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Planktonic Foraminifera are unique paleo-environmental indicators through their excellent 
fossil record in ocean sediments. Their distribution and diversity are affected by different 
environmental factors including anthropogenically forced ocean and climate change. Until 
now, historical changes in their distribution have not been fully assessed at the global 
scale. Here we present the FORCIS (Foraminifera Response to Climatic Stress) database 
on foraminiferal species diversity and distribution in the global ocean from 1910 until 2018 
including published and unpublished data. the FORCIS database includes data collected 
using plankton tows, continuous plankton recorder, sediment traps and plankton pump, and 
contains ~22,000, ~157,000, ~9,000, ~400 subsamples, respectively (one single plankton 
aliquot collected within a depth range, time interval, size fraction range, at a single location) 
from each category. Our database provides a perspective of the distribution patterns of 
planktonic Foraminifera in the global ocean on large spatial (regional to basin scale, and at 
the vertical scale), and temporal (seasonal to interdecadal) scales over the past century.

Background & Summary
Planktonic Foraminifera are marine unicellular eukaryotes with calcareous shells and chambered tests. Building 
on the classical pioneering works of Bradshaw1, Bé and Tolderlund2, and Bé3, planktonic Foraminifera (phy-
lum of the Rhizaria supergroup) contain about 50 extant morphospecies in the global ocean4–7. Planktonic 
Foraminifera are sensitive to environmental conditions, many of which are registered by the chemical composi-
tion of their calcareous shells. As a result, their fossil record is widely used to reconstruct paleo-environments8–10.

Understanding the impacts of climate change on planet Earth and its ecosystems, especially the vast expanses 
of the surface ocean, is a global challenge and thus central to many ecological and biogeochemical studies11–14. 
Until now, the impacts of anthropogenic stressors on the distribution and biodiversity of planktonic organisms 
are poorly understood at the global scale14. Hence, better knowledge of the role of multiple stressors on the 
dynamics of modern planktonic communities and observational data on the distribution and biodiversity in the 
global ocean are required to assess past, present, and future developments of the marine ecosystem in response 
to expected changes of the global marine environment15–17. Most of the planktonic Foraminifera species live 
between the surface and the seasonal thermocline of the open ocean5,18,19, exposing them to a multitude of 
stressors including anthropogenic effects such as ocean acidification. Ongoing global warming combined with 
chemical changes in ambient seawater is affecting their calcification, biodiversity, and distribution at the com-
munity levels20–24.

As a ubiquitous but minor part of the total marine biomass25, planktonic Foraminifera serve as a model 
for pelagic biodiversity studies26,27, though their potential has been mostly explored in paleoenvironmental 
studies28. The FORCIS project evaluates changes in the diversity, distribution and abundance of planktonic 
Foraminifera (vertical and horizontal) in response to multiple climatic stressors by compiling data on samples 
from water column at the global scale29.

The FORCIS database contains data on planktonic Foraminifera abundance in the global ocean from plank-
ton tow, Continuous Plankton Recorder (CPR), plankton pump, and sediment trap samples, and is meant to 
provide a synoptic view from the earliest observations in 1910 until 2018 (Figs. 1, 2). These data are based 
on physically extracted organisms rather than in situ imaging techniques. Data obtained from plankton nets, 
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plankton pumps and CPRs take “snapshots” of the distributions of both living and dead Foraminifera species in 
the water column, while data obtained from sediment traps are “time integrators” of mostly fluxes of dead indi-
viduals (tests) settling from the surface ocean. The CPR and plankton pump collecting techniques mainly sample 
surface waters to about 10 m depth30,31, while oblique or vertical towed plankton nets, such as the commonly 
used Multinet (e.g., Schiebel12), sample the productive water column to the export zone (hundreds of meters) 
over single or multiple depth levels (Fig. 1).

The data presented in the FORCIS database aim to improve our understanding about (1) potential spatial 
and vertical migrations, (2) phenology, and (3) the various of effects global climate change on the planktonic 
Foraminifera biogeography, as well as their vertical and seasonal distribution over the past decades. Because of 
the temporal range of the observations, the database can also be used to investigate the impact of anthropogenic 
ocean change on planktonic Foraminifera distribution and ecology.

Methods
Data collection. The database currently includes 188,000 planktonic Foraminifera subsamples. Each sub-
sample represents one aliquot of planktonic foraminifera specimens collected within a specific depth range, 
time interval, size fraction range or identified as living or dead, at a single location sampled via plankton pumps 
and nets, CPR and sediment traps (more details in the Data Records section). The compiled data were gathered 
from published scientific literature, PhD or master’s theses, books, databases, unpublished datasets, and reports. 
Some data were directly provided by contributors from the FORCIS working group and their personal networks. 
The dataset includes contributions from around 140 published and unpublished references1,23,32–168 reporting 
on the diversity and distribution of planktonic Foraminifera, spanning a time interval of more than a century 
(1910–2018). Most of the datasets published before 1960 were digitized from tables or plots from dissertations 
(some available as a hardcopy only) and scientific papers, or sourced from the contributor’s digital data files. Data 

Fig. 1 Schematic representation of the sampling devices deployed to collect modern planktonic Foraminifera 
from the global ocean at different depth levels, from a “snapshot” to an averaged time record, and integrated 
into the FORCIS database. CPR and plankton pump are sampling mainly the living planktonic Foraminifera 
living (yellow dots) in the upper ocean. The sediment trap is collecting mainly dead Foraminifera fluxes (white 
dots). The plankton net and multinet are sampling larger depth ranges. Arrows indicate resolution of the depth 
level(s).
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on planktonic Foraminifera were extracted manually or automatically using WebPlotDigitizer-4.3 software169, 
including number concentrations of tests (ind/m3), relative numbers (%), and fluxes (ind/m2/day) collected 
from the global ocean using plankton nets, CPR, plankton pumps, and sediment traps (Table 1 and Fig. 2A,B). 
Moreover, data indicating only the presence or the absence of species were also retrieved. Binned data of species 
(i.e., estimated number concentrations or percentage concentrations reported for a minimum and maximum 
depth range like for the CPR data in the North Atlantic) were also collected and included in the FORCIS database. 
Foraminifera abundance data are divided into four categories, i.e., raw values (numbers of individuals), number 
concentrations (ind/m3), percentage concentrations (%), or fluxes (ind/m2/day).

Database design and architecture. The FORCIS database is composed of ten tables with the counts of 
modern planktonic Foraminifera and metadata (Table 2), built and designed using PostgreSQL, which allows 
filtering and quality checking of the data during the importing and extraction steps. In the data tables, sites, pro-
files, casts, samples, subsamples, and counts are interconnected by five unique identifiers (primary keys) (Fig. 3) 

Sampling device 
type

Spatial coverage Temporal 
coverage

Number sites 
(site_id)

Number profiles 
(profile_id)

Number samples 
(sample_id)

Number subsamples 
(subsample_id)Latitude (°) Longitude (°)

Plankton tows 64° S/86° N 180° W/180° E 1910–2017 2176 2635 6216 21898

Sediment traps 65° S/77° N 177° W/179° E 1978–2018 101 129 4838 8908

CPR 77° S/79° N 180° W/180° E 1991–2018 6972 6972 157166 157166

Pump 22° S/53° N 39° W/143° E 1985–2008 282 291 291 384

Table 1. Temporal and spatial coverages of the planktonic Foraminifera samples in the FORCIS database and 
number of primary keys in the tables sites, profiles, samples, and subsamples.
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Fig. 2 (A) Temporal and spatial coverage of the FORCIS data at 4 × 4 degree (latitude and longitude) grid 
resolution colored for the time series range (years) of each cell. (B) Geographical locations of all records 
included in the FORCIS database.
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labeled as ‘site_id’, ‘profile_id’, ‘cast_id’, ‘sample_id’, and ‘subsample_id’. They present hierarchical levels and are 
automatically generated according to naming rules if not provided in the original dataset, during data import.

Each site (‘site_id’) is characterized by its geographic information (coordinates in longitude and latitude 
form). Associated information includes water depth and the name of the ocean basin. Data from the same site 
are separated into different profiles (‘profile_id’) according to their collection time (“profile_date_time”). Profiles 
are made of different casts, which are defined by their sampling device and depth. Each cast (having a unique 
‘cast_id’) contains at least one sample, which is given a unique sample ID (‘sample_id’) based on their sam-
pling time and depth. Subsamples with unique IDs are used to distinguish samples from different size fractions 
(size_fraction, min and max), and living or dead specimens when available. Finally, each individual count value 
is identified by its species name, and belongs to a unique set of ‘subsample_id’, ‘sample_id’, ‘cast_id’, ‘profile_id’ 
and ‘site_id’. Each line in the database is assigned to a reference (‘ref_id’), for example, a published paper, man-
uscript, book, or unpublished study with information on the data contributor. Moreover, the FORCIS database 
comprises information regarding the sampling methodology (i.e., sampling device, mesh size), and nature of 
the subsamples where applicable, for example, distinction between individuals with filled or empty tests (often 
referred to as “dead specimens”).

Eight major ocean basins are distinguished, the Arctic, Antarctic, South Pacific, North Pacific, South 
Atlantic, North Atlantic, Indian Ocean, and the Mediterranean Sea using QGIS software (3.16 Hannover; avail-
able online https://www.qgis.org/es/site/), whose boundaries were defined by adapting the shapefile published 
by the International Hydrographic Organization (IHO) database map170 (Fig. 4). Each sampling site (‘site_id’) in 
the FORCIS database is associated with its respective oceanic basin.

Importing the datasets. The metadata and count data were collected using a spreadsheet template (avail-
able at Zenodo171). Several variables in this template are mandatory fields to make sure that related tables of 
the database can be filled and linked together, i.e., for each hierarchical level: site coordinates (‘site_lon_start_
decimal’, ‘site_lat_start_decimal’); profile date (‘profile_date_time’); cast information (‘cast_min_depth’, ‘cast_
max_depth’, ‘cast_sampling_device_name’); sample information (‘sampling_device_type’, ‘sample_min_depth’, 
‘sample_max_depth’, ‘sample_date_time_start’); subsample information (‘subsample_count_type’, ‘subsample_
size_fraction_min’), and bibliographic information (either full reference or ‘doi’ for recent datasets).

FORCIS table Description

Sites
Primary key: ‘site_id’
Number of variables: 7

Each site is characterized only by its location (longitude and latitude coordinates). 
Associated information are water depth and ocean basin. The unique identifier or primary 
key (‘site_id’) could be either sourced from the original publication/study (e.g. PECH_B), 
or generated by the database managers (e.g. MedSeaCruise_St1).

Profiles
Primary key: ‘profile_id’
Foreign key (s): ‘site_id’
Number of variables: 15

For the net data, profiles are distinguished by their time of collection and location as 
well. Overall, profile_id’s have the same coordinates, and different times of sampling 
were incremented. For the sediment trap data, the profile_id is incremented when 
the deployment has changed. The date, depth range of each profile, availability of the 
environmental data including ambient seawater chemistry, and profile season are also 
included in the table profiles.

Casts
Primary key: ‘cast_id’
Foreign key (s): ‘site_id’ and ‘profile_id’
Number of variables: 8

Provides information regarding the casts, the sampling device name, depth range of a cast, 
mesh size, and net opening of the plankton tow.

Samples
Primary key: ‘sample_id’
Foreign key (s): ‘site_id’, ‘profile_id’ and ‘cast_id’
Number of variables: 22

Each sample in this table is characterized by its depth range, volume of water filtered 
(for net data), coordinates, segment length (for CPR data), date of sampling, and in situ 
temperature and salinity.

Subsamples
Primary key: ‘subsample_id’
Foreign key (s): ‘site_id’, ‘profile_id’, ‘cast_id’ and ‘sample_id’
Number of variables: 15

One sample could be divided into different subsamples (‘subsample_id’) based on their 
subsample_size_fraction_min, subsample_size_fraction_max or/and subsample_living_
or_dead. Other information is also reported in this table such as: subsample_count_type, 
subsample_sieved_or_measured, subsample_storage_type, and subsample_splitting_type.

Counts
Identifier: species_name
Foreign key (s): ‘site_id’, ‘profile_id’, ‘cast_id’, ‘sample_id’ and 
‘subsample_id’

The table contains counts per species or total number of species for each subsample.
A count value is made unique by its subsample_id and the species name.

Publications
Primary key: ‘ref_id’
Number of variables: 2

The publications table covers all references of publications and studies published or 
unpublished from where the data were sourced. A ref_id was assigned to each reference 
and listed in this table.

Species
Number of variables: 3

The different species’ original names were kept in the FORCIS database as they were given 
by the data contributor or in publication/manuscript and listed in the table species. This 
species names list was formatted according to 2 levels of taxonomy: level 1 “validated 
taxonomy” and level 2 “lumped taxonomy”.

Sampling_devices
Number of variables: 3

There are only four main sampling device types comprising this table, which are: net 
(plankton tow), CPR, sediment traps, and pump.

Count_type
Number of variables: 2

Count data in FORCIS are reported in different units: raw as number of individuals, 
absolute (ind/m3), relative (%) and fluxes (ind/m2/day). The binned data were also 
included in the FORCIS database as a range of values (raw as number of individuals, 
absolute (ind/m3), relative (%) or fluxes (ind/m2/day)).

Table 2. FORCIS database main table and primary key description.
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For data safety, updates of the FORCIS database were routinely saved under different versions and stored in a 
SQL server. In parallel, data quality control and curation were done during the database development to ensure 
maximum quality consistency.

Database harmonization, curation, and quality control. All dataset entries underwent a series of 
quality control, curation, harmonization, and standardization steps, during and after inclusion in the database, 
in close collaboration between database managers and data contributors. For example, ‘site_lon_start_decimal’ 
and ‘site_lat_start_decimal’ were quality controlled and checked, for example, for redundancies and inconsist-
encies to avoid replicating datasets. Imported data were first screened by the database managers to check for 

Fig. 3 Methodology and structuring FORCIS database compilation: from data collection and different access 
levels to the final published database.
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inconsistencies such as negative depth range (i.e., minimum depth larger than maximum depth), and second by 
the members of FORCIS working group, to apply quality control and minimize the errors. Different maps were 
generated to validate the geographical data distribution, check and correct our entries for outliers. For example, 
maps of species distributions were produced to check for regional and ecological plausibility that helped quality 
check the dataset for mistyping while assembling the data and for the taxonomy harmonization. However, none 
of the data retrieved from the original publication was corrected or excluded. Species counting information dis-
tinguishes the absence of information (NA, Not Available) from the absence of the specimens (value of zero).

Harmonization of the taxonomy. Species names were initially kept in the database as given by the data 
contributor or by the original publication, with minor corrections being made for spelling errors. Genus attri-
butions had to be harmonized to a common standard5,7,172, to ensure that each taxon is labeled in the database 
with a unique binomen or trinomen. Finally, abbreviations and names referring to further attributes that can be 
taxonomically significant (shell pigmentation, coiling direction) were also harmonized to a common standard, to 
facilitate automated analysis. The resulting list of harmonized binomina or trinomina with harmonized names of 
additional attributes (original taxonomy) was used to resolve two further taxonomic issues: synonymy (different 
names given to the same underlying taxon) and shifting taxonomic concepts (splitting or lumping, including new 
taxa). Both issues result from the fact that formal taxonomy always reflects the opinion of the author and is sub-
ject to change as new knowledge emerges. The resulting “validated taxonomy” contains 55 species and categories, 
preserving in a consistent manner information that may be taxonomically relevant, but is presently not reflected 
in formal nomenclature (coiling direction, presence of specifically shaped terminal chambers).

Since 1960, new species have been described that were not recognised before or lumped with others (e.g., 
Neogloboquadrina incompta173, Globorotalia eastropacia174, Berggrenia pumilio175, Globigerinella calida176, 
Globorotalia cavernula176, Globorotalia ungulata177, Orcadia riedeli178, Tenuitellita fleisheri179). As such additional 
information is not always provided, the validated taxonomy has been subsequently mapped onto a “lumped 
taxonomy” comprising 46 species and categories that could be recognized in all datasets. The names used for all 
formally described taxa follow Schiebel and Hemleben5 and references therein, as expanded by Morard et al.172, 
and revised by Brummer and Kucera7 and references therein.

In most cases, the mapping of synonyms onto the validated taxonomy and the contraction of the validated 
taxonomy onto the lumped taxonomy was straightforward and the procedure can be understood directly from 
the synonym lists provided (available at Zenodo171). There are two notable exceptions, which require explana-
tions. The first concerns the treatment of coiling variants in the abundant and variable genus Neogloboquadrina. 
In the high latitudes, oppositely coiled N. pachyderma have been often, but not always, recognized and counted 
separately. Darling et al.180 confirmed that the coiling variants represent different genetically distinct lineages, 
so that sinistral specimens are assigned to N. pachyderma and dextral specimens to N. incompta. Where coiling 
direction was not recorded, the counts are reported as the sum of both species (n_pachyderma_any). The second 
exception concerns the species Globigerinoides ruber, where the presence of pink- and white-pigmented spec-
imens and the erroneous synonymization of G. elongatus with G. ruber resulted in complex and often ambig-
uous taxonomic attributions. The nomenclature of G. ruber in the FORCIS database follows the concept of 
Morard et al.172, with pink-pigmented specimens, when counted separately, being named G. ruber ruber, and 
non-pigmented specimens being attributed either to G. ruber albus with inflated chambers, or G. elongatus with 
compressed chambers. Where the distinction between G. ruber albus and G. elongatus has not been made, the 
counts are reported as the sum of both species (g_ruber_albus_or_elongatus). In cases where not even the shell 
pigmentation has been considered, we only report the count for all three categories together (g_ruber_any).

extracting data. The hierarchical structure of the database, split into different related tables, facilitates swift 
extraction of large merged data volumes. It is possible to retrieve count data and/or metadata separately and to 
apply filters to extract specific sub-datasets.

Fig. 4 Oceanic basin boundaries defined by the International Hydrographic Organization (IHO) database map. 
Note that white areas were excluded.
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As the SQL was only used to develop and quality check the FORCIS database, the finalized version of the 
database was extracted from the SQL and converted to “.csv” files and made available on Zenodo to facilitate 
the handling of the data for the users. To facilitate the handling of the database in the Zenodo “.csv” files, an 
R-package was compiled (https://frbcesab.github.io/forcis/), providing basic functions to extract the data from 
the different files based on different taxonomy levels and harmonize the species counts into a unique count type.

In the final published database, all data coming from different sampling devices were put into separate “.csv” 
files. Only the data of the CPR from the Southern Hemisphere have been separated from those CPR data col-
lected from the Northern Hemisphere as the data structure is different (species-level resolved counts vs. binned 
total counts, respectively). Each of the 5 “.csv” files contain metadata and original species counts.

Updates on the last database versions will be released in csv format. We foresee a continuous update of the 
database depending on the number of new datasets published. The labels of updated versions of the released 
“.csv” files will contain the date of their publication and versioning number.

Data Records
The FORCIS database is published as five “.csv” files composed of data from four types of sampling devices, 
i.e., plankton tows, plankton pump, CPR (“.csv” file for each data from the Southern and from the Northern 
Hemispheres), and moored sediment traps, and the associated dataset is uploaded on the Zenodo repository171 
(Fig. 2). These files encompass more than 188,000 subsamples including ~157,000 CPR (since 1991), ~22,000 net 
(since 1910), ~9,000 sediment trap (since 1978), and 400 pump (since 1985) subsamples (Table 1).

Fig. 5 Number of subsamples collected by CPR (A), plankton net, plankton pump and sediment traps (B) per 
year in the FORCIS database.
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The data in FORCIS are presented as follows: each row in the database is a subsample (i.e., one single plank-
ton aliquot collected within a water depth range, time interval, size fraction, at a single location) associated to 
1) “block 1”: the metadata (i.e., location, date, depth, cast, environmental data of this record), and 2) “block 2”: 
the original data as reported in the data sources (abundance and/or diversity). The FORCIS database metadata 
has a hierarchical structure (Fig. 3): first, all sites are assigned to a site_id associated with the coordinates (site_
lon_start_decimal and site_lon_end_decimal) and site_ocean_basin. Then, for each profile collected at the 
different site, a profile_id is attributed, based on the profile_date_time (time of the collection) and coordinates 
(Table 2). The depth range (profile_depth_min and profile_depth_max) of each profile, and environmental 
data including ambient seawater chemistry (profile_env_data_availability and profile_chemical_data_avail-
ability), and profile_season are given. Information regarding the different cast_id used for each profile_id is 
provided in the metadata block, such as: cast_sampling_device_name, cast_min_depth, cast_max_depth, 
cast_mesh_size of the plankton tow. For each individual sample, a sample_id is assigned, including depth range 
(sample_min_depth and sample_max_depth), sample_volume_filtered (for net data), coordinates (sample_
lon and sample_lat), sample_segment_length (for CPR data), date of sampling (sample_date_time_start and 
sample_date_time_end), and in situ temperature and salinity data (sample_in_situ_temperature and sam-
ple_in_situ_salinity). Each sample can be divided into different subsample_id based on their size (subsample_
size_fraction_min, subsample_size_fraction_max) and/or filled or not tests (subsample_living_or_dead). 
Other information is also reported in this table such as: subsample_count_type, subsample_sieved_or_meas-
ured, and subsample_storage_type and subsample_splitting_type. The contributors who provided the data 
are given in the column contributors, and the source of their data (ref_id and source) is reported for each 
subsample.

Each subsample is associated with its corresponding counts that could be either the abundance of a species 
or the total number of Foraminifera specimens (i.e., those not identified at the species level), and reported in the 
table count. The species names are kept as they were reported in the original data source and listed as species 
names in block 2.

Two taxonomic levels (level 1 “validated taxonomy” and level 2 “lumped taxonomy”) can be generated in two 
separated blocks (block 3 for taxonomy level 1, and block 4 for taxonomy level 2; Fig. 3).

technical Validation
The compilation of ~188,000 subsamples resulted in a high number of counts in the FORCIS database (more 
than 1,300,000 species counts and ~1,200,000 non-zero counts), compared to fossil planktonic Foraminifera 
databases such as ForCenS (~4,000 subsamples, and ~ 60,000 counts) that reports data of the planktonic 
Foraminifera found in the surface sediment samples181. The Triton database182 holds ~500,000 non-zero counts 
of planktonic Foraminifera occurrences during the Cenozoic. However, the FORCIS database holds a lower 
number of samples compared to the COPEPOD database (~400,000) which is a global-coverage database of 
zooplankton abundance, phytoplankton abundance, and zooplankton biomass data183.

Temporal data coverage varies temporally and spatially, but is highest after 1990 and in the Northern 
Hemisphere (Fig. 5). The plankton net dataset presents the widest temporal (from 1910 until 2017), and spatial 
ranges (from 61° S to 86° N, and 180° W to 180° E, Table 1). The sediment trap dataset includes data from 1978 
to 2018, from 65° S to 77° N, and 177° W to 179° E. The CPR dataset covers the subtropical to polar oceans, from 
30° N to 79° N, and 79° W to 20° E in the Northern Hemisphere, and from 77° S to 40° S, and 180° W to 180° E 
in the Southern Hemisphere. All CPR samples included here30,31 were collected during a time period from 1991 
to 2018 (Fig. 5A). The pump dataset has the smallest regional coverage ranging from 22° S to 53° N, and 39° W 
to 143° E.

Despite more than a century of work, large parts of the ocean have remained unsampled for planktonic 
Foraminifera, e.g., the Southern Pacific Ocean (Fig. 2). The temporal coverage of the FORCIS database exposes 
a low sampling effort especially during the time period before 1960, with only ~1,000 subsamples collected 
between 1910 and 1960 (Fig. 5B). In addition, few datasets are available from certain seasons, such as winter data 
from high latitudes due to the lack of sampling campaigns.

The FORCIS database comprises an extensive coverage of the Northern Hemisphere (Fig. 2A), especially of 
the North Atlantic Ocean. In contrast, plankton tows and sediment traps from the Southern Ocean are sparse 
due to difficulties associated with sampling in remote and stormy regions. However, despite these temporal and 
spatial gaps, the amount of data in FORCIS covers broad swaths of the global ocean and facilitates comparison 
of changes in distribution and diversity within and between different provinces over time (Fig. 2B).

Although FORCIS contains fewer species per sample than the coretop synthesis ForCenS (6 vs. 15), it con-
tains more species than ForCenS when using the same taxonomic level in both databases, i.e., 46 vs. 40 species, 
respectively. The main reason for this difference is the coarser size fraction in ForCenS, which is limited to 
≥150 μm181 vs. the finer size fractions in FORCIS that extend down to 30 μm; only these latter finer size fractions 
include small-sized species such as S. globigerus, N. vivans, O. riedeli, T. clarkei, T. fleisheri and T. parkerae, which 
are not included in ForCenS181,184.

Moreover, more species are documented in FORCIS compared to core-top sediment databases (e.g., 
CLIMAP185, Brown Foraminiferal Database186, ForCens), and the use of species names is not fully comple-
mentary between this study and the earlier databases. In addition, thin shells of small-sized species such as O. 
riedeli and T. parkerae may dissolve during settling in the water column before reaching the ocean floor and are 
therefore not present in ForCenS187,188.

https://doi.org/10.1038/s41597-023-02264-2
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Usage Notes
Filtering of data in the FORCIS database allows the user to select particular datasets (e.g., by latitude, longitude, 
season, ocean basin, year). Seasons were distinguished between the Northern Hemisphere (defining Autumn 
by September, October, November; Winter by December, January, February; Spring by March, April, May and 
Summer by June, July, August) and Southern Hemisphere (defining Spring by September, October, November; 
Summer by December, January, February; Autumn by March, April, and Winter by June, July, August). The type 
of original count data was kept in FORCIS as reported in the original study (raw, number concentration (ind/
m−3), percentage concentration (%), bin or fluxes). Data are presented as counts of the identified specimens or 
total abundance of all the species found in the sample including unidentified specimens. In the latter case, the 
count is reported in the column unidentified_specimens.

In most cases, the number concentration is given by the data contributors, in others, the sampled volume of 
seawater could be calculated for vertical tows using the surface area of the net times the depth interval. When 
the total number of Foraminifera or volume of sampled seawater are not provided, the number concentration 
cannot be calculated (see column on subsample_absolute_abundance_available). The number concentration 
reported in FORCIS are raw numbers corrected for split and the filtered volume when available, but are not 
standardized for either the mesh size or sieve size fraction. This is important since different sizes will signifi-
cantly affect number and percentage concentrations (e.g., Berger, 1969).

The column subsample_count_type gives the type of count reported in the database. All the counts reported 
as 0 (zero) in the original study were kept in the FORCIS database, which means that the respective species was 
not found in the sample. However, the absence of species has not always been consistently recorded because of 
different counting procedures (e.g., researchers working in the polar areas have not consistently reported the 
absence of tropical species). To express this, the column subsample_all_shells_present_were_counted helps 
the user to identify in which datasets a species may have been present but was not counted. For subsamples with 
“complete” taxonomic coverage, the entry in this column is “true”.

All counts without clear location (nine subsamples) and/or date of sampling (274 subsamples) were kept 
in the database even though they cannot be used directly for spatial and time-series analyses. A note has been 
associated with the corresponding subsamples.

The number_of_species_counted was calculated when all the species were counted in the subsample and 
provided for both levels of taxonomy (in block 3 and block 4) based on the number of planktonic Foraminifera 
species observed in each subsample. The number of benthic species was included in FORCIS when given in the 
original data source but is not included in the calculation of Foraminifera diversity.

Finally, the FORCIS database will be open for any new data entry, and the FORCIS project warmly welcomes 
any new data published or provided by any contributor by submitting the data through our website (https://
forcis.cerege.fr/).
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