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Abstract: In this follow-up article, we investigate the use
of convolutional neural network for deriving stellar para-
meters from observed spectra. Using hyperparameters
determined previously, we have constructed a Neural
Network architecture suitable for the derivation of Teff,

glog , M H[ ]/ , and v isine . The network was constrained
by applying it to databases of AFGK synthetic spectra at
different resolutions. Then, parameters of A stars from
Polarbase, SOPHIE, and ELODIE databases are derived,
as well as those of FGK stars from the spectroscopic
survey of stars in the solar neighbourhood. The network
model’s average accuracy on the stellar parameters is
found to be as low as 80 K for Teff, 0.06 dex for glog ,
0.08 dex for M H[ ]/ , and 3 km/s for v isine for AFGK stars.

Keywords: data analyzis methods, statistical, methods,
deep learning methods, spectroscopic techniques, funda-
mental parameter stars

1 Introduction

Artificial intelligence (AI) is becoming a vital tool in
science due to its automation capabilities and its capacity
to handle large amounts of data. In the context of astronomy,
a subset of AI, machine learning (ML), and deep learning
(DL) are extensively used for ground-based and sky surveys

(Baron 2019). In our previouswork, Gebran et al. (2022) (here-
after referred to as Paper I), we constructed a deep neural
network (DNN) in order to derive stellar parameters,¹ such as
effective temperature (Teff), surface gravity ( glog ), metallicity
( M H[ ]/ ), and the projected equatorial rotational velocity
(v isine ), for B and A stars. In Paper I, we constrained most
of the hyperparameters utilized in the construction of NN in
order to ensure that the best accuracy for deriving stellar
labels could be achieved.

Many tools and techniques are being developed to
derive the fundamental parameters of stars, and most of
them are either based on statistical or ML/DL approaches.
A thorough list of the most updated studies can be found
in the Introduction of Paper I. Recently, Li et al. (2022b)
used a combination of least absolute shrinkage and selec-
tion operator and multilayer perceptron (MLP)methods to
estimate stellar atmospheric parameters from the large sky
area multi-object fiber spectroscopic telescope (LAMOST)
DR8 low-resolution spectra. Straumit et al. (2022) pre-
sented a spectral analyzis algorithm, ZETA-PAYNE, devel-
oped to obtain stellar labels from the fifth sloan digital sky
survey spectra of stars of OBAF spectral types using ML
tools. Li et al. (2022a) applied an ML technique, the Gaus-
sian process (GP) regression, to turn a sparse model grid
into a continuous function. They also used the GP regres-
sion todetermine the age andmass of stars. Kjærsgaard et al.
(2021) presented anNNautoencoder approach for extracting
a telluric transmission spectrum from a large set of high-
precision observed solar spectra from the high accuracy
radial velocity planet searcher (HARPS-N) radial velocity
spectrograph. Hu et al. (2022) presented a data-driven
method based on Long Short-TermMemory neural networks
to analyze the spectral time series of Type Ia supernovae
(SN Ia). Their method allows for accurate reconstruction of
the spectral sequence of an SN Ia based on a single observed
spectrumaroundmaximum light.More recently, Xiong et al.
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1 When dealing with DNN, stellar parameters are often called stellar
labels.
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(2022) presented a residual recurrent neural network to
extract spectral informationandestimatestellar atmospheric
parameters along with 15 chemical element abundances for
medium-resolution spectra from LAMOST.

Most of the automated techniques that are found in
the literature deal with the derivation of the fundamental
parameters (Teff, glog , and M H[ ]/ ) without considering
v isine . Rotational profiles are usually found by applying
transformations such as the Fourier transform (Zorec and
Royer 2012) or using rotational laws (Zorec et al. 2017). In
our previous studies (Aydi et al. 2014, Gebran et al. 2016,
Kassounian et al. 2019, Gebran et al. 2022), we have
derived v isine using line profile fitting.

In this work, we complement the study of Paper I by
using its best combination of hyperparameters to find the
best NN architecture. The foremost purpose of our study
is to develop a consistent model that is capable of pre-
dicting accurate and precise stellar parameters, which is
a guiding starting point for most stellar physics projects.
Of course, other sources of uncertainty can affect the
predicted results when applied to real observations, as
will be discussed in this article. Once the architecture and
parameters are set, we applied our technique to AFGK
observed spectra (Gebran et al. 2016, Kassounian et al.
2019, Paletou et al. 2015).

The construction of the training databases is explained
in Section 2. The preprocessing steps are detailed in Section
3. The construction of the NN model with all the details is
discussed in Section 4. The application of the method to
AFGK stars is found in Section 5. The discussion and con-
clusion can be found in Section 6.

2 Training databases

A grid of 12 training databases was constructed for the
purpose of this study. Other than modifying the stellar
labels (Teff, glog , and M H[ ]/ ², v isine ), we have con-
structed a series of grids with the same range of stellar
labels but at different resolving powers. The purpose is to
analyze the effect of resolution on the accuracy of the
derived stellar label and to check the capability of our
technique when applied to low-, medium-, and high-
resolution spectrometers.

We have followed the same strategy as in Paper I. We
have first calculated a series of ATLAS9 (Kurucz 1992)model
atmospheres using the opacity distribution function of

Castelli and Kurucz (2003) and with a mixing length
parameter of 0.5 for T7,000 K 8,500 Keff≤ ≤ , and 1.25
for T 7,000 Keff ≤ (Smalley 2004). Using SYNSPEC48

(Hubeny and Lanz 1992), we have calculated synthetic
spectra for AFGK stars. We ended up with a grid of
80,000 synthetic spectra, for each resolving power, with
parameters ranging randomly between the values described
in Table 1. We have used the same line list as the one used
in Paper I. The wavelength range was selected to be
between 4,450 and 5,400 Å. This wavelength range is
indeed very sensitive to all stellar parameters in the spec-
tral range of AFGK stars (Paletou et al. 2015, Gebran et al.
2016, Kassounian et al. 2019, Gebran et al. 2022). This
region is also insensitive to microturbulent velocity, which
was adopted to be ξ 2 km st = / for A stars and ξ 1 km st = /

for FGK stars (Gebran et al. 2016, 2014). An example of the
calculated spectra for different resolving powers is dis-
played in Figure 1.

3 Principal component analysis
(PCA) for preprocessing

Before applying the NN to the training database, a dimen-
sion reduction technique is applied. This step consists in
reducing the size of the spectra from a sampling size of Nλ
to n Nk λ< . Depending on the resolving power, Nλ ranges
between 4,750 and 19,000 data points. The nk reduced
data points are found by projecting the flux of each spectrum
onto the first 50 principal components (PCs). Technically, we
apply this PCA on the training database and find the eigen-
vectors λek( ) of the variance–covariance matrix C:

C M MM M¯ ¯ ,T( ) ( )= − ⋅ − (1)

Table 1: Ranges of the parameters used for the calculation of the
training databases

Parameters Range Step

Teff (K) [4,000, 11,000] 50

glog (dex) [ ]2.0, 5.0 0.05

[ ]/M H (dex) [ ]−1.5, 1.5 Random

v isine (km/s) [ ]0, 300 Random

λ (Å) 4,450–5,400 λ
Resolving power

The third column displays the steps in the parameter range. Note
that the steps in Teff and glog are the steps in ATLAS9 model atmo-
spheres. Many databases were constructed for different resolving
powers ranging from 1,000 to 115,000. Random step means that
there is no restriction on the number selection.



2 M H[ ]/ refers to an overall metallicity and not to the iron abun-
dance. All elemental abundances are scaled according to M H[ ]/ .
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where the training database M is an N Nλspectra × matrix
containing the fluxes of the synthetic spectra. The value
of nk is found by analyzing the reconstructed error (Gebran
et al. 2022). Having n 50k = reduces the mean reconstructed
error to a value less than 0.5%. As a similar technique to
PCA, one could also use the encoder part of an autoencoder
in order to reduce the dimensionality of the database
(Kjærsgaard et al. 2021). We have chosen PCA to be consis-
tent with our previous findings in Gebran et al. (2016, 2022).

4 DL

We start by applying data augmentation as a regulariza-
tion technique to all the training databases (see Section
4.1.1 of Paper I for technical explanations). This is done in

order to take into account the noise in the real observed
spectra and some modifications that could occur in
the shape of the observed spectra due to bad normal-
ization or inappropriate data reduction. Every spectrum
(including the augmented ones) in each database is
represented by 50 data points, and they correspond
to a specific Teff, glog , M H[ ]/ , and v isine . This is true
of all resolving powers. An NN is then used to link these
data points to their corresponding labels. Four different
NNs were built, one for each stellar label (Teff, glog ,
M H[ ]/ , v isine ).

The initializers, optimizers, learning rates, dropout
fraction, pooling layers, activation functions, loss func-
tions, epochs, and batches are constrained according to
the methodology of Paper I. These network parameters
were derived for every network architecture tested in
this work.

Figure 1: Sample of synthetic spectra calculated with different stellar parameters and spectral resolutions. These noise-free spectra are
normalized to the local continuum.
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4.1 Architecture

An infinite number of architectures could be applied to
our purpose. The main goal is to find the most accurate
transformation between the matrix of spectral coefficients
(the 50 projected ones) and the labels. The best architec-
ture will be selected according to its simplicity (size and
calculation time) and the accuracy of the results.

Fully dense NNs, Convolutional Neural Networks
(CNN), and a combination of both were tested for each
stellar label. In each case, we have iterated on the number
of layers, and number of neurons in each layer, and the
size of the filters in the case of CNNs. As explained pre-
viously, network parameters were derived for each NN.

For every network and every resolving power, each
augmented database was divided into 70% for training,
20% for validation, and 10% for testing. Gaussian signal-
to-noise ratio was selected randomly between 5 and 300
and applied to each spectrum of the 10% test spectra
in order to check the accuracy of the technique on noisy
data.

All our calculations are performed using the open-
source programming language, Python, specifically with
the Keras³ interface on the TensorFlow⁴. We have used
the KerasTuner⁵ package (O’Malley et al. 2019), a scalable
hyperparameter optimization framework that solves the
pain points of hyperparameter search. It was used to
derive the optimized number of layers as well as the filter
sizes in the case of CNNs. Linking the number of layers
and dimensions of the filters with the size of the database
as well as the size of each spectrum in the database is not
an easy task. In order to avoid over- and under-fitting,
these two parameters should be optimized. KerasTuner
helps in that regard and avoids the hassle of the time-
consuming trial and error phase.

After iterating on the architecture shape and deriving
the optimized parameters for each network, the result
was a unique architecture that is applicable to all stellar
parameters. Figure 2 shows the architecture of NN for
deriving Teff . This architecture is similar for predicting

glog , M H[ ]/ , and v isine . Although the four parameters
are predicted for networks having similar architecture,
these models differ in the activation function, the kernel
initializer, the loss function, the optimizer, the dropout
fraction, the epoch, and the batch number (Gebran et al.
2022). The adopted values for the network parameters are

Figure 2: Neural network architecture used in this study for predicting
Teff , glog , [ ]/M H , and v isine . These parameters are predicted with
networks having the same architecture but different parameters as
shown in Table 2. Explanations about the kernel and bias dimensions
can be found in the study by Wu (2017).



3 https://keras.io/.
4 https://www.tensorflow.org/.
5 https://keras.io/keras_tuner/.
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derived using the technique explained in Paper I. These
parameters are summarized in Table 2.

4.2 Resolution effect

Spectroscopic surveys are based on instruments that
have different resolving powers. For that reason, we
have applied our technique to different databases that
are similar in parameter ranges (Table 1), except for the
resolving power. Our tests contain spectra with a low
resolution down to 1,000 and a high resolution of up to
115,000.

Once the networks are trained using 70% of the data,
we have derived the accuracy of the parameters for the
validation, test, and noisy test data. The best accuracy
reached as a function of the resolution is displayed in
Figure 3. For each stellar label, the derived accuracy for
the noisy test data is representative of the error bar that
should be assigned to the observed spectra. For example,
when analyzing spectra at a resolving power of 50,000,
the equatorial projected rotational velocity should be
assigned an error σ ~ 2.5 km sv isine m / . The subscript m
corresponds to the fact that this is model related. For a
resolving power larger than 5,000, the accuracy values
are always in the same order, and their average is 80 K for
Teff, 0.06 dex for glog , 0.08 dex for M H[ ]/ , and 3 km/s
for v isine .

5 Application to observed spectra

After the four networks were applied to synthetic data and
the architecture and parameters found, we used them to
predict the stellar parameters from observed spectra. We
used well-studied AFGK stars observed with different instru-
ments at different resolutions. Applying the predictions to
observed spectra assumes that the radiative transfer code is

able to produce synthetic spectra similar to the observed
ones using the specific stellar parameters. We have shown
in previous studies (Gebran et al. 2016, Kassounian et al.
2019) that SYNSPEC48 was able to reproduce the spectra of
AFGK stars with good accuracy, but other reliable synthetic
spectra codes could be used if needed. We can mention the
PHOENIX models (Husser et al. 2013) that are well suited for
stars having T 12,000 Keff ≤ or TURBOSPECTRUM (Plez
2012) with all the molecular data that are used for giant
and dwarf stars.

For the A stars, we used the list of Gebran et al. (2016)
and selected the ones that have the most values pub-
lished in the literature. We ended up with 89 observed
A stars with more than nine values for Teff in the Vizier
catalog. These A stars were observed with NARVAL and
ESPaDOnS high-resolution spectropolarimeters, which
have a spectral resolving power of 65,000 in polarimetric
mode and 76,000 when used for spectroscopy. These
spectra were retrieved from PolarBase (Petit et al. 2014),
a high-resolution spectropolarimetric stellar observa-
tions database. Another part of the A stars spectra was
observed with the ELODIE (Baranne et al. 1996, Moul-
taka et al. 2004) and SOPHIE (Perruchot et al. 2011, Ilo-
vaisky et al. 2008) spectrographs with a resolving power
of 42,000 and 75,000, respectively. Details about the
observations can be found in Gebran et al. (2016) and
Kassounian et al. (2019). For the FGK stars, we have
used 96 stellar spectra from the Spectroscopic Survey
of Stars in the Solar Neighbourhood (S N4 , Allende Prieto
et al. 2004), analyzed in Paletou et al. (2015) with a
resolving power of 50,000. As done in our previous stu-
dies (Paletou et al. 2015, Gebran et al. 2016), variable or
active stars, showing time-emission features of chan-
ging strength/amplitude were excluded.

For each resolving power, we used the corresponding
trained NN model. To do that, the observations were cor-
rected for the radial velocity shift using the classical
cross-correlation technique (Tonry and Davis 1979). The
spectra are then interpolated in the wavelength range

Table 2: Set of parameters used for the four networks, for deriving Teff, glog , [ ]/M H , and v isine ; these parameters are derived using the
technique explained in Paper I

Parameter Teff glog [ / ]M H v isine

Kernel initializer he_normal he_normal Random uniform he_uniform
Loss function Mean squared logarithmic error Mean squared logarithmic error Mean absolute error Mean squared error
Optimizer Adam Adamax Adam Adamax
Epochs 350 75 75 75
Batch 128 128 32 64
Activation function Relu tanh tanh tanh
Dropout fraction 0.3 0.3 0.2 0.3

DL for stellar parameters II  5



used during the training, between 4,450 and 5,400 Å for
A stars and 5,000–5,400 Å for FGK stars. The wavelength
range of the S N4 observations is smaller than that of A
stars. For that reason, a reduced database with a smaller
wavelength range was interpolated from the original one

at 50,000 resolving power and was used for these specific
FGK stars. Then, all observed spectra were projected into
their corresponding PCs and the first 50 data points were
conserved for the prediction.

5.1 AFGK stars

Predicted stellar parameters are depicted in Tables A1
and A2 in the Appendix. In these tables, the stellar para-
meters are represented with the median and closest
values retrieved from Vizier catalogs using astroquery⁶
(Paletou and Zolotukhin 2014)⁷.

Figure 4 shows the predicted effective temperature of
a sample of stars, as well as the range in the effective
temperatures retrieved from the catalogs (boxplots) and
the median. The selection of these stars was based on the
number of values found in the literature. For A stars, we
have selected the ones that have more than 20 different
values in Vizier. As for FGK stars, we did the same with
stars having more than 100 independent literature values
for Teff . Figures 5–7 are similar to Figure 4 but for glog ,
M H[ ]/ , and v isine . A stars in Figure 5 have more than ten
cataloged values for glog and F stars have more than
50. For M H[ ]/ and v isine , we have chosen the A stars
that have more than ten cataloged values for these two
parameters. For FGK stars, we have selected the ones
having more than 50 and 15 values for M H[ ]/ and v isine ,
respectively.

A large spread exists in the literature for all para-
meters. To estimate the accuracy of our results, we used
a weighted mean approach similar to the one described in
Gebran et al. (2016). Quantitatively, and in order to give
more weight to the cataloged values that have a large
number of occurrences and a small spread in values,
the dispersion and its corresponding standard deviation
for a stellar parameter X are calculated as follows:

X
w X X

w
Δ ,i i

i i

prediction median( )
=

∑ −

∑

where

w 1
IQR

,i
i

=

IQRi being the interquartile range defined as the differ-
ence between the third and first quartiles of each set of
values. The standard deviation is calculated as follows:

Figure 3: Derived accuracy for Teff, glog , [ ]/M H , and v isine as a
function of the resolving power. We present the accuracy values for
the training data (triangles), the validation data (squares), the test
data (triangles tilted right), and the noisy test data (circles).



6 https://astroquery.readthedocs.io.
7 https://arxiv.org/abs/1408.7026.
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Stars having only one cataloged value for a specific para-
meter were not considered in the calculation of the disper-
sion. The results of the dispersion as well as the standard
deviations are displayed in Table 3. Cataloged values are
all coming from different sources, and each author uses a
different technique (photometry, spectroscopy, spectro-
photometry, asteroseismology, etc.). This leads to a large
dispersion and a large deviation between our predicted
values and the ones in the literature. A better way to esti-
mate this dispersion is to do a comparison with the sample
used in Figures 4–7. This sample contains the stars having
the largest number of independent cataloged values. The
new dispersion and standard deviations are displayed in
Table 3 depicted with the “lim” subscript. In that case, the
dispersion reduces drastically, reaching an average of
150 K, 0.01 dex, 0.04 dex, and 3.0 km/s for Teff, glog ,
M H[ ]/ , and v isine , respectively, and with smaller stan-
dard deviation than in the case of the whole sample.

The dispersion found between our predicted v isine for
FGK and the ones in the literature is mainly explained by
the fact that our v isine include the macroturbulence effects,

whereas some of the authors derive both parameters sepa-
rately (see, e.g., Allende Prieto et al. 2004). In the case of A
stars, the v isine values for every sharp-lined spectra (e.g.,
v isin 5 km se ≤ / ) should be considered as upper limits
because, macroturbulence effect is neglected. For moderate
and fast rotators, macroturbulence has no significant effect
on the line shape (Takeda et al. 2018, Frémat et al. 2022).
When only considering A stars, Δlim and σlim of Table 3
become 1.3 and 5.0 km/s, respectively. These results show
that we are able to recover the stellar parameters of AFGK
stars with good accuracy using our trained models. How-
ever, as explained in Paper I, the size of the database is very
crucial for the convergence of the model as well as for the
recovered accuracy of the stellar parameter. The size of the
database depends on many factors, including the spectral
type of the stars, the wavelength range, and the type of pre-
dicted parameters. We have used a database of ~80,000
spectra in our study but this number should be monitored.

6 Discussion and conclusion

Two sources of errors should be assigned to the predicted
stellar parameters. One relates to the model (σparameterm,

Figure 4: Comparison between our predicted effective temperatures (stars), and the values we obtained from available Vizier catalogs. The
cataloged values are represented as classical boxplots. The objects we studied are listed along the horizontal axis. The horizontal bar inside
each box indicates the median (Q2 value), while each box extends from the first quartile,Q1, to the third quartileQ3. Extreme values, still within
1.5 times the interquartile range away from eitherQ1 orQ3, are connected to the box with dashed lines. Outliers are denoted by an “o” symbol.
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Figure 5: Same as Figure 4 but for glog .

Figure 6: Same as Figure 4 but for [ ]/M H .
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Section 4.2) and the other relates to how close the radiative
transfer code (i.e., SYNSPEC48, σparameterrtc) represents the
observations. σparameterrtc can be derived using a list of well-
studied stars with well-established stellar parameters over a
wide range in the Hertzsprung-Russell Diagram. It is beyond
the scope of this study, but we should be aware that this
source of error could be wavelength dependant as each
radiative transfer code uses a different line list with different
atomic data.

Model (i.e., NN) and radiative transfer errors are inde-
pendent and can be added in a quadratic manner to find
the total accuracy that we found in Section 5.1:

σ σ σ .parameter parameter
2

parameter
2

mtotal rtc

1
2( )= +

While comparing with the median values from the
literature, we found that Teff is derived with an accuracy
of 150 K, glog with 0.01 dex, M H[ ]/ with 0.04 dex, and
v isine with 3.0 km/s. Some of these deviations are smaller
than the errors found in the model (80 K for Teff, 0.06
dex for glog , 0.08 dex for M H[ ]/ , and 3.0 km/s for
v isine ), but one should consider the accuracy of the
model as a minimum limit for the stellar parameters
and then calculate the total accuracy depending on the
radiative transfer code specificity.

We have used a large range of spectral types and
found acceptable values for accuracy. One could use
a combination of a stellar library with synthetic data
adapted for each spectral type and luminosity range or
a large database of observed stars with accurate stellar
parameters. However, NN proves to be a fast (refer to
Paper I for computational time) and accurate way to
derive stellar parameters and can handle a large amount
of data. These results are very promising, as they are less
accurate than those usually found with photometric tech-
niques (Smalley 2005, Jin-Meng et al. 2021, Green et al.
2021), spectroscopic ones (Gill et al. 2018, Gebran et al.
2016, Ting et al. 2019, Kassounian et al. 2019, Tabernero
et al. 2022), or a combination of both (Adelman et al.
2002, Heiter et al. 2015).

Figure 7: Same as Figure 4 but for v isine .

Table 3: Dispersion and standard deviation for the comparison
between our predicted parameters and the cataloged ones

Teff glog [ / ]M H v isine

(K) (dex) (dex) (km/s)

Δ 160 0.40 0.15 12
σ 300 0.55 0.35 15
Δlim 150 0.01 0.04 3.0
σlim 250 0.15 0.14 5.5

The last two rows deal with a limited cataloged sample, the one
used to plot Figures 4–7.

DL for stellar parameters II  9



In future work, we will be testing the effect of specific
spectral regions on the stellar parameters. This will be
done through autoencoders, a type of unsupervised learning
technique, leading to amore “intelligent” and compact data-
base construction.

One straightforward application is the use of such a
network in order to derive the stellar parameters of Gaia
spectra (Collaboration et al. 2016). The radial velocity
spectrometer (Cropper et al. 2018) on board of Gaia will
deliver medium-resolution spectra (R ~ 11,000 ) in the
CaII triplet region (λ ranging from 8,470 to 8,710 Å). Sev-
eral millions of stars have their spectra available during
the Data Release 3 (DR3, Collaboration et al. 2022, Frémat
et al. 2022).
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Appendix

Table A1: Predicted values for Teff , glog , [ ]/M H , and v isine for A stars with the median and closest values from Vizier cataloge

HIP HD Teff (K) T c
eff (K) T m

eff (K) log g
(dex)

log g gc

(dex)
log gm

(dex)
[ / ]M H
(dex)

[ ∕ ]X H c

(dex)
[ ∕ ]M H m

(dex)
v sin ie
(km/s)

v sin ic

(km/s)
v sin im

(km/s)

HIP100108 HD193369 10,109 7,718 10,100 4.08 4.30 4.29 0.14 0.04 0.04 120.4 102.0 110.0
HIP102098 HD197345 7,081 7,823 7,572 2.22 2.51 2.13 0.61 0.06 0.48 31.3 34.7 34.7
HIP102208 HD199095 10,610 8,934 10,500 4.03 3.95 3.95 0.03 0.0 0.00 27.4 32.0 30.0
HIP103298 HD199254 7,842 8,145 7,900 3.37 4.01 3.50 −0.24 −0.2 −0.40 165.8 148.0 159.0
HIP104139 HD200761 9,959 9,595 10,001 3.74 4.11 4.00 0.28 0.26 0.26 145.6 104.0 130.0
HIP106297 HD205117 10,091 9,370 9,800 4.02 3.90 4.00 −0.10 0.00 −0.10 138.5 83.5 90.0
HIP10670 HD14055 10,174 9,340 10,772 4.17 4.08 4.19 −1.31 −0.58 −1.20 233.2 246.0 240.0
HIP10793 HD14252 8,638 8,380 8,749 3.35 4.74 3.40 −0.01 −0.05 0.00 23.5 22.0 25.0
HIP108875 HD209459 10,307 10,093 10,350 3.16 3.55 3.48 −0.95 −0.15 −0.42 2.0 11.0 3.8
HIP109521 HD210715 8,099 7,901 8,200 4.01 4.13 4.09 0.15 −0.10 −0.01 155.5 138.0 144.0
HIP111123 HD213320 10,826 10,125 10,864 3.79 4.05 3.76 1.11 0.41 0.49 22.1 21.0 23.0
HIP111169 HD213558 9,852 9,197 9,840 4.23 4.00 4.20 0.19 −0.28 0.00 149.1 128.0 150.0
HIP112029 HD214923 10,396 11,032 10,723 3.26 3.87 3.50 −0.24 0.00 −0.30 189.6 162.0 185.0
HIP112051 HD214994 9,834 9,452 9,866 3.67 3.68 3.65 1.44 0.08 0.42 5.1 10.0 5.0
HIP114745 HD219485 10,361 9,396 10,000 3.81 3.82 3.81 0.05 0.00 0.03 25.5 23.0 25.0
HIP11484 HD15318 10,790 10,308 10,900 3.64 4.00 3.48 0.00 −0.10 −0.04 61.7 57.0 65.0
HIP12706 HD016970 8,587 8,407 8,551 4.29 4.18 4.30 −0.13 −0.01 −0.01 192.0 186.0 190.0
HIP1366 HD1280 8,887 8,697 8,857 4.05 3.89 4.00 0.39 −0.69 0.14 101.9 102.0 102.0
HIP1473 HD1404 8,728 8,332 8,770 4.17 4.18 4.17 0.28 −0.09 0.05 138.3 119.0 123.0
HIP15154 HD20149 9,661 8,631 9,800 3.43 3.65 3.50 0.05 0.00 0.06 22.1 23.0 23.0
HIP16322 HD21686 10,199 9,468 10,000 3.61 4.00 3.67 −0.22 −0.2 −0.40 237.9 244.0 244.0
HIP17791 HD23763 8,581 8,441 8,591 4.33 4.03 4.10 0.33 −0.14 0.01 139.5 104.0 110.0
HIP18717 HD25175 10,460 8,034 10,500 3.44 3.83 3.59 −0.10 −0.51 −0.16 56.9 55.0 55.0
HIP19949 HD26764 10,123 8,215 9,825 3.57 3.39 3.67 −0.66 −0.65 −0.65 241.7 229.0 249.0
HIP20542 HD27819 8,056 7,957 8,050 4.18 3.96 4.11 0.44 −0.07 0.20 50.1 42.0 43.3
HIP20542 HD27819 7,799 7,957 7,800 3.67 3.96 3.70 0.13 −0.07 0.17 44.5 42.0 43.3
HIP20635 HD027934 7,737 8,105 7,800 3.35 3.81 3.40 0.35 −0.01 0.05 84.0 85.0 85.0
HIP20901 HD28355 7,170 7,705 7,592 3.95 4.00 3.97 0.23 0.30 0.20 89.9 105.0 90.0
HIP20901 HD028355 6,823 7,705 6,262 3.23 4.00 3.22 0.13 0.30 0.20 92.7 105.0 92.8
HIP21029 HD28527 7,466 8,086 7,700 3.58 3.91 3.69 0.09 0.13 0.10 66.1 86.0 70.0
HIP21589 HD29388 8,120 8,100 8,200 3.64 3.88 3.69 0.27 −0.05 0.13 81.3 86.8 80.0
HIP21683 HD029488 7,731 7,947 7,800 3.76 3.80 3.80 0.23 0.09 0.10 137.7 128.0 128.3
HIP21683 HD29488 7,687 7,947 7,614 3.46 3.80 3.67 0.02 0.09 0.09 141.9 128.0 128.3
HIP23497 HD32301 7,795 7,863 7,800 3.66 3.88 3.80 0.53 −0.01 0.15 130.4 124.5 131.0
HIP24340 HD33641 7,536 7,560 7,560 3.96 3.92 3.96 0.19 −0.03 0.12 94.8 84.5 92.0
HIP29997 HD042818 10,830 9,370 10,834 4.02 4.16 4.03 −0.57 0.30 0.30 265.6 255.0 260.0
HIP30060 HD043378 10,278 9,120 9,580 4.13 4.10 4.15 −0.12 −0.30 −0.10 45.3 45.5 45.0
HIP32104 HD48097 10,091 7,508 9,463 4.31 4.10 4.34 0.00 −0.10 −0.01 120.0 101.0 110.0
HIP32349 HD48915 9,554 9,900 9,580 4.14 4.35 4.20 0.45 0.33 0.50 18.9 16.0 18.0
HIP32921 HD49908 10,035 5,685 10,200 3.48 3.52 3.52 −0.34 −0.21 −0.35 154.2 117.0 140.0
HIP36145 HD58142 9,340 9,462 9,266 3.30 3.67 3.55 0.12 0.00 0.00 21.0 18.6 19.0
HIP41152 HD070313 8,747 8,038 8,720 4.05 4.00 4.03 0.46 −0.48 −0.01 119.1 112.0 114.0
HIP42028 HD72660 9,160 9,513 9,200 3.66 4.00 3.60 0.26 0.10 0.21 4.1 9.0 5.0
HIP4436 HD5448 8,163 7,118 8,222 4.29 3.81 4.20 0.24 −0.17 0.10 68.7 75.0 69.3
HIP45493 HD079439 6,751 7,630 7,450 4.09 4.04 4.10 −0.46 −0.04 −0.5 175.4 159.0 159.0
HIP50448 HD88983 7,628 7,890 7,600 3.73 3.89 3.89 −0.19 −0.19 −0.18 126.1 114.0 133.0
HIP50933 HD89822 9,661 10,000 9,741 3.65 3.80 3.66 0.48 0.15 0.46 3.9 10.0 4.6
HIP51200 HD090470 8,241 7,845 8,337 4.01 4.20 4.20 0.06 −0.01 −0.01 125.2 90.0 110.0
HIP52422 HD092769 7,100 6,990 7,600 4.42 4.13 4.30 −0.48 −0.15 −0.60 223.7 207.0 212.0
HIP5310 HD006695 8,773 8,304 8,720 3.99 4.30 3.91 0.07 −0.20 −0.01 164.2 149.0 150.0
HIP53485 HD94766 7,927 7,908 7,917 4.56 4.06 4.21 0.12 −0.05 0.00 94.7 85.0 85.0

(Continued)
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Table A1: Continued

HIP HD Teff (K) T c
eff (K) T m

eff (K) log g
(dex)

log g gc

(dex)
log gm

(dex)
[ / ]M H
(dex)

[ ∕ ]X H c

(dex)
[ ∕ ]M H m

(dex)
v sin ie
(km/s)

v sin ic

(km/s)
v sin im

(km/s)

HIP54326 HD96399 7,414 6,662 7,400 3.62 3.72 3.40 −0.39 −0.49 −0.40 78.0 70.0 70.0
HIP54425 HD96681 7,963 7,638 7,829 3.41 3.66 3.40 −0.03 −0.14 −0.01 79.1 80.0 80.0
HIP55263 HD98377 8,813 8,297 8,800 4.68 4.01 4.13 −0.11 −0.10 −0.10 55.3 50.0 50.0
HIP5542 HD6961 7,578 7,962 7,597 3.74 3.64 3.80 0.51 −0.20 0.11 103.3 103.0 103.0
HIP55488 HD98747 7,056 7,136 6,992 4.03 3.91 4.15 −0.47 −0.12 −0.20 39.0 35.0 35.0
HIP56429 HD100518 7,942 7,637 7,986 3.60 3.61 3.50 −0.13 −0.16 −0.02 8.2 11.2 8.0
HIP57743 HD102841 7,173 7,400 7,181 4.41 3.70 4.55 −0.28 −0.30 −0.30 123.5 90.0 90.0
HIP59923 HD106887 7,823 8,291 7,900 3.93 4.20 3.80 0.46 0.21 0.21 86.2 82.0 84.1
HIP59988 HD106999 8,109 6,519 8,116 4.14 4.07 4.12 0.05 −0.21 0.08 50.4 47.7 51.4
HIP60327 HD107655 9,153 8,607 9,281 3.78 4.00 3.97 0.79 −0.09 0.08 56.1 46.0 50.0
HIP62874 HD112002 8,045 7,716 8,000 4.15 3.99 4.00 0.11 −0.45 0.10 54.7 50.0 50.0
HIP65304 HD116379 7,993 5,848 8,000 3.82 4.25 3.80 0.08 −0.27 −0.02 89.2 80.0 80.0
HIP65466 HD116706 8,907 8,480 8,909 3.92 3.93 3.93 0.35 −0.20 −0.01 56.3 54.0 55.0
HIP6686 HD8538 7,945 7,980 7,980 3.72 3.61 3.73 0.01 −0.45 −0.11 127.6 110.0 123.0
HIP67004 HD119537 8,740 8,661 8,661 3.97 3.99 3.99 0.20 −0.44 0.03 17.9 13.5 16.4
HIP73156 HD132145 9,434 9,230 9,376 3.95 4.13 4.00 −0.24 0.00 0.00 15.3 15.0 15.0
HIP75043 HD136729 8,295 8,247 8,279 3.88 4.19 3.85 −0.33 0.09 −0.30 161.3 159.0 161.0
HIP76267 HD139006 10,635 9,515 10,900 3.82 3.86 3.82 −0.26 0.20 −0.01 142.5 133.5 139.0
HIP78554 HD143894 9,246 8,652 9,226 3.97 3.93 3.93 0.28 0.38 0.38 149.2 128.0 130.0
HIP79332 HD145647 9,674 7,645 9,560 3.93 3.41 3.95 −0.40 −0.30 −0.36 46.8 43.0 45.0
HIP84036 HD155375 8,704 8,477 8,700 4.49 4.06 4.08 0.40 0.20 0.22 28.1 27.9 28.0
HIP84821 HD157087 8,592 8,185 8,600 3.38 3.10 3.44 0.11 −0.05 0.00 8.9 15.0 12.0
HIP85666 HD158716 8,593 8,068 8,600 3.82 4.26 3.82 0.17 −0.13 0.00 5.1 15.0 6.0
HIP8903 −− 8,107 8,352 8,061 3.88 3.94 3.90 0.34 0.08 0.16 70.8 71.6 71.6
HIP91262 HD172167 9,608 9,485 9,657 3.93 3.96 3.93 −0.51 −0.54 −0.50 23.2 23.0 23.0
HIP92396 HD174567 10,395 9,208 10,500 3.46 3.55 3.50 0.44 0.00 0.15 9.6 15.0 12.0
HIP93526 HD176984 9,876 8,723 9,880 3.40 3.47 3.44 −0.10 −0.14 0.00 28.9 24.2 30.0
HIP9480 HD012111 7,586 7,700 7,700 3.99 4.02 3.95 0.04 −0.31 −0.21 71.2 71.6 71.6
HIP97229 HD186689 7,466 7,906 7,700 4.01 4.21 4.21 −0.10 −0.04 −0.05 32.5 31.0 31.0
HIP9977 HD013041 8,420 8,216 8,309 3.72 3.86 3.77 −0.41 −0.45 −0.40 164.8 133.0 135.0
— HD23924 7,826 7,782 7,850 3.94 4.00 3.94 0.35 0.01 0.38 36.0 44.8 33.0
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Table A2: Predicted values for Teff , glog , [ ]/M H , and v isine for FGK stars with the median and closest values from Vizier cataloge

Star ID Teff (K) T c
eff (K) T m

eff
(K)

log g
(dex)

log g gc

(dex)
log gm

(dex)
[ / ]M H
(dex)

[ ∕ ]X H c

(dex)
[ ∕ ]M H m

(dex)
v sin ie
(km/s)

v sin ic

(km/s)
v sin im

(km/s)

HIP10138 5,194 5,188 5,195 4.91 4.56 4.91 0.01 −0.23 −0.09 7.0 2.3 3.9
HIP102422 4,937 4,971 4,940 2.54 3.40 2.99 0.30 −0.18 0.13 4.7 3.4 4.8
HIP105858 5,909 6,159 5,910 3.47 4.35 3.92 −1.10 −0.67 −0.84 24.0 3.7 10.0
HIP10644 5,871 5,702 5,845 3.92 4.29 3.92 −0.75 −0.43 −0.58 31.6 4.7 10.0
HIP10798 5,186 5,373 5,286 4.52 4.61 4.53 −0.84 −0.47 −0.80 8.8 2.7 3.6
HIP109176 6,664 6,479 6,693 3.72 4.23 4.02 −0.21 −0.10 −0.19 20.5 6.2 10.0
HIP110109 6,106 5,850 6,019 3.74 4.39 4.13 −0.70 −0.21 −0.44 8.3 2.0 2.7
HIP114622 4,755 4,829 4,749 2.12 4.50 2.59 0.92 0.05 0.20 9.0 2.0 8.0
HIP116771 6,273 6,186 6,279 3.58 4.12 3.75 −0.30 −0.14 −0.27 11.1 6.7 10.0
HIP12777 6,328 6,264 6,329 3.66 4.32 3.22 −0.16 −0.01 −0.15 12.6 8.9 10.2
HIP12843 5,523 6,371 6,144 3.74 4.29 4.00 0.15 0.05 0.15 25.0 25.6 25.0
HIP13402 5,171 5,180 5,170 4.54 4.56 4.55 0.62 0.08 0.21 9.9 4.9 10.0
HIP14632 6,340 5,963 6,045 3.61 4.16 3.35 0.66 0.09 0.29 8.5 4.3 10.0
HIP14879 6,160 6,170 6,165 3.50 3.95 3.57 −0.40 −0.21 −0.35 10.5 4.4 7.3
HIP15330 6,071 5,720 5,854 4.28 4.53 4.30 −0.84 −0.22 −0.34 12.2 2.7 3.0
HIP15371 6,155 5,866 6,066 3.96 4.48 4.22 −0.77 −0.23 −0.34 9.1 2.6 3.0
HIP15457 5,908 5,718 5,908 3.60 4.50 4.33 −0.16 0.06 −0.16 10.4 5.2 8.0
HIP15510 6,198 5,401 6,041 4.51 4.45 4.50 −0.52 −0.40 −0.49 7.0 1.5 4.0
HIP1599 6,234 5,957 6,151 3.70 4.42 4.02 −0.43 −0.19 −0.45 16.4 3.0 15.0
HIP16537 5,039 5,084 5,034 4.51 4.57 4.51 0.27 −0.11 0.06 16.9 2.5 15.0
HIP16852 6,183 5,997 6,200 3.47 4.09 3.85 −0.21 −0.09 −0.21 8.3 4.3 8.0
HIP171 5,853 5,438 5,798 4.40 4.38 4.40 −0.97 −0.79 −0.98 15.1 3.0 5.0
HIP17378 4,734 5,037 4,750 2.35 3.77 3.27 0.36 0.10 0.25 24.7 2.3 15.0
HIP17420 4,957 4,979 4,957 3.86 4.57 4.41 0.36 −0.11 0.10 9.4 3.0 5.7
HIP2021 6,042 5,848 5,924 3.42 3.95 3.45 0.00 −0.09 0.00 9.2 3.3 5.0
HIP22263 6,300 5,834 6,131 3.72 4.49 4.30 −0.48 0.01 −0.19 13.0 3.2 6.4
HIP22449 5,857 6,424 5,820 3.52 4.29 3.77 0.02 0.00 0.02 18.3 17.2 18.5
HIP23311 4,790 4,790 4,790 2.09 4.55 4.23 1.18 0.28 0.44 21.4 2.0 5.2
HIP23693 5,838 6,153 5,727 3.66 4.44 4.06 −0.32 −0.17 −0.34 17.7 15.4 17.3
HIP24813 6,167 5,858 5,979 3.67 4.20 3.98 0.51 0.05 0.26 3.7 2.0 3.1
HIP26779 5,301 5,243 5,300 4.27 4.50 4.26 0.49 0.09 0.21 15.5 2.5 5.4
HIP27072 6,381 6,306 6,384 3.64 4.31 3.99 −0.23 −0.05 −0.22 12.7 7.7 10.4
HIP27913 5,892 5,949 5,895 3.74 4.44 4.21 −0.40 −0.03 −0.18 13.0 8.9 10.7
HIP29271 5,628 5,569 5,621 3.70 4.43 4.20 0.77 0.10 0.25 18.4 1.8 2.3
HIP3093 5,018 5,221 5,024 4.11 4.49 4.15 0.51 0.15 0.26 7.6 1.2 8.0
HIP37279 6,770 6,596 6,775 3.47 4.00 3.74 −0.27 −0.01 −0.29 10.7 5.5 10.1
HIP37349 4,812 4,932 4,826 2.74 4.60 2.68 0.83 −0.01 0.09 6.6 3.8 5.6
HIP3765 5,024 4,978 5,020 4.82 4.61 4.82 0.06 −0.24 −0.04 9.7 2.0 6.3
HIP3821 6,022 5,925 6,034 3.65 4.40 4.00 −0.59 −0.28 −0.60 10.5 2.8 9.2
HIP40693 5,428 5,402 5,428 3.79 4.48 3.66 0.16 −0.03 0.14 9.0 2.0 6.7
HIP4148 4,688 4,952 4,822 3.50 4.61 4.49 0.32 −0.11 0.00 8.7 1.8 4.5
HIP41926 5,080 5,243 5,155 4.69 4.56 4.68 −0.73 −0.40 −0.48 8.8 2.7 6.8
HIP42438 5,765 5,876 5,759 3.66 4.47 4.40 −0.35 −0.06 −0.29 13.8 10.0 13.2
HIP42808 5,018 4,969 5,005 4.73 4.60 4.66 0.75 −0.03 0.10 8.9 3.8 9.6
HIP46853 6,217 6,336 6,225 3.29 3.87 3.50 −0.42 −0.16 −0.31 12.3 8.6 10.0
HIP51459 6,301 6,156 6,301 3.57 4.39 3.96 −0.32 −0.13 −0.28 9.3 4.3 10.0
HIP5336 5,335 5,316 5,336 4.49 4.49 4.49 −1.15 −0.83 −0.98 19.3 5.4 15.0
HIP53721 6,186 5,882 6,140 3.70 4.30 4.07 0.52 0.01 0.31 6.2 2.8 5.6
HIP544 5,546 5,481 5,551 3.44 4.55 3.99 0.64 0.12 0.22 8.9 4.1 6.2
HIP56452 5,128 5,158 5,129 4.80 4.56 4.68 −0.92 −0.38 −0.57 8.1 3.5 6.7
HIP56997 5,605 5,507 5,609 3.71 4.54 3.45 −0.48 −0.05 −0.50 33.5 2.4 15.0
HIP57443 5,982 5,629 5,970 4.21 4.44 4.21 −0.83 −0.29 −0.66 10.3 0.7 3.0
HIP57757 6,470 6,109 6,246 3.55 4.10 3.86 0.52 0.13 0.33 8.3 4.0 10.0
HIP58576 5,332 5,510 5,361 3.37 4.40 3.65 0.94 0.25 0.35 8.4 2.0 5.2

(Continued)
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Table A2: Continued

Star ID Teff (K) T c
eff (K) T m

eff
(K)

log g
(dex)

log g gc

(dex)
log gm

(dex)
[ / ]M H
(dex)

[ ∕ ]X H c

(dex)
[ ∕ ]M H m

(dex)
v sin ie
(km/s)

v sin ic

(km/s)
v sin im

(km/s)

HIP61317 6,063 5,881 6,061 3.70 4.39 3.38 −0.56 −0.19 −0.39 2.1 2.8 2.1
HIP61941 5,502 6,875 5,433 3.64 4.26 3.88 −0.40 −0.09 −0.44 28.6 28.3 29.7
HIP64241 5,687 6,343 5,250 3.64 4.09 3.99 0.01 −0.23 0.0 20.9 19.9 20.5
HIP64394 6,517 6,009 6,225 3.72 4.40 4.24 0.06 0.04 0.06 10.7 4.4 10.0
HIP64924 5,660 5,558 5,660 3.75 4.40 3.50 −0.17 −0.01 −0.13 8.4 2.2 8.0
HIP67927 6,076 6,047 6,078 3.49 3.78 3.53 0.82 0.25 0.47 15.5 13.5 15.4
HIP68184 4,776 4,831 4,792 2.20 4.55 4.38 1.00 0.12 0.33 25.4 1.3 9.0
HIP71681 5,203 5,551 5,203 4.11 4.31 4.16 0.57 0.21 0.27 11.3 2.7 4.5
HIP72659 5,616 5,483 5,595 4.23 4.56 4.37 −0.67 −0.14 −0.83 15.7 4.6 16.0
HIP72848 5,290 5,260 5,291 4.10 4.53 4.11 0.60 0.08 0.14 9.5 4.5 6.3
HIP73695 6,160 5,495 6,200 3.78 4.23 4.10 −0.54 −0.30 −0.42 6.2 3.7 3.7
HIP7513 6,296 6,155 6,269 3.65 4.13 3.90 0.24 0.09 0.19 13.7 9.6 11.9
HIP77257 6,206 5,901 6,131 3.57 4.15 4.00 −0.06 −0.01 −0.05 8.3 3.1 10.0
HIP7751 4,969 5,043 4,970 4.58 4.63 4.61 −0.27 −0.20 −0.26 8.5 3.9 6.8
HIP77952 5,492 7,107 5,377 2.77 4.16 3.76 0.11 −0.25 −0.20 79.2 75.0 75.0
HIP78072 6,117 6,278 6,146 3.67 4.13 3.91 −0.36 −0.18 −0.32 13.9 10.0 11.9
HIP78775 5,321 5,294 5,321 4.72 4.58 4.71 −0.85 −0.67 −0.76 6.6 2.0 7.0
HIP7918 6,232 5,880 6,179 3.73 4.30 4.10 0.68 0.0 0.2 7.1 3.2 5.0
HIP79190 5,033 5,060 5,024 4.91 4.55 4.66 −0.18 −0.37 −0.21 8.7 1.6 5.0
HIP79672 6,213 5,799 6,053 3.71 4.43 4.16 −0.32 0.04 −0.29 8.3 2.5 8.3
HIP7981 5,154 5,201 5,155 3.34 4.50 3.25 0.13 −0.04 0.12 10.4 1.7 10.0
HIP80337 6,525 5,882 6,060 3.68 4.50 4.40 −0.30 0.03 −0.19 17.5 1.6 3.9
HIP80686 6,417 6,090 6,459 3.68 4.45 4.24 −0.30 −0.08 −0.19 10.8 3.2 3.3
HIP8102 5,456 5,330 5,459 4.57 4.51 4.57 −0.74 −0.52 −0.68 3.4 1.8 3.5
HIP81300 5,087 5,272 5,080 4.15 4.57 4.39 0.07 0.02 0.07 8.0 2.0 4.1
HIP81693 5,994 5,764 5,906 3.20 3.74 3.53 0.77 0.02 0.10 8.4 4.3 10.0
HIP8362 5,257 5,374 5,257 3.56 4.54 4.30 0.01 0.05 0.01 7.2 1.3 10.0
HIP84405 5,009 5,089 5,007 4.80 4.60 4.64 −0.48 −0.23 −0.38 7.7 2.5 5.1
HIP84720 5,285 5,209 5,273 4.76 4.53 4.61 −0.77 −0.34 −0.46 8.6 1.9 4.5
HIP84862 6,270 5,703 6,079 3.90 4.26 3.80 −0.70 −0.37 −0.79 2.9 1.7 3.0
HIP85235 5,072 5,290 5,194 4.61 4.57 4.61 −0.74 −0.44 −0.52 5.0 1.3 3.4
HIP86036 6,490 5,893 6,077 3.65 4.39 4.13 0.11 −0.03 0.08 13.5 4.5 6.0
HIP86400 4,863 4,883 4,864 2.24 4.52 4.30 0.50 −0.08 0.17 13.7 2.5 4.1
HIP86974 5,361 5,508 5,342 2.86 3.97 3.72 0.82 0.23 1.29 7.8 3.9 8.0
HIP88601 5,174 5,250 5,182 3.82 4.54 4.30 0.30 −0.01 0.19 11.0 3.5 13.0
HIP88972 5,034 5,000 5,035 4.78 4.50 4.74 0.37 −0.17 0.07 5.0 2.1 4.1
HIP91438 5,918 5,636 5,884 4.26 4.49 4.25 −0.90 −0.24 −0.35 34.1 2.8 4.0
HIP96100 5,261 5,271 5,260 4.47 4.55 4.49 −0.70 −0.22 −0.43 7.2 2.3 6.7
HIP97944 5,052 4,767 5,081 2.13 4.20 2.00 0.93 −0.03 0.38 33.7 2.0 10.2
HIP98036 5,082 5,100 5,082 2.60 3.55 3.04 0.13 −0.15 −0.04 6.6 2.5 4.6
HIP99461 4,949 4,971 4,952 4.80 4.55 4.73 −0.10 −0.51 −0.21 9.9 1.8 3.9
HIP99825 5,233 5,091 5,179 4.14 4.51 4.37 0.46 0.00 0.14 18.0 2.0 4.3
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