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ABSTRACT

Extensive numerical evidence shows that the assimilation of observations has a stabilizing effect on unstable dynamics, in numerical weather
prediction, and elsewhere. In this paper, we apply mathematically rigorous methods to show why this is so. Our stabilization results do not
assume a full set of observations and we provide examples where it suffices to observe the model’s unstable degrees of freedom.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0105590

Bjerknes first described weather prediction as an initial-value
problem in 1904.1 As von Neumann and associates started using
computers to implement this idea immediately after World War
II, it quickly became apparent that the requisite initial data avail-
able were incomplete.2,3 The appearance of weather satellites in
the 1960s led further on to the concept of time-continuous assim-
ilation of remote-sensing data.4,5 Nowadays, data assimilation
(DA) is being applied across all the areas of the climate sciences
and much beyond.6–10 Three crucial issues are still insufficiently
well understood: (i) standard proofs for the convergence of the
DA process rely on the stability of the model dynamics, even
in the linear case, while atmospheric and oceanic dynamics are
famously unstable and chaotic;10–12 (ii) data availability over time
appears to successfully compensate for insufficient instantaneous
coverage in space;2,8,13 and, last but not least, (iii) it appears
that observations of a model’s unstable manifold are sufficient
for the convergence of the time-continuos forecast–assimilation
cycle.14,15 The present paper uses concepts and methods from the
stochastic calculus,16 random dynamical systems,17–19 and nonlin-
ear filtering20,21 to achieve several significant steps in clarifying all
three of these issues.

I. INTRODUCTION AND MOTIVATION

A. The forecast–assimilation cycle in meteorology

A key metaproblem of data assimilation (DA) in atmospheric,
oceanic, and climate problems is to show that sequential filters of
various degrees of sophistication are stable and that they converge
to solutions with suitable properties that lie sufficiently close to the
observations, such as they are, in the case of the unstable dynamics
that characterizes these problems. Moreover, a full solution to this
metaproblem should allow us one to compare, with relative ease, the
efficiency and accuracy of several filters.

Heuristically, the motivation for this metaproblem being sol-
uble is the success of practical DA methods in numerical weather
prediction (NWP), and in related oceanographic and climate prob-
lems, in keeping track of a system’s observed state.8,22 We outline
herein some simple ideas of why sequential filters do have a chance
of being stable and convergent, even in the presence of dynamically
unstable modes.

As the importance of DA methodology in the climate sciences
and an increasing number of other areas, all the way to finance, has
been growing rapidly, DA has attracted much attention in relevant
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areas of the mathematical sciences.20,23–25 As we shall argue further
below, this increase of attention has not covered as yet the issues of
instability of the basic dynamics that one wishes to track nor that of
partial observations. The main point of this paper is to take substan-
tial steps in addressing these two issues with the same degree of rigor
as that used so far in addressing the considerably simpler situation
of stable dynamics and complete measurements.

To lead up to the full complexity of the setting involved, con-
sider first, for simplicity, a scalar, linear DA problem in continuous
time, using “sloppy” notation. The model equation is

ẋ = Ax + u(t), (1)

and the observation equation is

ẏ = Hx + v(t), (2)

where (u, v) are noises that are white in time t and have “nice” den-
sities—i.e., centered and with finite variance, e.g., Gaussian—while
the dot notation (x, y)· stands for the time derivative. We keep caps
(A, H) for the model and observation operators because the scalar
case is supposed to be just shorthand for the vector–matrix case. The
fully nonlinear and high-dimensional problems arising in the actual
applications involve also much more complex noise processes, of
course (see, for instance, the work of Nicolis and co-workers in
Ref. 26, and further references therein).

The forecast–assimilation (FA) process for x̂, the best linear
unbiased estimate of x, obeys27,28

˙̂x = Ax̂ + K(y − Hx̂). (3)

Here, K is a weight matrix, which equals the Kalman–Bucy
optimum29,30 in the Gaussian-noise case, and y − Hx̂ is the
innovation vector that equals the difference between the actually
observed value of x and the one expected by forecasting this value
based on past observations.

The intuitive motivation to hope for convergence of this FA
cycle to the true evolution—or for its synchronization with the
observations31—is simply re-writing Eq. (3) as

˙̂x = (A − KH)x̂ + Ky. (4)

This equation exhibits the new, and hopefully stabler, dynam-
ics (A − KH) of the FA process vs the original, pure-evolution
dynamics A. It also suggests using random dynamical system (RDS)
theory17,19 for the FA problem, given the time-dependent forcing
by Ky, in which the observations are subject to random errors.
An exhaustive presentation of RDS theory is given in the Ludwig
Arnold monograph,17 which makes, however, somewhat difficult
reading for the non-specialist. More accessible presentations for DA
practitioners can be found in Refs. 18, 32, and 33.

One has to show that the nonlinear, multidimensional—and
possibly even infinite-dimensional FA evolution, as in the gen-
eralization of Eq. (4) to partial differential equations (PDEs)—is
stable14,34 even in the presence of dynamic instabilities. For the way
that it might still suffice, in the presence of dynamic instabilities, to
have dim{y} ≤ dim{x}, see numerical results for simplified atmo-
spheric and oceanic models in Ref. 22 and in Sec. 2 of the Ghil
(1997)35 review paper, for instance. Frank and Zhuk36 did obtain a

mathematically rigorous result along these lines for a deterministic
system of nonlinear ordinary differential equations.

We restrict ourselves here to the finite-dimensional case: in the
operational practice of numerical weather prediction (NWP), the
PDEs governing atmospheric and oceanic flows are discretized in
physical space — using finite differences, finite elements, or spectral
and pseudo-spectral methods.7,10 These days, the number of result-
ing finite-difference equations in time is very large—up to order of
108–109—but still finite and will stay so for the foreseeable future.

The nonlinearity of atmospheric and ocean dynamics11,37,38

compels us to deal not just with the mean and variance of the esti-
mated state x̂, as in the classical Kalman–Bucy filter,27,28 but with the
entire probability distribution function (pdf) of the state x, condi-
tioned on the observations z. This pdf may be multimodal or, more
generally, non-Gaussian21,23 and include the presence of long tails
due to extreme events.39,40

To fully describe the pdf of the observed state x(t) given the
data z(t), one needs more than this pdf’s mean and variance. Indeed,
absent the linearity and Gaussianity assumptions, the system of
equations satisfied by the mean and the variance of the pdf of the
observed state is no longer closed and we need more that just these
two quantities to describe the FA process and compute its evolution.
This point of view is, by now, widely shared by the operational NWP
community.6,41,42

In this paper, we assume that the model x is a, possibly unsta-
ble, stochastic process explicitly defined in Sec. II. We also assume
that the model is observed only partially and that the observations
arrive continuously in time. The latter assumption is consistent
with the already mentioned continuous flow of observations in the
satellite era.4,5

In fact, shortly after the advent of meteorogical satellites in
the late 1960s, Charney et al.4 formulated the conjecture that a
knowledge of the continuous time history of the atmospheric tem-
perature field will allow one to determine the other state variables,
in particular, the winds. Ghil and coauthors provided analytical
arguments for the correctness of this “Charney conjecture” in two-
dimensional (2D) geophysical fluid dynamics (GFD) models43 and
documented its usefulness numerically with time-continous DA of
actual remotely sensed temperatures in a fairly realistic NWP-type,
three-dimensional (3D) atmospheric model.5 Titi and coauthors
provided rigorous proofs in a purely deterministic setting for both
2D and 3D models of GFD interest.13,44

Figure 1 here illustrates the FA process’s evolution in the
presence of observations that are partial in both their nature—i.e.,
temperature vs winds—and their spatial coverage—ocean vs land
in this simple example. The figure represents DA results using the
Kalman–Bucy filter27–30 (hereafter KF) for a linear, mid-latitude
shallow-water model in one space dimension with a simplified
geometry.45 In this geometry, there are two data-rich regions of equal
size that stand for the North American and Eurasian land masses,
alternating with two data-poor regions of the same size that stand
for the North Atlantic and North Pacific.

In the particular numerical experiment selected here for illus-
tration purposes, all three model variables—namely, the geopoten-
tial height φ = gh of the free surface, where h is the actual height
and g the acceleration of gravity, along with the cartesian velocity
components (u, v)—were available at the so-called synoptic times of
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FIG. 1. Typical results of a forecast–assimilation (FA) cycle. (a) Expected
root-mean-square (RMS) error over land; (b) expected RMS error over the ocean;
and (c) expected RMS error over the entire model domain. Adapted by E. Bach
from Ghil et al.,45 in Dynamic Meteorology: Data Assimilation Methods, edited by
L. Bengtsson, M. Ghil, and E. Källén (Springer, 1981), pp. 139–224.

noon and midnight GMT over the land areas, while no data at all
were available over the ocean areas. In this case, all three curves for
u(t), v(t) and φ(t)—as well as for the energy E = u2 + v2 + φ2/8,
where8 is the equilibrium value of φ about which the equations are
linearized—have exactly the same behavior.

Over the data-rich land, the error drops sharply at the first
observing time, 12 h after the start, and it grows parabolically

FIG. 2. Schematic diagram of forecast error growth in a numerical weather
prediction (NWP) model (see Appendix A for explanations). The perfect-model
(dashed blue) and real-model (solid blue) curves here should be compared with
the blue curve in the two panels of Fig. 3 there, for S = 0 and S 6= 0, respec-
tively. The straight red line (dashed-dotted) labeled Qt here represents the linear
growth of forecast error variance due to additive white noise, as is the case in
Fig. 1(a), between updates and over land, while the Lorenz49 and Dalcher and
Kalnay50models in the appendix only assume a constant deterministic model error
S 6= 0. E. Bach kindly provided this figure.

between each observing time and the next one, due to the KF’s Gaus-
sian and white-in-time model noise. The parabolic growth of the
root-mean-square (RMS) error in this case is due to the additive
model noise, as in the case of scalar Brownian motion,46 in which it
is the variance of the process that is proportional to time t (compare
with the dashed red line in Fig. 2). Over land, though, the evolution
of the RMS error asymptotes vary quickly, in 1–2 model days, to one
in which the FA error level oscillates around that of the observational
noise, which equals roughly 0.9 in nondimensional units.

Over the data-poor oceans, the RMS error still decreases due to
the advection of information from the land areas by the mean west-
erly winds, U = −∂8/∂y. However, this error decrease is slower
than that over land, the asymptotically periodic behavior is only
reached after 4–5 model days, and the mean values of RMS errors
stay above the observational noise. Finally, the RMS error behavior
over the entire area is essentially a weighted average of the results
over land and over ocean.

This type of behavior was modified by the advent of time-
continuous satellite data over the oceans, as shown, for instance,
by the work of Halem et al.,47 as part of the DA studies associated
with the Global Atmospheric Research Experiment (GARP). While
the Ghil et al.45 model was one-dimensional, linear, stable, and had
only a rather small spatial resolution, that of Halem et al.47 and
many others were fully 3D, nonlinear, unstable, and had rather high
resolution by the standards prevailing at that point in time.

Figure 5 in Halem et al.47 (not shown here) clearly indicates
the improvement in 6-h forecasts over the Western U.S. from ini-
tial states that do use the time-continuous satellite data over the
North Pacific vs those that use only the conventional data available
over land. The mechanism that advects information by the westerly
winds—or misinformation, from ocean to land, in the case of the
conventional observing network—is clearly still working, in spite of
the unstable and nonlinear dynamics of the forecast model and of
the ad hoc sequential-estimation method in Ref. 47. The latter was

Chaos 33, 023139 (2023); doi: 10.1063/5.0105590 33, 023139-3

© Author(s) 2023

 05 Septem
ber 2023 12:28:56

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

a successive-correction method5,48 in the Halem et al.47 3D model,
while it was a KF in the Ghil et al.45 1D model.

An idealized version of the error components that play a role
in the FA process are illustrated in Fig. 2 and discussed further in
Appendix A. The major point of the figure and of the associated
appendix is that high-end, operational NWP models have various
sources of instability, and that NWP would be impossible if DA
did not stabilize the FA dynamics and thus achieve real-time low-
error forecasts. The main purpose of the present paper is to justify
rigorously the numerically observed fact that this is, indeed, the case.

B. A rough sketch of the mathematical formulation

In the present paper’s context, the “best estimate” of the model
x is its conditional distribution with respect to the observational data
z(t) available up to the current time t. We will denote this proba-
bility distribution by π(t) ≡ πt and the distribution of the model x
in the absence of any observational data by p(t) ≡ pt. The pdf p is
called the prior distribution and π the posterior distribution, where
we dropped for simplicity the dependence on time t. The two dis-
tributions π and p can be viewed as dynamical systems that both
evolve in the infinite-dimensional space of probability measures P

over the model state space R
d. Put in simple words, our results refer

to the ideal, truly optimal filter and not to any specific approxima-
tions thereof, such as the extended Kalman filter (EKF8) or ensemble
Kalman filter (EnKF6,41,42) or any of the variational methods.8,41

For the comfort of the interested reader coming from the NWP
community or from other areas where DA is being used—or its use is
being contemplated—we are summarizing in Table I the correspon-
dence of key symbols and terms in this paper vs their counterparts
in NWP use. Depending on the model for x ∈ R

d, the prior system
may be unstable: Starting the prior system p from two different ini-
tial conditions, the p0 that results in pt and µ 6= p0, and using the
same forecast operator for both produces two probability measures,
pt and p

µ
t , that will diverge from each other in time, in the sense that

the Wasserstein distance W2 between the two tends to infinity. The
distance W2 between two probability measures µ and ν is given by

W2(µ, ν) :=
(

inf
γ∈0(µ,ν)

∫

Rd×Rd
|x − y|2 dγ (x, y)

)1/2

, (5)

where 0(µ, ν) denotes the collection of all measures on R
d × R

d

with marginals µ and ν on the first and second factor, respectively.

TABLE I. Correspondence of symbols and terms in this paper vs their counterparts

in NWP.

Notation
Data assimilation

language
Stochastic filtering

language

pt Probability distribution of
pure forecast

Prior distribution of the
signal

π t Probability distribution of
the analysis

Conditional distribution
of the signal

λ
f
t Deterministic forecast

model M51 Push-forward operator

This distance is often called in applications the “earth mover’s
distance,” following the original motivation of Monge.52 Ghil53 orig-
inally proposed the idea of using the Wasserstein distance in the
context of the climate sciences as a way to generalize the traditional
concept of equilibrium climate sensitivity37 in the presence of a
time-dependent forcing, such as seasonal or anthropogenic forcing.
Further details are given in Sec. 1 of Appendix B and considerably
more information on the definitions and methods used herein can
be found in the Panaretos and Zemel monograph.54

As stated already several times, we concentrate on the prior
process’s pt being unstable, i.e., starting it from the initial condi-
tion µ 6= po will lead to divergence of the trajectory p

µ
t from pt in

Wasserstein distance W2. We show in Sec. III that, to the contrary,
starting the posterior process π

µ
t from the initial condition µ 6= po

and evolving it with the same FA operator as that used to evolve πt

will generate a probability measure π
µ
t that will keep the W2 distance

between π
µ
t and πt bounded in expectation. Moreover, in the linear

case, we show that the W2 distance between π
µ
t and πt actually tends

to zero.
Mathematically, we consider the forecast operator λ

f
t and the

FA operator λt associated with the FA process, respectively, which
are defined by

λ
f
t : P(Rd) → P(Rd), pt = λ

f
tp0, (6a)

λt : �× P(Rd) → P(Rd), πt (ω) = λt (ω) π0, (6b)

and we show that, under certain conditions,

sup
t∈[0,∞)

E [W2 (λtµ, λtπ0)] < ∞, (7)

while possibly limt→∞ W2(λ
f
tµ, λ

f
tp0) = ∞. Moreover, in the linear

case, we will show that limt→∞ W2 (λtµ, λtπ0) = 0.

Note that, in Eq. (6) above, both the push-forward operators λ
f
t

and λt are stochastic processes and act on the full probability mea-
sures p and π , respectively. In the present framework, we do not
limit ourselves just to the mean and variance of the state x(t), as is
the case for the linear KF.27,28 The distance W2 (λtµ, λtπ0) between
the RDS λtµ starting from µ and the RDS λtπ0 starting from π0 is,
of course, random: It depends on the realization of the observation
process, and, hence, the expectation in Eq. (7) is taken with respect
to the pdf of this process.

We will prove rigorously, in the precise sense described above,
that the incorporation of observational data into the FA process
does indeed have a stabilizing effect on unstable dynamics, as shown
abundantly by NWP practice and suggested, in particular, by the
work of Anna Trevisan and her collaborators on assimilation in the
unstable manifold (AUS).14,15,34 The latter work was one source of
inspiration for the present paper.

Another source was RDS theory, according to the arguments
presented by one of the authors (MG) at the “Symposium Honoring
the Legacy of Anna Trevisan” held in Bologna, Italy in October 2017.
A more specific source of inspiration for the rigorous mathematics
herein was the paper of Arnold55 on stabilization by noise, which was
presented to MG by Franco Flandoli during the trimester on “The
Mathematics of Climate and the Environment,” held at the Institut
Henri Poincaré in Paris in Fall 2019.
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It turned out, however, rather quickly that the latter paper’s
arguments could not be applied directly to the DA problem at hand,
since the deterministic component of the process under study there
is linear, and we did not see how to extend Arnold’s arguments55 to
fully nonlinear processes. Moreover, the latter arguments are only
valid for finite-dimensional systems, while we are dealing here with
RDSs that evolve in the infinite-dimensional space of probability
measures P(Rd).

The layout of the paper is dictated by the intent to bring the
two communities—of DA practitioners, on the one hand2,8,14,23—and
of the rapidly increasing numbers of applied mathematicians and
physicists interested in DA on the other21,24,56—closer together.
Hence, after this fairly long introduction, we describe in Sec. II the
precise mathematical framework that is used herein. The main rigor-
ous results are outlined in Sec. III and further details on definitions
and proofs appear in Appendix B. Conclusions and some thoughts
on further work appear in Sec. IV.

II. MATHEMATICAL FRAMEWORK

A. Prior results

The two stabilization theorems presented here, Theorems 3.1
and 3.2, are related to and do use in their proofs certain arguments
from the existing stability results in the nonlinear filtering litera-
ture, e.g., Refs. 57–65. Such results have not, by and large, matched
the objectives of the applied DA community when studying the
asymptotic behavior of the FA process.

To be more precise, the applied DA community is interested
in results for a forecast cycle that is unstable—as is the case in
meteorology and oceanography—and for which applying DA has
the mysterious but salutary effect of stabilizing the FA process. In
addition, the DA community has to rely, typically, on results where
only a small subset of the forecast cycle’s degrees of freedom can be
observed. Without being comprehensive, of course, we give here a
classification of the conditions under which the existing results on
filter stability for nonlinear forecast processes hold.

• The forecast process is assumed to be ergodic or to have good
mixing properties, e.g., Atar,66 Atar and Zeitouni,67 Budhiraja,57

Chigansky and Liptser,68 Chigansky, Liptser and Van Handel,69

Del Moral and Miclo,61 and Del Moral, Doucet and Singh.60

Please note that ergodicity in these papers is meant in the sense
of convergence of the pdf of the push-forward process λf as
defined in Eq. (6a), not in the pathwise sense of RDSs.17,33,70

For example, the stochastic Lorenz model70 is ergodic in the
pathwise sense of RDSs, but does not have a stable push-
forward process λf. Note that ergodicity of the pdf of the push-
forward process λf does imply its stability. For further results
on ergodicity of the push-forward process, see, for instance,
Ref. 71.

• The forecast cycle is fully observed, e.g., Refs. 64, 72, 73, 69,
and 65.

• The forecast process has a drift term, which is the gradient
of a convex function, or a perturbation thereof, and its noise
term is strictly elliptic, e.g., Refs. 73, 74. This is a very restric-
tive class of forecast processes, which are expected to be stable
(see Ref. 75). Specific drifts belonging to this class are used

in the classical Metropolis-adjusted Langevin algorithm known
to converge faster to the diffusion’s invariant measure, e.g.,
Ref. 76.

To try to answer the question raised by the applied community,
we no longer insist on proving that the FA process is (exponentially)
stable in the sense advocated by the theoretical community. We relax
the definition and only require that the FA process initialized from
the wrong distribution does not diverge too strongly from the cor-
rectly initialized FA process, even when the forecast process does so;
this is why the ergodicity assumption for the forecast process is not
useful.

We substantially strengthen, however, the stabilization result,
in the sense that we want to control the mean and the second
moment of the FA process. Again, this is needed for practical rea-
sons. The practitioners want to know that the pointwise estimate of
their algorithm of choice does not diverge from the theoretical mean
of the FA process. However, they also want to know that their error
bars are not too different from the theoretical ones.

Furthermore, the results presented herein have the advantage
that the signal X(t) is not required to be fully observable. In particu-
lar, the dimension n of the observation Y(t) and the dimension d of
the signal X(t), in the notation of Sec. II, do not need to coincide; in
operational NWP and many other applications, d � n.2,23

Heuristically, we need to be able to observe all the “unstable”
directions, as suggested by Trevisan and co-workers,14,15,34 who gave
several fairly realistic examples of this idea working quite well. The
connection with our results is provided by some simple illustrative
examples in Sec. 4 of Appendix B.

In the linear case, the stability of the FA process is better
understood (see, for instance, Refs. 63, 64, 65, and 74). The stabil-
ity of the associated Riccati equation has been studied by Bishop
and Del Moral.77,78 The stabilization result obtained in Theorem 3.2
below for the linear signal is weaker than many of the existing
results discussed above. For example, no (exponential) rates of
convergence are deduced herein. This situation clearly leaves con-
siderable room for proving stronger results, given the hypotheses of
Theorem 3.2.

To complete this section, we would like to mention a num-
ber of works79–83 that explore related properties of the FA process
for a discrete-time framework. Bocquet et al.80 deal with conver-
gence of the Kalman filter covariance matrix for a linear observation
operator and a linear and error-free dynamical model. Boquet and
Carrassi79 introduced further refinements of the original results, as
well as numerical validations in both the linear and the nonlinear
case. Gurumoorthy et al.83 also studied this problem and showed
that the Riccati equation for the Kalman filtering error covariances
provides asymptotical bounds on the rank of the forecast and the
analysis error covariance matrices; both of these ranks are less than
or equal to the number of the forecast process’ non-negative Lya-
punov exponents. These works are well summarized by Carrassi
et al.81 in the recent collective work,84 a book that presents some of
the latest DA developments in various disciplines of the geosciences.
These results are important and could perhaps be exploited to show
a similar stabilization of the FA process in the respective frameworks
under which they are valid.

Chaos 33, 023139 (2023); doi: 10.1063/5.0105590 33, 023139-5

© Author(s) 2023

 05 Septem
ber 2023 12:28:56

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

B. The present setting

Having presented in Sec. II A a quick review of previous math-
ematical results on the stability of the FA process, we proceed now
by introducing the setting of our two theorems in Sec. III. Let

X = (Xi)
d
i=1 be the solution of the following stochastic differen-

tial equation driven by a p-dimensional Brownian motion process
V = (Vj)

p
j=1,

Xt = X0 +
∫ t

0

f (Xs) ds +
∫ t

0

σ (Xs) dVs. (8)

Here, we assume that f = (f i)
d

i=1 : R
d → R

d and σ

= (σ ij)i=1,...,d,j=1,...,p : R
d → R

d×p are globally Lipschitz. This will
ensure that Eq. (8) has a unique solution.

As stated in Sec. I B, we are interested in tracking the evolution
of the full pdf of the prior and posterior processes, namely, pt and
πt, respectively. To do so, we recall that the process X is a diffusion
process with an infinitesimal generator given by

Aϕ =
∑

i,j

1

2
aij∂i∂jϕ +

∑

i

fi∂iϕ,

where aij =
∑

k σikσjk. The prior distribution of Xt is also called its
law in the context of filtering.21

For an arbitrary measurable function ϕ : R
d → R that is inte-

grable with respect to the law of Xt, one has

pt(ϕ) = E [ϕ (Xt)] .

By restricting ϕ further to lie in a suitably chosen space of functions
denoted by D(A),

pt(ϕ) = p0(ϕ)+
∫ t

0

ps(Aϕ)ds. (9)

Let λ
f
t : P(Rd) → P(Rd) be the push-forward operator associ-

ated with Eq. (9). In particular, for arbitrary µ ∈ P(Rd), the map

t → λ
f
tµ =: p

µ
t is the solution of (9) with the initial condition µ.

Let Y be an n-dimensional process, where n is the number
of observations that are taken to be one-dimensional and have
measurement noises modeled by independent Brownian motions,

Yi
t = Yi

0 +
∫ t

0

hi(Xs) ds + Wi
t, i = 1, . . . , n, (10)

and hi (x) are the corresponding observation operators, which gen-
eralize the observation matrix from the linear framework (see Sec. 3
of Appendix B for details).

Let π = {πt, t ≥ 0} be probability measure-valued process that
gives us, at time t ≥ 0, the conditional distribution of the signal Xt

given the observations accumulated up to time t, {Ys, s ∈ [0, t]}. It is
this process that we call the FA process in our rigorous mathematical
setting. In other words, πt satisfies

πt(ϕ) = E [ϕ (Xt) |Ys, s ∈ [0, t]] ,

where ϕ : R
d → R is an arbitrary measurable function that is inte-

grable with respect to the law of πt. The FA process satisfies the

following stochastic partial differential equation, formulated here in
the integral form

πt(ϕ) = π0(ϕ)+
∫ t

0

πs(Aϕ) ds

+
∫ t

0

(

πs

(

ϕh>)− πs

(

h>)πs(ϕ)
)

(dYs − πs(h) ds) (11)

= π0(ϕ)+
∫ t

0

πs(Aϕ) ds +
∫ t

0

(

πs

(

ϕh>) −πs

(

h>)πs(ϕ)
)

dIs

(12)

for any test function ϕ ∈ D(A). Here, I is the innovation process,
defined as

Ii
t = Yi

t −
∫ t

0

πs

(

hi

)

ds, i = 1, . . . , n, t ≥ 0,

which is the rigorous analog of the innovation vector in Eq. (3) of
Sec. I A. The innovation process is a Brownian motion (see, e.g.,
Chap. 3 in Ref. 20). In particular, it is a martingale, and stochastic
integrals with respect to the innovation process are easier to manip-
ulate. In particular, upper bounds for the stochastic integrals with
respect to martingales are easier to obtain than those for stochastic
integrals with respect to general semi-martingales. The observation
process is a semi-martingale (it is a Brownian motion plus a drift
term), which so harder to handle.

More on stochastic partial differential equations and their
difficulties can be found, for instance, in Ref. 85 or Ref. 86.

In order to analyze the asymptotic behavior of the FA pro-
cess, we can recast the solution of (11) as an RDS. More precisely,
there exists a measurable map λ : [0, ∞) × P(Rd)×� → P(Rd),
(t,µ,ω) 7→ λ(t,ω)µ such that λ(0,ω) = I, namely, the identity map
on P(Rd), and

λ(t + s,ω) = λ (t,ϑsω) ◦ λ(s,ω) (13)

for all t, s ∈ [0, ∞) and for all ω ∈ �. In (13) the symbol ◦
means map composition. A family of maps λ(t,ω) satisfying (13)
is called a cocycle, and (13) is the cocycle property. The map
{ϑt : � → �} , t ∈ [0, ∞) is a family of measure-preserving trans-
formations of a probability space (�, F, P) termed the shift opera-
tors (see, for instance, Sec. 2.5 in Ref. 16 for further details on the
shift operators).

Using this map, the solution of (11) can be expressed as

πt(ω) = λ(t,ω)π 0. (14)

Moreover, for an arbitrary µ ∈ P(Rd), the process πµ = {πµt ,
t ≥ 0}, defined as

π
µ
t (ω) := λ(t,ω)µ,

is the solution of the SPDE (11) with initial condition µ. Finally,
the map λ(t,ω) is a continuous map when we endow P(Rd) (or,
rather, the set of probability measures with second moment) with
the topology induced by the Wasserstein metric.

Since the FA process is infinite-dimensional, as explained in
Sec. I B, its RDS characterization is not immediate. RDS theory is
well developed for finite-dimensional processes.17 A subclass of these
questions is settled in a fairly satisfactory manner by the theory of
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stochastic flows (see, for instance, Refs. 87 and 88). A stochastic
flow needs jointly continuous dependence of the solutions of the
stochastic differential equation under consideration on time and on
the initial state, except for a set of measure zero. This often does
not hold for infinite dimensions. Some infinite-dimensional systems
do generate a stochastic flow, others do not. For further definitions
of possibly infinite-dimensional RDSs, as well as for other related
results, we refer to Refs. 19 and 89. The RDS characterization of the
FA process is discussed in Sec. 5 of Appendix B.

In this paper, we show that, despite the possible divergence of
the prior distributions, that is,

lim
t→∞

W2

(

p
µ
t , pt

)

= ∞,

the FA process has a stabilizing effect, in the sense that it keeps the
distance W2(π

µ
t ,πt) uniformly bounded in expectation. Moreover,

in the linear case, it makes the distance W2(π
µ
t ,πt) vanish asymp-

totically. The main results of the paper are Theorems 3.1 and 3.2
below.

III. MAIN RESULTS

We introduce now the Wasserstein metric on P
2(Rd) defined

by (5) on the set of all probability measures on the collection of Borel
sets B(Rd) that have a finite second moment. Recall that the set
0(µ, ν) in (5) denotes the collection of all measures on R

d × R
d with

marginals µ and ν on the first and second factor, respectively; it is
called the set of all couplings of the measures µ and ν.

The Wasserstein metric is equivalently defined by

W2(µ, ν) =
(

inf E
[

|X − Y|2
])1/2

, (15)

where E[Z] denotes the expected value of a random variable or vec-
tor Z and the infimum is taken over all joint distributions of the
random variables X and Y with marginals µ and ν, respectively.

The main results of the paper are:
Theorem 3.1: For nonlinear coefficients f, h, and σ and

measures π0 and µ ∈ P2(R
d) that satisfy the conditions stated in

Appendix B 2, there exists a bound R = R (π0,µ) such that

sup
t≥0

E[W2(π
µ
t ,πt)] ≤ R. (16)

The complete proof of this theorem is given in Appendix B 2.
For the benefit of the curious but hasty reader, we provide here a
brief sketch of the argument. First, we give a bound on the differ-
ence π̂

µ
t − π̂t between the mean of the FA process initialized fromµ

and the original FA process, initialized from π0. This is done in two
steps: For arbitrary δ > 0, we deduce that there exists a constant cδ
independent of k such that

sup
t∈[kδ,(k+1)δ]

E
[∣

∣π̂
µ
t − π̂t

∣

∣

]

≤ cδE
[∣

∣π̂
µ

kδ − x̂kδ

∣

∣

]

.

This inequality appears as Eq. (B10) in Appendix B.
Next, we show that there exists Rδ such that supk≥0 E

[∣

∣π̂
µ

kδ

− x̂kδ

∣

∣

]

≤ Rδ . These two inequalities give us a uniform bound, over

t ∈ [0, ∞), of the difference E
[∣

∣π̂
µ
t − π̂t

∣

∣

]

. Finally, the uniform
bound, for all positive times, of E[W2(π

µ
t ,πt)] comes by means

of Lemma 2.1 in the appendix from the bound on the difference

E
[∣

∣π̂
µ
t − π̂t

∣

∣

]

and that of the covariance matrices of the FA pro-
cess initialized from µ and, respectively, the original FA process,
initialized from π0.

Theorem 3.2: For linear coefficients f, h, and σ and mea-
sures π0 and µ ∈ P2(R

d) that satisfy the conditions stated in
Appendix B 3, we have the much stronger result that

lim
t→∞

W2

(

π
µ
t ,πt

)

= 0. (17)

The complete proof of Theorem 3.2 is given in Appendix B 3.
Again, we provide here a brief sketch of the argument. We define
π 0

t := N
(

x̂0
t , P

0
t

)

to be a suitably chosen probability measure process
that serves as a “reference.” Then, we show that πµ gets asymp-
totically close to the reference process π 0, regardless of the initial
condition, and since this holds true for µ = π0 too, we immediately
deduce that limt→∞ W2(π

µ
t ,πt) = 0.

The reference process π 0 is convenient to work with: its cen-
tered version N

(

0, P0
t

)

converges weakly, as well as in Wasserstein
distance, to π∞ = N (0, P∞). Using the equivalent definition of the
Wasserstein distance (15), we deduce that limt→∞ W2(π

µ
t ,π 0

t ) = 0,
if and only if the following three properties hold true:

• limt→∞ |π̂µt − x̂0
t | = 0;

• limt→∞

∣

∣

∣Pπµt
− P0

t

∣

∣

∣ = 0; and

• limt→∞
∣

∣π
µ
t (ϕt)− π 0

t (ϕt)
∣

∣ = 0 for any bounded uniformly
continuous function ϕ, where ϕt is the same function shifted by
the mean x̂0

t , that is, ϕt (x) := ϕt

(

x + x̂0
t

)

, x ∈ R
d.

These three properties are then shown to hold, thus completing the
proof.

Remark 3.1: In the linear case of Theorem 3.2, it is fairly
easy to verify that the Kalman–Bucy filter27,28 satisfies the assump-
tions of the theorem. For the nonlinear case of Theorem 3.1, it is
the subject of future research to find numerical criteria that guar-
antee the required assumptions. This is a challenging problem as
there are many suboptimal approximations of an optimal filter and
the verification of the corresponding hypotheses may prove more
difficult.

Remark 3.2: Stability properties of suboptimal filters—e.g.,
the extended Kalman–Bucy filters (EKFs),8,90 as opposed to the truly
optimal filter studied herein—have also been studied under the
assumption of uniformly stable and fully observable signals. The sta-
bility constraint for EKFs has been removed in Refs. 77, 91, 92 (see
also Ref. 93 for a study of the stability of the mean-squared filtering
error).

IV. CONCLUSIONS AND FURTHER WORK

A. Summary

The main results of this work are given by Theorems 1 and 2 in
Sec. III. Essentially,

(i) for nonlinear dynamics or observations—including unstable
dynamics of the prior process and subject to certain technical
but plausible assumptions—the supremum of the expectation of
the Wasserstein distance W2 between the true posterior solu-
tion and a solution of the FA process with the wrong initial
conditions remains bounded at all future times; and
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(ii) for linear dynamics and observations—including unstable
dynamics of the prior process and subject to certain techni-
cal but plausible assumptions—the Wasserstein distance W2

between the two posterior distributions tends to zero.

B. Discussion

These results, to the best of our knowledge, are the first to
address the stability of the posterior FA process given an unstable
prior process. In the linear case, convergence in W2 of the poste-
rior processes starting from correct and incorrect initial data, p0

and µ, has been demonstrated (Theorem 3.2) and the applicabil-
ity to partial observations has been illustrated in Appendix B 4. In
particular, observing the unstable components of the prior process,
as originally proposed by Trevisan and her collaborators,14,15,34,94,95

seems to be an excellent idea. The results in the nonlinear case only
guarantee W2-boundedness of the difference between the two pos-
terior processes starting from distinct initial probability measures.
A considerable amount of practical DA work also indicates that the
FA process can track the correct solution,2,8,23,56 in particular, when
using observations from the unstable subspace.6

The first results herein toward a more realistic mathematical
treatment of the unstable-dynamics case open the door to a whole
slew of additional results, both theoretical and practical.

a. Deterministic and stochastic EnKF. Operational DA in NWP
relies these days more and more on the EnKF.6,41,42 However, in prac-
tice, most operational EnKF algorithms randomize only over the
NWP model’s initial states and not over observations, too, as done
herein.

The operational NWP literature on DA distinguishes, in fact,
between the deterministic EnKF, which only takes into account
random errors in the observations via the covariance matrix R of
observational errors, and the stochastic EnKF, which explicitly sim-
ulates random errors in the observations. An excellent review of the
EnKF for atmospheric DA in general appears in Ref. 96, with par-
ticular attention to this issue in its Sec. 2b. Lawson and Hansen97

give interesting examples of the two versions of EnKF being applied
to relatively simple examples of atmospheric and oceanic flows in
one and two spatial dimensions, and Hoteit et al.98 discuss some
of the problems that might arise in the stochastic EnKF by intro-
ducing these observational random errors into the FA process. van
Leeuwen99 has proposed recently a self-consistent way of applying
the stochastic EnKF.

Given the novel convergence results obtained herein in the
presence of a random observation process and some of the renascent
interest in the NWP literature, it might be worthwhile revisiting
the usefulness of the stochastic EnKF. In particular, retaining ran-
dom perturbations in the observations might obviate the need for
artificial inflation of the ensemble’s rapidly lost variance for the
deterministic EnKF.

b. Multiple models and model error. In practice, in NWP
and elsewhere, prediction can be served by more than one
model. The models can differ by their spatial resolution, by the

physical processes taken into consideration and by the numerical
discretization of the PDEs governing them. Multi-model DA is dis-
cussed in some detail by Bach and Ghil,100 including the issue of
model error growth in this situation. It would be of considerable
interest to extend the rigorous results herein to such a broader
setting.

Typically, given the fact that DA is more expensive than
straight forecasting,2,6,8,20,23 it is natural to use lower-resolution mod-
els for the FA process than for the forecasting. In the setup of
Sec. II B herein, doing so corresponds to distinct prior processes
pt and posterior processes πt and appropriate consideration of such
issues would be quite worthwhile.

c. Parameter estimation and the synchronization point of view.
In Sec. I A, we have mentioned already the view of the FA pro-
cess as the synchronization of the forecast model with the observed
process.101,102 This point of view has been used as a unifying princi-
ple between DA and supermodeling, namely, the use of ensembles
of models that do not only serve for a posteriori averaging of their
results but learn from each other in the process of a simulation or
prediction run.31 This learning is clearly related to the estimation of
imperfectly known model parameters.29,30

In this broader perspective, one could try to demonstrate, given
suitable hypotheses and observations, (i) the convergence of a single
model’s parameter estimation process and (ii) the convergence of a
supermodel to the observed process.

d. Practical examples. We presented in Appendix B 4, a sim-
ple linear model and two observation schemes to illustrate the fact
that stabilization by the FA process does not require observing all
of a model’s degrees of freedom and that observing just the unstable
ones suffices. In future work, we aim to apply these results to real-
istic models, for example, models that numerically approximate the
PDEs of geophysical fluid dynamics.

e. Particle filters. The results presented in this paper are theo-
retical in nature. In practice, the FA process cannot be computed
exactly: numerical approximations are required to estimate the
posterior distribution of the signal, given the data. Among these
numerical approximations, particle filters have the crucial property
of being theoretically justified in the sense that the numerical error
can be controlled by the computational effort. Moreover, they are
asymptotically consistent, i.e., as the number of data points used
increases, the sequence of estimates converges in probability

A particle filter is a sequential Monte Carlo method in which
the posterior distributiuon is approximated using a set of particles,

yielding a random measures of the form
∑

`

w`
t δ(x

`
t ), where δ is

the Dirac delta function, w1
t , w

2
t , . . . are the weights of the particles

and x1
t , x

2
t , . . . are their corresponding positions,20 centered around

the state vector xt. The approximations evolve in time, by follow-
ing the time evolution induced by the prior model and are corrected
by the observations to keep them close to the evolution of the FA
process.20,25
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Particle filters have been very successful in many applications,
including engineering, economics, and finance (see, for instance,
Ref. 103, and the references therein). In recent years, applications of
particle filtering to DA problems for planetary flows have flourished.
For in-depth reviews of the most recent efforts in this direction,
see Refs. 56 and 104. Such applications require enhancements of
the classical particle filters in order to eable them to tackle the
so-called curse of dimensionality, e.g., by relying on optimal trans-
port ideas,56 tempering,105–108 localization,56,109 model reduction,106,110

jittering,105 nudging,107 and judicious proposal densities.111 Some of
these approaches have been tested in operational NWP weather
prediction systems.109 The suitability of particle filters for high-
dimensional problems has been studied in Ref. 105 and tested
in Refs. 106 and 107. For example, in Ref. 107, the method is
used for the stochastic incompressible two-dimensional Euler model
with forcing and damping, while in Ref. 106, it is tested for a
two-dimensional quasi-geostrophic model.

The theoretical results herein pave the way for the stability
analysis of particle filters under the same assumptions. More pre-
cisely, one can attempt to show that particle filters have numerical
errors that can be controlled uniformly in time. Again, we will be
guided in pursuing such results by existing ones in nonlinear filter-
ing, stochastic analysis, and applied probability.59,60,112–115 The bound
will be in expectation, as in Theorem 3.1 of this paper. Coupled with
Remark 2.5 in Sec. 2 of Appendix B, such results will offer theoretical
validation to applying particle filters for long-run DA problems.
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APPENDIX A. FORECAST ERROR GROWTH IN NWP

In order to better understand the nature and role of forecast
error growth in the FA process, we consider here three different
models for error growth in NWP, namely, those of Leith,116 Lorenz,49

and of Dalcher and Kalnay.50

The forecast error model of Leith116 is

V̇ = αV + S, (A1)

where V is the mean-square error, S is the systematic model error,
and t is the lead time. The V in this appendix should not be confused
with the Brownian motion process in Eq. (8) of Sec. II. The forecast
error growth in the Leith model is given by

V(t) =
(

V0 + S

α

)

eαt − S

α
, (A2)

where V0 = V(0) is the initial error. Note that short-time forecast
errors grow exponentially and that the systematic model error acts
to increase the coefficient of this growth.

Leith’s forecast error model can only apply for short-time error
growth, since it does not saturate. Note that under certain statisti-
cal assumptions, the mean-square error saturation value of a single
forecast will be 2C, where C is the climatological variance. In a real
NWP model with N variables, the scalar C will be equal to the mean
trace of the climatological covariance matrix C, where C has dimen-
sion N × N. For ensemble forecasts, the saturation value becomes
(1 + 1/m)C, where m is the ensemble size, see Ref. 117.

Lorenz’s model of forecast error growth49 is

Ė = aE(E∞ − E), (A3)

where E is the root-mean-square error and E∞ is its saturation value.
To compare this model directly to models based on mean-square
error, like Eq. (A1), we can change variables to V = E2, and get that

V̇ = 2aV1/2
∞ V

(

1 − (V/V∞)
1/2
)

. (A4)

Lorenz’s model includes a nonlinear saturation term but does not
incorporate systematic model error S.
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FIG. 3. Comparison between the model error growth V(t) in the Leith,116 Lorenz,49 and DK50models. The systematic model error is (a) S = 0, dashed curves; and (b) S = 6,
solid curves. See legend for color identification.

The error model proposed by Dalcher and Kalnay50 (henceforth
DK) combines the key features of the Leith117 and Lorenz49 models,

V̇ = (αV + S)(1 − V/V∞). (A5)

It, thus, includes both saturation V∞ and systematic model error
S. For short-time error growth, we can take V∞ → ∞, recovering
Leith’s model. For S = 0, the model is similar to that of Lorenz, but
with V∞ having unit power in the saturation term, rather than 1/2.

To compare the three models graphically, we set α = 1,
V0 = 1, and V∞ = 100. To match the Lorenz model’s short-term
error growth to that of the other two models, we set a = α/

(

2V1/2
∞
)

.
Figure 3 shows a comparison between the three error models,

both with a perfect model for which S = 0 and with an imperfect
model with S = 6. The Leith curve is the same in both cases, since it
does not account for S. For the perfect model case, all three curves
experience similar short-term exponential error growth. However,
the Leith and DK models grow faster in the imperfect case than in
the perfect case. In both cases, the Leith model diverges from the
other two curves in the medium range due to its lack of saturation.
The Lorenz and DK curves both saturate to V∞, although DK satu-
rates more quickly due to the difference in the functional forms of
the saturation terms in the two models.

DK actually used their model’s three parameters, (α, S, V∞),
to match their error growth curve to the archived real-time per-
formance for the years 1980–1981 of the European Centre for
Medium-range Weather Forecasts (ECMWF) model. Their Fig. 9
shows separate, near-perfect fits out to 10 days, for boreal winter,
when the weather is more active, and boreal summer, when it is less
so. Stroe and Royer118 subsequently generalized the DK model, by
introducing the power Vp, with p 6= 2, in the saturation term, and
took the limit p → ∞ to obtain

V̇ = −aV log(V/V∞). (A6)

These authors found that Eq. (A6) gave better fits for extended-
range, 45-day experimental weather forecasts than either Eq. (A4)
or (A5).

Simmons et al.119 also obtained rather good fits to operational
NWP model performance with Lorenz’s quadratic error growth
model, but with a smaller error growth exponent that in the DK
paper.50 Trevisan et al.,120 though, showed—by using an intermedi-
ate, quasigeostrophic two-layer model on the β-plane121—that only
very small initial errors in such a model obey Lorenz’s quadratic
error growth model and that the error growth curve, in general,
depends significantly on the magnitude of the initial errors.

Savijärvi122 combined features of the Lorenz and DK models
in the study of the (then) U.S. National Meteorological Center’s
(NMC’s) Medium-Range Forecast (MRF) Model’s 0–10-day fore-
casts for 1988–1993. Growth parameters, as well as model and anal-
ysis errors for this data set, were estimated using the quadratic error
growth assumption. Savijärvi showed that both the MRF model
error and analysis error nearly halved during the six years under
study but, at the same time, the growth parameters nearly doubled,
since smaller errors grow faster.

Model error growth is, thus, a complex topic with much more
to be said about; see, for instance, the line of inquiry developed
by Nicolis and co-workers, which includes transient bimodality of
the error’s pdf.26 The topic’s quick review in this appendix suffices,
though, to show the presence of error growth-generating instabili-
ties in high-end, operational NWP models. The ground covered here
in Secs. II and III and in Appendix B shows that DA can overcome
these instabilities, in theory as well as in practice.

APPENDIX B. RIGOROUS DEFINITIONS AND PROOFS

1. The Wasserstein topology

In this appendix, we present the reason for showing the stabi-
lizing effect of the FA process on unstable dynamics with respect
to the Wasserstein topology—i.e., the topology generated by the
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Wasserstein distance—and not with respect to the more popular
weak topology. Before doing so, we provide a little more information
on the Wasserstein distance for the benefit of NWP practitioners
who might not yet be familiar with it.

Gaspard Monge, an artillery officer in Napoleon’s armies, as
well as one of the founders of France’s Ecole Polytechnique, intro-
duced it as early as the 1780s,52 and Leonid V. Kantorovich123 used it
during World War II in optimizing the transport of resources within
the Soviet Union. The contemporary developments of this distance
and of its applications are largely due to Dobrushin,124 who coined
the name Wasserstein125 distance for it, and to Villani.126

In the climate sciences, Ghil53 illustrated the use of the Wasser-
stein distance for measuring the parameter sensitivity of sim-
ple models with time-dependent forcing, thus providing a link
between nonautonomous dynamical systems theory18 and optimal
transport.126 Robin et al.127 then used this distance to compute the
difference between the snapshot attractors of the Lorenz128 model
for different time-dependent forcings, while Vissio et al.129 used it
to help intercomparing climate models and evaluating their per-
formance against given benchmarks in the Coupled Model Inter-
comparison Project that is part of the Intergovernmental Panel on
Climate Change process.

Returning to the main purpose of this appendix, let us intro-
duce first some notation. For a measure µ ∈ P

2(Rd), we use the
following notation:

(i) means: µ̂ = (µ̂i)i∈1,...d is the mean vector of µ, i.e.,

µ̂i =
∫

Rd
xiµ(dx), i ∈ 1, . . . d; |µ̂| =

(

d
∑

i=1

(µ̂i)
2

)1/2

;

(B1)

(ii) second moments: µ2 is the sum of the second moments of
µ, i.e.,

µ2 =
d
∑

i=1

∫

Rd
x2

iµ(dx); (B2)

(iii) covariance matrix: Pµ = (P
ij
µ)i,j∈1,...d is the covariance matrix of

µ, i.e.,

Pij
µ =

∫

Rd
(xi − µ̂i)(xj − µ̂j)µ(dx), i, j ∈ 1, . . . d, (B3a)

|Pµ| =





d
∑

i,j=1

(Pij
µ)

2





1/2

. (B3b)

Next, we recall the definition of the weak topology on the space
of probability measures P(Rd) and note that, of course, P

2(Rd)

⊂ P(Rd). We can thus consider also weak convergence of proba-
bility measures belonging to the smaller space P

2(Rd):
Definition B.1 (Weak topology): A sequence of probability

measures (µn)n ∈ P(Rd), converges weakly to µ ∈ P(Rd) if and
only if (µn (ϕ))n converges to µ (ϕ) as n → ∞ for all ϕ ∈ Cb(R

d).
The weak topology on the space P(Rd) is defined to be the weak-
est topology such that for all f ∈ Cb(R

d), the function µ 7→ µ
(

f
)

is
continuous.

The weak convergence of (µn)n to µ is denoted µn ⇒ µ. A set
of probability measures A ⊂ P(Rd) is relatively compact in the
weak topology if and only if for all ε > 0 there exists Kε such that
µ (Kε) ≥ 1 − ε for all µ ∈ A. If A ⊂ P

2(Rd), one can show that
the set A will be relatively compact in the weak topology if the means
and the covariance matrices of the probability measures in the set A

are uniformly bounded.
The set A can, however, still be relatively compact, even if the

means of the probability measures in it do not remain bounded. For
example, if we choose µn =

(

1 − 1
n

)

δ0 + 1
n
δn2 , then the sequence

µn is relatively compact—in fact, µn ⇒ δ0—but the corresponding
sequence of means µ̂n is not bounded, since µn (ϕ) = n. On the
other hand, if we choose µn =

(

1 − 1
n

)

δ0 + 1
n
δn, then the sequence

µn is relatively compact, the means µ̂ ≡ 1 form a trivially bounded
sequence, µn (ϕ) = 1, but the second moments are not, as µ2

n = n.
This state of affairs is not satisfactory for our purposes.

The Wasserstein topology, though, adds the convergence of
the first and second moments to the weak convergence of the
measures. To be precise, we have limn→∞ W2(µn,µ) = 0 for µn,
µ ∈ P

2(Rd), if and only if µn converges to µ in the weak topol-
ogy and the first and second moments converge as well, using the
notation of Eqs. (B1)–(B3) above. Moreover, a set of probability
measures A ∈ P

2(Rd) is relatively compact in the topology given
by the Wasserstein distance if and only if

lim
R 7→∞

sup
µ∈A

∫

|x|>R

|x|2µ(dx) = 0. (B4)

Finally, we have the following lemma which follows immediately
from the alternative definition (15) of the Wasserstein distance W2:

Lemma 2.1: There exists a constant C = C(d) such that, for
any µ, ν ∈ P

2(Rd),

(W2(µ, ν))2 ≤ C
(

µ2 + ν2
)

,

W2(µ, ν) ≤ C
(

|Pµ|
1
2 + |Pν |

1
2 + |µ̂− ν̂|

)

.

2. Assumptions and proof of Theorem 3.1

To start, we formulate here the set of assumptions on the coef-
ficients of the signal and observation Eqs. (8)+(10) under which
Theorem 3.1 holds:

• We assume that the coefficients f and h can be decomposed into
a linear part and a bounded nonlinear part. In other words, we
will assume that

f = FI + f̃, h = HI + h̃, (B5)

where
(i) I : R

d → R
d is the identity function defined as I(x) = x

for any x ∈ R
d;

(ii) F ∈ R
d×d, H ∈ R

d×n are given matrices; and

(iii) f̃ : R
d → R

d , h̃ : R
d → R

n are bounded measurable func-
tions that incorporate the nonlinear parts of the coefficients
of the system (8) and (10).
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• The covariance matrices of the processes πµ and π , respectively,
are uniformly bounded in expectation:

sup
t≥0

E[|Pµt |8] = Cµ < ∞, sup
t≥0

E[|Pπ0
t |8] = Cπ0 < ∞. (B6)

• The matrix-valued process Qµ
s := F − Pµs H>H − λµs H is expo-

nentially stable in expectation, where λµ is the matrix-valued

process defined as λµs := πµs (I − π̂µ)h̃> for s ≥ 0. In other
words, if ψs:t is the solution of the linear matrix ordinary
differential equation

dtψs:t = Q
µ
t ψs:t, ψs:s = I,

where I is the identity matrix, then there exists some constant
c > 0 such that

E
[

|ψs:t|2
]

5 e−c(t−s). (B7)

Moreover, we assume that there exists δ > 0 such that

∫ (k+1)δ

kδ

E

[

∣

∣ψ−1
kδ:s

∣

∣

4
]

ds ≤ Cinv, (B8)

where Cinv is a constant independent of k.

The proof of Theorem 3.1 requires the bound of the difference
π̂
µ
t − π̂t between the mean of the FA process initialized from µ and

the original FA process, initialized from π0. We deduce from (11)
that, for t ∈ [kδ,

(

k + 1
)

δ],

π̂
µ

tkδ = π̂
µ

kδ +
∫ t

kδ

πµs ( f ) ds +
∫ t

kδ

κ
µ
s (dYs − πµs (h) ds),

π̂
µ
t = π̂

µ

kδ +
∫ t

kδ

πµs ( f ) ds +
∫ t

kδ

κ
µ
s

(

dIs +
(

πs(h)− πµs (h)
)

ds
)

,

π̂t = π̂kδ +
∫ t

kδ

πs( f ) ds +
∫ t

kδ

κsdIs.

Here,

κ
µ
s := πµs (Ih>)− πµs (I)π

µ
s (h

>) = Pµs H> + λµs ,

κs := πs(Ih>)− πs(I)πs(h
>) = Pπ0

s H> + λs.

Pµs and P
π0
s are the covariance matrices of πµs and of π , respectively,

and λµs := πµs ((I − π̂µ)h̃>) and λs := πs((I − π̂)h̃>), respec-
tively. It follows that

π̂
µ
t − π̂t =

(

π̂
µ

kδ − π̂kδ

)

+
∫ t

kδ

(

πµs − πs

)

(f − κ
µ
s h) ds

+
∫ t

kδ

(

κ
µ
s − κs

)

dIs

=
(

π̂
µ

kδ − π̂kδ

)

+
∫ t

kδ

Qµ
s

(

π̂µs − π̂s

)

ds

+
∫ t

kδ

(

Pµs − Ps

)

H>dIs + z
µ

kδ:t, (B9)

where z
µ

kδ:t is a process that contains the nonlinearities in the evolu-
tions π̂µ and π̂ ,

z
µ

kδ:t =
∫ t

kδ

(

πµs − πs

)

(

f̃ − κ
µ
s h̃
)

ds +
∫ t

kδ

(

λµs − λs

)

dIs,

t ∈ [kδ,
(

k + 1
)

δ].

Replacing the observation process Yt by the innovation process
It in the evolution equations for π̂

µ
t and π̂t, respectively, is impor-

tant: Unlike Yt, It is a standard Brownian motion, which enables us
to use classical stochastic calculus properties to bound the moments
of the stochastic integrals appearing in Eq. (B9).

Using an argument based on the Grönwall inequality, one
deduces that there exists a constant cδ independent of k such that

sup
t∈[kδ,(k+1)δ]

E
[∣

∣π̂
µ
t − π̂t

∣

∣

]

≤ cδE
[∣

∣π̂
µ

kδ − x̂kδ

∣

∣

]

. (B10)

We will show that there exists Rδ such that

sup
k≥0

E
[∣

∣π̂
µ

kδ − x̂kδ

∣

∣

]

≤ Rδ . (B11)

From (B10) and (B11), one can then deduce that

sup
t≥0

E
[∣

∣π̂
µ
t − π̂t

∣

∣

]

≤ sup
k≥0

sup
t∈[kδ,(k+1)δ]

E
[∣

∣π̂
µ
t − π̂t

∣

∣

]

≤ cδ sup
k≥0

E
[∣

∣π̂
µ

kδ − x̂kδ

∣

∣

]

≤ cδRδ < ∞.

Finally, from Lemma 2.1 and (B6), it follows that

sup
t≥0

E
[

W2

(

π
µ
t ,πt

)]

≤ sup
t≥0

E

[

√

|Pµt |
]

+ sup
t≥0

E

[

√

|Pπ0
t |
]

+ sup
t≥0

E
[∣

∣π̂
µ
t − π̂t

∣

∣

]

≤
(

sup
t≥0

E
[

|Pµt |8
]

)
1
16

+
(

sup
t≥0

E[|Pπ0
t |8]

)
1
16

+ sup
t≥0

E
[∣

∣π̂
µ
t − π̂t

∣

∣

]

≤ (Cµ)
1
16 + (Cπ0)

1
16 + cδRδ < ∞,

which yields our claim.
To complete the proof, the validity of (B11) remains to be

shown. From (B9), one obtains a form of Duhamel’s principle for
the difference between the values of the mean π̂ of the FA process at
the steps

(

k + 1
)

δ and kδ,

π̂
µ

(k+1)δ
− π̂

µ

kδ = ψkδ,(k+1)δ
(

π̂
µ

kδ − x̂kδ

)

+ ψkδ,(k+1)δ

∫ (k+1)δ

kδ

ψ−1
kδ,,s(P

µ
s − Ps)H

>dIs

+ ψkδ,(k+1)δ

∫ (k+1)δ

kδ

ψ−1
kδ,sdzµs . (B12)

We analyze next each of the three terms on the right-hand side of
(B12). For the first term, we use (B7) to derive the inequality

E

[∣

∣

∣ψkδ,(k+1)δ
(

π̂
µ

kδ − x̂kδ

)

∣

∣

∣

]

≤ e−cδ
E
[∣

∣π̂
µ

kδ − x̂kδ

∣

∣

]

. (B13)
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For the second term, we use the so-called Itô’s integral isometry
property, cf. Karatzas and Shreve,16 to obtain

E

[∣

∣

∣

∣

∣

ψkδ,(k+1)δ

∫ (k+1)δ

kδ

ψ−1
kδ,,s(P

µ
s − Ps)H

>dIs

∣

∣

∣

∣

∣

]2

≤ E

[

∣

∣

∣
ψkδ,(k+1)δ

∣

∣

∣

2
]

E





∣

∣

∣

∣

∣

∫ (k+1)δ

kδ

ψ−1
kδ,,s(P

µ
s − Ps)H

>dIs

∣

∣

∣

∣

∣

2




≤ e−2cδ
E

[

∫ (k+1)δ

kδ

∣

∣ψ−1
kδ,,s(P

µ
s − Ps)H

>∣
∣

2
ds

]

≤ e−2cδ
E

[

∫ (k+1)δ

kδ

∣

∣ψ−1
kδ,,s

∣

∣

4
ds

]

+ e−2cδ
E

[

∫ (k+1)δ

kδ

∣

∣(Pµs − Ps)H
>∣
∣

4
ds

]

≤ CIe−2cδ , (B14)

where CI = Cinv + δ |H|4
√

Cµ + δ |H|4
√

Cπ0 .
Next, (B6) implies that there exists positive constants

Cκ
µ
, Cκ , Cλ

µ
, and Cλ such that

sup
t≥0

E[|κµ
t |8] = Cκ

µ
< ∞, sup

t≥0

E[|κt|8] = Cκ < ∞,

sup
t≥0

E[|λµt |8] = Cλ
µ
< ∞, sup

t≥0

E[|λs|8] = Cλ < ∞. (B15)

For the third term, one gets

∫ (k+1)δ

kδ

ψ−1
kδ,sdzµs

=
∫ (k+1)δ

kδ

ψ−1
kδ,s

(

πµs − πs

)

(f̃ − κ
µ
s h̃)ds

+
∫ (k+1)δ

kδ

ψ−1
kδ,s

(

πµs − πs

)

(f̃ − κ
µ
s h̃)

(

λµs − λs

)

dIs, (B16)

and one proceeds to bound separately the two terms in (B16). For
the first term in (B16), we get

E

[∣

∣

∣

∣

∣

ψkδ,(k+1)δ

∫ (k+1)δ

kδ

ψ−1
kδ,s

(

πµs − πs

)

(f̃ − κ
µ
s h̃)ds

∣

∣

∣

∣

∣

]

≤ e−cδ
E

[

∫ (k+1)δ

kδ

∣

∣

∣ψ
−1
kδ,s

(

πµs − πs

)

(f̃ − κ
µ
s h̃)

∣

∣

∣ ds

]

≤ e−cδ

(

E

[

∫ (k+1)δ

kδ

∣

∣ψ−1
kδ,s

∣

∣

2
ds

]

+ E

[

∫ (k+1)δ

kδ

∣

∣

∣

(

πµs − πs

)

(f̃ − κ
µ
s h̃)

∣

∣

∣

2

ds

])

≤ e−cδ

(

Cinv + δ +
∣

∣

∣f̃
∣

∣

∣

2

δ +
∣

∣

∣h̃
∣

∣

∣

2 (

Cκ
µ
)

1
4
δ

)

. (B17)

For the second term in (B16), we get that

E

[∣

∣

∣

∣

∣

ψkδ,(k+1)δ

∫ (k+1)δ

kδ

ψ−1
kδ,s

(

πµs − πs

)

(f̃ − κ
µ
s h̃)

(

λµs − λs

)

dIs

∣

∣

∣

∣

∣

]

≤ e−cδ
E





∣

∣

∣

∣

∣

∫ (k+1)δ

kδ

ψ−1
kδ,s

(

πµs − πs

)

(f̃ − κ
µ
s h̃)

(

λµs − λs

)

dIs

∣

∣

∣

∣

∣

2




≤ e−cδ

∫ (k+1)δ

kδ

E

[

∣

∣

∣
ψ−1

kδ,s

(

πµs − πs

)

(f̃ − κ
µ
s h̃)

(

λµs − λs

)

∣

∣

∣

2

]ds

]

≤ e−cδ

∫ (k+1)δ

kδ

E

[

∣

∣ψ−1
kδ,s

∣

∣

4
]ds
]

+ e−cδ

∫ (k+1)δ

kδ

E

[

∣

∣

∣

(

πµs − πs

)

(f̃ − κ
µ
s h̃)

(

λµs − λs

)

∣

∣

∣

4

]ds

]

≤ e−cδ

(

Cinv + δ

∣

∣

∣ f̃
∣

∣

∣

4 (√
Cλµ +

√
Cλ
)

+ δ

∣

∣

∣h̃
∣

∣

∣

4 (

Cκ
µ + Cκ

)

)

.

(B18)

From (B16)–(B18), it follows that there exists a constant

Czµ = Czµ
(

δ, Cinv, f̃, Cλ
µ
, Cλ, h̃, Cκ

µ
, Cκ

)

,

independent of k such that

E

[∣

∣

∣

∣

∣

∫ (k+1)δ

kδ

ψ−1
kδ,sdzµs

∣

∣

∣

∣

∣

]

≤ Czµe−cδ . (B19)

Finally, from (B12), (B13), (B14), and (B19), we deduce that

E

[∣

∣

∣π̂
µ

(k+1)δ
− x̂(k+1)δ

∣

∣

∣

]

≤ e−cδ
(

E
[∣

∣π̂
µ

kδ − x̂kδ

∣

∣

]

+ CI + Czµ
)

.

(B20)

Choose now R = R (δ) = max
(

∣

∣µ̂− π̂0

∣

∣ , CI+Czµ

cδ

)

and use

induction to prove (B11). From the definition of R, we deduce
that

∣

∣µ̂− π̂0

∣

∣ ≤ R. Next, assume that E
[∣

∣π̂
µ

kδ − x̂kδ

∣

∣

]

≤ R. From this
and (B20), one can obtain that

E

[∣

∣

∣π̂
µ

(k+1)δ
− x̂(k+1)δ

∣

∣

∣

]

≤ e−cδ
(

R + CI + Czµ
)

≤ e−cδR

(

1 + CI + Czµ

R

)

≤ e−cδR (1 + cδ) ≤ R.

It follows that E
[∣

∣π̂
µ

kδ − x̂kδ

∣

∣

]

≤ R holds true for any k ≥ 0 and so
does (B11). The proof of Theorem 3.1 is now complete. �

Remark 2.3: The proof of Theorem 3.1 relies on the applica-
tion of Duhamel’s principle, as in (B12). The Duhamel principle can
be applied on an arbitrary interval [0, t] to deduce that

π̂
µ
t − π̂

µ

kδ = ψ0,t

(

π̂
µ

0 − x̂0

)

+ ψ0,t

∫ t

0

ψ−1
0,s (P

µ
s − Ps)H

>dIs

+ ψ0,t

∫ t

0

ψ−1
0,s dzµs . (B21)
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For a deterministic ψ , we can rewrite (B21) as

π̂
µ
t − π̂

µ

kδ = ψ0,t

(

π̂
µ

0 − x̂0

)

+
∫ t

0

ψs,t(P
µ
s − Ps)H

>dIs +
∫ t

0

ψs,tdzµs .

(B22)

In this case, the bound of the stochastic terms in (B22) would follow
directly from (B7) or, more precisely, from the deterministic expo-
nential decay of ψs,t. However, in our case, ψ is not deterministic.
Moreover, the process ψs,t is not adapted with respect to the filtra-
tion generated by the Brownian motion I. To be more precise, it
does not depend on {Ir, r ∈ [0, s]} but on {Ir, r ∈ [0, t]}. Hence, the
stochastic integrals in (B22) do not make sense as standard Itô inte-
grals. One can interpret them using a more general definition of
Skorohod integration, but the control of such resulting integrals is
no longer immediately obvious. A bound using Malliavin calculus
may be possible (see the monograph of Nualart130 for details of the
methodology).

In another approach, one could attempt to keep out of the
stochastic integrals the part that is not adapted, i.e., ψ0,t, and only
use (B21) but not (B22). To do so, one would need to bound the
exponential blowup of the stochastic integrals in (B21) as t → ∞
over the entire positive half line [0, ∞). Instead, we limit ourselves
to apply Duhamel’s priciple on intervals of the form [kδ, (k + 1)δ],
where δ is small enough to be able to rely on the bound given by (B8).

Finally, note that, using again an argument based on the Grön-
wall inequality, one obtains that, for any T > 0, there exists a con-
stant cT such that the expected difference between the means of
the FA process started from different initial distributions µ and π0

satisfies

sup
t∈[0,T]

E
[∣

∣π̂
µ
t − π̂t

∣

∣

]

≤ cT. (B23)

Thus, we only need to check that there exists a time horizon T for
which

sup
t∈[T,∞)

E
[∣

∣π̂
µ
t − π̂t

∣

∣

]

≤ cT. (B24)

The bound of the eighth moments of the covariance matrices P
µ
t and

P
π0
t , respectively, in (B6), as well as of the fourth moments of ψ−1

kδ:s,
suffices for the result above, but it is perhaps not necessary. We leave
it for future research to find the optimal bounds.

Remark 2.4: In the linear and Gaussian case, f̃ and h̃ are
constants and λµs = 0. Therefore,

zµ =
∫ t

0

(f̃ − Pµs H>h̃)ds;

in other words, zµ is a process with bounded variation. Moreover, Pµs
is deterministic. In this case, all the technical difficulties described
above vanish and Theorem 3.1 holds true with a much simpler
proof. In this case, though, a much stronger result holds, namely,
Theorem 3.2, which is proved in Sec. 3 of this appendix.

Remark 2.5: Theorem 3.1 gives us only an upper bound on
the expected value of the distance between π

µ
t and πt. From it, we

can derive the following alternative control: Let us denote by T(t, R)
the average time spent by the process π

µ
t outside the ball B(πt, R),

that is

T(t, R) = 1

t

∫ t

0

I{W2(π
µ
t ,π0

t )>R}ds.

Then, for any ε > 0, there exists a constant R = R(µ, ε) indepen-
dent of t such that

sup
t≥0

E [T(t, R)] < ε.

We note that we cannot expect T(t, R) to decrease to zero as
t tends to ∞, since π̂

µ
t − x̂t can be viewed as a d-dimensional

Ornstein–Uhlenbeck process with random coefficients and per-
turbed by the random residue process z.

Remark 2.6: The concept of stabilization described in
Theorem 3.1 is much weaker than the one described in many clas-
sical stabilization results, e.g., such as those covered by Budhiraja,57

Picard,64 or Van Handel.65 On the other hand, it has the advantage
that the signal X(t) is not required to be fully observable. In partic-
ular, the dimension n of the observation Y(t) and the dimension d
of the signal X(t), in the notation of Sec. II, do not need to coin-
cide. Heuristically, we need to be able to observe all the “unstable”
directions. See Sec. 4 in this Appendix for some simple illustrative
examples in this direction. This feature of our results is very advanta-
geous in practical applications as, in many situations, the dimension
of the observation space is considerably smaller than that of the state
space, n � d.2,23

Remark 2.7: One can deduce a criterion for the bound (B6)
to hold. The derivation of such a criterion can be carried out in terms
of the centralized third moments of π

µ
t , along the lines of the argu-

ments in Sec. 6.2 of Bain and Crisan,20 and it is the subject of future
research.

3. Assumptions and proof of Theorem 3.2

The assumptions and the arguments in this section are based
on the framework of Ocone and Pardoux63 and, in part, on their
results. In particular, we impose the following set of assumptions on
the coefficients of the signal and observation Eqs. (8) and (10) under
which Theorem 3.2 holds:

• We assume that the coefficients f and h are linear. In other
words, we will assume that

f = FI + f̃, h = HI + h̃, (B25)

where
(i) I : R

d → R
d is the identity function defined as I(x) = x

for any x ∈ R
d;

(ii) F ∈ R
d×d, H ∈ R

d×n are given matrices;

(iii) f̃ and h̃ are d-dimensional and n-dimensional vectors,
respectively; and

(iv) the function σ is a constant d × d-matrix.
• We assume that the measureµ has finite second moments—and,

thus, it it belongs to the Wasserstein space, as discussed in
Appendix A—and that it is absolutely continuous with respect
to π0. We denote by θµ the density ofµwith respect to π0, which
is integrable with respect to π0. Using a standard probabilistic
result (see, for example, Problem 3.20 in Karatzas and Shreve16),
it follows that there exists a random variable ϒµ ≥ 0 such that

Chaos 33, 023139 (2023); doi: 10.1063/5.0105590 33, 023139-14

© Author(s) 2023

 05 Septem
ber 2023 12:28:56

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

limt→∞ E
[

θµ (X0) |Yt

]

= ϒµ. Moreover, both E
[

θµ (X0) |Yt

]

and ϒµ have a pathwise representation in terms of the obser-
vation path Yt.We assume that, for the path for which we
do the analysis, limt→∞ E

[

θµ (X0) |Yt

]

= ϒµ > 0. Similarly,

we will be assuming that both limt→∞ E
[

θµ (X0)X0|Yt

]

and

limt→∞ E
[

θµ (X0)X0X
∗
0|Yt

]

exist, based on the same standard
probabilistic result.

• We define π 0
t := N

(

x̂0
t , P

0
t

)

, where x̂ satisfies the stochastic
differential equation

dx̂0
t =

(

Fx̂0
t + f̃

)

dt + PtH
>(dYt − (Hx̂0

t + h̃) dt)

=
(

Qtx̂
0
t + f̃ − PtH

>h̃
)

dt + PtH
>
t dYt, x̂0 = 0, (B26)

and P0 satisfies the deterministic matrix Riccati equation

dP0
t

dt
= σtσ

>
t + FP0

t + P0
t F

> − P0
t H

>HP0
t

= FQt + QtF
> + σtσ

>
t + PtH

>HPt, (B27)

with P0 = 0 ∈ R
d×d being the matrix with null entries. We

assume, furthermore, that there exists a unique solution P∞ ≥ 0
to the algebraic Riccati equation

σσ> + FP + PF> − PH>HP = 0, (B28)

and that Qt := F − P0
t H

>H is asymptotically stable. Using this
unique non-negative solution, we define Q∞ := F − P∞H>H.65

Following from Remark 2.1 and Lemma 2.2 in Ocone and
Pardoux,63 which, in turn, uses the classical result of Theorem 3.7
in Kwakernaak and Sivan,131 we make the following remark:

Remark 2.8: If (F, H) is detectable and (F, σ0) is stabiliz-
able, then (B28) has a unique non-negative definite solution P∞
and one has both Pt → P∞ and Qt → Q∞ for any initial condition
P0 ≥ 0, with Qt asymptotically stable. See Chap. 1 in Kwakernaak
and Sivan131 for the definition of detectability and stabilizability. In
particular, the eigenvalues of Q∞ have negative real parts and for
any 0 < a < inf {− Re λ; over λ being an eigenvalue of Q∞}, there
is a constant Ka such that

∥

∥Pt − P∞
∥

∥ ≤ Kae
−at.

The last fact can be proved by observing that

d

dt

(

Pt − P∞
)

=
[

F − 1/2
(

Pt + P∞
)

H>H
] (

Pt − P∞
)

+
(

Pt − P∞
) [

F − 1/2
(

PR
t + P∞

)

H>H
]>

and carrying out an analysis similar to that in Theorem 2.3 of Ref. 63.
We will show below that πµ gets asymptotically close to the

“reference process” π 0, regardless of the initial condition, and since
this holds true for µ = π0 too, we immediately deduce that

lim
t→∞

W2(π
µ
t ,πt) = 0.

Note that π coincides with π 0 if the initial condition π0 is the Dirac
delta distribution at 0, that is, π0 = δ0. The reference process π 0

is convenient to work with: From Remark 2.8 we deduce that the
centered version of π 0,−x̂0

t := N
(

0, P0
t

)

converges weakly, as well as

in Wasserstein distance, to π∞ = N (0, P∞). Using the equivalent
definition of the Wasserstein distance (15), it follows that

lim
t→∞

W2(π
µ
t ,π 0

t ) = 0 ⇐⇒ lim
t→∞

W2

(

π
µ,−x̂0

t
t ,π

0,−x̂0
t

t

)

= 0

⇐⇒ lim
t→∞

W2

(

π
µ,−x̂0

t
t ,π∞

)

= 0.

To prove the last limit, it suffices to show that π
µ,−x̂0

t
t converges

to π∞ in the weak topology and the first and second moments of

π
µ,−x̂0

t
t converge to the first and second moments ofπ∞, respectively.

Equivalently, it suffices to show that:

(a) π
µ,−x̂0

t
t converges to π∞ in the weak topology;

(b) limt→∞ |π̂µt − x̂0
t | = 0 , i.e., the distance betweeen the mean of

π
µ
t and that of π 0

t tends to 0; and
(c) limt→∞ |Pπµt − P0

t | = 0, i.e., the distance betweeen the covari-

ance matrix of π
µ
t and that of π 0

t tends to 0.

Since the set of bounded uniformly continuous functions are

convergence determining, to justify that π
µ,−x̂0

t
t converges to π∞

in the weak topology, it suffices to show that limt→∞ |πµ,−x̂0
t

t (ϕ)

− π∞ (ϕ) | = 0 for any ϕ that is a bounded and uniformly continu-
ous function. To recap, we have that limt→∞ W2(π

µ
t ,π 0

t ) = 0, if and
only if the following three properties hold true:

• limt→∞ |π̂µt − x̂0
t | = 0;

• limt→∞

∣

∣

∣Pπµt
− P0

t

∣

∣

∣ = 0; and

• limt→∞
∣

∣π
µ
t (ϕt)− π 0

t (ϕt)
∣

∣ = 0 for any bounded uniformly
continuous function ϕ, where ϕt is the same function shifted by
the mean x̂0

t , that is ϕt (x) := ϕt

(

x + x̂0
t

)

, x ∈ R
d.

Note that the reference process π 0 is not unique: we can replace it by
any other process π̃ 0 with the property that limt→∞ W2(π̃

0
t ,π 0

t ) = 0.
The proof of Theorem 3.2 is largely based on the arguments in

the proof of Theorem 2.6 in Ref. 63. Using the linearity of Eq. (8),
we can decompose the signal as follows:

Xt = eFtX0 + X̃t,

X̃t :=
∫ t

0

(FX̃s + f)ds +
∫ t

0

σdVs =
∫ t

0

eF(t−s)(f̃ds + σdVs),

Yt =
∫ t

0

(HeFsX0 + HX̃s + h̃)ds + Wt,

and we introduce the new measure P defined by

dP

dP

∣

∣

∣

∣

∣

Ft

= exp

[∫ t

0

−
〈

HeFsX0, dWs

〉

− 1

2

∫ t

0

∣

∣HeFsX0

∣

∣

2
ds

]

, t ≥ 0.

By Girsanov’s theorem, under this measure P, the process

W̄t :=
∫ t

0

HeBsX0ds + Wt, t ≤ T

is a Brownian motion, and X0 is independent of
(

Vt, W̄t

)

t≤T
. Follow-

ing the proof of Proposition 3.13 in Ref. 20, the law of X0 remains
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unchanged under P̄. Let

Lt := dP

dP

∣

∣

∣

∣

Ft

= exp

[∫ t

0

〈

HeBsX0, dW̄s

〉

− 1

2

∫ t

0

∣

∣HeBsX0

∣

∣

2
ds

]

= exp

(

〈X0, W
◦〉 − 1

2
〈MtX0, X0〉

)

,

where

(

Wo
t , Mt

)

=
(

eF∗t

∫ t

0

H∗dW̄s,

∫ t

0

eF∗sH∗HeFsds

)

.

Letψ : Rd × R
d → R be a function that is integrable with respect to

the joint law of
(

X0, X̃t

)

. Then,

E
[

ψ
(

X0, X̃t

)

|Yt

]

=
Ē
[

ψ
(

X0, X̃t

)

Lt|Yt

]

Ē [Lt|Yt]
.

From the above formula for X̃t and the fact that X0 and (W̄, Y) are
P-independent, we deduce that

E
[

ψ
(

X0, X̃t

)

|Yt

]

=
∫

Rd e−1/2(Mtx,x)
Ē
[

ψ
(

x, X̃t

)

exp (〈x, W◦〉) |Yt

]

π0(dx)
∫

Rd e−1/2(Mtx,x)Ē
[

exp (〈x, W◦〉) |Yt

]

π0(dx)
. (B29)

In particular, for any function ϕ : R
d → R such that the random

variable ϕ (Xt) = ϕ
(

eFtX0 + X̃t

)

is integrable, we deduce from (B29)
that

E [ϕ (Xt) |Yt] =
∫

Rd e−1/2(Mtx,x)
Ē
[

ϕ1
x

(

X̃t, W
◦) |Yt

]

π0(dx)
∫

Rd e−1/2(Mtx,x)Ē
[

ϕ2
x

(

X̃t, W◦
)

|Yt

]

π0(dx)
;

ϕ1
x

(

a, b
)

= ϕ
(

eFtx + a
)

exp
〈

x, b
〉

, a ∈ R
d, b ∈ R

n; and

ϕ2
x

(

a, b
)

= exp
〈

x, b
〉

, a ∈ R
d, b ∈ R

n.

The pair
(

X̃, W◦) satisfies a linear system of stochastic differen-

tial equations driven by the
(

d + m
)

-Brownian motion (V, W◦)with

initial condition (0, 0). Moreover, under P, the process Y satisfies

Yt =
∫ t

0

(HX̃s + h̃)ds + W̄t. (B30)

It follows that we can express Ē
[

ϕi
x

(

X̃t, W
◦
t

)

|Yt

]

, i = 1, 2, as inte-
grals with respect to a Gaussian distribution η with mean vector
(

x̂0
t , x̂

W
t

)∗
and covariance matrix

Ct =
(

P0
t St

St Rt

)

that satisfy the equations satisfied by a Kalman–Bucy filter with the
signal equations identical to those for the pair

(

X̃t, W
◦
t

)

and the
observation equation identical to (B30).

More precisely, x̂0
t is the solution of Eq. (B26), P0

t is the solution
of Eq. (B27), x̂W

t is the solution of the equation

dx̂W
t =

(

eFt + St

)∗
H∗
(

dYt −
(

Hx̂0
t + h̃

)

dt
)

, x̂W
0 = 0,

and the pair (St, Qt) solve the equations

dSt

dt
= FSt − P0

t H
∗H
(

eFt + St

)

, S0 = 0,

dRt

dt
= −eF∗tH∗HSt − S∗

t H∗HeFt − S∗
t H∗HSt, R0 = 0;

see formulas (B4)–(B10) in Ref. 63 for details. One can check that

dS◦
t

dt
=
(

F − P0
t H

∗H
)

S◦
t = QtS

◦
t ,

where S◦
t := eFt + St and, since Qt is asymptotically stable, we con-

clude that

lim
t→∞

∣

∣

∣

∣S◦
t

∣

∣

∣

∣ = 0. (B31)

In fact, similar to Remark 2.8, the convergence in (B31) has an
exponential decay rate to 0.

We deduce that

Ē
[

ϕ2
x

(

X̃t, W
◦) |Yt

]

= Ē
[

exp 〈x, W◦〉 |Yt

]

= e〈x,x̂W
t 〉+1/2(Qtx,x),

(B32)

Ē
[

ϕ1
x

(

X̃t, W
◦) |Yt

]

= Ē
[

ϕ
(

eFtx + X̃t

)

exp 〈x, W◦〉 |Yt

]

= e〈x,x̂W
t 〉+1/2(Qtx,x)

∫

ϕ
(

S◦
t x + a

)

π 0
t

(

da
)

.

It follows that

πt (ϕ) = E [ϕ (Xt) /Yt] =
∫

Rd 4t (x)
∫

ϕ
(

S◦
t x + a

)

π 0
t

(

da
)

π0(dx)
∫

Rd 4t (x) π0(dx)
,

where 4t (x) := e−1/2(Mtx,x)+〈x,x̂W
t 〉+1/2(Qtx,x). Moreover, by choosing

a function ψ : R
d × R

d → R in (B29) that is independent in the
second component, ψ

(

x, y
)

= ϕ (x),
(

x, y
)

∈ R
d × R

d, we obtain
from (B32) that

E [ϕ (X0) |Yt] =
∫

Rd 4t (x) ϕ (x) π0(dx)
∫

Rd 4t (x) π0(dx)
= π0 (4tϕ)

π0 (4t)
.

We identify the FA process λ : [0, ∞) × P(Rd)×� → P(Rd) by
the formula

π
µ
t (ϕ) = λ(t,ω)µ (ϕ)

:=
∫

Rd 4t (x)
∫

ϕ
(

S◦
t x + a

)

π 0
t

(

da
)

µ(dx)
∫

Rd 4t (x) µ(dx)

= 1

Cπ
µ
t

∫

Rd
4t (x)

∫

ϕ
(

S◦
t x + a

)

π 0
t

(

da
)

θµ (x) π0(dx),

(B33)

where Cπ
µ
t is the normalization constant

Cπ
µ
t :=

∫

Rd
4t (x) θµ (x) π0(dx) = π0

(

4tθµ
)

= E
[

θµ (X0) |Yt

]

π0 (4t) .
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To obtain representation (B33), we used the fact that µ is absolutely
continuous with respect to π0 and that θµ is the density of µ with
respect to π0.

Convergence of the first moments. Observe that

π̂
µ
t = 1

Cπ
µ
t

∫

Rd
4(x)

∫

(S◦
t x + a)π 0

t

(

da
)

θµ (x) π0(dx)

= x̂0
t +

S◦
t

∫

Rd x4t (x) θµ (x) π0(dx)
∫

Rd 4t (x) θµ (x) π0(dx)

= x̂0
t +

S◦
t

(

E
[

θµ (X0)X0|Yt

]

π0 (4t)
)

(

E
[

θµ (X0) |Yt

]

π0 (4t)
) . (B34)

It follows that

∣

∣π̂
µ
t − x̂0

t

∣

∣ ≤
∣

∣

∣

∣S◦
t

∣

∣

∣

∣

∣

∣

∣

∣E
[

θµ (X0)X0|Yt

]∣

∣

∣

∣

E
[

θµ (X0) |Yt

] .

Since the processes t → E
[

θµ (X0)X0|Yt

]

and t → E
[

θµ (X0) |Yt

]

converge and the second limit is positive, we have, by using (B31),

lim
t→∞

∣

∣π̂
µ
t − x̂0

t

∣

∣ = lim
t→∞

∣

∣

∣

∣S◦
t

∣

∣

∣

∣

limt→∞
∣

∣

∣

∣E
[

θµ (X0)X0|Yt

]∣

∣

∣

∣

limt→∞
∣

∣

∣

∣E
[

θµ (X0) |Yt

]∣

∣

∣

∣

= 0.

(B35)

Again, similar to Remark 2.8, the convergence in (B35) is exponen-
tially fast. Since limt→∞ e−ε̄t ∣

∣π
µ
t

∣

∣ = limt→∞ e−ε̄t ∣
∣x̂0

t

∣

∣ = 0, for any
ε̄ > 0, it follows that, for any i, j = 1, . . . , d,

lim
t→∞

∣

∣

∣

(

π
µ
t

)i (
π
µ
t

)j −
(

x̂0
t

)i (
x̂0

t

)j
∣

∣

∣ = 0.

The last limit is used in the proof of the convergence of the covari-
ance matrix below.

Convergence of the covariance matrix. Choose

ϕij : R
d → R, ,ϕij

(

x1, . . . , xd
)

:= xixj −
(

π
µ
t

)i (
π
µ
t

)j
.

We have that

(Pπµt
)ij −

(

P0
t

)ij = π
µ
t

(

ϕij
)

−
(

P0
t

)ij

= 1

Cπ
µ
t

∫

Rd
4(x)

∫

ϕij
((

S◦
t

)

x + a
)

π 0
t

(

da
)

× θµ (x) π0(dx)−
(

P0
t

)ij

=
∑

k,l

(

S◦
t

)il (
S◦

t

)jk (
Eµ

[

θµ (X0)Xl
0X

k
0|Yt

])

E
[

θµ (X0) |Yt

]

+
∑

l

(

S◦
t

)il (
Eµ

[

θµ (X0)Xl
0|Yt

])

E
[

θµ (X0) |Yt

]

(

x̂0
t

)j

+
∑

l

(

S◦
t

)jl (
Eµ

[

θµ (X0)Xl
0|Yt

])

E
[

θµ (X0) |Yt

]

(

x̂0
t

)i

+
(

x̂0
t

)i (
x̂0

t

)j −
(

π
µ
t

)i (
π
µ
t

)j
,

which gives the required convergence to 0.

Convergence for bounded uniformly continuous test functions.
We have that

∣

∣π
µ
t (ϕt)− π 0

t (ϕt)
∣

∣ ≤ 1

Cπ
µ
t

∫

Rd
4(x)

∫

∣

∣ϕt

((

S◦
t

)

x + a
)

− ϕt (a)
∣

∣

× π 0
t

(

da
)

θµ (x) π0(dx).

Decomposing next the integral in the numerator into the sum of the
integral over the region

∣

∣(S◦
t )x
∣

∣ < δ and the integral over the region
∣

∣

(

S◦
t

)

x
∣

∣ ≥ δ yields
∣

∣π
µ
t (ϕt)− π 0

t (ϕt)
∣

∣ ≤ sup
|y−y′|<δ

∣

∣ϕ(y)− ϕ
(

y′)∣
∣

+ 2‖ϕ‖∞

(

Eµ

[

θµ (X0) 1{|(S◦
t )X0|≥δ}|Yt

])

E
[

θµ (X0) |Yt

]

≤ sup
|y−y′|<δ

∣

∣ϕ(y)− ϕ
(

y′)∣
∣

+ 2
‖ϕ‖∞

δ2

(

S◦
t

)

Eµ

[

θµ (X0) |X0|2 |Yt

]

E
[

θµ (X0) |Yt

] .

As above, it follows that

lim sup
t→∞

∣

∣π
µ
t (ϕt)− π 0

t (ϕt)
∣

∣ ≤ sup
|y−y′|<δ

∣

∣ϕ(y)− ϕ
(

y′)∣
∣

and then using the uniform continuity of ϕ, we deduce the result
and thus complete the proof. �

4. A simple example

In this subsection, we provide an illustrative example of
unstable dynamics and partial observations that still yield conver-
gence of the FA process (see also Refs. 14 and 95). We choose a
two-dimensional linear signal

(

X1, X2
)

with λ1 < 0 and λ2 > 0,

Xi
t = xi

0 +
∫ t

0

λiX
i
sds +

∫ t

0

σ idVi
s, i = 1, 2,

so that the law of
(

X1, X2
)

is not stable. More precisely, if we choose

two systems
(

X1, X2
)

,
(

X̃1, X̃2
)

starting from
(

x1
0, x

2
0

)

and
(

x̃1
0, x̃

2
0

)

,
respectively, then their corresponding expected values drift away
from each other. In particular,

lim
t→∞

|E
[

X2
t

]

− E
[

X2
t

]

| = lim
t→∞

eλ2t
∣

∣x2
0 − x̃2

0

∣

∣ = ∞.

As a result, the Wasserstein distance W2 between pt and p̃t tends
to ∞.

In fact, one can easily show that the first component is sta-
ble, while the second one is unstable. However, we can stabilize the
system by observing only the second component, namely, the unsta-
ble one. For example, we can choose a one-dimensional observation
process of the form

dYt = hX2
s dt + dWt,

which will guarantee that

lim
t→∞

dW (πt, π̃t) = 0.
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One can justify this either by checking that the assumptions of
Theorem 3.2 are satisfied or by explicit calculation. Using the sec-
ond approach, one notices that the probability measures πt and
π̃t are both Gaussian and shows that (i) the distance between the
coresponding means converges to 0 and (ii) that the covariance
matrices of πt and π̃t coincide. The latter two matrices are given by
diag

(

q11
t , q22

t

)

. They are diagonal and

d

dt

(

q11
t 0
0 q22

t

)

=
(

1 0
0 1

)

+
(

λ1 0
0 λ2

)(

q11
t 0
0 q22

t

)

+
(

q11
t 0
0 q22

t

)(

λ1 0
0 λ2

)

−
(

q11
t 0
0 q22

t

)(

0 0
0 h2

)(

q11
t 0
0 q22

t

)

,

d

dt

(

q11
t 0
0 q22

t

)

=
(

1 + λ1p
22
t 0

0 1 + 2λ2p
11
t − h2

(

p11
t

)2

)

,

which implies that

lim
t→∞

(

p11
t

p22
t

)

=







− 1

2λ1
√

(λ2)
2 + h2 − λ2

h2






,

and the limit is valid independent of the initial condition. This result
together with the Gaussianity property of the processes πt and π̃t

implies the convergence in Wasserstein distance.
In the reverse situation, in which we would observe the sta-

ble component and not the unstable one, the posterior distribution
would not be stable.

In the above example, one can still apply existing results to
the one-dimensional unstable system and, after coupling it to the
unobserved component, obtain the stability of the pair. This works
because the observation process depends only on the observed com-
ponent. In multidimensional, nonlinear applications with very large
dimensions d and n, though, it would be quite difficult to do this as
it may not be possible to identify the unstable components a priori.

The result presented in this paper does not assume that one
needs to identify a system’s unstable components and observe those.
For example, if the observation process has the form

dYt = h
(

X1
s + X2

s

)

dt + dWt,

the FA process will still stabilize the system. More precisely, it is still
the case that both πt and π̃t are Gaussian and that

lim
t→∞

dW (πt, π̃t) = 0.

5. The forecast–assimilation (FA) process as a random

dynamical system (RDS)

In this subsection, we give a brief justification of the fact that
the solution of (11) can be recast as an RDS evolving in the space
of probability measures P(Rd). This result is related to similar
approaches in the nonlinear filtering literature (see, for instance,
Refs. 57, 88, 64, 63, etc. The cornerstone of the argument is that the

solution of equation (11) can be expressed as

π
µ
t = λ(t,ω)µ = 1

Cπ0
ρ0:t(µ), (B36)

where ρt0 ,t1(µ) is a two-parameter measure-valued process
defined as

ρt0 ,t1(µ) (ϕ) =
∫

Rd
Ẽt0 ,x[Z̃t0 ,t1ϕ(X̃t0 ,t1) | Y]µ

(

dx
)

, (B37)

where ϕ is an arbitrary bounded Borel measurable map and Cµ is
the normalization constant Cµ = ρt0 ,t1(µ)(1). In (B37), we have the
following definitions:

(i) the process Z̃t0 ,t1 = {Z̃t0 ,t1 , t ≥ 0} is defined by

Z̃t0 ,t1 = exp

(

m
∑

i=1

∫ t1

t0

hi(X̃t0 ,s) dYi
s − 1

2

m
∑

i=1

∫ t1

t0

hi(X̃t0 ,s)
2
ds

)

;

(B38)

(ii) the process X̃t0 ,(·) = {X̃t0 ,t1 , t0, t1 ≥ 0} is a stochastic process
independent of Y satisfying the signal Eq. (8) on [t0, ∞); and

(iii) Ẽt0 ,x is the expectation with respect to a probability measure

Pt0 ,x under which Y is a Brownian motion independent of X̃

and X̃t0 ,t0 ≡ x.

The independence of X̃ and Y under Pt0 ,x in formula (B36)
enables us to show that ρt0 ,t1 is an RDS, which will immediately
imply that πt0 ,t1 is one, too. To justify this, we introduce 2y(·)(t0, t1)

to be the following two-parameter family of random variables:

2y(·)(t0, t1) , exp

(

h
(

X̃t0 ,t1

)>
yt1 − h

(

X̃t0 ,t0

)>
yt0 + I

y(·)
t0 ,t1

− 1

2

m
∑

i=1

∫ t1

t0

hi
(

X̃t0 ,s

)2
ds

)

, (B39)

where I
y(·)
t0 ,t1

is a version of the stochastic integral
∫ t1

t0
y>

s dh(X̃t0 ,s) and

y(·) is a continuous path, y(·) ∈ CRm [0, ∞). The argument of the
exponent in the definition of 2y(·)(t0, t1) is recognizable as a formal
integration by parts of the argument of the exponential in (B37).

Let ρ
y(·)
t0 ,t1

(µ) and π
y(·)
t0 ,t1
(µ) be the following two-parameter

measure-valued processes:

ρ
y(·)
t0 ,t1

(µ) (ϕ) =
∫

Rd
Ẽt0 ,x[ϕ(X̃t0 ,t1)2

y(·)(t0, t1) | Y ]µ
(

dx
)

, (B40a)

π
y(·)
t0 ,t1
(µ)(ϕ) =

ρ
y(·)
t0 ,t1

(µ) (ϕ)

ρ
y(·)
t0 ,t1

(µ) (1)
. (B40b)

Then, ρ
Y(·)
t0 ,t1
(µ) and π

Y(·)
t0 ,t1
(µ) are versions of ρt0 ,t1(µ) and πt0 ,t1(µ).

Since ρ
y(·)
t0 ,t1

, π
y(·)
t0 ,t1

can be recast as time-inhomogenous dynam-
ical systems, we can use them as a basis for defining ρt0 ,t1(µ)

and πt0 ,t1(µ). As a result, it is indeed the case that ρt0 ,t1(µ) and
πt0 ,t1(µ) can be viewed as RDSs. Moreover, one can show that
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ρt0 ,·(µ) = {ρt0 ,t1(µ), t1 ≥ t0} satisfies the evolution equation

ρt0 ,t1(µ)(ϕ) = µ(ϕ)+
∫ t1

t0

ρt0 ,s(µ)(Aϕ) ds +
∫ t1

t0

ρt0 ,s(µ)(ϕh>)dYs

(B41)

for any ϕ ∈ D(A) and, in particular, that

ρt0 ,t1(µ)(1) = 1 +
∫ t1

t0

ρt0 ,s(µ)(h
>)dYs

= 1 +
∫ t1

t0

ρt0 ,s(µ) (1) πt0 ,s(µ)(h
>)dYs. (B42)

From (B41) and (B42), one deduces that the ratio ρt0 ,t1(µ)(ϕ)/

ρt0 ,t1(µ)(1) satisfies (11) with initial condition πt0 ,t0(µ) = µ and,
therefore, by the uniqueness of the solution of (11), we obtain that
the solution of (11) can indeed be recast as an RDS.

Finally, notice that π0,t(π0) = πt0 ,t(πt0) is indeed the FA pro-
cess we considerd throughout this paper. For the particular case
of µ = πt0 , formula (B36) is known as the Kallianpur–Striebel
formula58 and it is deduced directly from the definition of the con-
ditional expectation. For arbitrary µ, ( B36) serves as definition for
the RDS, which is then shown to be the solution of the evolution
Eq. (11) starting from µ at time t0.

Remark 2.9: The map π
y(·)
t0 ,t1

: P(Rd) → P(Rd) is a contin-

uous map when we endow P(Rd) or, rather, the set of probability
measures with finite second moment), with the topology induced by
the Wasserstein metric.
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