). Overall, we find that CMIP6 ESMs have collectively improved their
depiction of Sc and Cu cloud fractions, cloud radiative effects and cloud feedbacks in terms of pattern and
magnitude compared to CMIP5 ESMs, especially that of Sc. However, CMIP6 ESMs continue to underestimate
both Scand Cu cloud fractions and tend to slightly underestimate the frequency of occurrence of Sc—and
therefore overestimate that of Cu—on average. The largest CMIP6 Sc cloud biases occur where the models
underestimate both the frequency of occurrence of Sc regime and their associated regime cloud fraction
(typically south of 10°S), while the smallest biases are identified around the deep tropics (between 5°S and 15°N)
where the underestimate of Sc-regime cloud fraction is compensated by an overestimate of the frequency of
occurrence of Sc regime. In addition, CMIP6 clouds remain mostly too bright compared to the observations—
although better than CMIP5—corresponding to large Sc CRE biases. Using an innovative method and
observationally inferred low-cloud feedbacks, we then proceed to show evidence that the multimodel CMIP6 Sc
and Cu cloud feedbacks are substantially more realistic than CMIP5’s. Finally, our results suggest that part of the
increase in the CMIP6 low-cloud feedback (e.g., Zelinka et al 2020, Cesana and Del Genio 2021, Myers et al 2021)
can be traced back to larger Sc cloud fraction in Sc-dominated regions, although our model sample remains
limited.

Inlight of the recent literature (e.g., Cesana and Del Genio 2021, Myers et al 2021), Sc feedback seems to be
the most important contributor to the tropical low-cloud feedback in contrast with the smaller Cu feedback.
Such a difference in Sc and Cu feedback strength helps understand why adding more Sc clouds—that produce a
positive feedback—in CMIP6 ESMs has led to greater low-cloud feedback: extending Sc-covered areas cloud
fraction therein both serve to amplify their positive feedback. However, the geographical location and
magnitude of Sc cloud fraction in the present-day climate are not the only factors at play in determining future
Sc cloud feedback; one must also account for the sensitivity of Sc clouds to environmental factors (also known as
cloud-controlling factors; (Ceppi and Nowack 2021, Cesana and Del Genio 2021, Scott et al 2020, Myers et al
2021). The evaluation of Sc and Cu interannual sensitivities to environmental factors using our CF method
should help better understand the origins of the large tropical feedback increase in some CMIP6 ESMs, and their
subsequent contribution to ECS, which cannot be solely explained by increased Sc cloud fraction magnitude and
extent.
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The CALIPSO-GOCCP observations can be downloaded from the CEMIP-Obs website (http://climserv.ipsl.
polytechnique.fr/cfmip-obs/Calipso_goccp.html). The CALIPSO-GOCCP CASCCAD statistical datasets can
be downloaded from the GISS website (https://data.giss.nasa.gov/clouds/casccad /). CERES-EBAF 4.1 TOA
fluxes were downloaded on the CERES website (https://ceres.larc.nasa.gov/data/#ebaftoa-level-3). Three
reanalysis datasets were used in the study for temperatures: the 5th generation European Centre for Medium-
Range Weather Forecasts atmospheric reanalysis (ERA5, downloaded from https: //doi.org/10.24381 /cds.
6860a573 and by selecting monthly averaged reanalysis and the temperature variable, the Modern-Era
Retrospective analysis for Research and Applications version 2, downloaded from https: //disc.gsfc.nasa.gov/
datasets/M2IMNPASM_5.12.4 /summary (https://doi.org/10.5067/2E096]V59PK?7), and National Centers for
Environmental Prediction/ Department of Energy (NCEP/DOE) reanalysis 2, downloaded from http:/ /www.cpc.
ncep.noaa.gov/products/wesley/reanalysis2 /.

The CMIP ESM outputs used in this study—listed in table 1-were downloaded from the ESGF (https://esgt-
node.llnl.gov/) and the feedbacks from Zelinka et al (2020) at 10.5281/zenod0.5206851.
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