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A B S T R A C T 

We present a no v el numerical approach aiming at computing equilibria and dynamics structures of magnetized plasmas in coronal 
environments. A technique based on the use of neural networks that integrates the partial differential equations of the model, 
and called physics-informed neural networks (PINNs), is introduced. The functionality of PINNs is explored via calculation of 
different magnetohydrodynamic (MHD) equilibrium configurations, and also obtention of exact two-dimensional steady-state 
magnetic reconnection solutions. Advantages and drawbacks of PINNs compared to traditional numerical codes are discussed in 

order to propose future impro v ements. Interestingly, PINNs is a meshfree method in which the obtained solution and associated 

different order derivatives are quasi-instantaneously generated at any point of the spatial domain. We believe that our results can 

help to pave the way for future developments of time dependent MHD codes based on PINNs. 

Key words: magnetic reconnection – MHD – methods: nurical – Sun: corona. 
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 I N T RO D U C T I O N  

eep learning techniques based on multilayered neural networks 
NNs) are actually increasingly used to solve problems in a variety 
f domains including computer vision, language processing, game 
heory, etc. (LeCun et al. 2015 ). The idea to use NNs to solve
on-linear differential equations is not new, since it was initially 
ntroduced more than 25 years ago (Lagaris 1998 ). This was made
opular only recently, following the work of Raissi et al. ( 2019 ) where
he class of physics-informed neural networks (PINNs) application 
as introduced. Indeed, PINNs benefitted from technical progress 
n automatic differentiation and the facilitated use of PYTHON open 
ource software libraries like TENSORFLOW or PYTORCH . 

To date, PINNs are already used for many applications like, fluid 
ynamics (Cai et al. 2021 ), radiative transfer (Mishra & Molinaro 
023 ), astrophysics (Baty 2023 ; Urb ́an et al. 2023 ), and many
thers. The specificity of the PINNs technique is to minimize the 
quation’s residual at some predefined set of data called collocation 
oints, where the predicted solution must thus ensure the differential 
quation. To this purpose, a physics-based loss function associated to 
he residual is defined and then used. In the original method proposed
y Raissi et al. ( 2019 ), that is sometimes called vanilla-PINNs in
he literature, the initial/boundary conditions required to solve the 
quations are imposed via a second set of data called training points
here the solution is known or assumed. The latter constraints are 

pplied by minimizing a second loss function that is a measure of
he error (e.g the mean-squared error), i.e. the difference between the 
redicted solution and the values imposed by the initial/boundary 
 E-mail: hubert.baty@unistra.fr 
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2023 The Author(s). 
ublished by Oxford University Press on behalf of Royal Astronomical Society. Th
ommons Attribution License ( http:// creativecommons.org/ licenses/ by/ 4.0/ ), whic
rovided the original work is properly cited. 
onditions. The combination of the two loss functions allows to form
 total loss function that is finally used in a gradient descent algorithm.
INNs does not require a large amount of training data as the sole
nowledge of solution at boundary is required for vanilla-PINNs. 
ote that, as initially proposed by Lagaris ( 1998 ), it is also possible

o exactly enforce the boundary conditions in order to a v oid the use of
raining data set (Urb ́an et al. 2023 ). This consists of forcing the NNs
o al w ays assign the prescribed value at the boundary by emplo ying
 well-behaved trial function. For example when this value is zero
homogeneous Dirichlet condition), the initial output of the NN is 
ultiplied by a function that cancels out on the boundary. Ho we ver,
hen the boundary conditions are not homogeneous or the geometry 

s complex, this technique becomes complicated to implement. For 
implicity, we make the choice to apply the v anilla-PINNs v ariant in
his work. 

The aim of this work consists of assessing the advantages and
rawbacks of PINNs to solve the dynamics of plasmas immersed 
n the magnetic field of the solar corona. To the best of our
nowledge, PINNs technique has never been applied to such context 
n astrophysics, at the exceptions of structure of force-free neutron 
tar magnetospheres (Urb ́an et al. 2023 ) and for probing the solar
oronal magnetic field from observations data (Jarolim et al. 2023 ).
o we ver, similar PINNs techniques have been recently developed 

or applications to laboratory plasmas. In particular, there is a 
urge of interest for computing MHD equilibria rele v ant to toroidal
agnetic confinement configurations (e.g. tokamaks) for which 
rad–Shafranov (GS) like equations need to be solved (Kaltsas & 

hroumoulopoulos 2022 ). In this work, the functionality of PINNs is
xplored through application to two particular solar problems. First, 
e consider the computation of two-dimensional (2D) force-free 
agnetic equilibria representative of arcades and loop like structures 
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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Figure 1. Schematic representation of the structure for a classical NN having 
three hidden layers with five neurons per layer, one input layer (two neurons), 
and one output layer (single neuron). The two input neurons represent the 
spatial coordinates of x that are fed to the network, and the output neuron is 
the approximated solution u θ ( x ). 
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n the solar corona by solving an associated GS like equation. Second,
ur method is extended to a more complex system of differential
quations that is an incompressible resistive MHD set, with the aim
o compute 2D magnetic reconnection solutions. More precisely, in
his work, we focus on the reconnective annihilation solutions that
re particular exact steady-state solutions obtained in 2D Cartesian
eometry (Craig & Henton 1995 ). 
This paper is organized as follows. In Section 2 , we first introduce

he basics of PINNs approach for solving partial differential equa-
ions (PDEs). Section 3 presents the application to the computation
f two different examples of 2D MHD equilibria rele v ant for solar
orona. In Section 4, a PINNs code with the aim to solve the set of 2D
teady-state resistive equations in the framework of incompressible

HD is presented. In particular, we assess the applicability of our
INNs solver in retrieving exact analytical solutions (Craig & Henton
995 ). Finally, conclusions are drawn in Section 5 . 

 T H E  BA SIC S  O F  PINNS  

.1 The basics of NNs for non-linear approximation 

n this Section, we briefly re vie w ho w NNs are employed as
niversal approximators. Let us consider an unknown function u ( x )
hat could be the solution of a differential equation, u θ ( x ) being
ts approximated value at given x value (representing two spatial
oordinates) and θ being a set of model parameters. Using a classical
eed forward NN, we can write 

 θ ( x ) = ( N 

( L ) ◦ N 

( L −1) ... N 

(0) )( x ) , (1) 

aking appear u θ ( x ) as the result of compositions (operator ◦ abo v e)
f non-linear transformations N 

( l) at different layers ( l = 0, 1,..., L ).
n example of a given feed-forward NN architecture is schematized

n Fig. 1 , sho wing ho w the neurons for each layer are interconnected.
he network is composed of L + 1 layers including L −1 hidden

ayers of neurons (e.g. L = 4 for Fig. 1 ). Two neurons are employed
or the input layer to represent the two required space coordinates
see below), and a single neuron is sufficient to predict the scalar
olution u θ ( x ) in cases involving a single differential equation. Each
ransformation can be expressed as 

 

( l) ( x ) = σ ( W 

( l) N 

( l−1) ( x ) + b ( l) ) , (2) 
NRAS 527, 2575–2584 (2024) 
here, we denote the weight matrix and bias vector in the l -th
ayer by W 

( l) ∈ R 

d l−1 ×d l and b ( l) ∈ R 

d l ( d l being the dimension of
he input vector for the l -th layer). σ (.) is a non-linear acti v ation
unction, which is applied element-wisely. Such acti v ation function
llows the network to map non-linear relationship that is fundamental
or automatic differentiation and therefore the calculation of the
eri v ati ves (see below). In this work, the most commonly used
yperbolic tangent tanh function is chosen. Other smooth functions
ould have led to the same results. Ho we ver, note that piece wise

inear functions ReLU (or Leakly ReLU) would have been a very bad
hoice, leading to constant piecewise second derivatives and making
mpossible to minimize the loss function. The model is consequently
efined by θ = { W 

( l) , b ( l) } l = 1 , L representing the trainable parameters
f the network. 
The optimization problem aiming to find a non-linear approxima-

ion u θ ( x ) � u ( x ) is based on the minimization of a function L data ,
alled loss function, that is a measure of the difference between u θ ( x )
nd u ( x ). In practice, a mean-squared error formulation is chosen as 

 data ( θ ) = 

1 

N data 

N data ∑ 

i = 1 

∣∣ u θ ( x i ) − u 

data 
i 

∣∣2 , (3) 

here a set of N data data called training data is assumed to be available
or u ( x ) taken at different x i values. Finally, a gradient descent
lgorithm is used until convergence towards the minimum is obtained
or a predefined accuracy (or a given maximum iteration number) as

k+ 1 = θk − l r ∇ θL data ( θk ) , (4) 

or the k -th iteration also called epoch in the literature, leading to 

∗ = argmin 
θ

L data ( θ ) , (5) 

here l r is known as the learning rate parameter. This is the so-
alled training procedure. In this work, we choose the well-known
dam optimizer. The standard automatic differentiation technique

s necessary to compute deri v ati ves (i.e. ∇ θ ) with respect to the
N parameters, i.e. weights and biases (Baydin et al. 2018 ). This

echnique consists of storing the various steps in the calculation
f a compound function, then calculating its gradient using the
haine rule. The final goal is to calibrate the trainable parameters

(weight matrices and bias vectors) of the network such that
 θ ( x ) approximates the target solution u ( x ). The initialization of the
etwork parameters is done randomly. The implementation of the
lgorithm is done using the TENSORFLOW library, a classical PYTHON

oftware for machine-learning. 1 The gradient descent algorithm is
mplemented with Keras using the application programming (API)
RADIENTTAPE . 2 

.2 The basics of PINNs for solving a single Partial 
iffentential Equation(PDE) 

et us consider a function u ( x ) satisfying some boundary conditions
 b ( x ) at the boundary ∂D of some 2D domain D. The previous non-

inear approximation procedure can be applied once a set of training
ata is defined at x i (i = 1,..., N data ) where u θ ( x i ) � u b ( x i ), and using
he minimization of 

 data ( θ ) = 

1 

N data 

N data ∑ 

i = 1 

| u θ ( x i ) − u b ( x i ) | 2 . (6) 

https://www.tensorflow.org/
https://keras.io/api/
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Figure 2. Schematic representation of the network structure PINNs for solving a single PDE. An NN architecture (see previous figure) is used to e v aluate 
the residual of the equation (via u θ ( x ) and associated different partial order derivatives). Two partial loss functions are used to form a total loss function with 
associated weights (see text) that is finally minimized. 
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In PINNs, the complete minimization is obtained by considering 
 second loss function that takes into account the equation, so called
hysics-based loss function, i.e. L F 

hereafter. The latter is defined by 
sing the equation residual that can be written in the simple following
orm 

 [ u ( x ) , x ] = 0 , (7) 

here the symbol F stands for a non-linear differential operator. 
ndeed, using a second set of data, that are N c data points located at

x j ( j ∈ [1, N c ]) and generally called collocation points, we can define
he following associated loss function 

 F 

( θ ) = 

1 

N c 

N c ∑ 

j = 1 

∣∣F [ u θ ( x j ) , x j ] 
∣∣2 , (8) 

hat must be minimized in addition to the training data loss. As
n important property characterizing PINNs, the deri v ati ves of the
xpected solution with respect to the variable x (i.e the network input) 
eeded in the previous loss function are obtained via the automatic 
ifferentiation (also used in the gradient descent algorithm described 
n Section 2.1 ), a v oiding truncation/discretization errors inevitable 
n traditional numerical methods. In the v anilla-PINN frame work, a 
otal loss function L is thus formed as 

 ( θ ) = ω data L data ( θ ) + ω F 

L F 

( θ ) , (9) 

here weights ( ω data , ω F 

) can be introduced in order to ameliorate
he eventual unbalance between the two partial losses during the 
raining process. These weights and the learning rate can be user-
pecified or automatically tuned. In this work, for simplicity we fix 
he ω data and ω F 

values to be constant and equal to unity, and the
radient descent algorithm described in Section 2.1 is thus applied 
o the total loss defined in equation ( 9 ). A schematic representation
ummarizing the procedure can be found in Fig. 2 . 

.3 The basics of PINNs for solving PDEs 

he PINNs solver for a single PDE can be easily extended for a set of
 PDEs with m desired scalar functions ( n being ≥m ). Consequently,
he output layer must have m neurons instead of one. The training and
ollocation data sets must be defined for each function. A physics-
ased loss function can be defined, that is a weighted sum of n
hysics-based loss functions (one per equation). As a single NN is
sed, one must increase the complexity of the network by increasing
he number of neurons and/or the number of hidden layers (see
pplications in Sections 3 and 4). 

 SOLV I NG  EQUI LI BRI UM  E QUAT I O N S  USING  

I NNS  

ptimization algorithms have been developed for computing MHD 

quilibria in the solar corona using ho we ver classical methods where
 complex functional is minimized (i.e. without NNs; Wiegelmann & 

eukirch 2006 ). Two examples of magnetic solar configurations are 
onsidered below that are, an arcade structure, and a curved loop
ike structure obeying a Soloviev GS equation. Note that, as the
xact analytical solutions are known, they are useful in order to
 v aluate the accuracy of the method and also to impose the boundary
onditions. 

.1 Triple arcade structure 

agnetic arcades are important observed structures in the solar 
orona (Mc Kenzie & Hudson 1999 ). Indeed, they are at the heart
f solar flares, coronal mass ejections (CME), and other physical 
rocesses (Kusano et al. 2004 ; Imada et al. 2013; Janvier et al. 2015 ;
uzma et al. 2021 ). More precisely, triple arcades are of particular

mportance to explain the initiation of solar flares associated to CME
cenario (like the breakout model) in the solar wind (Van Der Holst
t al. 2007 ). 

Simple force-free models in the framework of 2D MHD can be
educed from the following equilibrium equation for the scalar field 
( x , z) representing the y component of the vector potential of the
agnetic field in Cartesian coordinates (Wiegelmann 1998 ) 

ψ + c 2 ψ = 0 , (10) 

here c is a constant and � = 

∂ 2 

∂x 2 
+ 

∂ 2 

∂z 2 
is the Cartesian Laplacian

perator. This equation is solved in a spatial domain ( x , z) ∈ [ −
 /2: L /2] × [0: L ], where L is a given reference spatial scale. This

s a linear force-free equilibrium for which the current density and
hermal pressure gradient give the linear form c 2 ψ (Wiegelmann 
998 ). Exact solutions for triple arcade structures can be obtained
MNRAS 527, 2575–2584 (2024) 
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Figure 3. Equilibrium magnetic field lines (iso-contours of ψ) obtained with PINNs solver for three particular arcades, (a) dipole-like, (b) quadrupole-like, and 
(c) mixed dipole/quadrupole-like configurations (see text). 

Figure 4. Equilibrium magnetic field lines (iso-contours of ψ) obtained with 
PINNs solver for the mixed dipole/quadrupole-like configurations (case c in 
the previous figure). The spatial location of the training and collocation data 
sets are indicated using dots situated on the boundaries and inside the domain, 
respectively. 
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sing Fourier-series as 

( x, z) = 

3 ∑ 

k= 1 

exp ( −νk z) 

[
a k cos 

(
kπ

L 

x 

)]
. (11) 

he latter solution is periodic in x , and the relationship ν2 
k = 

k 2 π2 

L 2 
−

 

2 applies as a consequence of equation ( 10 ). 
We present the PINNs solutions obtained with L = 3, c = 0.8, and

 2 = 0. Three particular cases are considered below, (a) a dipole-like
eld with a 1 = 1 and a 3 = 0, (b) a quadrupole-like field with a 1 = 0
nd a 3 = 1, and (c) a combination of both with a 1 = 1 and a 3 = −0.5.
he obtained solutions are plotted in Fig. 3 , and can be compared to

esults previously shown for a similar set of parameters (Wiegelmann
998 ). 
Moreo v er, we detailed below the training procedure only for

he third case (c), as being similar for the two other cases (a
nd b). We have chosen 20 training data points per bound-
ry layer (i.e. N data = 80) with a random distribution, as one
an see in Fig. 4 (with dots situated on the boundaries). The
xact solution is used to prescribe these training data values.
or the collocation data set, N c = 700 points are generated in-
NRAS 527, 2575–2584 (2024) 
ide the integration domain using a pseudo-random distribution
Latin-hypercube strategy) as one can see with dots situated inside
he domain. The evolution of the loss function with the training
pochs that is reported in Fig. 5 , shows the convergence toward the
redicted solution. Note that the training is stopped after 50 000
pochs corresponding to a final loss value of order 2 × 10 −6 . We
ave chosen a network architecture having seven hidden layers with
0 neurons per layer, and a fixed learning rate of l r = 2 × 10 −4 .
he latter parameters choice slightly influences the results but is
ot fundamental as long as the number of layers/neurons is not
oo small (Baty 2023 ). A faster convergence can be also obtained
y taking a variable learning rate with a decreasing value with the
dvance of the training process. The error distribution at the end
f the training is plotted in Fig. 5 exhibiting a maximum absolute
rror of order 0.003, which also corresponds to a similar maximum
elative error of order 0.003 (the maximum magnitude solution
alue being of order unity). Note that the predicted PINNs solution
nd associated error distribution are obtained using a third set of
oints (different from the collocation points) that is taken to be a
niform grid of 100 × 100 points here, otherwise the error could
e artificially small (o v erfitting effect). One must also note that the
rror is higher near the boundary due to the higher gradient of the
olution and to the coexistence of data/collocation points in these
egions. In this way, once trained, the network allows to predict
he solution quasi-instantaneously at any point inside the integration
omain, without the need for interpolation (as done e.g. with finite-
ifference methods when the point is situated between two grid
oints). The precision of PINNs is known to be very good but less
han more traditional methods (e.g. like in finite-element codes). This
s a general property of minimization techniques based on gradient
escent algorithms (Press et al. 2007 ; Baty 2023 ). Ho we ver, a finer
uning of the network parameters together with the introduction of
ptimal combinations for weights of the partial losses can generally
meliorate the results, which is beyond the scope of this work. 

.2 GS equilibrium structure: Soloviev solution 

quilibrium curved magnetic structures represent another important
ssue in solar physics. Indeed, the latter obey the solutions of GS
quation that is obtained in the axisymmetric approximation. For
xample GS equation and its solution are often used for magnetic
louds reconstruction (e.g. in order to determine their geometries
rom observations; Isavnin et al. 2011 ). GS like solutions are also
mportant to model the CME phenomenon for which a simple
orce-free spheromak solution is used (Shiota & Kataoka 2016;
erbeke et al. 2019 ). In the latter context, particular solutions of



Modelling solar magnetic fields with PINNs 2579 

Figure 5. (a) Absolute error distribution (iso-contours of the difference between the PINNs and exact solutions) for the arcade case shown in the previous 
figure. (b) Corresponding evolution of the total loss function with the training epochs. 
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S equation called Soloviev solutions can be also implemented as 
ime dependent boundary conditions, leading to a more realistic and 
elf-consistent CME evolution model and better predictions (Linan 
t al. 2023 ). 

Following the formulation deduced using ( R , z) cylindrical like 
ariables in the plane perpendicular to the toroidal angle, the GS 

quation can be written as 

−
[

∂ 2 ψ 

∂R 

2 
+ 

∂ 2 ψ 

∂z 2 
− 1 

R 

∂ψ 

∂R 

]
= F ( R, z, ψ) (12) 

here F is a term containing the current density flowing in the
oroidal direction (Deriaz et al. 2011 ). Assuming the particular form
or F , F = αR 

2 + β (where α and β are constant), allows the
btention of Soloviev solutions (Soloviev 1975 ). More precisely, 
aking F = f 0 ( R 

2 + R 

2 
0 ) leads to the exact solution 

 = 

f 0 R 

2 
0 

2 

[
a 2 − z 2 − ( R 

2 − R 

2 
0 ) 

2 

4 R 

2 
0 

]
(13) 

n a spatial domain D bounded by its frontier ∂D defined as follows:

D = 

[ 

R = R 0 

√ 

1 + 

2 a cos α

R 0 
, z = aR 0 sin α, α = [0 : 2 π ] 

] 

, 

(14) 

nd having a Dirichlet-type boundary condition ψ = 0 (Deriaz et al.
011 ). The solution has a drop-shaped structure, that has an X -
oint at ( z = 0, R = 0) as ∂ψ 

∂z 
= 

∂ψ 

∂R 
= 0 at this point. Note, that

imilar Soloviev solutions can be also obtained using a different 
arametrization in order to approximate axisymmetric solutions of 
okamak configuration having a D-shaped geometry, that are beyond 
he scope of this work. 

We present the results obtained with our PINNs solver in Figs 6 –7
or finding the solution of equations (12 ) and ( 14 ). We have used the
ollowing solutions parameter values, f 0 = 1, a = 0.5, and R 0 = 1. The
etwork architecture is similar to the arcade case where seven hidden 
ayers with 20 neurons per layer were chosen, which consequently 
epresent a number of 2601 trainable parameters for θ . We have used
0 training data points (i.e. N data = 80) with a distribution based
n a uniform α angle generator, and randomly distributed N c = 

70 collocation points inside the integration domain. The results 
re obtained after a training process with a maximum of 50 000
pochs. The convergence of the loss function is initially very fast
typically during the first 10 000 epochs) and is much more slower
fter, as already observed previously for the arcade problem. When 
omparing to the exact solution, the relative error of PINNs solver
s similar (with a slightly higher value) compared to the arcade
roblem. Ho we ver, a smaller error is expected with a finer tuning
f the different parameters and/or with a longer training procedure. 

 STEADY-STATE  MAGNETI C  R E C O N N E C T I O N  

agnetic reconnection plays a fundamental role for release of 
agnetic energy in solar flares and coronal mass ejections. The 
echanism has been e xtensiv ely inv estigated o v er the last 50 years

Priest & Forbes 2000 ) including exact analytical solutions for 
teady-state reconnection (Sonnerup & Priest 1975 ; Craig & Henton 
995 ) and numerical time dependent reconnection (Baty et al. 2014 ;
aty 2019 ) in the MHD framework approximation. In incompressible 

nviscid plasmas, the particular 2D exact solution obtained by 
raig & Henton ( 1995 ) i.e the generalization of the previously

ntroduced by Sonnerup & Priest ( 1975 ) is of particular interest in
rder to test our PINNs solver. 

.1 Incompressible MHD equations 

e consider the following set of steady-state incompressible resis- 
ive MHD equations written in usual dimensionless units (i.e. the 
agnetic permeability and plasma density are taken to be unity). 
MNRAS 527, 2575–2584 (2024) 
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Figure 7. (a) Absolute error distribution (iso-contours of the difference between the PINNs and exact solutions) for the drop-shape equilibrium shown in the 
previous figure. (b) Evolution of the total loss function with the training epochs for the case shown in the previous figure. 
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he flow velocity obeys the inviscid equation 

V · ∇ V − ( ∇ × B ) × B + ∇P = 0 , (15) 

hich is written in a residual form ready to be solved by our PINNs
lgorithm. The thermal pressure P (via its gradient) is necessary
o ensure the equilibrium when using the velocity equation. The
ow v elocity v ector is also constrained by the incompressibility
ssumption 

 · V = 0 . (16) 

n the other hand, using the Maxwell–Faraday law and Ohm’s law,
he magnetic field vector is known to follow the equation 

 × ( V × B ) + η∇ 

2 B = 0 , (17) 

ccompanied by the solenoidal condition 

 · B = 0 . (18) 

inally, note that the resistivity η is assumed to be uniform in this
ork. 

.2 Magnetic annihilation and reconnecti v e diffusion solutions 

agnetic annihilation solution is a particular 2D magnetic re-
onnection process in which two antiparallel regions of magnetic
eld (directed along the y directions) are swept together by the

ncompressible plasma flow and destroy one another (Sonnerup &
riest 1975 ). The solution is based on a stagnation-point flow 

V = ( −αx, αy ) , (19) 

here α is a positive real given constant. In the limit of vanishing
iscosity, the exact steady-state solution for the magnetic field vector
s, 

B = 

(
0 , B y ( x) 

)
, (20) 

ith 

 y ( x ) = 

E d 

ημ
Daw( μx ) , (21) 

here E d is the magnitude of a uniform electric field perpendicular
o the ( x , y ) plane, μ2 = α/(2 η) with η being the electrical resistivity
f the plasma, and Daw ( x ) is the Dawson function given by 

aw( x) = 

∫ x 

0 
exp ( t 2 − x 2 )d t . (22) 
NRAS 527, 2575–2584 (2024) 
he role of E d is to control the rate of energy conversion. In the
imit of small resistivity η, this solution exhibits a strong current
heet centered o v er the stagnation-point flow with a thickness in the
 -direction proportional to η1/2 . 

As an natural extension of the previous reconnection model,
he solution of the called reconnective diffusion solution has been
btained by Craig & Henton ( 1995 ). It corresponds to the velocity
nd magnetic field profiles of the form: 

V = 

(
−αx, αy − β

α

E d 

ημ
D aw( μx) 

)
, (23) 

nd 

B = 

(
βx, −βy + 

E d 

ημ
Daw( μx) 

)
, (24) 

espectively. The new definition of μ parameter is now 

2 = 

α2 − β2 

2 ηα
, (25) 

here an additional real parameter β < α is introduced. Note
hat the annihilation solution is naturally reco v ered as a particular
ase when β = 0. The reconnective diffusion exhibits diffusion
cross one separatrix like the annihilation solution, but the dominant
rocess across the other separatrix is advection like in a classical
econnection picture. As a shear flow exists across a global current
ayer, there is a symmetry breaking compared to the annihila-
ion process (Watson & Craig 1998 ; Watson et al. 1998 ; Baty &
ishikawa 2016 ). 

.3 Solving steady-state magnetic reconnection using PINNs 

ur PINNs solver must therefore treat six scalar equations, that are
he two divergence free conditions, two scalar equations for velocity
omponents, and two scalar equations for magnetic field components,
ogether with the use of six corresponding partial physics-based loss
unctions. As now five unknown variables (i.e. V x , V y , B x , B y , and
 ) represent the problem solution, the output layer must at least

nclude five corresponding neurons. In practice, we have used five
eurons, adding a sixth neuron for a magnetic flux function ψ (in
rder to be used for plotting magnetic field lines) as B x = 

∂ψ 

∂y 
and

 y = − ∂ψ 

∂x 
. 

Following the same procedure previously used for solving equilib-
ia, the magnetic annihilation and reconnective solutions have been
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Figure 8. (a) Pure annihilation ( β = 0), (b) and reconnective diffusion with β = 0.5 solutions using PINNs solver. Magnetic field lines and flow velocity are 
plotted using iso-contours and arro ws, respecti vely. The location of training and collocation data points are visible with dots situated on the boundaries and 
inside the domain, respectively. 

Figure 9. Iso-contours of the B y and B x magnetic field components predicted by PINNs solver, and associated absolute error distributions. 
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icely obtained. Indeed, the results are plotted in Fig. 8 for two values
f the β parameter, i.e. for β = 0 thus selecting the pure annihilation
olution and for β = 0.5 selecting a reconnective diffusion one. 
he other chosen physical parameters are E d = 0.1, α = 1, and
= 0.01. The integration is done on a [ − 1: 1] 2 square spatial

omain. 
As concerns the architecture of the network, nine hidden layers 

ith 30 neurons per layer are chosen, which represent a correspond- 
ng number of 7716 trainable parameters for θ . We have used N data =
20 training data points (i.e. 30 for each boundary layer) with a
andom distribution, and randomly distributed N c = 700 points 
nside the integration domain. The exact solutions for magnetic field 
nd flow velocity are used to prescribe these training data values.
he results are obtained after a training process with 25 000 epochs
mploying a learning rate l r = 2 × 10 −4 . 

The solutions obtained with PINNs solver are compared to the 
xact analytical ones. The results for β = 0.5 are plotted in Figs
 –11 . A maximum absolute error of order 3 × 10 −3 is visible on
MNRAS 527, 2575–2584 (2024) 
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Figure 10. Iso-contours of the V y and V x velocity flow components predicted by PINNs solver, and associated absolute error distributions. 

Figure 11. One-dimensional B y component (dashed line) obtained for different x and y particular values compared with the exact analytical solution (plain 
line). 
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he maps showing the spatial error distribution of the magnetic
eld and velocity flow components, as one can see in Figs 9
nd 10, respectively. Contrary to the previous results obtained for
he equilibrium solvers, the error is higher in the central region
ue to the higher gradient. One-dimensional cuts for different x and
 values plotted in Fig. 11 also confirm the very good precision
roperties of the solver. Similar results with similar performances
an be also obtained for other β v alues. Ho we ver, for cases using
maller resistivity values, the training requires a significantly higher
umber of collocation points in order to resolve the central layer that
NRAS 527, 2575–2584 (2024) 
as a thickness in the x -direction proportional to η1/2 . In practice, it
s also possible to use a particular spatial distribution of collocation
oints having an accumulation in the central region, that is beyond
he scope of this study. 

 C O N C L U S I O N S  

n this work, we show that PINNs are interesting tools for solving
DEs. In particular, they represent alternatives to traditional/classical
umerical methods for modelling magnetic field dynamics of the
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olar conona. As a first example of application, PINNs-based solvers 
an easily handle finding equilibrium configurations via solving GS 

ike equations, without the need to involve a spatial mesh o v er which
ifferential operators are discretized in order to solve a large linear 
ystem. Second, it is shown that PINNs solvers can also offer an
lternative to classical MHD codes for modelling dynamics of the 
olar corona. Indeed, exact particular steady-state magnetic recon- 
ection solution of 2D incompressible resistive MHD equations is 
asily reco v ered in this work (Craig & Henton 1995 ). Compared to
raditional numerical methods, they present some advantages listed 
elow. 

(i) The technique does not require meshing the domain. Indeed, the 
mplementation simply requires the use of a a data set of collocation
oints arbitrarily chosen inside the domain. It can therefore easily 
e applied to curvilinear geometries or complex domains (e.g. with 
oles). The only constraint is to define points in the domain, which
s simpler than building meshes. 

(ii) Once trained, the technique makes it possible to calculate the 
olution at any point of the domain. This allows, e.g. to zoom in on
art of the domain without the need for interpolation. Moreo v er, this
redicted solution is quasi-instantaneously (in a fraction of second) 
enerated, as the latter is a function fully determined by the set of
arameters θ . 
(iii) The formulation based on the equations residuals (e.g. second 

rder deri v ati ve form) does not require the use of some equi v alent
ystem of first order differential equations. The solution derivative 
ith respect to the spatial variable is also quasi-instantaneously 
btained with an accuracy similar to the solution. 

Ho we ver, our results also highlight some drawbacks listed below. 

(i) Even if the accuracy obtained in this work is excellent, PINNs
eem to be potentially less accurate than classical methods where 
.g. refining a grid allows a precision close to the machine one. This
imitation is partly inherent to minimization techniques. Neverthe- 
ess, our results could be slightly ameliorated (see the second point 
elow). 
(ii) The training process depends on a combination of many 

arameters like, the learning rate, the weights in the loss function (not
onsidered in this study), and the architecture of the network, which 
etermines the efficiency (speed and accuracy) of the minimiza- 
ion (Baty 2023 ). Consequently, a finer tuning using some adaptive 
echniques is possible in order to ameliorate the results. Ho we ver,
his is not a simple task that is beyond the scope of this work. 

Anyway, PINNs are promising tools that are called upon to develop 
n future years for the following reasons. Ameliorations using self- 
daptive techniques are expected in order to improve the previously 
ited drawbacks (Karniadakis et al. 2021 ; Cuomo et al. 2022 ). As
hown in this work, they also offer a different and complementary 
pproach to traditional methods. Once trained, the network output 
eing an analytic-like expression (see equations 1 and 2), the 
olution and deri v ati ves can be quasi-instantaneously generated in 
he trained spatial domain. Consequently, the solution obtained with 
ur PINNs methods is valid o v er the entire domain without the need
or spatial interpolation as in classical numerical schemes. Another 
trong promising potentiality offered by PINNs approach is the 
ossibility to learn a family of different solutions with the same neural 
etwork (Baty 2023 ). Indeed, the use of an input layer considering
dditional variable parameters (it could be the resistivity or/and the 
parameters in case of the magnetic reconnection problem) would 

llow to learn multiple solutions for ranges of variation of these 
arameters. We are actually developing such important applications, 
s this is clearly a particular potentiality of PINNs technique that
s not possible when using traditional numerical schemes. Finally, 
nother way of using PINNs is to combine a PINNs solver with
lassical MHD simulations, as this is already under exploitation for 
ydrodynamics. Indeed, data obtained from classical simulations in 
 first step (e.g. magnetic reconnection ones for different resistivity 
alues) can be used as extra training data in the NN training
rocess in order to learn the different associated solutions. Thus, 
n the second step, PINNs solver can be used to generate a new
olution corresponding to another parameter value (e.g. resistivity). 
n other words, PINNs method can serve as a reduced model of
 given problem, a v oiding numerous long and costly calculations.
he computation time needed to obtain the results presented in 

his work (for a standard single CPU computer) is of order a few
inutes in case of the arcade/equilibrium equations and a few tens

f minutes for the reconnection problem. This is probably faster 
han obtained with traditional methods on a similar computer. An 
ven faster computation is of course possible when using GPU and
ulti-GPU. 
Be yond the abo v e potentialities, more studies are obviously needed

o extend the examples of application presented in this work. First,
he reconstruction of the solar coronal magnetic field in a more
ealistic three-dimensional geometry could be a challenging project. 
he transition to three-dimensional version does not necessitate 
pecial adaptation (only additional input/output neurons), but the 
omputation time would be higher as a higher number of points
nd possibly a larger/deeper neural network are required. Second, 
sing a PINNs solver for a time dependent MHD dynamics is also
ctually under development either for exploitation in combination 
ith a classical MHD code or not. 
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