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Abstract. An accurate estimation of vegetation gross pri-
mary productivity (GPP), which is the amount of car-
bon taken up by vegetation through photosynthesis for a
given time and area, is critical for understanding terrestrial–
atmosphere CO2 exchange processes and ecosystem func-
tioning, as well as ecosystem responses and adaptations to
climate change. Prior studies, based on ground, airborne, and
satellite sun-induced chlorophyll fluorescence (SIF) obser-
vations, have recently revealed close relationships with GPP
at different spatial and temporal scales and across different
plant functional types (PFTs). However, questions remain re-
garding whether there is a unique relationship between SIF
and GPP across different sites and PFTs and how we can
improve GPP estimates using solely remotely sensed data.
Using concurrent measurements of daily TROPOspheric
Monitoring Instrument (TROPOMI) SIF (daily SIFd); daily
MODIS Terra and Aqua spectral reflectance; vegetation in-
dices (VIs, notably normalized difference vegetation index
(NDVI), near-infrared reflectance of vegetation (NIRv), and
photochemical reflectance index (PRI)); and daily tower-
based GPP across eight major different PFTs, including
mixed forests, deciduous broadleaf forests, croplands, ever-
green broadleaf forests, evergreen needleleaf forests, grass-
lands, open shrubland, and wetlands, the strength of the re-
lationships between tower-based GPP and SIFd at 40 Inte-
grated Carbon Observation System (ICOS) flux sites was

investigated. The synergy between SIFd and MODIS-based
reflectance (R) and VIs to improve GPP estimates using a
data-driven modeling approach was also evaluated. The re-
sults revealed that the strength of the hyperbolic relation-
ship between GPP and SIFd was strongly site-specific and
PFT-dependent. Furthermore, the generalized linear model
(GLM), fitted between SIFd, GPP, and site and vegetation
type as categorical variables, further supported this site- and
PFT-dependent relationship between GPP and SIFd. Using
random forest (RF) regression models with GPP as output
and the aforementioned variables as predictors (R, SIFd, and
VIs), this study also showed that the spectral reflectance
bands (RF-R) and SIFd plus spectral reflectance (RF-SIF-R)
models explained over 80 % of the seasonal and interannual
variations in GPP, whereas the SIFd plus VI (RF-SIF-VI)
model reproduced only 75 % of the tower-based GPP vari-
ance. In addition, the relative variable importance of predic-
tors of GPP demonstrated that the spectral reflectance bands
in the near-infrared, red, and SIFd appeared as the most in-
fluential and dominant factors determining GPP predictions,
indicating the importance of canopy structure, biochemical
properties, and vegetation functioning on GPP estimates.
Overall, this study provides insights into understanding the
strength of the relationships between GPP and SIF and the
use of spectral reflectance and SIFd to improve estimates of
GPP across sites and PFTs.
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1 Introduction

In the context of climate change, understanding the role of
terrestrial ecosystems in terms of exchanges of carbon, wa-
ter, and energy is crucial in order to fill in the knowledge
gap on climatic interactions between the biosphere and the
atmosphere. Terrestrial ecosystems are one of the main com-
ponents of the carbon cycle and are highly sensitive to abi-
otic stresses. Therefore, an accurate estimation of vegeta-
tion gross primary productivity (GPP), which is the carbon
flux taken up by vegetation through photosynthesis, is criti-
cal for understanding terrestrial–atmosphere CO2 exchange
processes and ecosystem functioning, as well as ecosystem
responses and adaptations to climate change (Gamon et al.,
2019). Eddy covariance (EC) techniques allow for the esti-
mation of GPP locally (Falge et al., 2002; Moureaux et al.,
2008; Chu et al., 2021). However, they have limitations when
it comes to upscaling carbon flux estimates at larger scales
due to their restricted spatial coverage, temporal dynamics of
flux footprints, and limited distribution across different veg-
etation types, notably in key areas such as Africa and South
America (Xiao, 2004; Gamon, 2015; Xiao et al., 2019). GPP
can also be estimated based on physical and ecophysiolog-
ical modeling approaches. However, for estimating GPP at
larger scales, those methods are hampered by the lack of un-
derstanding of the underlying physiological processes (Jiang
and Ryu, 2016; Zhang et al., 2017; Madani et al., 2020).

Remote sensing is widely used to upscale daily GPP to
landscape, regional, and global scales using reflected sun-
light measured by satellite sensors (Running et al., 2004;
Baldocchi et al., 2020; Wu et al., 2020; Kong et al., 2022;
Wang et al., 2022). These approaches are mainly based on
reflectance-based vegetation indices (VIs) such as the nor-
malized difference vegetation index (NDVI), enhanced veg-
etation index (EVI), and more recently near-infrared re-
flectance of vegetation (NIRv) (Badgley et al., 2017; Bal-
docchi et al., 2020). VIs are mostly sensitive to spatial and
temporal variability in structural leaf area index (LAI) and
biochemical canopy attributes (Dechant et al., 2020; Pabon-
Moreno et al., 2022), but they suffer from saturation in
canopy-dense ecosystems and are less sensitive to diurnal
and daily variations in photosynthetic status resulting from
physiological responses induced by rapid changes in abiotic
stresses (Daumard et al., 2012; Guanter et al., 2014; Wieneke
et al., 2016; Zhang et al., 2021a). Remote sensing also pro-
vides access to variables which are related to canopy func-
tioning such as the photochemical reflectance index (PRI)
(Gamon et al., 1992; Wang et al., 2020) and sun-induced
chlorophyll fluorescence (SIF) (Porcar-Castell et al., 2014;
Goulas et al., 2017; Magney et al., 2019; Yang et al., 2021;
Zhang et al., 2022; Li and Xiao, 2022).

PRI is a reflectance-based vegetation index that has been
shown to detect vegetation functioning activities under abi-
otic stress conditions that the abovementioned VIs cannot
capture (Meroni et al., 2008). It is due to changes in the

absorptance of leaves of around 510 nm or reflectance at
531 nm that are related to the interconversion of the xantho-
phyll pigment cycles, which represents an important photo-
protection mechanism (Gamon et al., 1992; Meroni et al.,
2008). Moreover, previous studies have pointed out that PRI
can be used to improve canopy GPP estimates at the ecosys-
tem level at daily timescales (Wang et al., 2020; Hmimina
et al., 2015; Soudani et al., 2014), but how variations in PRI
at long timescales with spatial variations in vegetation types
affect the relationship between PRI and GPP remains unre-
solved and is an area of active research (Porcar-Castell et al.,
2014; Chou et al., 2017; Gitelson et al., 2017).

In recent years, SIF has emerged as a promising remotely
sensed tool for monitoring canopy GPP, which is functionally
and fundamentally different from the aforementioned VIs
(Damm et al., 2010; Yang et al., 2015; Köhler et al., 2018;
Wang et al., 2021; Guanter et al., 2021). In fact, SIF does not
rely on vegetation reflectance; instead it is a faint signal di-
rectly emitted by chlorophyll from the absorbed sunlight just
before the occurrence of a photochemical reaction (Porcar-
Castell et al., 2014; Gu et al., 2019a; Zhang et al., 2021a, b).
SIF has a physical and physiological meaning, and hence SIF
offers new opportunities for the global assessment of canopy
GPP (Mohammed et al., 2019; Wieneke et al., 2018; Zhang
et al., 2020; Kimm et al., 2021; Dechant et al., 2022). Earlier
studies relying on ground-, airborne-, and satellite-based SIF
data measurements at different temporal and spatial scales
have indicated a strong linear site-specific and vegetation-
type-dependent relationship between GPP and SIF (Franken-
berg et al., 2011; Guanter et al., 2014; Yang et al., 2017;
Wood et al., 2017; Li et al., 2018b; Paul-Limoges et al., 2018;
Zhang et al., 2021b, 2022). In contrast, at finer temporal
scales, such as diurnal and hourly, the relationship between
GPP and SIF is not as strong as at longer timescales. Instead,
it appears to be non-linear due to rapid changes in instanta-
neous variations in photosynthetically active radiation (PAR)
and environmental conditions (Damm et al., 2015; Marrs et
al., 2020; Kim et al., 2021). How and to what extent driv-
ing factors such as canopy structure, spatial heterogeneity,
and abiotic stress conditions mediate the GPP and SIF re-
lationship remains a challenge and needs to be investigated
(Smith et al., 2018; Wang et al., 2021; Li and Xiao, 2022).
The main drawback, which relates to the use of SIF to pre-
dict GPP at regional and global scales, lies in the weak SIF
signal retrieval that requires averaging over large timescales
and spatial scales and thus hampers detecting fine-scale dy-
namics needed to explain underlying processes (Gamon et
al., 2019; Köhler et al., 2021). Yet, the TROPOspheric Moni-
toring Instrument (TROPOMI) sensor, which is on board the
Sentinel-5 Precursor (S-5P), represents a novel tool for un-
derstanding SIF variations as well as an opportunity to fully
evaluate the potential of SIF to improve GPP estimates at the
ecosystem scale, as it provides a high temporal resolution at a
daily scale (Köhler et al., 2018). In addition, the future satel-
lite mission Fluorescence Explorer (FLEX) will provide on
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a single platform SIF at an unprecedented spatial resolution
(300 m) together with visible reflectance in the green, red,
and far-red spectral windows (Drusch et al., 2017).

The surface spectral reflectance (R), VIs, and SIF can be
used altogether to better characterize highly spatiotemporal
dynamics in vegetation canopy structure, canopy biochem-
ical properties, and vegetation functioning as a response to
frequent changes in abiotic conditions at site and ecosystem
scales. However, to the best of our knowledge, an attempt to
study the synergy between those variables has not been com-
prehensively addressed due to the fact that the relationships
between structural and functional components are not linear
and have complex interactions over time and space (Hilker
et al., 2007; Sippel et al., 2018; Yazbeck et al., 2021; Pabon-
Moreno et al., 2022; Kong et al., 2022). Therefore, a series
of observations of SIF, R, and VIs at site and ecosystem
scales could give insights into how SIF is related to GPP and
whether SIF, R, and VIs could provide additional informa-
tion on understanding the dynamics of GPP at the ecosystem
scale and beyond.

The overarching objective of this work is to study the
potential of SIF, R, and VIs (namely NDVI, NIRv, and
PRI) to estimate canopy GPP and the synergy between these
predictive variables. Specifically, this study primarily in-
tends to evaluate at a daily timescale the strength of the
relationships between SIF and GPP at 40 Integrated Car-
bon Observation System (ICOS) flux sites, including sev-
eral vegetation functional types (mixed forests (MFs), de-
ciduous broadleaf forests (DBFs), croplands (CROs), ever-
green broadleaf forests (EBFs), evergreen needleleaf forests
(ENFs), grasslands (GRAs), open shrubland (OSH), and wet-
lands (WETs)), and ultimately to examine the synergy be-
tween SIF, R, and VIs to improve canopy GPP estimates
based on a data-driven modeling approach.

2 Materials and methods

In this current section, the site characteristics and eddy co-
variance (EC) flux data are presented. Then, the remote sens-
ing data (TROPOMI, MODIS Aqua and Terra, and Coper-
nicus Land Cover classification) used in the study are de-
scribed. Lastly, data analysis methods used in this study
are presented. Study sites and flux tower in situ EC flux
data were obtained through the ICOS Data Portal release
in 2018 and 2021 (https://www.icos-cp.eu/data-services, last
access: 21 December 2021). We screened over 70 ecosys-
tem ICOS sites, relying on the availability of GPP data for
each site with simultaneous TROPOMI SIF observations
in the period from February 2018 to December 2020, and
maintained 40 sites for analyses. The study sites encom-
pass a latitude from 5.27◦ N to 67.75◦ N, including a di-
versity of plant functional types (PFTs) based on the IGBP
vegetation-type classification given by ICOS PI sites: mixed
forests (MFs, 2 sites), croplands (CROs, 9 sites), deciduous

Figure 1. The study area and location of the EC ICOS flux sites,
except for the GF-Guy site, located in French Guiana. The base map
is the 100 m spatial resolution of the Copernicus Global Land Cover
classification map. The triangles represent the locations of the flux
sites used for investigating the relationships between tower-based
GPP and TROPOMI SIF.

broadleaf forests (DBFs, 6 sites), evergreen broadleaf forests
(EBFs, 2 sites), evergreen needleleaf forests (ENFs, 13 sites),
grasslands (GRAs, 3 sites), open shrubland (OSH, 1 site,
which is actually a young vineyard plantation), and wetlands
(WETs, 4 sites). The PFT at each site was confirmed by pho-
tointerpretation of pictures found in the ICOS Data Portal
database and Google Earth. Detailed information and refer-
ences of these sites are provided in Table S1 in the Supple-
ment. Figure 1 presents the location of these study sites, ex-
cept for the GF-Guy site, located in French Guiana. In the
analyses, we used daily GPP values computed as the sum
of the half-hourly values estimated from each site. GPP data
previously gap-filled by ICOS PI, representing for a full year,
which was the case for instance at CH-Dav, FR-Bil, IT-SR2,
and SE-Deg, were filtered out and were not used in the anal-
yses.

2.1 Remote sensing data

2.1.1 MODIS Terra and Aqua data

Time series of daily MODIS Terra and Aqua surface re-
flectance products (MOD09GA, MODOCGA, MYD09GA,
and MYDOCGA), centered at the location of each site, were
downloaded from the Google Earth Engine database. The
quality assurance (QA) flag (ideal quality, QA= 0) and the
cloud mask (clear state) criteria were used. Both MODIS
Terra and Aqua, used in this study, contain 16 spectral bands
of which the spatial resolution from band 1 to band 7 is
500 m and 1 km for the remaining bands (8–16) (Vermote et
al., 2015). Detailed information about the MODIS data prod-
ucts is given in Table S2. We used daily MODIS surface re-
flectance, NDVI, NIRv, and PRI. These VIs are computed
according to the equation given in Table 1. For the PRI com-
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putation, we used B13 as a reference band following Hilker
et al. (2009).

2.1.2 TROPOMI SIF and Copernicus Global Land
Cover data

TROPOMI, as a single payload of the Sentinel-5 Precur-
sor (S-5P) satellite, was launched on 13 October 2017.
TROPOMI has a near-sun-synchronous orbit with a repeat
cycle of 16 d and an equatorial crossing time at around
13:30 local time (Köhler et al., 2018), which is comparable
to those of Orbiting Carbon Observatory-2 (OCO-2) and the
Greenhouse Gases Observing Satellite (GOSAT). However,
the wide swath of TROPOMI (2600 km) is larger than that of
OCO-2 (10 km), which enables TROPOMI to provide almost
daily spatially continuous global coverage (Köhler et al.,
2018). TROPOMI has a spatial resolution of 7 km along track
(5 km since August 2019 owing to diminished integration
time) and 3.5 to 14 km across track (based on the viewing
angle) and covers the spectral range between 675–775 nm in
the near-infrared with a spectral resolution of 0.5 nm, which
allows for the retrieval of far-red SIF (Köhler et al., 2018). To
decouple SIF emissions from the reflected incident sunlight,
a statistical and data-driven approach is used; see Köhler et
al. (2018) for more details. We used instantaneous and daily
ungridded soundings of TROPOMI far-red SIF at 740 nm
obtained from the Caltech dataset between February 2018
and December 2020 (https://data.caltech.edu/records/1347,
last access: 14 June 2021). Instantaneous SIF data were re-
ported in mW m−2 sr−1 nm−1. Daily SIF (hereafter referred
to as SIFd) is computed by timing instantaneous SIF with a
day-length correction factor included in the dataset.

The TROPOMI SIF observations corresponding to each
site were determined by relying on the following criteria.
Firstly, we extracted all pixels whose center locations are
less than 5 km away from the flux tower sites for analyses.
The latter choice was motivated by the fact that the relation-
ship between TROPOMI SIF and tower-based GPP gradu-
ally weakened as the distance from site to the center of pixel
increased (data not shown). Secondly, to reduce the cloud
effects on SIF data, SIFd observations with a cloud frac-
tion over 15 % were excluded, even though some findings
reveal that TROPOMI SIF is less sensitive to cloud than sur-
face reflectance values (Guanter et al., 2012; Doughty et al.,
2021). The 100 m spatial resolution of the Copernicus Global
Land Cover classification map for the year 2019 (Buchhorn
et al., 2020) was used as a base map of the study sites. This
land cover classification map was obtained from the Coper-
nicus Global Land Service website (https://lcviewer.vito.be/
download, last access: 25 May 2021).

3 Data analysis

In this study, the GPP and SIFd relationship was evaluated at
a daily timescale at different spatial scales. Before investigat-
ing the link between GPP and SIFd, it was necessary to figure
out a way to process outliers which were mostly associated
with negative SIFd values. It has been shown that excluding
directly negative SIF values could have effects on studying
the relationships between satellite SIF data and GPP (Köhler
et al., 2018, 2021). Thus, to handle the outliers, an exponen-
tial model was used to account for the structural relationship
between the instantaneous SIF and the SIF error included in
the dataset. A threshold of ±0.15 mW m−2 sr−1 nm−1 was
then applied to the residual random error of the exponential
model.

We used a hyperbolic model to relate GPP to SIFd follow-
ing (Damm et al., 2015; Kim et al., 2021) GPP= a×

SIFd
SIFd+b

,
where a and b are fitted parameters. It is worth noting that
a linear model between GPP and SIFd was also investigated,
and the results are provided in the Supplement. Before relat-
ing GPP to SIFd using this hyperbolic model at each site, SIF
values equal to or less than zero were discarded. Afterward,
the same model was fitted on a PFT scale by pooling all data
across all sites for the same PFT. To explore the generaliz-
ability of the relationship between GPP and SIFd, first the hy-
perbolic model was adjusted on data pooled across all sites.
Second, to further test how the year, site, and PFT, as categor-
ical variables, and their interactions (year ·GPP, site ·GPP,
and PFT ·GPP) influence the GPP and SIFd relationship, a
generalized linear model (GLM) was used. Within the GLM,
SIFd is considered a response variable, whereas site, PFT,
year, and GPP are the explanatory variables. These afore-
mentioned variables and their interaction effects may affect
the changes or variations either in SIFd or GPP and may con-
sequently influence the slope and intercept of their relation-
ships.

In order to study the synergy between SIFd, R, and VIs
to improve GPP estimates, a random forest (RF) regression
model was used (Breiman, 2001). Briefly, an RF is a ma-
chine learning algorithm which combines the results of sev-
eral random ensemble decision trees to reach a final accurate
output. Before setting up the RF model, the correlation ma-
trix between all variables was computed. It has been shown
that important features can be affected by the high correla-
tion between feature predictors (Toloşi and Lengauer, 2011),
suggesting that a decrease in importance values is observed
when the level of correlation and the number of correlated
variables increase. In practice, a strongly predictive variable
belonging to a group of correlated variables can be consid-
ered less important than an independent and less informa-
tive variable. Based on remotely sensed data inputs and one
categorical explanatory variable (PFT), the variables that are
the most relevant for estimating GPP on daily data pooled
altogether across all sites were evaluated. Four RF mod-
els were established by relying on the combination of the
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Table 1. MODIS Terra and Aqua vegetation index computations. B2 (841–876 nm) denotes the surface spectral reflectance at band 2, B1
(620–670 nm) denotes the surface spectral reflectance at band 1, B11 (526–536 nm) represents the surface spectral reflectance at band 11,
and B13 (662–672 nm) represents the surface spectral reflectance at band 13.

Acronym Full name Formulation Spatial resolution References

NDVI Normalized difference vegetation index (B2−B1)/(B2+B1) 500 m Tucker (1979)

PRI Photochemical reflectance index (B11−B13)/(B11+B13) 1 km Drolet et al. (2008),
Hilker et al. (2009)

NIRv Near-infrared reflectance of vegetation B2×NDVI 500 m Badgley et al. (2017)

predictive variables to estimate GPP: (1) only surface spec-
tral reflectance (RF-R), (2) surface spectral reflectance plus
SIFd (RF-SIF-R), (3) surface spectral reflectance plus SIFd
and the PFT as a categorical variable (RF-SIF-R-PFT), and
(4) SIFd plus VIs (RF-SIF-VI) (namely NDVI, NIRv, and
PRI). A total of 80 % of the data were used for training and
the remaining for testing the model. It is worth mention-
ing that a RandomizedSearchCV technique was used (scikit-
learn library for Python) to tune the model, and it took the
best parameters for each model to predict GPP and applied
a 10-fold cross-validation and 20 iterations on the training
set to avoid splitting the dataset into training, validating, and
testing sets, which could affect the number of data allocated
to the training and could easily lead to model overfitting. The
ensemble of decision tree models includes 200 trees for all
models, but the number of splits per tree and the maximum
depth varied. The relative importance of each variable, based
on the mean decrease in the impurity method, was used to
evaluate the part of the contribution of each input variable in
predicting the canopy GPP variability. For TROPOMI data
extraction, MATLAB R2021a (MathWorks, Inc., USA) was
used, and Python version 3.9.1 was used for data analysis
and visualization (sklearn, SciPy, seaborn, matplotlib, pan-
das, and NumPy libraries for Python).

Ultimately, the strength of the relationships between SIFd
and GPP was compared based on the coefficient of determi-
nation (R2), root mean square error (RMSE), and the p-value
metrics. The random forest models were evaluated and com-
pared based on out-of-bag adjusted R2 and RMSE. Last but
not least, a paired t test was used to compare the performance
of the RF models based on the method proposed by Nadeau
and Bengio (2003). A 5 % significance level was used for all
statistical inferences.

4 Results

4.1 GPP vs. SIFd relationships

Site-specific relationships

The first aim was to evaluate the strength of the relationships
between tower-based GPP and SIFd encompassing different

vegetation types at site level. To do so, a hyperbolic model
was used to relate GPP to SIFd at each site. Figure 2 shows
the relationships between GPP and SIFd at each site. Over-
all, the results revealed a hyperbolic relationship with rel-
atively saturating GPP in the presence of moderate to high
SIFd. However, the relationships between GPP and SIFd are
site-dependent, suggesting that the difference in plant func-
tional types and spatial heterogeneity across sites may signif-
icantly affect the relationships between GPP and SIFd. The
strongest relationships were found at DK-Sor, FR-Fon, DE-
Tha, SE-Nor, and BE-Bra, which are the DBF, ENF, and MF
vegetation-type sites, with R2 values being between 0.64 and
0.87 (p < 0.0001). The weakest relationships were recorded
at the FI-Var, FR-EM2, and DE-RuW sites, and no signifi-
cant relationship was found at GF-Guy, IT-Cp2, and FR-Mej.
For each fit, the number of data points was between 160 and
1510, depending on the data availability at each site. Detailed
information and statistics on the relationships between GPP
and SIFd at each site are given in Table S3. Note that the in-
dependent assessment considering the linear model to relate
SIFd to GPP at each site and each PFT and data pooled across
all sites revealed a relatively consistent lower goodness of fit,
justifying the use of a hyperbolic model (see Tables S4 and
S5 and Figs. S1, S2, and S3 in the Supplement).

To test the effects of the PFT on the relationship be-
tween GPP and SIFd at the daily timescale, data were pooled
across sites of the same PFT (MF, CRO, ENF, DBF, EBF,
GRA, OSH, and WET), and the hyperbolic model was ap-
plied on each PFT. Figure 3 depicts the scatterplots of the
relationships between GPP and SIFd. The relationship be-
tween GPP and SIFd was statistically significant for all PFTs
(R2
= 0.06–0.61, p < 0.0001), taken individually. Further-

more, the hyperbolic relationship between GPP and SIFd was
the strongest for OSH, DBF, and MF, with an R2 of 0.61,
0.59, and 0.52, respectively, and the lowest for EBF with
an R2 of 0.06. This result suggests that the relationships be-
tween GPP and SIFd were clearly PFT-specific, as shown in
Table 2.

Moreover, the generalizability of the relationship between
GPP and SIFd was first tested on data pooled together across
all sites (Fig. 4). A significant but weak relationship be-
tween GPP and SIFd was found across all sites with an R2 of
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Figure 2. Site-specific tower-based GPP and SIFd relationships at daily timescales. R2 represents the coefficient of determination of the
relationship between GPP and SIFd for each site. The color code represents the eight different plant functional types encountered at the
study sites: red stands for croplands (CROs), green for deciduous broadleaf forests (DBFs), yellow for evergreen broadleaf forests (EBFs),
magenta for evergreen needleleaf forests (ENFs), blue for grasslands (GRAs), cyan for mixed forests (MFs), lime for open shrubland (OSH),
and dim-grey for wetland (WET). The dotted black line represents the hyperbolic fit between GPP and SIFd. Plant-functional-type-specific
and overall site relationships.

Table 2. Summary statistics of the plant-functional-type-specific
GPP and SIFd relationship in eight major PFTs. All pairwise rela-
tionships between GPP and SIFd were statistically significant with
p < 0.0001. a and b denote the fitted parameters from the hyper-
bolic model. The unit of RMSE is in gC m−2 d−1.

PFT Site R2 a b RMSE N

CRO 9 0.20 15.74 0.52 5.29 5538
DBF 6 0.59 26.59 1.09 3.61 3566
EBF 2 0.06 12.31 0.03 2.66 956
ENF 13 0.32 9.30 0.10 2.94 6440
GRA 3 0.39 12.21 0.27 3.32 1658
MF 2 0.52 16.46 0.33 2.79 620
OSH 1 0.61 13.44 0.50 2.10 1510
WET 4 0.31 12.35 0.75 2.50 2710
ALL 40 0.36 15.33 0.45 3.93 22 998

0.36 (p < 0.0001) and RMSE of 3.93 gC m−2 d−1. However,
when the variations between the year, site, and PFT as input
variables were included in a GLM, along with GPP, the re-
sults showed a strong significant relationship between SIFd,
year, site, PFT, and GPP (p < 0.001). Furthermore, the inter-
actions between the year and GPP and PFT and GPP were
found to have a statistically substantial effect on the SIFd
and GPP relationship, while the interaction between the site
and GPP was not significant (see Table S5). These findings
support that the GPP and SIFd relationship is considerably
influenced by the site PFT and the interannual variations in
SIFd.

4.2 Synergy between SIFd, R, and VIs to quantify GPP

In order to optimize the inputs for the random forest (RF)
regression and to avoid the effects of high correlated ex-
planatory variables on the model performance, the correla-
tion matrix was computed. The correlation matrix (supplied
in Fig. S4) revealed a strong dependency between predictive
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Figure 3. Relationships between tower-based GPP and SIFd in eight plant functional types: MF, CRO, ENF, DBF, EBF, GRA, OSH, and
WET at daily timescales. R2 represents the coefficient of determination of the relationship between GPP and SIFd. All pairwise relationships
between GPP vs. SIFd were statistically significant with p < 0.0001. The dotted black line represents the hyperbolic fit between GPP and
SIFd.

Figure 4. Scatterplots of the relationships between tower-based
GPP and SIFd in eight PFTs pooled together across all sites. The
dotted black line represents the hyperbolic fit between the GPP and
SIFd. The color code represents the plant functional types encoun-
tered in the study sites: red stands for croplands (CROs), green for
deciduous broadleaf forests (DBFs), yellow for evergreen broadleaf
forests (EBFs), magenta for evergreen needleleaf forests (ENFs),
blue for grasslands (GRAs), cyan for mixed forests (MFs), lime for
open shrubland (OSH), and dim-grey for wetland (WET).

variables (notably B9 vs. B10, B11 vs. B12, and B13 vs. B14),
indicating that using an RF model built in these variables
could be affected by those high correlations. Based on these
observations, the R of B10, B12, and B14 was excluded from
the explanatory variables of RF regression models.

4.2.1 Performance of GPP estimates using random
forest regression

In Fig. 5, tower-based GPP is represented against the four
RF GPP models across all sites. Overall, all the RF-model-
predicted GPP shows a high agreement with tower-based
GPP. Yet, the RF-R model has the strongest relationship with
tower-based GPP with an adjusted R2 of 0.86 and RMSE of
1.72 gC m−2 d−1, while the RF-SIF-VI model presents the
lowest predictions of GPP, as the adjusted R2 and RMSE
were 0.75 and 2.29 gC m−2 d−1, respectively. Furthermore,
the RF-SIF-R and RF-SIF-R-PFT model performed simi-
larly well at estimating GPP, as they could explain 82 % and
83 % of the variations in GPP across all sites, respectively.
A paired t test realized between the four models based on
the adjusted R2 performance revealed that the difference in
adjusted R2 between RF-R and RF-SIF-R, RF-R and RF-
SIF-R-PFT, and RF-SIF-R and RF-SIF-R-PFT models was
not statistically significant. In other words, these three RF
models have statistically the same performance.

The RF regression model’s GPP estimates and the ob-
served GPP representing different vegetation types at the
site level are depicted in Figs. 6 and 7 for the RF-SIF-R
model predictions as an example. The estimates for each
site from the other models are presented in the supplemen-
tary materials (Fig. S6a RF-R, Fig. S6b RF-R; Fig. S7a RF-
SIF-VI, Fig. S7b RF-SIF-VI; and Fig. S8a RF-SIF-R-PFT,
Fig. S8b RF-SIF-R-PFT) and the summary statistic results
in Table S7 for all RF models. At the site level, the RF-
SIF-R model predicted tower-based GPP with high accuracy
(adj. R2

= 0.54–0.95), except for three sites such as IT-BCi
(adj. R2

= 0.21), IT-Cp2 (adj. R2
= 0.25), and SE-Deg (adj.

R2
= 0.41), where the RF-SIF-R model had difficulties in re-
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Figure 5. Scatterplots of the observed GPP against the RF-predicted
GPP across all sites. N denotes the number of data points used for
the RF model’s testing, adj. R2 represents the adjusted coefficient
of determination of the relationship between observed GPP and pre-
dicted GPP, and the RMSE is the root mean square error between the
observed GPP and RF-model-predicted GPP. The dashed diagonal
line depicts the 1 : 1 line. RF-R denotes GPP prediction using only
surface spectral reflectance; RF-SIF-R includes R and SIFd as in-
puts to predict GPP; RF-SIF-VI integrates SIFd and VIs to estimate
GPP; and RF-SIF-R-PFT includes R, SIFd, and plant functional
type as categorical variables to predict GPP.

producing GPP, even if R2 remains statistically significant at
a 5 % probability level. It is worth noting that all other RF
models have poor GPP predictions for these aforementioned
sites. However, on data pooled across all sites of the same
PFT, the RF-SIF-R model shows high performance in esti-
mating GPP for all eight major PFTs with an adj. R2 being
between 0.68 and 0.90. The lowest predictions are encoun-
tered in the CRO and EBF sites, whereas the best tower-based
GPP estimates were found in the DBF and OSH sites.

In Fig. 8 and Table 3, the observed and estimated GPP rep-
resenting different PFTs for all four RF models is depicted.
The estimation for each site is given in Fig. S5. Overall, all
RF models’ GPP predictions capture the seasonal and inter-
annual dynamics of the tower-based GPP very well. How-
ever, there are sites, years, and vegetation types where ob-
served GPP cannot be estimated with high accuracy. For in-
stance, the RF models tend to underestimate GPP maxima
in GRA, WET, and EBF vegetation types. These underesti-
mates are mostly marked by the slope of the relationships
between the observed GPP and predicted GPP in Table 3.

4.2.2 Relative importance of the predictive variables
for predicting GPP

Figure 9 shows the relative importance (or mean decrease in
impurity) of the predictive variables of the RF models for
predicting GPP across all sites pooled together. Fig. 9 indi-
cates that for the RF-R model, R in the near-infrared (NIR)
band (B2: 841–876 nm) and R in the red band (B1: 620–
670 nm) were found as the most important input variables
for GPP estimates. Moreover, it can be seen that the contri-
bution of the far-red R (B13) in predicting GPP is also impor-
tant, whereas the contribution of the other R bands was on a
similar level. For the RF-SIF-R model, SIFd (> 23 %), R in
the NIR (B2 = 17 %), and R in the red band (B1 = 9 %) are
by far the most relevant variables for GPP prediction, while
the other variables contribute less to GPP estimates. The RF-
SIF-R-PFT model differs from the previous model (RF-SIF-
R) only on the plant functional type categorical variable, and
its results underline that the plant functional type variable
is still important for predicting GPP. Ultimately, reflectance-
based vegetation indices are widely used for predicting GPP
at larger scales. Hence, it is worthwhile investigating what
the contributions of these interesting variables jointly with
SIFd in predicting canopy GPP are. The relative importance
derived from the RF-SIF-VI model reveals that SIFd (36 %)
is substantially the most relevant variable for predicting GPP.
The contributions of NIRv and NDVI to the model are com-
parable, whereas PRI has a lower contribution in estimating
GPP.

5 Discussions

5.1 Strength of the relationship between GPP and SIFd
at site and PFT levels

In this study, the first aim was to evaluate the strength of
the relationship between tower-based GPP and SIFd at daily
timescales and at different spatial scales (at site and plant
functional type levels).

At the site level, the results demonstrate that there were
strong and statistically significant relationships between GPP
and SIFd. However, the hyperbolic fit between tower-based
GPP and SIFd varies significantly across sites, which sug-
gests a site-specific relationship. In other words, at these
scales the differential variations in plant physiology and veg-
etation structure across sites and years and the spatiotemporal
dynamics of the flux tower footprints (depending mainly on
the height of the tower and wind direction), along with spatial
heterogeneity and environmental conditions across sites, may
strongly affect first of all the SIF emissions, scattering, and
reabsorption across sites and consequently the relationship
between GPP and SIFd (Fournier et al., 2012; Paul-Limoges
et al., 2018; Tagliabue et al., 2019; Li et al., 2020; Chu et
al., 2021; Zhang, et al., 2021b). These results are consistent
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Figure 6. Site-specific scatterplots between observed GPP and RF-SIF-R-predicted GPP at daily timescales. The adj. R2 represents the
adjusted coefficient of determination of the relationships between observed GPP and predicted GPP. All pairwise relationships between
observed GPP vs. predicted GPP were statistically significant at all sites (with p < 0.0001). The color code represents the eight different
vegetation types encountered in the study sites: red stands for CRO, green for DBF, yellow for EBF, magenta for ENF, blue for GRA, can for
MF, lime for OSH, and dim-grey for WET.

Figure 7. Scatterplots of observed GPP against RF-SIF-R-predicted GPP in eight PFTs at daily timescales. The adj. R2 represents the
adjusted coefficient of determination of the relationship between observed GPP and predicted GPP. p denotes the probability value of the
relationships.

with previous studies based on ground-based and satellite
measurements which found evidence that canopy structure,
as well as PFT, has substantial effects on the relationships
between GPP and SIF across multiple sites (Dechant et al.,
2020; Lu et al., 2020; Li et al., 2018b; Sun et al., 2018; Wang

et al., 2020; Hao et al., 2021; Wang et al., 2022). For instance,
Wang et al. (2020) found that the relationship between OCO-
2 SIF observed at 757 and 771 nm and at tower-based GPP
across eight vegetation types at 61 flux sites all over the world
relies on canopy structure, and Lu et al. (2020) reported a bet-
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Figure 8. Comparison between observed GPP and RF-regression-model-estimated GPP at selected ICOS flux sites representing different
PFTs: DBF, EBF, ENF, MF, CRO, GRA, OSH, and WET. The color code represents the different RF GPP predictions and the observed GPP:
red stands for RF-SIF-R, green for RF-SIF-R-PFT, blue for RF-R, cyan for RF-SIF-VI, and black for observed GPP.

ter relationship between canopy GPP and SIF corrected from
reabsorption and scattering effects than top-of-canopy SIF
based on ground-based measurements, underlying the impor-
tance of canopy structure on SIF and GPP relationships.

Furthermore, these results are also in good agreement
with several studies carried out with instantaneous ground-
based measurements at different vegetation types and loca-
tions (Kim et al., 2021; Damm et al., 2015; He et al., 2020;
Gu et al., 2019b). For instance, Kim et al. (2021) pointed
out that a hyperbolic model could better explain the relation-
ships between GPP and SIF in an evergreen needle forest,
and Damm et al. (2015) showed similar results in cropland,
mixed temperate forest, and grassland vegetation types. One
of the most plausible explanations is that GPP might reach
saturation at a high radiation level, while SIF tends to keep
increasing with PAR. It is also paramount to mention that the
saturation of optical signal is a common issue in remote sens-
ing, which can explain part of the weaker relationships found
in the EBF sites.

The relationship between tower-based GPP and SIFd con-
sidering the PFT was also examined. The results revealed a
significant PFT-specific GPP and SIFd relationships across
all eight major vegetation type. Yet, the hyperbolic relation-
ships between GPP and SIFd vary considerably across PFTs,
suggesting a PFT-specific relationship. The relationship be-
tween GPP and SIFd is driven by the ratio between canopy
photosynthesis light use efficiency and fluorescence yield,
and the canopy escape probability fraction (Porcar-Castell et
al., 2014; Zhang et al., 2018; Zeng et al., 2019). The major
drivers affecting the canopy photosynthesis and SIF yield in-

clude among others leaf morphology and orientation, plant
physiology, canopy structure (leaf area index, chlorophyll
contents, etc.), rapid changes in incident radiation and illumi-
nated canopy surface, different contributions from photosys-
tem I and II, as well as rapid abiotic responses (Porcar-Castell
et al., 2014; Mohammed et al., 2019; Gamon et al., 2019;
Yang et al., 2021; Chu et al., 2021; Wang et al., 2022). These
explanations altogether sustained the PFT-specific GPP vs.
SIF relationship, as those factors can differ considerably
across PFTs. Additionally, the results showed that the MF,
DBF, and OSH sites have the strongest GPP and SIFd rela-
tionship, which indicates that SIF may easily capture the sea-
sonal, interannual, and phenological variations in GPP within
this vegetation type. In other words, in the MF, DBF, and
OSH (one sample of vineyard plantation) biomes, there are
explicitly marked seasonal and phenological changes com-
pared to EBFs or ENFs where there is greenness all the time.
Thus, in the DBF, MF, and OSH biomes the SIF signal may
easily capture the variations in LAI and absorbed PAR and
consequently display a high correlation between GPP and
SIFd. On the other hand, the lower observed relations be-
tween GPP and SIFd in the EBF (GF-Guy and IT-Cp2) sites
could be partly explained by a lower spatiotemporal variabil-
ity in SIF emissions, as well as the contribution effects of
the understory vegetation to SIF emissions and uncertainties
related to GPP estimates in tropical forests, while in CRO
(FR-Mej) the difference in photosynthetic pathways (C3, C4,
or a mix of both) and different management practices may be
the reasons why SIFd could not capture the variations in GPP,
as reported in earlier studies (Li et al., 2018a; Hayek et al.,
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Table 3. Summary statistics of plant-functional-type-specific observed GPP against RF-model-predicted GPP relationships in eight major
PFTs: MF, CRO, ENF, DBF, EBF, GRA, OSH, and WET. All pairwise relationships between observed GPP and predicted GPP were statis-
tically significant with p < 0.0001. The sign ± denotes the 95 % confidence interval on the slope and intercept of the relationships between
observed GPP and predicted GPP.

RF-R RF-SIF-R

PFT Site N Adj. Slope Intercept RMSE Adj. Slope Intercept RMSE
R2 R2

CRO 9 1171 0.78 1.03± 0.03 0.00± 0.24 2.67 0.75 1.01± 0.03 0.08± 0.26 2.89
DBF 6 748 0.92 1.02± 0.02 −0.23± 0.18 1.41 0.90 1.05± 0.02 −0.52± 0.21 1.61
EBF 2 188 0.77 0.93± 0.07 1.01± 0.83 1.23 0.68 0.90± 0.09 1.58± 0.99 1.45
ENF 13 1385 0.85 1.01± 0.02 −0.01± 15 1.29 0.78 1.06± 0.03 −0.23± 0.19 1.54
GRA 3 364 0.81 1.02± 0.05 −0.02± 32 1.64 0.76 1.07± 0.06 −0.17± 0.38 1.87
MF 2 117 0.84 1.05± 0.08 −0.15± 0.76 1.49 0.82 1.12± 0.10 −0.62± 0.83 1.56
OSH 1 317 0.91 1.02± 0.04 −0.09± 0.22 0.99 0.88 1.01± 0.04 0.01± 0.24 1.10
WET 4 599 0.92 0.98± 0.02 −0.15± 0.10 0.85 0.84 0.98± 0.03 −0.37± 0.15 1.17

All 40 4889 0.86 1.02± 0.01 −0.09± 0.08 1.72 0.82 1.04± 0.01 −0.19± 0.10 1.94

RF-SIF-VI RF-SIF-R-PFT

PFT Site N Adj. Slope Intercept RMSE Adj. Slope Intercept RMSE
R2 R2

CRO 9 1171 0.70 1.03± 0.04 0.01± 0.29 3.14 0.75 1.00± 0.03 0.12± 0.26 2.87
DBF 6 748 0.84 1.05± 0.03 −0.58± 0.28 2.06 0.91 1.04± 0.02 −0.40± 0.21 1.56
EBF 2 188 0.51 0.77± 0.11 3.42± 1.14 1.80 0.72 0.96± 0.09 0.74± 0.98 1.37
ENF 13 1385 0.66 1.02± 0.04 0.10± 0.24 1.92 0.79 1.08± 0.03 −0.39± 0.19 1.5
GRA 3 364 0.69 0.98± 0.07 0.02± 0.43 2.11 0.77 1.07± 0.06 −0.29± 0.38 1.84
MF 2 117 0.71 1.04± 0.12 0.04± 1.07 2.00 0.82 1.12± 0.09 −0.73± 0.84 1.56
OSH 1 317 0.83 0.98± 0.05 0.21± 0.29 1.33 0.89 1.02± 0.04 −0.06± 0.24 1.08
WET 4 599 0.72 0.88± 0.04 −0.39± 0.21 1.54 0.88 1.05± 0.03 −0.29± 0.12 0.99

All 40 4889 0.75 1.03± 0.02 −0.18± 0.12 2.28 0.83 1.03± 0.01 −0.15± 0.09 1.89

2018; Mengistu et al., 2020; He et al., 2020; Hornero et al.,
2021; Li and Xiao, 2022). Previous studies have also reported
weak relationships between GPP and SIF in EBF vegetation-
type biomes (Li et al., 2018b; Wang et al., 2020). Moreover,
it is worth mentioning that the biases related to cloudless and
cloudy skies in space-based SIF retrieval complicate the use
of SIF to estimate GPP at the PFT scale because cloudless-
sky SIF and cloudless-sky GPP are completely different from
cloudy-sky SIF and cloudy-sky GPP, and consequently their
relationship may also differ (Miao et al., 2018). Investigating
GPP and SIF relationships based only on clear-sky data and
cloudy-sky data, without the mix of both, is justified to better
understand their links. Ultimately, the PFT-dependent rela-
tionships between GPP and SIFd in this study was confirmed
by the weak and statistically significant relationship reported
for all biomes on data pooled together across all sites. This
hypothesis was further supported by the significant effects
of the year, site, and PFT on the relationship between SIFd
and GPP reported in the GLM. Exploring the newly launched
satellite instruments such as OCO-3 and ECOSTRESS and
the upcoming FLEX and GeoCarb satellite missions, which
are planned to have diurnal sampling or fine spatial resolution

(for instance 300 m for FLEX), along with ongoing ground-
based and airborne-based SIF and GPP data altogether will
improve the ability not only to better understand the GPP
and SIF relationship but also to completely decouple the ef-
fects of driving factors such as vegetation physiology, canopy
structure, and abiotic stress conditions that mediate their re-
lationships at the ecosystem scale.

5.2 Synergy between SIFd, R, and VIs for estimating
GPP using random forest

The second goal in this paper was to explore the synergy be-
tween SIFd from the TROPOMI instrument and MODIS R

and VIs namely NDVI, NIRv, and PRI for predicting GPP on
data pooled across all sites. To achieve this purpose, four RF
regression models were established: RF-R, RF-SIF-R, RF-
SIF-R-PFT, and RF-SIF-VI. Except for the RF-SIF-R-PFT
model, the main advantage of using solely remotely sensed
data for estimating GPP is that we do not need to rely on land
cover type, land cover change, and meteorological data (Xiao
et al., 2019).
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Figure 9. Relative importance of predictive variables of the RF
models based only on remote sensing data for estimating GPP, ex-
cept for the RF-SIF-R-PFT model. The RF-R model is based only
on MODIS surface spectral reflectance; the RF-SIF-R model uses
SIFd and surface reflectance as input variables; the RF-SIF-R-PFT
model integrates SIFd, surface reflectance, and PFT as explanatory
variables; and the RF-SIF-VI model combines SIFd and reflectance-
based indices, notably NDVI, NIRv, and PRI, as input variables for
predicting GPP across all sites. The wavelengths depicted on the
spectral bands denote the central wavelength.

The current results show that the RF-R (surface spectral
reflectance alone), RF-SIF-R (SIFd plus surface spectral re-
flectance), and RF-SIF-R-PFT (SIFd plus surface spectral
reflectance plus PFT) models statistically explain the same
variance of GPP at the daily timescale (82 %–86%), whereas
the RF-SIF-VI (SIFd plus reflectance-based indices) explains
the lowest part, about 75 % of GPP across all sites. It is well
known that at the seasonal scale spectral reflectance cap-
tures the variations in canopy structure. The seasonal vari-
ations in canopy structure, especially LAI, are strongly cor-
related with variations in GPP (Dechant et al., 2022). This
could justify the strong relationship found between tower-
based GPP and the predicted GPP by the RF-R model. On
the other hand, SIF is an integrative variable at the seasonal
and interannual scales as shown in Fig. 9 and the correla-
tion matrix results (a strong contribution of SIF to GPP es-
timates and a high correlation between GPP and SIFd com-
pared to each R band taken alone). However, SIF, while ex-
hibiting the highest relative importance, fails to improve the
GPP estimate. Hence, while being limited by its spatial res-
olution (7 km× 3.5 km), at which SIF may lose its physio-
logical information and most likely may reflect phenologi-
cal, structural, and illumination information (Jonard et al.,

2020; Kimm et al., 2021), SIF remains a better predictor
of GPP than each reflectance band individually. These re-
sults also revealed that the RF-SIF-VI has the poorest per-
formance in predicting GPP. This lower performance could
be partly due to the well-known saturation of VIs over dense
canopies. In addition, the paired t test did not show any sta-
tistically significant difference between RF-R and RF-SIF-R
models, which confirms the above hypothesis, which sug-
gests that SIF represents the variations in absorbed PAR
at these scales. Recently, Pabon-Moreno et al. (2022) used
solely Sentinel-2 satellite-derived red-edge-based and near-
infrared-based vegetation indices and all spectral bands to
predict GPP at daily timescales across 54 EC flux sites using
a data-driven approach (random forest). The authors reported
that spectral bands jointly with VIs can inform only 66 % of
the variance in GPP, which is far less than the here worse-
performing model (i.e., RF-SIF-VI) in predicting GPP. The
daily scale and solely remotely-sensed-driven RF-R and RF-
SIF-R models outperform previous GPP products derived
based on data-driven methods (Wolanin et al., 2019; Tramon-
tana et al., 2016; Jung et al., 2019) and process-based models
(Jiang and Ryu, 2016; Zhang et al., 2017; Lin et al., 2019),
which included even more inputs as predictive variables such
as meteorological data, land-cover-type data, and land-cover-
change data and were conducted mostly at longer timescales
(8 d or monthly timescale) compared to this study. Further-
more, these results are in strong agreement to two recent
studies (Cho et al., 2021; Li et al., 2021). More specifically,
Cho et al. (2021) found that remotely sensed data alone can
explain 81 % of GPP variability across four vegetation types,
including ENF, EBF, DBF, and MF, in South Korea at 8 d
timescales, and Li et al. (2021) pointed out that instantaneous
GPP estimates across 56 flux tower sites could be achieved
with an R2 of 0.88 and RMSE of 2.42 µmol CO2 m−2 s−1

using ECOSTRESS land surface temperature, daily MODIS
satellite data, and meteorological data from ERA5 reanalysis.
This study also revealed that GPP prediction can be achieved
with high accuracy based on solely remotely sensed data that
are widely and publicly available for all.

The RF models could clearly capture the GPP variations at
each site, encompassing different vegetation types as shown
in Figs. 6 and 8. Indeed, there are sites, years, and veg-
etation types where tower-based GPP was underestimated,
which were the cases for WET and EBF vegetation types.
Furthermore, all RF models struggle to accurately estimate
tower GPP at the IT-BCi, IT-Cp2, and SE-Deg sites, owing
most likely to SIF pixel heterogeneities and lower GPP val-
ues observed in these sites, along with previously explained
issues associated with estimating GPP in crops and tropi-
cal stands. Similar results were reported recently in Pabon-
Moreno et al. (2022), including eight vegetation types (ENF,
CRO, DBF, GRA, WET, MF, savannah (SAV), and OSH).
The reason behind these poor performances may also be
related to difficulties in detecting abiotic stress conditions
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(Bodesheim et al., 2018), underscoring the need for more re-
search on predicting GPP during extreme abiotic conditions.

Furthermore, in this study it is determined what the main
variables contributing to GPP prediction are using the four
RF models based on the relative importance metric of each
model. Yet, it is found that SIFd, the R in the NIR band
(B2), the red band (B1), and the far-red band (B13), as well
as the vegetation type, NDVI, and NIRv, seem to provide
useful information for the predictions of GPP as shown in
Fig. 9. B2 and B1 are well-known spectral bands for char-
acterizing vegetation canopy structure, seasonal phenology,
canopy scattering, and reabsorption due to chlorophyll con-
tent within leaves and consequently have a dominant role in
estimating GPP across all sites. The high contribution of SIFd
is presumably due to its integrative role at the seasonal and
interannual scales, as explained previously (Maguire et al.,
2020; Dechant et al., 2022). PRI is known to be implied in
the xanthophyll cycle, which is an important photoprotection
mechanism and a driver of GPP (Wang et al., 2020; Hmimina
et al., 2015; Soudani et al., 2014). However, in this study, the
findings evidenced that the contribution of PRI in predicting
GPP was weak, which could be explained by the spatial and
temporal aggregation of the rapid responses in plant physio-
logical and functional activities, observable at the finer scales
(diurnal). Ultimately, the findings in this study suggest that
using R bands and SIF for estimating GPP is an important
approach for improving GPP predictions compared to GPP
products that include meteorological and land-cover-type in-
formation.

6 Conclusion

In this study, the strength of the relationships between
tower-based GPP and SIFd encompassing eight major plant
functional types (PFTs) at site and interannual scales was
evaluated, and the synergy between SIFd, surface spectral
reflectance, and reflectance-based indices, namely NDVI,
NIRv, and PRI, to improve GPP estimates using a data-driven
modeling approach was examined.

At the site scale, the results showed a strong and statis-
tically significant hyperbolic relationship between GPP and
SIFd (p < 0.0001). However, these relationships were site-
dependent, indicating that canopy structure and environmen-
tal conditions affect the relationship between GPP and SIFd.
The GPP and SIFd relationships across all sites of the same
PFT were considerably significant and were PFT-specific.
Furthermore, it was also found that the relationships between
GPP and SIFd on data pooled across all sites were moder-
ately weak but statistically significant, confirming the PFT
dependence of the relationship between GPP and SIFd. The
GLM results supported this PFT-dependent relationship be-
tween GPP and SIFd, as the site, year, and PFT have mean-
ingful effects on the slope of the relationship between GPP
and SIFd.

This study also demonstrated that the spectral reflectance
bands and SIFd plus reflectance explained over 80 % of the
tower-based GPP variance. The RF models were able to rep-
resent the GPP seasonal and interannual variabilities across
all sites. In addition, from the mean decrease in impurity
results obtained from the RF models, it is inferred that the
spectral reflectance bands in the near-infrared, red, and SIFd
appeared as the most influential and dominant factors deter-
mining GPP predictions. In summary, this study provides in-
sights into understanding the strength of the relationships be-
tween GPP and SIF across different ICOS flux sites and the
use of daily MODIS R and SIFd TROPOMI in predicting
GPP across different vegetation types.

Code and data availability. The computer codes (MAT-
LAB and Python) used in this study are available upon
request to the corresponding author. Observations of car-
bon fluxes are available through the ICOS Data Portal
services (https://doi.org/10.18160/PAD9-HQHU, ICOS RI,
2022; https://doi.org/10.18160/YVR0-4898, Drought 2018
Team and ICOS Ecosystem Thematic Centre, 2020). SIF
data from the TROPOMI instrument satellite are avail-
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