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Abstract
Accounting for temporal changes in carbon dioxide (CO2) effluxes from freshwaters remains a
challenge for global and regional carbon budgets. Here, we synthesize 171 site-months of flux
measurements of CO2 based on the eddy covariance method from 13 lakes and reservoirs in the

© 2023 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/1748-9326/acb834
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/acb834&domain=pdf&date_stamp=2023-3-9
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-6982-230X
https://orcid.org/0000-0001-6067-0741
https://orcid.org/0000-0003-0761-9458
https://orcid.org/0000-0003-1350-4446
https://orcid.org/0000-0002-3785-8305
https://orcid.org/0000-0002-9959-4771
https://orcid.org/0000-0001-8688-1440
https://orcid.org/0000-0001-6457-5530
mailto:desai@aos.wisc.edu
http://doi.org/10.1088/1748-9326/acb834


Environ. Res. Lett. 18 (2023) 034046 M Golub et al

Northern Hemisphere, and quantify dynamics at multiple temporal scales. We found
pronounced sub-annual variability in CO2 flux at all sites. By accounting for diel variation, only
11% of site-months were net daily sinks of CO2. Annual CO2 emissions had an average of 25%
(range 3%–58%) interannual variation. Similar to studies on streams, nighttime emissions
regularly exceeded daytime emissions. Biophysical regulations of CO2 flux variability were
delineated through mutual information analysis. Sample analysis of CO2 fluxes indicate the
importance of continuous measurements. Better characterization of short- and long-term
variability is necessary to understand and improve detection of temporal changes of CO2 fluxes
in response to natural and anthropogenic drivers. Our results indicate that existing global lake
carbon budgets relying primarily on daytime measurements yield underestimates of net
emissions.

1. Introduction

The global carbon budget is rapidly changing in
response to anthropogenic emissions (Hanson et al
2006, Friedlingstein et al 2020). Prior studies have
estimated that 0.14–0.64 Pg C–CO2 is annually
released to the atmosphere through lakes and reser-
voirs (Cole et al 1994, 2007, Aufdenkampe et al 2011,
Ciais et al 2013, Raymond et al 2013, Holgerson
and Raymond 2016, DelSontro et al 2018, Drake
et al 2018). However, most of these estimates are
made with relatively limited sampling, generally con-
strained to the open-water or summer season dur-
ing the daytime, and with limited consideration of
interannual and shorter-scale variation (Butman et al
2018, Ran et al 2021).

Underrepresentation of temporal changes and
variability of carbon dioxide (CO2) flux in exist-
ing CO2 flux inventories may bias estimates of lake
CO2 emissions (Deemer et al 2016, Klaus et al
2019). Recent studies have found nighttime emis-
sions exceeding daytime emissions because of poten-
tial uptake in lakes (Shao et al 2015), reservoirs (Liu
et al 2016), and rivers (Gómez-Gener et al 2021).
A lack of frequent and long-term CO2 observations
also limits our ability to differentiate natural CO2

flux variations from the consequences of anthropo-
genic perturbations (Hasler et al 2016). Multiyear-
scale time series that capture sub-annual variability
of the aquatic CO2 flux remain rare (Huotari et al
2011, Shao et al 2015, Finlay et al 2019). Traditional
in-situ aquatic sampling methods for CO2 concen-
trations and fluxes in natural and artificial freshwa-
ters also come with high uncertainty (Golub et al
2017, Baldocchi et al 2020), with one source being the
heterogeneity of littoral and pelagic lake CO2 fluxes
(Erkkilä et al 2018, Spafford and Risk 2018).

Advances in the past several decades, however,
have enabled more long-term, continuous high-
frequency (hourly) measurements of CO2 flux in
freshwater ecosystems, which are capable of captur-
ing the dynamics of air-water fluxes at time scales
of hours to years (Eugster et al 2003, Huotari et al
2011, Morales-Pineda et al 2014, Shao et al 2015).

At these time scales, CO2 fluxes have been shown to
respond to variations in photosynthesis and respir-
ation rates (Cole et al 2007), wind speed and dir-
ection (Podgrajsek et al 2015), carbonate equilibria
(Atilla et al 2011), ecosystemmetabolism (Provenzale
et al 2018), convective mixing (Eugster et al 2003,
Mammarella et al 2015), internal waves (Heiskanen
et al 2014), ice phenology (Reed et al 2018), chloro-
phyll a concentration (Shao et al 2015), atmospheric
turbulence generated by surrounding topography
(Eugster et al 2022), and hydrological and carbon
inflows/outflows (Rantakari and Kortelainen 2005,
Weyhenmeyer et al 2015). These sources of variation
may be overlooked by low-frequency and season-
restricted sampling that dominate freshwater science
(Desai et al 2015).

A growing number of previous studies were con-
ducted using eddy covariance (EC) flux towers, which
measure ecosystem-scale air-water CO2 fluxes (Vesala
et al 2006) and has gained prominence for use in
freshwaters (Vesala et al 2012). While its applica-
tion over lakes has mostly covered short periods
of time (e.g. Eugster et al 2003, Vesala et al 2006,
Podgrajsek et al 2015), an increasing number of
sites are now measuring lake-atmosphere fluxes con-
tinuously over multiple years (Huotari et al 2011,
Mammarella et al 2015, Shao et al 2015, Franz
et al 2016, Reed et al 2018, Eugster et al 2020).
Other methods for high frequency sampling have
also included the use of forced diffusion automated
chambers (Spafford and Risk 2018, Rudberg et al
2021). Here, to identify modes of CO2 flux variab-
ility missed by infrequent sampling from lakes and
reservoirs, we quantify diel to inter-annual dynam-
ics of CO2 fluxes directly measured by EC towers in
13 lakes and reservoirs in the Northern Hemisphere,
the first synthesis of this kind. Mutual information
analysis is utilized to determine sources of temporal
CO2 flux variability at each site. Additionally, this
dataset contains sites with a wide range of nutrient
status (i.e. eutrophic, oligotrophic, andmesotrophic),
therefore allowing for comparisons between temporal
changes of CO2 fluxes among different freshwater
systems.
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2. Materials andmethods

2.1. Study sites
Data on air-water CO2 exchange and meteorological
drivers were acquired from 19 study sites across the
Northern Hemisphere, with at least one season of
observations between 2005–2015, of which 13 were
retained here for analysis (tables 1 and S1). The six
remaining submitted sites were withheld for chal-
lenges in meeting uncertainty and gap filling criteria
(see supplemental methods). These sites were col-
lected based on organization of a workshop (Desai
et al 2015) and an open call through listservs. Selec-
ted sites included 9 lakes and 4 reservoirs, mostly
located between 40◦N and 68◦N latitude, coincid-
ing with the largest area of Earth covered with lakes.
Eight sites had data available over multiple seasons,
but only a few also had measurements during winter
ice cover. Lake area ranged from0.036 km2 to 623 km2

(median: 15.2 km2), with median mean depth of 6 m
(range: 0.6–11 m); most developed a seasonal ther-
mocline and were dimictic or monomictic (table S1).
Two water bodies had a significant fraction of sub-
merged and emergentmacrophytes (SE-Tam andDE-
Zrk) within the footprint of the flux tower.

2.2. Measurements
The EC technique directly measures the exchange of
momentum, heat and matter (water vapor, CO2, or
other trace gasses) at the air–water interface and is
a reliable method for measuring surface exchanges
with the atmosphere (Vesala et al 2006). The flux
towers were located on floating platforms, lake shoals
or islands, or on shore depending on the site (Sup-
plemental Material Text; table S1). The towers were
additionally equipped with instruments providing
half-hourly to hourly measurements of biophysical
variables (e.g. net radiation (Rnet), air temperature
(Tair) and humidity, photosynthetically-active radi-
ation (PAR), 3D wind direction and speed, water
surface temperature (Twater), aquatic CO2 or O2 con-
centration, and water level), although data availabil-
ity and frequency varied among the sites. Data were
harmonized to uniform formats and units, screened
for fetch, de-spiked, and gap-filled using a common
flux post-processing standard prior to calculation of
diel and monthly averages (Pastorello et al 2020; Sup-
porting Material Text). Flux footprint and wind dir-
ectional screening were applied by each investigator
to retain only those half-hourly observations repres-
entative of the water body. Note that a negative CO2

flux indicates uptake by the ecosystem from the atmo-
sphere and a positive flux means the reverse. All data
are published in the Environmental Data Initiative
repository (Golub et al 2022).

2.3. Data analysis
We analyzed the half-hourly CO2 fluxes and three
major groups of biophysical covariates. The first

group included variables related to wind forcing act-
ing on the water surface (i.e. friction velocity, wind
speed, momentum flux). The second group encom-
passed variables related to temperature cycles and
proxies of energy in the system (i.e. Tair, Twater,
∆T (Twater − Tair), sensible (H) and latent heat
(LE) fluxes). The last group included the variables
associated with solar radiation—proxies for primary
productivity (i.e. ∆pCO2 (pCO2water − pCO2air),
PAR). To determine the standardized difference
between twomeans with repeated unpaired measure-
ments and imbalanced population sizes, we used the
Cohen’s d test where the mean difference between the
mean daily CO2 fluxes is divided by the pooled vari-
ance. A coefficient d of 0.20, 0.50, 0.80 indicates small,
medium, and large standardized differences between
the two means, respectively.

To determine the degree of the net ecosystem
exchange (NEE) predictability by biophysical drivers
(i.e. Tair, Twater, H and LE, friction velocity (Ustar),
and Rnet), we performed mutual information ana-
lysis (MI). MI measures the statistical dependence of
a variable ‘Y ’ on another variable ‘X’. Using the mar-
ginal and joint probability distributions of ‘X’ and ‘Y ’,
it expresses the proportion of bits needed to repres-
ent ‘Y ’ that is redundant given the knowledge of ‘X’.
There are also no parametric assumptions regarding
the relationship between the two variables, making
MI capable of discerning linear and non-linear asso-
ciations (Knox et al 2021). More information on MI
may be found in Fraser and Swinney (1986). Ulti-
mately, this method can reveal dependencies between
two variables with co-varying factors,making it a use-
ful approach for ascertaining NEE dependencies on
ecosystem variables (Knox et al 2021). We use mutual
information scores (MIS) to determine the relative
strength of each bivariate interaction. High and low
MIS corresponds to a strong and weak link between
NEE and biophysical variables, respectively.

To account for driver impacts on different tem-
poral scales, we used the maximal-overlap discrete
wavelet transform (MODWT) approach to decom-
pose half-hourly data into four temporal scales
(hourly, diel, multiday, and seasonal). MODWT
involves applying a high-pass wavelet filter and low-
pass scaling filter to the time series. This allows a
decomposition of the time series into multiple fine
and coarse scales, enabling analysis at varying times-
cales (Percival 1995, Percival and Walden 2000). We
used the ‘Wavelet Methods for Time Series Analysis’
inMATLAB’s ‘Wavelet Toolkit’ to decompose the data
(Cornish et al 2003). Further details on the applica-
tion of this method may be found in the supplement
and Sturtevant et al (2016).

Finally, to quantify potential sample bias from
infrequent sampling and identify optimal sampling
approaches, a random sample analysis was conduc-
ted on the gap-filled oligotrophic (US-Too; 2012),
mesotrophic (FI-Van; 2016), and eutrophic (DE-Zrk;
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2014) lake/reservoir data with the smallest data gaps.
One thousand random samples without replacement
were taken for each of the following times: daytime-
only (DT), daytime/nighttime-only (DT/NT), sum-
mer mid-day (SMD), growing season (GS), and
annual. DT and NT were defined as 10:00–15:30 h
and 22:00–03:30 h (local times), respectively. Hours
between 11:00–13:30 h were considered mid-day
while the GS counted fluxes between March 1st and
September 30th. Flux counts of 1, 5, and 10 were
taken at each temporal resolution to test depend-
encies of percent error (PE) on flux count within
and between sites. To obtain a single flux value, the
counts containing 5 and 10 fluxes were averaged.
This sampling algorithm was created using Python
version 3.8.3.

3. Results

3.1. Magnitude of CO2 fluxes
Study sites represented a wide range of nutrient-
color status and physical characteristics of water
bodies, and as a result spanned a range of daily
CO2 fluxes, although with some common elements
(figure 1). The mean daily CO2 flux across all sites
was 0.43 ± 0.34 µmol CO2m−2 s−1 (mean ± stand-
ard deviation, (SD); range: −0.075–1.25 µmol
CO2 m−2 s−1) with only 6% of observations indic-
ating neutral fluxes or net CO2 uptake. The spread
of time-resolved fluxes varied between 102% and
798% of the site-specific daily mean (figure 1). Reser-
voirs had smaller but more variable fluxes relat-
ive to the lakes (0.32 ± 0.71 vs. 0.41 ± 0.31 µmol
CO2 m−2 s−1, respectively), although the reser-
voir sample size is smaller and more geographically
restricted. Two thirds of sites had at least 66% of daily
fluxes within the cross-site fluxmean±1 SD (Cohen’s
d: 0.02< d < 0.76).

Annually, all sites were CO2 sources to the atmo-
sphere, except for DE-Zrk and LA-NT2, with large
variability across sites (figure 2). This was also the
case when comparing the same lake or reservoir type.
On a single day (on average), the mesotrophic and
eutrophic lakes and reservoirs were the largest and
smallest carbon sources, respectively.Whilemost sites
were a greater carbon source during the nighttime rel-
ative to the daytime, the difference in hourly fluxes
was small (0.5 µmol C m−2 s−1), except for DE-Zrk.

3.2. Temporal variability
Averaged diel CO2 changes had regular patterns of
daytime minima and nighttime maxima across all
sites in most months (figure 2(a)). Daytime hourly
fluxes were on average 35% (range 7%–60%) lower
than nighttime fluxes, though in 94% of site-days,
those were still net positive emissions. Despite the
commonly observed daytime CO2 flux dip, the flux
decrease was large enough to convert our sites to daily
net sinks of CO2 in only 11% of site-months. The

mean uncertainty of diel CO2 was strongly influenced
by extreme observations, with 192% mean uncer-
tainty, but only 79% median uncertainty.

Maximum diel flux amplitudes occurred typic-
ally in July and August and ranged 0.24–1.09 µmol
CO2 m−2 s−1. Relative to the summer amplitudes,
shoulder season CO2 flux amplitudes were on average
44%–49% smaller in May and September and 26%–
37% in April and October. Monthly to sub-annual
CO2 flux variability was nearly twofold higher com-
pared to the diel flux variation. Surprisingly, we found
frequent sub-monthly (20–30 d) variability across
all water bodies, regardless of the system’s physical
or biogeochemical conditions. While most site-level
variability fluctuated around the CO2 flux aver-
ages, for some, amplitudes scaled with flux minima
and maxima (figure S1). Sites with multi-year data
had relatively consistent sub-annual patterns across
years, although the timing and amplitudes of sub-
monthly variability varied among lake-years. When
integrated over time-resolved daily CO2 fluxes, both
sub-monthly and sub-annual modes of variability
accounted for two thirds of the site-level daily vari-
ability (range 10%–190%). Mean and median uncer-
tainty were 167% and 67% of mean daily CO2 flux,
respectively.

Once scaled to ice-free season annual emissions,
and assuming zero fluxes during ice cover, we found
all water bodies were net sources of CO2, des-
pite missing any ice off/on related fluxes (table 1).
The cross-site mean and SD of 23 site-years was
95 ± 49 gC m−2 yr−1 (range: 14–224 gC m−2 yr−1).
Inter-annual variability (IAV) was calculated as a
SD of annual CO2 flux for each site with multi-
year data (figure S2). The mean cross-site IAV was
22 gC m−2 yr−1 (25%) and ranged between 4 and
44 gC m−2 yr−1 (3%–58%).

3.3. Drivers of CO2 fluxes
While the continuous data allowed capturing CO2

flux variability at multiple temporal scales, we still
had a limited capacity to attribute which factors
and processes governed the CO2 flux. We found
small standardized differences between CO2 fluxes
among site groups belonging to the three humic states
(d< 0.01), medium differences between oligotrophic
and eutrophic states (d = 0.24), and large CO2

differences between mesotrophic and oligotrophic
states (d = 0.66), and between mesotrophic and
eutrophic states (d = 0.72). Commonly observed
biophysical covariates explained an average of 32%
of variance in half-hourly CO2 fluxes. Wind-related
variables were identified as a key to explaining CO2

flux variability in eight out of 13 sites. Biophys-
ical variables related to exchanges of heat at the air-
water interface, particularly∆T and turbulent energy
exchange (H and LE), both correlated with CO2 flux.
The fitted regressions were non-linear and highly
variable across sites, owing to ecosystem differences
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Figure 1.Normalized histograms of daily CO2 fluxes over ice-free season in nine lakes and four reservoirs, showing that all studied
ecosystems emitted CO2 to atmosphere in the majority of site-days. Vertical solid lines and their numerical representation indicate
mean daily CO2 flux. Shaded areas show observations with negative CO2 flux, which by convention, indicate net CO2 uptake.

and presence of confounding factors (e.g. differential
responses to co-dependent covariates).

Mutual information analysis revealed different
drivers to be responsible for CO2 fluxes on different
temporal scales (figure 4). On hourly scales, CO2 flux
at all sites was predicted mostly by Tair and Twater.
The strongest links were found to occur at LA-NT2
and DE-Zrk, both being eutrophic systems. Analysis
on diel scales yielded a similar result. On multi-day
scales, however, more linkage between CO2 flux and
drivers was found at CA-Dar, SE-Mer, and FI-Pal (all
oligotrophic). While the seasonal scale MI analysis
was subject tomany gaps, it did show amore uniform
CO2 flux prediction magnitude across all sites and
drivers relative to other timescales.

3.4. Temporal analysis
Random sampling among different temporal resol-
utions resulted in large differences between mean
sampled NEE and mean continuous annual NEE
(figure S3). For DE-Zrk and FI-Van, the greatest PE
was for samples taken during SMD, calculated to
be 868% ± 26% and 38% ± 2% (mean ± range),
respectively. US-Too experienced the largest error
during NT sampling, with a PE of 87% ± 31%.
Increasing the number of NEE values per sample
(i.e. going from1 to 5 to 10 samples with the latter two
NEE values calculated as the average) gave sporadic
results, in that, agreement sometimes improved (FI-
Van during GS) and sometimes worsened (US-Too
during nighttime). DT/NT and annual sampling were
the most representative of continuous annual NEE
among all sites regardless of lake/reservoir type. GS
sampling showed PE that was well within the typical

uncertainty for EC flux measurements (∼20%) for
FI-Van and US-Too. Sampling on an annual scale fur-
ther constrained PE, including even DE-Zrk in addi-
tion to FI-Van and US-Too.

Bias was also calculated using the same ran-
dom sampling method. This was defined as sub-
tracting the mean continuous annual NEE from the
mean sampled NEE at each site. Overall, DE-Zrk
showed high bias across all temporal resolutions
(−0.8 ± 5.2 µmol CO2 m−2 s−1) while US-Too and
FI-Van had bias that was an order of magnitude smal-
ler (figure 3).

4. Discussion

4.1. Forcing differences by type
Through this synthesis, Twater is shown to be a
major predictor of lake and reservoir NEE, which is
consistent with past work of Zwart et al (2019) and
Eugster et al (2020). There is a high degree of spa-
tiotemporal variability between these two variables.
For example, NEE at LA-NT2 and DE-Zrk (eutrophic
reservoir and eutrophic shallow lake respectively) was
most highly predicted by Twater on short timescales
(hourly and diel), suggesting these ecosystems may
be most susceptible to evading CO2 following cli-
mate warming. This large link may also be explic-
able through lake type. Eutrophic lakes are defined
as being nutrient rich, meaning they contain larger
phosphorus, nitrogen, or dissolved organic carbon
concentrations (DOC) than their oligotrophic coun-
terparts (Reed et al 2018). On multiday timescales,
however, the distinguishability of the NEE/Twater

linkage in the eutrophic sites is less prominent when
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Figure 2. Daily (A), cumulative (B), and summer diel cycle (C) of NEE for all 13 sites. Oligotrophic, mesotrophic, and eutrophic
lakes and reservoirs are represented by red, blue, and green lines respectively. Averaged NEE is reported for sites with multiple
years of data.

compared to the oligotrophic and mesotrophic sites.
Another variable with high NEE predictability was
Tair, though it is possible that in some cases fluxes
have an indirect relationship with Tair via its impact
on DOC input from land (Sobek et al 2005). Due
to lack of significant findings, we excluded asyn-
chronous driver analysis in this work. We acknow-
ledge that these drivers are present in other studies

covering freshwater ecosystems such as in Sturtevant
et al (2016).

Additionally, we acknowledge that theremay have
been CO2 flux variabilities due to lithological or geo-
graphical variables not discussed here. For example,
López et al (2011) found CO2 dynamics to be weakly
coupled to calcareous systems. León-Palmero et al
(2020) noted reservoir CO2 fluxes to be dependent on
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Figure 3. Sample analysis for the mesotrophic (blue), eutrophic (green), and oligotrophic (red) lakes and reservoirs with the least
data-gaps. Each bar shows the bias between mean sampled NEE and mean continuous annual NEE (mean continuous annual
NEE subtracted from mean sampled NEE). Samples were taken without replacement. A zoomed in version of the plot is shown to
better distinguish differences between FI-Van and US-Too.

lithology, with a CO2 source and sink being repor-
ted for calcareous and siliceous watersheds, respect-
ively. The work also found an impact of reservoir
mean depth on methane fluxes, which highlights that
these influences are not limited to CO2. Water chem-
istry and carbon isotope data would also provide
great insights on the contributions of dissolved inor-
ganic carbon (DIC) transformation and organic car-
bon mineralization (Zhong et al 2018), especially in
cases of damming where DIC transport is affected
(Wang et al 2020). These processes have been doc-
umented to play an important role in CO2 outgass-
ing, but the limitations of our dataset prevented us
from conducting further analysis on these processes.
As a result, future studiesmust take these characterist-
ics and processes into account due to their prominent
role in influencing lake and reservoir greenhouse gas
flux magnitudes across multiple temporal scales.

4.2. Unresolved temporal variation in CO2 fluxes
CO2 fluxes from lakes and reservoirs exhibited large
variability at diel to inter-annual scales, which could
comprise unresolved sources of uncertainty or bias in
current estimates of annual CO2 fluxes from infre-
quent and season-restricted sampling. Although our
study lakes were not randomly selected and cannot be

directly used to upscale (Stanley et al 2019), they were
broadly reflective of common mid-latitude freshwa-
ter systems spanning a broad range of humic-status
and mixing regimes. Additional considerations for
measurements across lake size and catchment area
(Hanson et al 2007, Holgerson and Raymond 2016)
and hydrological setting (Jones et al 2018) would be
required to design a representative estimate for global
upscaling.

We were able to investigate, however, the role of
temporal variation on a range of systems that broadly
reflect many lakes and reservoirs. Our reported con-
tinuous daily fluxes corresponded to the upper end
(88th percentile) of previously published flux mag-
nitudes (table S2). The observed temporal variation
suggests that temporal restrictions in sampling may
add a significant source of underestimation bias in
existing inventories of CO2 fluxes from lakes and
reservoirs of similar type and size (Klaus et al 2019).

In particular, we found large diel variation in
all study sites, with routinely higher emissions at
night, consistent with a recent study over rivers
(Gómez-Gener et al 2021). Diel reduction of dis-
solved CO2 concentrations and fluxes is often asso-
ciated with ecosystem metabolism (Hanson et al
2003) and supported by negative correlations with
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Figure 4.Mutual information analysis between NEE and biophysical variables on hourly (A), diel (B), multi-day (C), and seasonal
(D) scales. The vertical axis lists each site colored by nutrient level (red, blue, and green indicate oligotrophic, mesotrophic, and
eutrophic lakes and reservoirs respectively), while the x-axis shows drivers listed from left to right as air temperature, water
temperature, latent heating, sensible heating, friction velocity, and net radiation. High mutual information score (MIS) is
represented by dark blue (large NEE predictability) and low MIS is represented by white and light blue (low NEE predictability).

PAR, or even algal blooms (Shao et al 2015, Ouyang
et al 2017). Water temperature (Provenzale et al
2018), carbonate equilibria fluctuations (Atilla et al
2011), water-side convection (Eugster et al 2003,
Mammarella et al 2015, Podgrajsek et al 2015), and
internal waves (Heiskanen et al 2014) can addition-
ally govern diel CO2 dynamics. Our observed diel
amplitudes were within 21%–43% of sub-hourly flux
amplitudes derived from dissolved CO2 concentra-
tions (Hanson et al 2003, Morales-Pineda et al 2014)
or previously published EC-measured fluxes (Vesala
et al 2006, Liu et al 2016).Our results support the con-
clusion that existing global lake carbon budgets that
rely primarily on daytime measurements are under-
estimates of net emissions.

We also found common sub-monthly modes of
CO2 flux variability across all of our sites. Sim-
ilar variability in the continuous observations have
been reported for dissolved CO2 (Huotari et al,
2009, Atilla et al 2011, Morales-Pineda et al 2014,

Vachon and Del Giorgio 2014) and CO2 fluxes (Franz
et al 2016, Eugster et al 2020), indicating the pre-
valence of oscillatory patterns in CO2 time series
at both sides of the air–water interface. Variability
has been previously attributed to the interplay of
wind forcing (Liu et al 2016), upwellings of CO2-
rich waters (Morales-Pineda et al 2014), biologically-
driven (metabolic and trophic) changes in carbonate
equilibria (Atilla et al 2011, Ouyang et al 2017), con-
vectivemixing (Eugster et al 2003,Huotari et al 2009),
non-local processes (Esters et al 2020), and Twater

(Atilla et al 2011, Mammarella et al 2018). However,
this is the first study to find a consistent pattern in
a wide range of systems, regardless of size. We also
observed changes to the prevalence of underlying sub-
monthly CO2 flux variability through the year at sev-
eral sites, likely reflecting seasonal ecosystem changes,
such as spring/fall turnover (Baehr and DeGrandpre
2004), radiative and heat exchanges (Heiskanen et al
2014), and hydrological inflows (Vachon et al 2017).

10



Environ. Res. Lett. 18 (2023) 034046 M Golub et al

4.3. Implications for the global carbon budget
After our daily fluxes were scaled to site-specific
annual CO2 emission fluxes, estimates were in the
upper end of previously reported estimates for lakes
and reservoirs (table S2). All systems were sources of
CO2 in most years, although there have been sites
that reported significant carbon sinks (e.g. Shao et al
2015, Reed et al 2018), and additional propagation of
uncertainty from data gap filling and filtering (e.g.
of nighttime uptake) can weakly push some of our
study sites toward sinks. While our lakes are not fully
representative of all lakes on Earth, we postulate that
improved temporal resolution of site-level CO2 fluxes
is one of the sources of differences between this study
and published annual fluxes (table S2). The results
also imply that a proposed recommended number
of samples per year (4–8) (Natchimuthu et al 2017,
Klaus et al 2019) is likely insufficient to constrain
annual CO2 fluxes from lakes and reservoirs. Rather,
our sampling analysis suggests to increase night-
time and open-water season observations, preferably
weekly, which would reliably increase the accuracy of
annual estimates, given our observed diel and sub-
monthly variations.

Additionally, sites with multiple years of data all
showed non-trivial interannual variation. The estim-
ate of average IAV of CO2 fluxes (25%) is modest
compared to that (88%) observed in terrestrial eco-
systems (Baldocchi et al 2018), partially reflecting the
lower number and diversity of ecosystemswithmulti-
year measurements or more buffering against climate
extremes by large water bodies. However, given that
CO2 flux from freshwaters positively scales with the
productivity of terrestrial ecosystems at shorter times-
cales (Walter et al 2021, Butman et al 2016, Hastie
et al 2018), it is possible that the interannual vari-
ation of carbon input from land will propagate onto
CO2 evaded through freshwaters (McDonald et al
2013, Drake et al 2018), providing a possible path-
way to better characterize freshwater IAV. Neglecting
this variation is an additional source of bias in our
current view on global CO2 emissions from lakes and
reservoirs.

Given that the CO2 fluxes are affected at both
sides of the air–water interface (Wanninkhof et al
2009), a better measure of the contribution of lakes
to the global carbon cycle will also require report-
ing and synthesis of additional continuous water-
side data (e.g. temperature, dissolved CO2 and O2),
site-level ecosystem characteristics (e.g. nutrient-
color legacies, ecosystem metabolism, and aquatic
vegetation such as algae), surrounding topography
(Eugster et al 2022), and sampling an increased
site diversity within climatic zones (Lehner and
Döll 2004). With more frequent air and aquatic
observations, we will better constrain CO2 fluxes
at different time scales, assess the prevalence of
temporal patterns in CO2 fluxes, and reduce uncer-
tainty in eddy flux measurements over freshwaters

(e.g. Ejarque et al 2021) and therefore improvemodel
estimates of responses of these ecosystems to climate
change. These estimates will also allow for a robust
representation of different climate variable effects on
these fluxes (Sobek et al 2005). Such work will be
needed to quantify and evaluate landscape (Buffam
et al 2011, Zwart et al 2018) to global (DelSontro
et al 2018) carbon budget components from lakes and
reservoirs.

5. Conclusions

Across the 13 study sites with EC flux observations,
all lakes and reservoirs were, on average, net annual
sources of CO2 to the atmosphere. However, the time
series revealed large diel to (sub)-monthly CO2 flux
variability among the sites that represent a broad
range of biogeochemical and physical site character-
istics. These modes of variability accounted for two
thirds of daily and a quarter of annual CO2 flux vari-
ation, with sub-annual variability dominating over
diel and inter-annual flux variabilities. After integ-
rating these modes of variability into time-resolved
fluxes, the CO2 flux estimates were at the upper end
of published CO2 emissions for lakes and reservoirs.
Our results support the idea that long-term, frequent
measurements during both day and night of carbon
dynamics in freshwater aquatic systems are critical to
resolve lake NEE magnitudes and detect long-term
trends of lake carbon fluxes. Omitting these tem-
poral scales will not only limit our knowledge of lake
NEE, but also restrict our understanding of biophys-
ical driver impacts. We advocate for establishing and
maintaining a long-term observation network that
combines EC flux measurements with highly detailed
site-specific carbon budget studies over key lake and
reservoir ecosystems representing broader geograph-
ical gradients.
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