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ABSTRACT: Machine learning (ML) provides a powerful tool for investigating the relationship between the large-scale
flow and unresolved processes, which need to be parameterized in climate models. The current work explores the perfor-
mance of the random forest regressor (RF) as a nonparametric model in the reconstruction of nonorographic gravity waves
(GWs) over midlatitude oceanic areas. The ERA5 dataset from the European Centre for Medium-Range Weather Fore-
casts (ECMWF) model outputs is employed in its full resolution to derive GW variations in the lower stratosphere.
Coarse-grained variables in a column-based configuration of the atmosphere are used to reconstruct the GWs variability at
the target level. The first important outcome is the relative success in reconstructing the GW signal (coefficient of determi-
nation R2 ’ 0.85 for “E3” combination). The second outcome is that the most informative explanatory variable is the local
background wind speed. This questions the traditional framework of gravity wave parameterizations, for which, at these
heights, one would expect more sensitivity to sources below than to local flow. Finally, to test the efficiency of a relatively
simple, parametric statistical model, the efficiency of linear regression was compared to that of random forests with a re-
stricted set of only five explanatory variables. Results were poor. Increasing the number of input variables to 15 hardly
changes the performance of the linear regression (R2 changes slightly from 0.18 to 0.21), while it leads to better results with
the random forests (R2 increases from 0.29 to 0.37).

KEYWORDS: Gravity waves; Inertia-gravity waves; Machine learning

1. Introduction

Atmospheric gravity waves (GWs) constitute an essential
driver of the middle-atmosphere circulation (Andrews et al.
1987; Fritts and Alexander 2003). Their wavelengths span a
wide range of scales, from a few to thousands of kilometers in
the horizontal, a portion of which will remain subgrid scale in
general circulation models (GCMs) in the foreseeable future.
While this requires the global effects of the GWs to be taken
into account by means of parameterizations (Kim et al. 2003),
the procedures employed introduce significant uncertainties
in GCMs and climate projections. Any improvement of pa-
rameterizations needs to deal with certain problems, the first
of which is lack of enough global observation of fine-scale
motions in a wide range of heights, including remote

regions of the upper stratosphere and mesosphere. The sec-
ond problem is that of the incomplete state of theoretical
modeling of the generation mechanisms, especially for non-
orographic GWs (Plougonven and Zhang 2014). The third
problem is related to the challenges of validating parame-
terizations. To illustrate the latter problem, the role of
GWs in the breakdown of the austral polar vortex in the
spring can be considered. It has been shown that climate
models lack sufficient GW drag in the stratosphere during
springtime (McLandress et al. 2012), which contributes to
persistent model biases (Butchart et al. 2010). Different
modeling groups have chosen different strategies to en-
hance the forcing from GWs on the austral polar vortex, via
changes to different parameterizations, enhancing the oro-
graphic GWs (Garcia et al. 2017) or the stratospheric forc-
ing from the nonorographic GWs (de la Cámara et al. 2016;
Garcia et al. 2017). However, the relative contributions of
orographic and nonorographic waves to this “missing drag”
remains a matter of debate. In other words, global observa-
tions of gravity waves in the middle atmosphere are still not
precise enough to efficiently constrain parameterizations,
and the criteria tied to improved climatology for the strato-
spheric circulation do not provide a sufficient constraint for
validating different choices on gravity wave parameteriza-
tions (Plougonven et al. 2020).
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For the nonorographic waves, convection produces waves
on a wide range of scales: the large-scale envelope of convec-
tion may contribute to large-scale GWs, while the convective
cells lead to smaller-scale GWs with different characteristics
(Fovell et al. 1992; Alexander et al. 1995; Lane et al. 2001).
For waves excited by jets and fronts, there is still no complete
theoretical framework to relate the characteristics and ampli-
tudes of the emitted waves to the background flow (Plougonven
and Zhang 2014). Observational case studies (e.g., Uccellini and
Koch 1987) and idealized simulations (e.g., O’Sullivan and
Dunkerton 1995) have also indicated that jet exit regions are
favored locations for large-amplitude, subsynoptic GWs. The
picture that emerges however may be more subtle because
some recent idealized simulations highlight the whole region
of the jet favorable for GW emission (Waite and Snyder
2009).

Parameterizations in climate models are required to repre-
sent the effects of processes that are not directly resolved on
the flow that is resolved. In other words, they represent the ef-
fects of subgrid-scale processes on the large-scale flow. Tradi-
tional schemes are based on available physical considerations,
and relate the subgrid-scale processes to resolvable coarse-
grained variables, through explicit functions and relations.
Although incorporating physical considerations as much as
possible, these parameterization schemes retain empirical as-
pects and include parameters that remain poorly constrained
(Alexander et al. 2010). Their parameters can therefore be
used for tuning the models (Hourdin et al. 2017). Information
that contributes to constrain parameterizations includes ob-
servations and high-resolution simulations. Local and global
observational datasets will each have their own limitations.
For instance, global observations derived from satellite obser-
vations retain limitations in resolution (e.g., Hindley et al.
2019). Processes like gravity waves, although unresolvable in
climate models, are nonetheless computable as they result
from the well-established Navier–Stokes equations in a strati-
fied fluid. High-resolution simulations hence also provide
valuable and reliable information to guide parameterizations
(Stephan et al. 2019).

Parameterizations constitute a major source of uncertainty
in climate and weather models, and modeling subgrid-scale
phenomena such as convection and gravity waves from the
knowledge of resolved flow, at a moderate computational
cost, remains a challenge. New methods like machine learn-
ing (ML) and data assimilation provide novel approaches to
increase the performance of parameterization schemes by
learning from observations and targeted high-resolution
simulations. This kind of systematic learning can be carried
out either online by nesting from a local high-resolution do-
main to its parent domain in GCMs, or offline using precre-
ated libraries from training data.

Schneider et al. (2017) considered the subgrid-scale pro-
cesses such as those in cloud turbulence as computable in the
sense that their governing equations are known. While they
cannot be resolved in climate models, they can be explicitly
represented in high-resolution simulations. The computable
processes are then made distinct from the noncomputables
such as biogeochemical processes whose governing equations

are either poorly known or remain still unknown. They ar-
gued that the parameterization schemes that employ govern-
ing equations for computable processes can benefit from a
more reliable training, because the knowledge of the govern-
ing equations allows to predict samples that may not exist in
training observational datasets. The situation should be com-
pared with that of noncomputable processes for which the
only available information for training comes from the obser-
vational data.

Neural networks trained on a high-resolution simulation
have been employed to parameterize convection by Gentine
et al. (2018). They showed that their “cloud brain” skillfully
predicts horizontal and vertical structure of convective zones
including intertropical convergence zone and extratropical
cyclones in middle and upper troposphere, while weaker re-
sults were obtained for boundary layer shallow convection.
They explained this issue could arise from the inherently de-
terministic nature of neural network and the localized learn-
ing employed in contrast to a certain degree of memory in
the parent numerical prediction model used for training
(Pritchard et al. 2011). As another example of using ML in pa-
rameterization of convection, O’Gorman and Dwyer (2018)
utilized random forests (Breiman 2001) in an idealized simu-
lation. They demonstrate that random forests are capable of
reconstructing the precipitation extremes without the need
for special training on extremes. Implementation of ML
scheme in a GCM showed remarkable results in case of global
warming when it was trained with the current and warmer cli-
mate samples. Results were surprisingly good even when the
scheme only learned from the warmer climate (O’Gorman
and Dwyer 2018).

ML has been identified as a powerful tool for constructing
new parameterizations, and the studies described above con-
stitute first steps in that direction. Such approaches however
depend on the availability of high-resolution simulations
in the framework of the model used. Contrary to parameter-
izations based on an explicitly formulated simplification of
the physics of the model [e.g., the scheme of Alexander and
Dunkerton (1999), which has become used in several models],
parameterizations built by ML emulating high-resolution sim-
ulations will be difficult to transfer. Due to these difficulties
and to the opacity of the resulting parameterizations, it is very
likely that traditional parameterization schemes, based on ex-
plicitly specified relations and physical principles, will remain
key components for many years to come. The challenge with
these physically based parameterizations is to better under-
stand the processes to be represented, and ML methods can
contribute to this objective, without aiming at replacing or
emulating existing parameterizations. ML methods can in-
deed be used to probe the relationship between the large-
scale flow and subgrid-scale processes, providing elements of
answers to fundamental questions: for a given large-scale
flow, how much uncertainty is there on the subgrid-scale
process considered? In other words, what part of the subgrid-
scale process is deterministic, and what part is stochastic?
Which explanatory variables are most relevant, and contribute
most to the estimation of the subgrid-scale process? For
this purpose, we exploit the advantages of random forest
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regressor to probe the relationship between the coarse-
grained description of the flow in the troposphere and GW
signals in the lowermost stratosphere. The main aim of pre-
sent paper is to explore two insights for the development of
GW parameterizations. First, to indicate how much of the
GW signal can be reconstructed from the low-resolution re-
solvable flow. Second, to rank the variables used to train the
model by order of relevance when the model presumes no
relation between variables in advance and tries to learn
from the data only.

The paper is organized as follows. The data used to feed
the model and the methodology have been described in
section 2. The model setup and information about GW signa-
ture and targets are discussed in section 3. The explanatory
variables which carry the most information on GWs signa-
tures are explored in section 4. A comparison between non-
parametric and parametric model is presented in section 5,
followed by the summary and perspectives in section 6.

2. Data and methodology

At least three recent studies have used machine learning
to contribute to the investigation and improvement of GW
parameterization. Two studies use ML to emulate an exist-
ing parameterization, and the other uses ML to capture the
relation between the large-scale flow and the resulting
GWs. These three studies are briefly reviewed below, with
an emphasis on the explanatory variables that are retained
to describe the large-scale flow. Espinosa et al. (2021) em-
ployed an artificial neural network (ANN) to emulate the
process of GWs (Alexander and Dunkerton 1999) in an at-
mospheric model of intermediate complexity. They used a
“parameterization” or an estimation of GWs effect on the
large-scale flow due to lack of observations, computational
limits, and controlling the degrees of freedom to avoid un-
wanted underfitting in the ANN. Five years of model out-
put (1 year for training and 4 years for testing) including
three components of wind, temperature, and surface pres-
sure have been employed as input variables to estimate

zonal and meridional GW drag in their survey. Chantry
et al. (2021) used three years of IFS model data to train
their ANN. They considered the variables used to predict
the velocity tendencies (horizontal components of wind and
temperature profiles) and model level descriptors (the pres-
sure, half-level pressure, and geopotential). As another ex-
ample of the recent application of machine learning in GW
parameterization, Matsuoka et al. (2020) implemented a
deep convolutional neural network for evaluation of each
component of the wind fluctuations (u′, y ′, and w′) and
then the calculation of gravity wave momentum fluxes at
100 hPa. In addition, they used ML to emulate an existing
scheme. For this purpose, they trained their model using
data from 29-yr reanalysis datasets of low-resolution zonal
and meridional winds, temperature, and specific humidity
at 300, 700, and 850 hPa over the Hokkaido region (Japan).
Two-dimensional input arrays directly transferred to the
three-dimensional wind fluctuations at the target level in
the latter study, contrary to two other studies which consid-
ered columnar information to train the models.

Similar to the study of Matsuoka et al. (2020), we use out-
put from a numerical weather prediction model to provide
the target (the resolved GWs) and the coarse-grained de-
scription of the large-scale flow. In contrast to their study,
we investigate nonorographic waves and use a global model.
The dataset that has been used in the present survey is
ERA5 from the European Centre for Medium-Range Weather
Forecasts (ECMWF). The data are available hourly with a hori-
zontal resolution of 31 km at 137 model levels. With such rela-
tively high resolution, ERA5 is able to resolve and represent
part of the spectrum of GWs reasonably well. In continuity with
performance assessments of earlier analysis or reanalysis (Wu
and Eckermann 2008; Preusse et al. 2014; Jewtoukoff et al.
2015), Amiramjadi et al. (2020) examined the realism of GW
signature existing in ERA5. They showed that GWs in ERA5
data are in good spatiotemporal agreement with those observed
in HIRDLS satellite in GRACILE dataset (Ern et al. 2018),
but weaker than observations by a factor of about 3, which
varies with time and location.

FIG. 1. Snapshots of absolute momentum flux (shaded; unit: mPa) and isotach (solid smoothed black line for the
values greater than 30 m s21) at 100 hPa for (a) the Northern Hemisphere at 1200 UTC 3 Jan 2019 and (b) the South-
ern Hemisphere at 1200 UTC 3 Aug 2019.
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From the ERA5 data, a lower-resolution dataset with
2.58 grid distance in both zonal and meridional directions is
used to provide the explanatory variables. With the lower-
resolution dataset, almost the whole spectrum of GWs re-
mains unresolved. Additionally, a low-pass spectral filter
with a cutoff zonal wavenumber of 22 has been applied to ex-
planatory variables to remove possible signature of gravity
waves (Sato et al. 2012, 2009; Amiramjadi et al. 2020). As ex-
planatory variables we extract the temperature gradient, the
fraction of cloud cover, the potential vorticity (PV) anom-
aly, the relative vorticity, vertical velocity and horizontal
wind speed at 15 pressure levels from 1000 to 100 hPa.
These variables have been chosen to represent GWs non-
orographic sources (e.g., horizontal wind speed for jet stream,
large-scale vertical velocity for convection, temperature gradi-
ent for fronts).

As target variables describing the GWs, we have chosen

the local absolute momentum flux [m5 r

�����������������������
(u′w′)2 1 (y ′w′)2

√
]

and the standard deviation of two diagnostic variables of hori-
zontal divergence (sd) and vertical velocity (sv), which are
considered in the lower stratosphere at 100 hPa pressure level
with high resolution (0.258 3 0.258). These fluctuations are

obtained as the standard deviation of 900 grid squares (about
750 3 750 km2) by a simple moving average from the high-
resolution data (Fig. 1). To avoid the effect of mountain
waves and focus on nonorographic GWs, the areas of study
have been chosen over oceans far from the lands and signifi-
cant topographic obstacles (Fig. 2). As the main configuration,
one year from December 2018 to November 2019 in midlati-
tudes of the Northern and Southern Hemispheres has been
chosen for testing in this study. For training, several different
combinations of one or three years have been used compris-
ing 2017, 2018, and 2020 (Table 1). These combinations pro-
vide past and future training datasets and varied geographical
locations rather than testing data.

3. The best estimation of GWs signal from local
knowledge of the large-scale flow

a. Model setup

The “random forest” algorithm (Breiman 2001; James et al.
2013), hereafter RF for reference, is employed as our non-
parametric statistical model, for this study. It consists of an
ensemble of decision trees, each making the best use of a

FIG. 2. Areas of study in the midlatitudes of the Northern and Southern Hemispheres over oceans.

TABLE 1. Summary of different combinations for training and testing.

Combination Training data Testing data

E2019 One grid point in the main configuration (2019)
using K-fold method

The same grid point of training using K-fold method

E3 One grid point in 2017, 2018, and 2020 The same grid point of training, but in 2019
A2017 All grid points in 2017 over the areas of study Targets in 2019
A2018 All grid points in 2018 over the areas of study Targets in 2019
A2020 All grid points in 2020 over the areas of study Targets in 2019
A3 All grid points in 2017, 2018, and 2020 over the

areas of study
Targets in 2019

B2 All grid points in 2017 to 2020 over area 2 Targets over areas 1 and 4
B3 All grid points in 2017 to 2020 over area 3 Targets over areas 1 and 4
B23 All grid points in 2017 to 2020 over areas 2 and 3 Targets over areas 1 and 4
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random subsample of the input variables. The output is ob-
tained as the average of individual outputs. Here, as the com-
mon practice in parameterization, the RF is considered as a
column-based frame without any interaction with neighboring
grid cells. To implement RF, use is made of the “random for-
est regressor” class from scikit-learn package version 0.23.1 in
Python (Pedregosa et al. 2011). One of the attractive features

of this algorithm and this package is in providing information
on the relative importance of explanatory variables. This pro-
vides precious insights into the relevance of a large number of
variables for estimating gravity waves. Another encouraging
practical advantage of RF is that unlike the other well-known
artificial intelligence models (such as neural networks), the in-
put variables do not need to be standardized.

difference (right) difference (right)

max_depth n_estimator

min_sample_leaf min_sample_split

max_samples

(a) (b)

(c) (d)

(e)

FIG. 3. Mean absolute percentage error (MAPE) depicted for vertical velocity as target. The results have been
shown for (a) the tree depth (max_depth), (b) the number of trees in the forest (n_estimators), (c) the minimum num-
ber of samples that should be present in the leaf node after splitting a node (mean_sample_leaf), (d) the minimum re-
quired number of training targets in any given node in order to split it (mean_sample_split), and (e) the fraction of
the original dataset that is given to any individual trees (max_sample). The results for the MAPE values depicted for
the test (orange line) and train (blue line) datasets and their differences (green line scaled on the right y axis).
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While making stronger assumptions, parametric models
employ a fixed number of parameters, are computationally
faster and easier to implement in GCMs for their simpler
structure. The performance depends on how accurately the
parameters have been chosen. Linear regression is an exam-
ple of a parametric statistical model. In contrast with paramet-
ric models, nonparametric models make fewer but more
flexible assumptions about the data and consequently work
more slowly. Here, we take advantage of Python to train the
model only one time with the proper data and save it as a

preprepared library. At any time later, we can use such
trained model to estimate the target in each call.

Here to set up our model, we need and use all data over the
areas of study for four years (1378 grid points, including 7 ex-
planatory variables over 15 pressure levels throughout the
1000 to 100 hPa layer per year, from December 2016 to No-
vember 2020) and K-fold cross validation, with K5 4 to avoid
the possible spatiotemporal correlation in data (without shuf-
fling to split data into train/test sets). It implies that 75% of
samples (6 035 640) is used to build up the trees and the model

(a) (b)

(c) (d)

(e) (f)

FIG. 4. MAPE depicted for different number of explanatory variables based on variable significance output of
model for (a),(b) absolute momentum flux, (c),(d) standard deviation of horizontal divergence, and (e),(f) standard
deviation of vertical velocity as targets in different runs. Results are plotted for (a),(c),(e) eight randomly chosen grid
points and the test (orange line) and train (blue line) datasets and their differences [green line on the right y axis in
(b), (d), and (f)].
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(a)

(b)

(c)

FIG. 5. Boxplots of (a) absolute momentum flux (mPa), (b) standard deviation of vertical ve-
locity (mPa s21), and (c) standard deviation of horizontal divergence (1024 s21) based on high-
resolution target data and reconstructed signal with different number of explanatory variables,
mentioned at x axis, based on variable significance output of model for the combination A3.
The first and third quartiles, median, and minimum are plotted on the boxes.
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will be tested with the rest of data. When exploring one pa-
rameter, we keep the other parameters constant as their
best values, knowing that these hyperparameters highly de-
pend on the dataset. In other words, there generally is not a
unique, optimal value for each parameter, but rather a
range of values.

The parameter tuning results are almost the same for all
three targets, so they are presented only for vertical velocity
(Fig. 3).

Figure 3a shows the response of model to variation of tree
depth. We test values for this parameter, controlled by scikit-
learn’s “max depth,” ranging from 1 to 20 for shallow to
deeper trees, respectively. It can be inferred that the model
learns from the training dataset and predicts them perfectly
but cannot generalize the learning to reconstruct the test data,
because it overfits for large values of depth over training data.

Therefore, the trees with the depth value of 11 are chosen,
where the test dataset reaches an acceptable accuracy before
the model starts to overfit by following difference between
test and train mean absolute percentage error (MAPE) curves
(green curve in Fig. 3a).

A model with more trees can learn better but runs more
slowly. Figure 3b shows the performance of the model for dif-
ferent numbers of trees. This parameter can be controlled by
“n_estimators” in scikit-learn package. MAPE reveals that the
accuracy grows as the number of trees increases, but the accu-
racy levels off for the number of estimators greater than 14.
The error approaches its minimum at number of trees equal to
35 and remains almost constant for the number of trees
greater than 35 [MAPE(n 514) 2 MAPE(n 535) ’ 0.03 and
MAPE(n 5 60) 2 MAPE(n 535) ’ 0.03]. It is found that the
results are not very sensitive to the number of trees. As a

FIG. 6. Time series of (a),(b) absolute momentum flux (mPa), (c),(d) standard deviation of vertical velocity
(Pa s21), (e),(f) standard deviation of horizontal divergence (s21) for the combination A3 and the gridpoint P3. Blue
and red lines represent the high-resolution and reconstructed signals, respectively. (a),(c),(e) The signal reconstructed
via Exp-Vars5 1, (b) Exp-Vars5 46, (d) Exp-Vars5 42, and (f) Exp-Vars5 26.
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FIG. 7. Scatterplots of high-resolution vs reconstructed GW signals as presented in Fig. 6. Shown in the panels are
correlation coefficient (R), coefficient of determination (R2), and root-mean-square error (RMSE). The ground truth
and regression lines are overlayed as dashed and solid lines, respectively.
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compromise in the present study the number of trees retained
was 35.

As the next parameter, we investigate the “minimum num-
ber of samples required to be at a leaf node,” the so-called
min_sample_leaf in scikit-learn package, varying from 0.5 to
5 3 1026 portion of samples. From Fig. 3c, we can clearly see
that the error is great when the model stops splitting the no-
des with the larger numbers of samples. The model learns bet-
ter by letting it grow and have less samples et each terminal
node. For trees having less than approximately 10 samples per
terminal node (1.6 3 1026 portion of the training data), per-
formance appears optimal. This is close to the default value of
the model (1 sample).

Another parameter to explore is “the minimum number
of samples” required to split an internal node. The parameter
is varied from full to 1 3 1026 portion of samples using
“min_samples_split” in scikit-learn package. One can see that
the model suffers from underfitting for larger numbers of sam-
ples, preventing the model to learn more (Fig. 3d). The
MAPE decreases as the minimum number of samples need to
split the nodes decreases. However, the model starts to satu-
rate for the portion of samples smaller than 2 3 1025 (approxi-
mately 120 samples). Any value below that (here, 113 samples)
can be brought into play for this parameter.

We also tested fractions of bootstrapped data given to each
decision tree from 1% to 100% (Fig. 3e) and can see that the
results are quite insensitive to the “max_samples” parameter.
Hence, we retain the default value for this parameter which is
100% of samples.

Then, the model has been run with a different number of
explanatory variables (Exp-Vars) sorted by significance for
each target (Table 2). The MAPE has been calculated and de-
picted for test and training sets of data as well as the eight ran-
domly chosen grid points as will be described in section 4. The
results obtained show that for all targets (Fig. 4), our statisti-
cal model learns better as the number of Exp-Vars increases.
However, although the decrease in error is significant for the
first five Exp-Vars, it then quickly saturates for number of
Exp-Vars more than 40 for absolute momentum flux and ver-
tical velocity, while the performance for horizontal divergence
reaches its saturation point by 25 Exp-Vars. For more Exp-
Vars, it is found that while additional Exp-Vars do not permit
any improved performance, they lead to overfitting the
model. It appears that a range of 25–50 Exp-Vars allows the
best performances of the models for the three targets. Further
analysis presented in section 3b leads us to retain 46, 42, and
26 Exp-Vars, respectively, for absolute momentum flux, verti-
cal velocity, and horizontal divergence as targets.

b. Different targets

Here we explore the variability of different reconstructed
targets compared to the high-resolution data for different
numbers of Exp-Vars by plotting the boxplots for the combi-
nation A3 (Fig. 5). Again, one can see that the model learns
better as the number of Exp-Vars increases. This improvement
is largely due to better estimates of the interquartile range,
while the minimum values still suffer from overestimation.

However, the median attains its best estimation by Exp-Vars5 5
(Exp-Vars 5 16 for vertical velocity), and the first quartile tries
to find its best value, the maximum and the third quartile hardly
vary for different numbers of Exp-Vars.

(a)

(b)

(c)

(d)

FIG. 8. Boxplots of root-mean-square error of absolute momentum
flux (mPa) for December 2018–November 2019, over (a) area 1,
(b) area 2, (c) area 3, and (d) area 4. Mentioned in the upper-right
corner of (a) is the combination that the model is trained over (more
details in Table 1).
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The variability of reconstructed momentum flux barely
changes from Exp-Var 5 1 to Exp-Var 5 2, but comparing to
Fig. 4 it can be inferred that using only one variable fails
to provide sufficient information for a good reconstruction.
The reconstruction improves notably from Exp-Var 5 10 to
Exp-Var 5 16 and Exp-Var 5 42 to Exp-Var 5 46, although
the main elements of the boxplots do not change for more
Exp-Vars (Figs. 4a and 5a). Though they cannot obtain their
ideal values close to the elements of high-resolution data (spe-
cifically first quartile and minimum) even using all Exp-Vars,
we choose Exp-Var 5 46 for our experiment considering the
best overlapping with the high-resolution data variations fo-
cusing on third quartile, maximum, and upper outliers (not
shown) as high gravity waves activity. Similar arguments hold
for vertical velocity. One may consider the first 42 Exp-Vars in

Table 2 for reconstruction of GWs signature in the vertical ve-
locity as the target which can represent relatively larger-scale
GWs. On the other hand, for the reconstructed horizontal di-
vergence, better results cannot be achieved by increasing the
number of explanatory variables beyond Exp-Var 5 26. Thus,
this number of explanatory variables seems to be adequate for ef-
ficiency in reconstruction of GW signals in horizontal divergence.
In addition, we can see a notable improvement in reconstruction
of minimum values from Exp-Var 5 3 to Exp-Var 5 5, while it
fails to reconstruct minimum values even with all Exp-Vars.

Figures 6 and 7 show time series and scatterplots of recon-
structed GW signals for P3 (Fig. 14 shows locations of eight
randomly chosen grid points and will be discussed in section 4).
One may notice the improvements from Exp-Vars 5 1 to the
other numbers of Exp-Vars (different values for different

FIG. 9. Time series of absolute momentum flux (mPa) as the signal of gravity waves (blue line for the high-resolution
and red line for the reconstructed data). The model has been trained through (a) E2019, (b) E3, (c) A3, (d) A2017,
(e) A2018, and (f) A2020 and tested for P1.
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targets). It can be seen from the time series and statistical
measures presented on the scatterplots that the model can cap-
ture the existence of gravity waves activity, not the variability
nor the extremes, using only one explanatory variable, that is
the upper-level wind speed. The model learns more and can
capture the variabilities better when the number of Exp-Vars
increases. We focus on absolute momentum flux for the rest of
this study since it is the most interesting diagnostic quantity in
gravity waves studies (Alexander et al. 2010).

c. How universally the RF could reconstruct the
GW signal

To explore the performance of the model in the reconstruc-
tion of a specific sample using different training samples, we
considered several different combinations of one or three
years of data available in 2017, 2018, and 2020 (Table 1). The
results are represented as the root-mean-square error (RMSE)

of absolute momentum flux in Fig. 8 separately plotted over
four areas of study for the months of the year 2019. It is discern-
ible that the error is smaller in the months during which the
wave activity is small, notably in the Northern Hemisphere. In
the Northern Hemisphere, performance of the model is nearly
the same when the model learns from the past using “A2017”
and “A2018,” from future using “A2020” and even a collection
of them using “A3” attaining correlation coefficients of R’ 0.65
to 0.70. Training the model over one grid point and testing it
over the same point via fourfold cross validation method (combi-
nation “E2019” in the Table 1) results in larger errors compared
to other combinations, which is not surprising. For “E2019” com-
bination, we exclude one-fourth of data at each grid point to test
and use the rest to train the model. Unlike the other regression
models, random forest regression model cannot extrapolate out-
side the range of data and then fails to estimate unseen data.
When faced such unseen high (low) GWs activity in winter

FIG. 10. As in Fig. 9, but for P6.
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(summer), the model assumes that the prediction could be close
to the maximum (minimum) values of the training set in other
seasons. Obviously, the average of ensemble predictions will not
fall outside the highest and lowest values in the sample and leads
to a notable error. Similarly, one may consider 3 years of data on
one grid point for training and one year data for testing (combi-
nation “E3”). The error is significantly less than (or in some cases
in the same range of) other combinations so that we even can
achieve correlation coefficients of R’ 0.93 and 0.88 over areas 1
and 2, respectively. In this case, the model learns from the data
which are similar to testing data in terms of timing, intensity, and
loss of GWs activity. Weaker, but not inexact, results for the
other combinations are likely related to different percentage par-
ticipation of input components (section 4).

Additionally, to illustrate both the strong variability of the
GW signal and the ability of the model to reproduce a signifi-
cant part of this variability, the time series (Figs. 9 and 10)
confirm that the model can identify high gravity wave activi-
ties but cannot fully reconstruct the intermittencies and ex-
tremes (e.g., wintertime over P1). From Figs. 8c and 8d we see
the results for the Southern Hemisphere. Although the aver-
age errors are less than the values in the Northern Hemi-
sphere, the errors are significantly high for the combination
“A2018” in the wintertime. Except for the “E2019” and “E3,”
which represent similar results as in the Northern Hemisphere
(R’ 0.60 and 0.88, respectively, for “E2019” and “E3”), there
is no reasonable difference between other combinations in
training the model (R # 0.50). Therefore, one may simply
conclude that increasing the training dataset by including
more and varied geographical locations fails to be efficient
everywhere.

We investigated this idea by training the model over the
Atlantic and Indian Oceans (areas 2 and 3 with the same
number of grid points, 247 points) and testing it over the
northern and southern Pacific Ocean (areas 1 and 4). Figure 11
shows the RMSE of reconstructed momentum flux over areas 1
and 4 for 12 months (from December 2018 to November 2019).
Relatively high RMSE in wintertime compared to the summer-
time of both hemispheres again indicates that the model can
identify high gravity wave activities but cannot reconstruct the
full variability. Furthermore, training and testing the model
over the same hemisphere may lead to better results, specifically
over the Southern Hemisphere. This result may suggest that the
mechanism of nonorographic gravity waves generation and/or
their propagation into the background flow slightly differs in
the midlatitudes of the Northern and Southern Hemispheres.

4. Which explanatory variables carry the most
information?

As mentioned in section 2, several outputs from ERA5
data are used to train the model at tropospheric pressure lev-
els from 1000 to 100 hPa in which the main GWs sources are
located. In section 3b we explored the minimum number of
explanatory variables that have the highest impact to optimize
the model’s performance. In this section, we analyze the vari-
ables we utilized to train the model. Here, we use the advan-
tage of random forest to rank the features fed to the model by

employing all variables available for all grid points on four
areas at all pressure levels in four years (from 2017 to 2020).
The random forest algorithm in scikit-learn package provides
information on the relevance of explanatory variables using
two methods when it builds decision trees. The variables can
be ranked based on the so-called mean decrease impurity
method (MDI, for brevity). The model employs the “Gini index”
as an impurity function. In this case, the ranking, which is the
average indexes over all of decision trees in the forest, can be
interpreted as “Gini importance.” As an alternative method,
one may consider the “mean decrease accuracy” (MDA) which
provides “permutation importance” scores in evaluating the rele-
vance of input variables. The biggest advantage of MDI com-
pared to MDA is in the speed of computation during the
random forest training as MDA is computationally expensive
(e.g., in this experiment 4–5 CPU times slower than MDI). How-
ever, more accurate results can be obtained using MDA and one
should note that retraining the model is not needed at each modi-
fication of the dataset.

Figure 12 shows the ranking of explanatory variables and
highlights the importance of the pressure levels as well as
Exp-Vars. A first notable results is the relevance of horizontal
wind speed at the target level as the most relevant Exp-Vars,
which is confirmed by both MDA and MDI. This agrees with
our knowledge of the impact of mean flow on the existence
and propagation of GWs in the lower stratosphere, e.g., 150
and 100 hPa (Plougonven et al. 2017). The low-resolution ver-
tical velocity is the most informative explanatory variable
in the middle to upper troposphere (200–400 hPa). And finally,
the anomaly of potential vorticity conveys the most information in
the lower to middle troposphere (400–700 hPa) on reconstruction

(a)

(b)

Area: 1

Area: 4

FIG. 11. As in Fig. 8, but over (a) area 1 and (b) area 4. Men-
tioned in the upper-right corner of (a) is the combination/area that
the model is trained over (more details in Table 1).
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FIG. 12. Variable importance of explanatory variables in decision trees including wind speed (brown), vertical velocity
(green), relative vorticity (aqua), meridional temperature gradient (red), zonal temperature gradient (yellow), absolute
temperature gradient (orange), potential vorticity anomaly (purple), and vertical average of the fraction of cloud cover
(black point represented at 1000 hPa). Shown are variables importance based on pressure levels using (a),(c),(e) mean de-
crease accuracy and (b),(d),(f) mean decrease impurity methods for different targets: (a),(b) absolute momentum flux,
(c),(d) standard deviation of vertical velocity, and (e),(f) standard deviation of horizontal divergence.
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of GWs at the target level. The significance of PV anomaly in
these levels could be reminiscent of the vorticity anomalies in
nonorographic GW parameterizations proposed by de la Cámara
and Lott (2015) following the earlier theoretical works on GW
generation by sheared PV (Lott et al. 2010, 2012). There are
also some evidences of upper-level and surface fronts in
some explanatory variables, but almost with less Gini scores
comparing to other Exp-Vars (Fig. 13). Similar results and
diagram can be obtained using the MDA method (Table 3).
The results may slightly differ in different runs for the varia-
bles with approximately the same importance score. This is
the outcome of the “random” inner nature of RF in building
up the decision trees.

These results are almost the same for all three targets and
both methods. Considering the momentum flux, we can find
the importance of relative vorticity in the lower stratosphere
in the top four ranks. Upper-tropospheric relative vorticity

has been placed in next ranks, then horizontal wind speed
and low-resolution vertical velocity in reconstruction of high-
resolution vertical velocity. As it is found that horizontal wind
speed at the level of the target is a prominent source of infor-
mation on the GW, the monthly mean horizontal wind speed
at 100 hPa has been depicted in the summertime of both the
Northern and Southern Hemispheres where the gravity waves
activity is relatively high (Fig. 14). The location of the eight
points P1 to P8 in Fig. 14 can explain dissimilar gravity wave
activity for these points, consistent with their positions rela-
tive to the jet stream. P1 which displays the strongest values
in GW momentum flux (see, e.g., Figs. 8 and 9) is located ex-
actly in the exit region of the jet stream while P4 usually experi-
ences rather calm conditions. The wind speed is approximately
weaker in the Southern Hemisphere compared with wintertime
of the Northern Hemisphere. Although P6 is located close to
the jet streak, the wave activity is somewhat less in contrast

FIG. 13. Sankey diagram for the three targets showing the top 20 Exp-Vars sorted based on their
importance by mean decrease impurity methods (see also Table 2).
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with similar points in the Northern Hemisphere (Fig. 8). This
may explain the notable overestimation at P6.

5. Toward linear regression in reconstruction of gravity
waves signals

Nonparametric models such as random forest have the dis-
advantage that it is difficult to apply the obtained model

because of its more complicated structure. Parameterization
schemes are classically based on explicit, analytic formulas, in-
cluding heuristic or ad hoc ingredients. Here we explore the
performance of a parametric model, namely, linear regression
(or more precisely multilinear regression, hereafter LR for
reference), to reconstruct the GW signal. To this end, first, we
need to explore the existence of a linear relationship between
target and Exp-Vars in advance. To have the same conditions

FIG. 14. Snapshots of monthly mean horizontal wind speed (shaded; m s21) over (a),(c),(e) the Northern Hemi-
sphere and (b),(d),(f) the Southern Hemisphere for (a) December 2018, (b) June 2019, (c) January 2019, (d) July
2019, (e) February 2019, and (f) August 2019. Location of eight randomly chosen grid points has been depicted with
red dots.
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for both models, we surveyed the linearity of the Exp-Vars
ranked by order of relevance as output of RF. It revealed that
there may be a linear relationship between absolute momen-
tum flux and wind speed, absolute temperature gradient, and
PV anomaly with positive slopes (not shown). Because of the
lack of linearity between the target and other Exp-Vars, we
continued this experience with only three Exp-Vars, including
wind speed, absolute temperature gradient, and PV anomaly
on different pressure levels. Desired data are ranked regard-
ing the relative importance using RF as presented in Table 4
(up to 20 variables). Again, we can see the relevance of wind
speed at the level of the target as the most important Exp-Var
in the reconstruction of the GW signal. The comparison be-
tween the performance of RF and LR has been carried out
using the most relevant 5 and 15 variables (Table 4) for both
statistical models using “A3,” as described in Table 1.

Input variables for the LR need additional data prepara-
tion. For better performance, it would be better to push the
data closer to a normal distribution. One possible way for this
purpose is to apply a transformation, a mathematical function,
to change the distribution. The distributions with positive
skewness can be transformed using either a logarithmic or a
square root function. We employed the logarithmic function
on momentum flux since it often has a lognormal distribution
(Hertzog et al. 2012), while the application of the square root
function leads to better results for the Exp-Vars. In addition
to the above, we standardized Exp-Vars to vary in the [0, 1]
range. Such data preparations did not significantly affect the
results of the random forest regressor.

Figure 15 shows the time series for implementation of LR
and RF in the reconstruction of the absolute momentum flux.
The LR can identify low to medium GWs activity considering
the less complexity (5 Exp-Vars) and computational costs
(about 5–7 times faster than RF), while the RF model exhibits
better performance in the case of high wave activity. Increas-
ing the number of Exp-Vars from 5 to 15 in most cases de-
grades the performance of LR (Table 5), characteristically in
the low GWs activity, while it increases the complexity of this
model. Meanwhile, the performance of RF model improves
with the same increase in the number of Exp-Vars.

6. Summary and perspective

Machine learning as a branch of artificial intelligence is be-
ing increasingly used into many aspects of atmospheric sci-
ence. The model provided by ML can learn directly from the
huge amount of data that are becoming available. This makes
ML methods attractive in studying the complex systems for
which the relation between various components is either un-
clear or unknown. This interesting feature of ML has moti-
vated us to employ ML for investigating the particularly
complicated problem of relation between nonorographic
GWs and large-scale flow. To this aim, we used the ERA5 re-
analysis dataset from the ECMWF since it can resolve and
represent part of the spectrum of GWs nearly well with its rel-
atively high resolution. A lower-resolution dataset derived
from the full-resolution ERA5, through the troposphere to
the lower stratosphere (from 1000 to 100 hPa), has been
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employed for explanatory variables in which almost the whole
spectrum of GWs remains unresolved. The ERA5 dataset in
full resolution has been chosen to extract the local momentum
flux, and the standard deviation of two diagnostic variables of

horizontal divergence and vertical velocity at 100 hPa pressure
level, as targets describing the GWs fluctuations. The full data-
set including four years of data over the areas of study has been
employed to select appropriately the model hyperparameters.

FIG. 15. Time series of high-resolution (blue line) and reconstructed (red line) absolute momentum flux (mPa)
using (left) the LR model and (right) the RF model over (a)–(d) P1 and (e)–(h) P7. The signal is reconstructed using
(a),(b),(e),(f) 5 Exp-Vars, and (c),(d),(g),(h) 15 Exp-Vars.
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The tree depth was found to be an important parameter with
significant impact on the results, while little sensitivity was
found to other parameters such as the number of trees, and a
range of parameter values was acceptable without affecting the
best performance of the model.

The results of this experience with ML showed the positive
and relative success of “random forest regressor” as a non-
parametric procedure in predicting the variations of gravity
wave related quantities. Among the explanatory variables
tested, it turned out that the highest information is carried by
the upper-level wind speed. This is consistent with the previ-
ous findings on the role of the upper-level jet as a main source
of GWs and on the importance of lateral propagation into re-
gions of strong winds. While the model can capture the exis-
tence of GWs activity using merely one explanatory variable,
it fails on variability and the extremes of activity. In general,
the timing of variations and peaks is reproduced rather accu-
rately as indicated by correlation coefficients of above 0.65,
but the peaks are often underestimated, such that coefficients
of determination hardly reach 0.45. Lack of informative indi-
cators for convective activity in the coarse-grained explana-
tory variables is the potential reason of this underestimation.
By increasing the number of explanatory variables, the model
can learn better and capture more variability. A good number
of explanatory variables has been shown by tests to be be-
tween 25 and 50 variables. In the reconstructed signals, corre-
lation coefficients above 0.65 are reached (0.93 in the case
that we trained the model using 3 years of data at one grid
point and tested at the same grid in another year and 0.7 in
the case that the model learned from all grid points of 3 years,
which is encouraging given the sharply variable target). Al-
though the model skillfully captures much of the strong, short
variations of the wave activity, it has failed to predict the var-
iations of targets when the GW activity is weak. It should be
noticed that the RF model cannot discover trends, as the
model learns only from the training data and there is no pre-
defined relation of explanatory variables and target. It means
that the model cannot extrapolate the values falling outside
the training dataset.

A comparison has also been conducted between the perfor-
mance of “random forest regressor” as a nonparametric model
and linear regression (LR) as a simple parametric model. Here,
the LR model demonstrates a modest performance in the appli-
cation of machine learning for GW signal reconstruction, con-
sidering the lesser complexity, lower computational cost as well
as accuracy and intermittency of the reconstructed signal. On
the other hand, the performance of the RF model elucidates its
positive perspective in GWs studies where the relation of ex-
planatory variables with the targets is almost nonlinear and
uncertain.

As a perspective, it will be interesting to explore the same
procedure but with the GW signature obtained from observa-
tion instead of simulation data as the target. The results of
such a study would be useful for determining the relation of
GWs properties to the sources and could also be compared
with the estimates for GWs from the current parameterization
schemes. In such a setup, it would also be possible to employ
the estimates for GWs from parameterizations as explanatory
variables for the machine learning model trained to recon-
struct observed GWs: the informative value of the output of
the parameterization scheme could be revealing.
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TABLE 5. Statistical measures (R: correlation coefficient; R2: coefficient of determination; RMSE: root-mean-square error) for
comparing the performance of the linear regression (LR) model and the random forest model (RF) in reconstruction of absolute
momentum flux as the signal of GWs (with the unit of “mPa”) using 5 and 15 explanatory variables (Table 4) at 8 randomly chosen
grid points in addition to all points (labeled as P1 to P8 and “all,” respectively) for 12 months (December 2018–November 2019).

Points

LR RF

5 15 5 15

R R2 RMSE R R2 RMSE R R2 RMSE R R2 RMSE

P1 0.62 0.074 1.75 0.62 0.192 1.63 0.62 0.285 1.54 0.64 0.326 1.49
P2 0.52 0.23 0.74 0.48 0.17 0.77 0.47 0.11 0.80 0.55 0.19 0.76
P3 0.56 0.24 0.65 0.53 0.20 0.66 0.55 0.29 0.63 0.58 0.31 0.62
P4 0.33 20.16 0.42 0.35 20.34 0.41 0.35 0.11 0.37 0.35 0.12 0.37
P5 0.30 20.16 0.61 0.35 20.30 0.65 0.31 20.01 0.57 0.33 0.05 0.55
P6 0.41 0.15 0.59 0.40 0.01 0.64 0.40 20.01 0.65 0.38 0.09 0.61
P7 0.62 0.05 0.45 0.59 0.14 0.43 0.64 0.30 0.39 0.63 0.31 0.39
P8 0.46 20.55 0.44 0.45 0.09 0.36 0.49 0.13 0.35 0.45 20.67 0.49
All 0.49 0.18 0.66 0.51 0.21 0.65 0.54 0.29 0.61 0.60 0.37 0.60
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F. Lott, 2015: Comparison of gravity waves in the Southern
Hemisphere derived from balloon observations and the
ECMWF analyses. J. Atmos. Sci., 72, 3449–3468, https://doi.
org/10.1175/JAS-D-14-0324.1.

Kim, Y.-J., S. D. Eckermann, and H.-Y. Chun, 2003: An overview
of the past, present and future of gravity-wave drag parame-
trization for numerical climate and weather prediction models.
Atmos.–Ocean, 41, 65–98, https://doi.org/10.3137/ao.410105.

Lane, T. P., M. J. Reeder, and T. L. Clark, 2001: Numerical
modeling of gravity wave generation by deep tropical convec-
tion. J. Atmos. Sci., 58, 1249–1274, https://doi.org/10.1175/
1520-0469(2001)058,1249:NMOGWG.2.0.CO;2.

Lott, F., R. Plougonven, and J. Vanneste, 2010: Gravity waves
generated by sheared potential vorticity anomalies. J. Atmos.
Sci., 67, 157–170, https://doi.org/10.1175/2009JAS3134.1.

}}, }}, and }}, 2012: Gravity waves generated by sheared
three-dimensional potential vorticity anomalies. J. Atmos.
Sci., 69, 2134–2151, https://doi.org/10.1175/JAS-D-11-0296.1.

Matsuoka, D., S. Watanabe, K. Sato, S. Kawazoe, W. Yu, and
S. Easterbrook, 2020: Application of deep learning to esti-
mate atmospheric gravity wave parameters in reanalysis data
sets. Geophys. Res. Lett., 47, e2020GL089436, https://doi.org/
10.1029/2020GL089436.

McLandress, C., T. G. Shepherd, S. Polavarapu, and S. R. Beagley,
2012: Is missing orographic gravity wave drag near 608S the
cause of the stratospheric zonal wind biases in chemistry–
climate models? J. Atmos. Sci., 69, 802–818, https://doi.org/10.
1175/JAS-D-11-0159.1.

O’Gorman, P. A., and J. G. Dwyer, 2018: Using machine learning
to parameterize moist convection: Potential for modeling of cli-
mate, climate change, and extreme events. J. Adv. Model. Earth
Syst., 10, 2548–2563, https://doi.org/10.1029/2018MS001351.

O’Sullivan, D., and T. J. Dunkerton, 1995: Generation of inertia–
gravity waves in a simulated life cycle of baroclinic instability.
J. Atmos. Sci., 52, 3695–3716, https://doi.org/10.1175/1520-
0469(1995)052,3695:GOIWIA.2.0.CO;2.

Pedregosa, F., and Coauthors, 2011: Scikit-learn: Machine learning
in Python. J. Mach. Learn. Res., 12, 2825–2830, https://jmlr.
org/papers/v12/pedregosa11a.html.

Plougonven, R., and F. Zhang, 2014: Internal gravity waves from
atmospheric jets and fronts. Rev. Geophys., 52, 33–76, https://
doi.org/10.1002/2012RG000419.

AM I RAM JAD I E T A L . 439FEBRUARY 2023

Unauthenticated | Downloaded 09/05/23 12:20 PM UTC

https://doi.org/10.1175/1520-0469(1999)056<4167:ASPOMF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1999)056<4167:ASPOMF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1995)052<2212:TGWRAD>2.0.CO;2
https://doi.org/10.1175/1520-0469(1995)052<2212:TGWRAD>2.0.CO;2
https://doi.org/10.1002/qj.637
https://doi.org/10.1002/qj.637
https://doi.org/10.1175/MWR-D-20-0195.1
https://doi.org/10.1175/MWR-D-20-0195.1
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1175/2010JCLI3404.1
https://doi.org/10.1175/2010JCLI3404.1
https://doi.org/10.1029/2021MS002477
https://doi.org/10.1002/2015GL063298
https://doi.org/10.1175/JAS-D-15-0377.1
https://doi.org/10.5194/essd-10-857-2018
https://doi.org/10.1175/1520-0469(1992)049<1427:NSOCGS>2.0.CO;2
https://doi.org/10.1175/1520-0469(1992)049<1427:NSOCGS>2.0.CO;2
https://doi.org/10.1029/2001RG000106
https://doi.org/10.1175/JAS-D-16-0104.1
https://doi.org/10.1029/2018GL078202
https://doi.org/10.1175/JAS-D-12-09.1
https://doi.org/10.1175/JAS-D-12-09.1
https://doi.org/10.5194/acp-19-15377-2019
https://doi.org/10.1175/BAMS-D-15-00135.1
https://doi.org/10.1175/BAMS-D-15-00135.1
https://doi.org/10.1175/JAS-D-14-0324.1
https://doi.org/10.1175/JAS-D-14-0324.1
https://doi.org/10.3137/ao.410105
https://doi.org/10.1175/1520-0469(2001)058<1249:NMOGWG>2.0.CO;2
https://doi.org/10.1175/1520-0469(2001)058<1249:NMOGWG>2.0.CO;2
https://doi.org/10.1175/2009JAS3134.1
https://doi.org/10.1175/JAS-D-11-0296.1
https://doi.org/10.1029/2020GL089436
https://doi.org/10.1029/2020GL089436
https://doi.org/10.1175/JAS-D-11-0159.1
https://doi.org/10.1175/JAS-D-11-0159.1
https://doi.org/10.1029/2018MS001351
https://doi.org/10.1175/1520-0469(1995)052<3695:GOIWIA>2.0.CO;2
https://doi.org/10.1175/1520-0469(1995)052<3695:GOIWIA>2.0.CO;2
https://jmlr.org/papers/v12/pedregosa11a.html
https://jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.1002/2012RG000419
https://doi.org/10.1002/2012RG000419
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